1
|
Alvarez KLF, Davila-Del-Carpio G. The gut microbiota as a link between Alzheimer's disease and obesity. Am J Physiol Gastrointest Liver Physiol 2024; 327:G727-G732. [PMID: 39378307 DOI: 10.1152/ajpgi.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disease that causes a progressive decline in memory and thinking skills. Over the past few years, diverse studies have shown that there is no single cause of AD; instead, it has been reported that factors such as genetics, lifestyle, and environment contribute to the pathogenesis of the disease. In this sense, it has been shown that obesity during middle age is one of the most prominent modifiable risk factors for AD. Of the multiple potential mechanisms linking obesity and AD, the gut microbiota (GM) has gained increasing attention in recent years. However, the underlying mechanisms that connect the GM with the process of neurodegeneration remain unclear. Through this narrative review, we present a comprehensive understanding of how alterations in the GM of people with obesity may result in systemic inflammation and affect pathways related to the pathogenesis of AD. We conclude with an analysis of the relationship between GM and insulin resistance, a risk factor for AD that is highly prevalent in people with obesity. Understanding the crosstalk between obesity, GM, and the pathogenesis of AD will help to design new strategies aimed at preventing neurodegeneration.
Collapse
Affiliation(s)
- Karla Lucia F Alvarez
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | | |
Collapse
|
2
|
Xie Y, Li Z, Fan Y, Liu X, Yi R, Gan Y, Yang Z, Liu S. Integrated gut microbiome and UHPLC-MS metabolomics to reveal the prevention mechanism of pidanjiangtang granules on IGT Rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156201. [PMID: 39531936 DOI: 10.1016/j.phymed.2024.156201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Pidanjiangtang (PDJT) is a traditional Chinese medicine formula empirically used to treat impaired glucose tolerance (IGT) based on the "Pidan" theory from the classic ancient book Nei Jing. However, the mechanism of PDJT intervention for IGT remains to be studied. OBJECTIVE This study aims to explore the mechanism of PDJT granules intervention in IGT by integrating gut microbiome and UHPLC-MS untargeted metabolomics. MATERIALS AND METHODS The IGT model was established in 6-week-old male Sprague-Dawley (SD) rats by feeding them a high-fat diet and using an STZ injection. The low, medium, and high doses of PDJT were used for six weeks. metformin (Glucophage) was used as the positive control drug. The efficacy of PDJT was evaluated using fasting blood glucose (FBG), blood glucose maximum (BGmax), blood lipid, and inflammatory factor levels. Finally, 16S rDNA gut microbiome sequencing with metabolomics analysis was used to explore the pharmacological mechanism of PDJT intervention in IGT. RESULTS PDJT could reverse the phenotype of IGT rats, reduce blood glucose levels, improve lipid metabolism disorder, and reduce inflammatory response. Gut microbiome analysis found that PDJT can improve gut microbiota composition and abundance of three phyla (Firmicutes, Bacteroidota, Desulfobacterota) and four genera (unclassified_f__Lachnospiraceae, Ruminococcus, Allobaculum, Desulfovibrio), which play an important role in the process of PDJT intervention on glucose metabolism and lipid metabolism in IGT rats. UHPLC-MS untargeted metabolomics showed that PDJT could regulate the levels of 258 metabolites in lipid metabolism pathways, inflammatory response pathways, fat and protein digestion, and absorption. The combined analysis of the two omics showed that improving the body's metabolism by gut microbes may be the possible mechanism of PDJT in treating IGT. Thus, this study provides a new method to integrate gut microbiome and UHPLC-MS untargeted metabolomics to evaluate the pharmacodynamics and mechanism of PDJT intervention in IGT, providing valuable ideas and insights for future research on the treatment of IGT with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yu Xie
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zirong Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Yue Fan
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Yi
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoyao Gan
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Yang
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shangjian Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Amiri P, Hosseini SA, Saghafi-Asl M, Roshanravan N, Tootoonchian M. Expression of PGC-1α, PPAR-α and UCP1 genes, metabolic and anthropometric factors in response to sodium butyrate supplementation in patients with obesity: a triple-blind, randomized placebo-controlled clinical trial. Eur J Clin Nutr 2024:10.1038/s41430-024-01512-x. [PMID: 39448815 DOI: 10.1038/s41430-024-01512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES There is increasing evidence that gut metabolites have a role in the etiology of obesity. This study aimed to investigate the effects of sodium butyrate (NaB) supplementation on the expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α), PPAR-α, and uncoupling protein-1 (UCP-1) genes, as well as on the metabolic parameters and anthropometric indices in persons with obesity. METHODS In this triple-blind placebo-controlled randomized clinical trial, 50 individuals with obesity were randomly assigned to NaB (600 mg/day) + hypo-caloric diet or placebo group + hypo-caloric diet for 8 weeks. The study measured the participants' anthropometric characteristics, food consumption, and feelings of hunger in addition to the serum levels of metabolic indices and the mRNA expression of the PGC-1α, PPAR-α, and UCP-1 genes in peripheral blood mononuclear cells (PBMCs). RESULTS PGC-1α and UCP-1 genes expression significantly increased in NaB group compared to the placebo at the endpoint. A significant decrease in weight, BMI, and waist circumference (WC) was observed in NaB group. Among the metabolic factors, NaB significantly decreased fasting blood sugar (FBS) (P = 0.04), low-density lipoprotein cholesterol (LDL-C) (P = 0.038) and increased high-density lipoprotein cholesterol (HDL-C) (P = 0.016). NaB could not significantly change serum GLP-1 level. CONCLUSIONS This study unveiled NaB supplementation alone cannot have significant beneficial effects on anthropometric, and biochemical factors. NaB could affect anthropometric and metabolic risk variables associated with obesity only when prescribed, along with calorie restriction. CLINICAL TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials ( https://en.irct.ir/trial/53968 ) on 31 January 2021 (registry number IRCT20190303042905N2).
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2024:10.1038/s41579-024-01108-z. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Verhaar BJH, Wijdeveld M, Wortelboer K, Rampanelli E, Levels JHM, Collard D, Cammenga M, Nageswaran V, Haghikia A, Landmesser U, Li XS, DiDonato JA, Hazen SL, Garrelds IM, Danser AHJ, van den Born BJH, Nieuwdorp M, Muller M. Effects of Oral Butyrate on Blood Pressure in Patients With Hypertension: A Randomized, Placebo-Controlled Trial. Hypertension 2024; 81:2124-2136. [PMID: 39034917 PMCID: PMC11404767 DOI: 10.1161/hypertensionaha.123.22437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The microbiota-derived short chain fatty acid butyrate has been shown to lower blood pressure (BP) in rodent studies. Nonetheless, the net effect of butyrate on hypertension in humans remains uncovered. In this study, for the first time, we aimed to determine the effect of oral butyrate on BP in patients with hypertension. METHODS We performed a double-blind randomized placebo-controlled trial including 23 patients with hypertension. Antihypertensive medication was discontinued for the duration of the study with a washout period of 4 weeks before starting the intervention. Participants received daily oral capsules containing either sodium butyrate or placebo with an equivalent dosage of sodium chloride for 4 weeks. The primary outcome was daytime 24-hour systolic BP. Differences between groups over time were assessed using linear mixed models (group-by-time interaction). RESULTS Study participants (59.0±3.7 years; 56.5% female) had an average baseline office systolic BP of 143.5±14.6 mm Hg and diastolic BP of 93.0±8.3 mm Hg. Daytime 24-hour systolic and diastolic BP significantly increased over the intervention period in the butyrate compared with the placebo group, with an increase of +9.63 (95% CI, 2.02-17.20) mm Hg in daytime 24-hour systolic BP and +5.08 (95% CI, 1.34-8.78) mm Hg in diastolic BP over 4 weeks. Butyrate levels significantly increased in plasma, but not in feces, upon butyrate intake, underscoring its absorption. CONCLUSIONS Four-week treatment with oral butyrate increased daytime systolic and diastolic BP in subjects with hypertension. Our findings implicate that butyrate does not have beneficial effects on human hypertension, which warrants caution in future butyrate intervention studies. REGISTRATION URL: https://onderzoekmetmensen.nl/; Unique identifier: NL8924.
Collapse
Affiliation(s)
- Barbara J H Verhaar
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
- Department of Internal Medicine-Geriatrics, Amsterdam UMC location VUmc, the Netherlands (B.J.H.V., M.M.)
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
| | - Madelief Wijdeveld
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands (M.W., K.W., E.R.)
| | - Koen Wortelboer
- Experimental Vascular Medicine (K.W., E.R., J.H.M.L.), Amsterdam UMC location AMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands (M.W., K.W., E.R.)
| | - Elena Rampanelli
- Experimental Vascular Medicine (K.W., E.R., J.H.M.L.), Amsterdam UMC location AMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands (M.W., K.W., E.R.)
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Cancer Immunology, the Netherlands (E.R.)
| | - Johannes H M Levels
- Experimental Vascular Medicine (K.W., E.R., J.H.M.L.), Amsterdam UMC location AMC, the Netherlands
| | - Didier Collard
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
| | - Marianne Cammenga
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
| | - Vanasa Nageswaran
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., A.H., U.L.)
| | - Arash Haghikia
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., A.H., U.L.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (A.H., U.L.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin Institute of Health, Germany (A.H., U.L.)
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., A.H., U.L.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (A.H., U.L.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin Institute of Health, Germany (A.H., U.L.)
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (X.S.L., J.A.D.)
| | - Joseph A DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (X.S.L., J.A.D.)
| | - Stanley L Hazen
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (S.L.H.)
| | - Ingrid M Garrelds
- Department of Internal Medicine, Division of Pharmacology, Erasmus MC, Rotterdam, the Netherlands (I.M.G., A.H.J.D.)
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology, Erasmus MC, Rotterdam, the Netherlands (I.M.G., A.H.J.D.)
| | - Bert-Jan H van den Born
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
- Department of Public and Occupational Medicine, Amsterdam UMC, the Netherlands (B.-J.H.v.d.B.)
| | - Max Nieuwdorp
- Departments of Vascular Medicine (B.J.H.V., M.W., D.C., M.C., B.-J.H.v.d.B., M.N.), Amsterdam UMC location AMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
| | - Majon Muller
- Department of Internal Medicine-Geriatrics, Amsterdam UMC location VUmc, the Netherlands (B.J.H.V., M.M.)
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Atherosclerosis and Ischemic Syndromes, the Netherlands (B.J.H.V., M.W., K.W., E.R., B.-J.H.v.d.B., M.N., M.M.)
| |
Collapse
|
8
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
9
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Larik GNF, Canfora EE, van Schothorst EM, Blaak EE. Intestinal gases as a non-invasive measurement of microbial fermentation and host health. Cell Host Microbe 2024; 32:1225-1229. [PMID: 39146794 DOI: 10.1016/j.chom.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Microbial fermentation and associated products provide insights into the gut microbiota-host relationship. Here, we propose using improved technologies that allow non-invasive, real-time measurements of intestinal gases as a metric for microbial fermentation. This approach has the potential to provide a basis for personalized interventions that improve host metabolic health.
Collapse
Affiliation(s)
- Gillian N F Larik
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Emanuel E Canfora
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Mathews R, Chu Y. An encompassing review of meta-analyses and systematic reviews of the effect of oats on all-cause mortality, cardiovascular risk, diabetes risk, body weight/adiposity and gut health. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39137936 DOI: 10.1080/10408398.2024.2382352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The ability of oats to reduce blood cholesterol is well established but there is increasing evidence that its health benefits extend well beyond that. The purpose of this review was to critically evaluate the state of the science of oats in relation to all-cause mortality, cardiovascular and diabetes risk and the effects of oats on blood lipids, blood glucose, blood pressure, weight management and gut health from meta-analyses and systematic reviews. Limited epidemiological data indicated a possible beneficial effect of oats on all-cause mortality and incident diabetes when high versus low oat consumers were compared, but its effect on cardiovascular events was not adequately discerned. Observational data also showed an inverse association between oat intake and blood cholesterol, blood pressure, body weight and obesity variables in different populations. Randomized controlled oat intervention studies demonstrated a significant reduction in postprandial blood glucose in both diabetic and non-diabetic subjects, fasting blood glucose in diabetic subjects, blood pressure in prehypertensive individuals, and body weight and adiposity in overweight individuals. Increased fecal bulk was observed but clinical data for a potential gut barrier effect is lacking. The mechanism of action of each health effect was reviewed. While beta-glucan viscosity was once considered the only mode of action, it is evident that the fermentation products of beta-glucan and the associated gut microbial changes, as well as other components in oats (i.e., avenanthramides etc.) also play an important role.
Collapse
Affiliation(s)
| | - YiFang Chu
- Nutrition Sciences, PepsiCo Global R&D, Chicago, Illinois, USA
| |
Collapse
|
12
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornik Cregeen S, Schmidt NW. Gut microbial changes associated with obesity in youth with type 1 diabetes: a Pilot Study. J Clin Endocrinol Metab 2024:dgae529. [PMID: 39078977 DOI: 10.1210/clinem/dgae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
CONTEXT Obesity is prevalent in type 1 diabetes (T1D) and is problematic with higher risk for diabetes complications. It is unknown to what extent gut microbiome changes are associated with obesity and T1D. OBJECTIVE To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences in lean T1D youth (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) differences in lean (n=27) and obese (n=21) T1D youth in a pilot study. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. RESULTS Bacterial community composition showed between sample diversity differences (β-diversity) by BMI group (p=0.013). There was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). There was a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri, among other taxa in the obese group. Functional profiling showed an upregulation of branched chain amino acid (BCAA) biosynthesis in the obese group and upregulation of BCAA degradation, tyrosine metabolism and secondary bile acid biosynthesis in the lean group. Stool SCFAs were higher in the obese versus the lean group (p<0.05 for all). CONCLUSIONS Our findings identify a gut microbiome and microbial metabolite signature associated with obesity in T1D. These findings could help identify gut microbiome targeted therapies to manage obesity in T1D.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Dimuthu Perera
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Rabindra Mandal
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Tamara Hannon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Nathan W Schmidt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Van-Wehle T, Vital M. Investigating the response of the butyrate production potential to major fibers in dietary intervention studies. NPJ Biofilms Microbiomes 2024; 10:63. [PMID: 39080292 PMCID: PMC11289085 DOI: 10.1038/s41522-024-00533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Interventions involving dietary fibers are known to benefit host health. A leading contribution of gut microbiota is commonly recognized with production of short chain fatty acids (SCFA) suspected to play a key role. However, the detailed mechanisms are largely unknown, and apart from a well-described bifidogenic effect of some fibers, results for other bacterial taxa are often incongruent between studies. We performed pooled analyses of 16S rRNA gene data derived from intervention studies (n = 14) based on three fibers, namely, inulin-type fructans (ITF), resistant starch (RS), and arabinoxylan-oligosaccharides (AXOS), harmonizing the bioinformatics workflow to reveal taxa stimulated by those substrates, specifically focusing on the SCFA-production potential. The results showed an increased butyrate production potential after ITF (p < 0.05) and RS (p < 0.1) treatment via an increase in bacteria exhibiting the enzyme butyryl-CoA:acetate CoA-transferase (but) that was governed by Faecalibacterium, Anaerostipes (ITF) and Agathobacter (RS) respectively. AXOS did not promote an increase in butyrate producers, nor were pathways linked to propionate production stimulated by any intervention. A bifidogenic effect was observed for AXOS and ITF, which was only partly associated with the behavior of but-containing bacteria and largely represented a separate response. Low and high Ruminococcus abundances pre-intervention for ITF and RS, respectively, promoted an increase in but-containing taxa (p < 0.05) upon interventions, whereas initial Prevotella abundance was negatively associated with responses of butyrate producers for both fibers. Collectively, our data demonstrate targeted stimulation of specific taxa by individual fibers increasing the potential to synthesize butyrate, where gut microbiota composition pre-intervention strongly controlled outcomes.
Collapse
Affiliation(s)
- Thao Van-Wehle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
14
|
Niu H, Zhou M, Ji A, Zogona D, Wu T, Xu X. Molecular Mechanism of Pasteurized Akkermansia muciniphila in Alleviating Type 2 Diabetes Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13083-13098. [PMID: 38829529 DOI: 10.1021/acs.jafc.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2DM) significantly diminishes people's quality of life and imposes a substantial economic burden. This pathological progression is intimately linked with specific gut microbiota, such as Akkermansia muciniphila. Pasteurized A. muciniphila (P-AKK) has been defined as a novel food by the European Food Safety Authority and exhibited significant hypoglycemic activity. However, current research on the hypoglycemic activity of P-AKK is limited to the metabolic level, neglecting systematic exploration at the pathological level. Consequently, its material basis and mechanism of action for hypoglycemia remain unclear. Drawing upon this foundation, we utilized high-temperature killed A. muciniphila (H-K-AKK) with insignificant hypoglycemic activity as the control research object. Assessments were conducted at pathological levels to evaluate the hypoglycemic functions of both P-AKK and H-K-AKK separately. Our study unveiled for the first time that P-AKK ameliorated symptoms of T2DM by enhancing the generation of glucagon-Like Peptide 1 (GLP-1), with pasteurized A. muciniphila total proteins (PP) being a pivotal component responsible for this activity. Utilizing SDS-PAGE, proteomics, and molecular docking techniques, we deeply analyzed the material foundation of PP. We scientifically screened and identified a protein weighing 77.85 kDa, designated as P5. P5 enhanced GLP-1 synthesis and secretion by activating the G protein-coupled receptor (GPCR) signaling pathway, with free fatty acid receptor 2 (FFAR-2) being identified as the pivotal target protein for P5's physiological activity. These findings further promote the widespread application of P-AKK in the food industry, laying a solid theoretical foundation for its utilization as a beneficial food ingredient or functional component.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Daniel Zogona
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
15
|
Eveleens Maarse BC, Eggink HM, Warnke I, Bijlsma S, van den Broek TJ, Oosterman JE, Caspers MPM, Sybesma W, Gal P, van Kraaij SJW, Schuren FHJ, Moerland M, Hoevenaars FPM. Impact of fibre supplementation on microbiome and resilience in healthy participants: A randomized, placebo-controlled clinical trial. Nutr Metab Cardiovasc Dis 2024; 34:1416-1426. [PMID: 38499450 DOI: 10.1016/j.numecd.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AND AIMS The gut microbiome exerts important roles in health, e.g., functions in metabolism and immunology. These functions are often exerted via short-chain fatty acid (SCFA) production by gut bacteria. Studies demonstrating causal relationships between interventions targeting the microbiome and clinical outcomes are limited. This study aimed to show a causal relationship between microbiome modulation through fibre intervention and health. METHODS AND RESULTS This randomized, double-blind, cross-over study included 65 healthy subjects, aged 45-70 years, with increased metabolic risk (i.e., body mass index [BMI] 25-30 kg/m2, low to moderate daily dietary fibre intake, <30g/day). Subjects took daily a fibre mixture of Acacia gum and carrot powder or placebo for 12 weeks, with an 8-week wash-out period. Faecal samples for measurement of SCFAs and microbiome analysis were collected every 4 weeks. Before and after each intervention period subjects underwent the mixed-meal PhenFlex challenge Test (PFT). Health effects were expressed as resilience to the stressors of the PFT and as fasting metabolic and inflammatory state. The fibre mixture exerted microbiome modulation, with an increase in β-diversity (p < 0.001). α-diversity was lower during fibre mixture intake compared to placebo after 4, 8 and 12 weeks (p = 0.002; p = 0.012; p = 0.031). There was no effect observed on faecal SCFA concentrations, nor on any of the primary clinical outcomes (Inflammatory resilience: p = 0.605, Metabolic resilience: p = 0.485). CONCLUSION Although the intervention exerted effects on gut microbiome composition, no effects on SCFA production, on resilience or fasting metabolic and inflammatory state were observed in this cohort. REGISTRATION NUMBER CLINICALTRIALS.GOV: NCT04829396.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Hannah M Eggink
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Ines Warnke
- dsm-firmenich, CH-4303, Kaiseraugst, Switzerland
| | - Sabina Bijlsma
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Tim J van den Broek
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Johanneke E Oosterman
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Martien P M Caspers
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | | | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Frank H J Schuren
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Femke P M Hoevenaars
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands.
| |
Collapse
|
16
|
Fristedt R, Ruppert V, Trower T, Cooney J, Landberg R. Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans. Talanta 2024; 272:125743. [PMID: 38382298 DOI: 10.1016/j.talanta.2024.125743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The role of gut microbiota in human health has been intensively studied and more recently shifted from emphasis on composition towards function. Function is partly mediated through formed metabolites. Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate as well as their branched analogues represent major products from gut fermentation of dietary fibre and proteins, respectively. Robust and high-throughput analysis of SCFAs in small volume blood samples have proven difficult. Major obstacles come from the ubiquitous presence of SCFAs that leads to contaminations and unstable analytical results because of the high volatility of these small molecules. Comprehensive and comparable data on the variation of SCFAs in blood samples from different blood matrices and mammal species including humans is lacking. Therefore, our aim was to develop and evaluate a stable and robust method for quantitation of 8 SCFAs and related fermentation products in small volume blood plasma samples and to investigate their variation in humans and different animal species. RESULTS Derivatization was a successful approach for measurement of SCFAs in biological samples but quenching of the derivatization reaction was crucial to obtain long-term stability of the derivatized analytes. In total 9 compounds (including succinic acid) were separated in 5 min. The method was linear over the range 0.6-3200 nM formic (FA), acetic (AA), 0.3-1600 nM propionic (PA), and 0.16-800 nM for butyric (BA)-, isobutyric (IBA)-, valeric (VA)-, isovaleric (IVA)-, succinic (SA) and caproic acid (CA). The precision ranged ≤12 % within days and ≤28 % between days (except for CA and VA) in three different plasma quality control (QC) samples (29 batches analyzed over 3 months). The extraction recovery was on average 94 % for the different SCFAs. Typical interquartile range (IQR) concentrations (μM) of SCFAs in human plasma samples were 168 μM (FA), 64 μM (AA), 2.2 μM (PA), 0.54 μM (BA), 0.66 μM (IBA), 0.18 μM (VA), 0.40 μM (IVA), and 0.34 μM (CA). In total, 55 samples per batch/day were successfully analyzed and in total 5380 human plasma samples measured over a 3-year timespan. SIGNIFICANCE The developed UHPLC-MS based method was suitable for measuring SCFAs in small blood volume samples and enabled robust quantitative data.
Collapse
Affiliation(s)
- Rikard Fristedt
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden.
| | - Vanessa Ruppert
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Rikard Landberg
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| |
Collapse
|
17
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
18
|
Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 2024; 21:301-318. [PMID: 38326443 DOI: 10.1038/s41575-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Valentin Mocanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Niu H, Zhou M, Zogona D, Xing Z, Wu T, Chen R, Cui D, Liang F, Xu X. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol 2024; 15:1370658. [PMID: 38571945 PMCID: PMC10987721 DOI: 10.3389/fimmu.2024.1370658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Barman M, Gio-Batta M, Andrieux L, Stråvik M, Saalman R, Fristedt R, Rabe H, Sandin A, Wold AE, Sandberg AS. Short-chain fatty acids (SCFA) in infants' plasma and corresponding mother's milk and plasma in relation to subsequent sensitisation and atopic disease. EBioMedicine 2024; 101:104999. [PMID: 38340558 PMCID: PMC10869761 DOI: 10.1016/j.ebiom.2024.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) in intestinal contents may influence immune function, while less is known about SCFAs in blood plasma. The aims were to investigate the relation between infants' and maternal plasma SCFAs, as well as SCFAs in mother's milk, and relate SCFA concentrations in infant plasma to subsequent sensitisation and atopic disease. METHODS Infant plasma (N = 148) and corresponding mother's milk and plasma were collected four months postpartum. Nine SCFA (formic, acetic, propionic, isobutyric, butyric, succinic, valeric, isovaleric, and caproic acid) were analysed by UPLC-MS. At 12 months of age, atopic disease was diagnosed by a pediatric allergologist, and sensitisation was measured by skin prick test. All families participated in the Swedish birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). FINDINGS Infants with sensitisation, atopic eczema, or food allergy had significantly lower concentrations of five, three, and two SCFAs, respectively, in plasma at four months. Logistic regressions models showed significant negative associations between formic, succinic, and caproic acid and sensitisation [ORadj (95% CI) per SD: 0.41 (0.19-0.91); 0.19 (0.05-0.75); 0.25 (0.09-0.66)], and between acetic acid and atopic eczema [0.42 (0.18-0.95)], after adjusting for maternal allergy. Infants' and maternal plasma SCFA concentrations correlated strongly, while milk SCFA concentrations were unrelated to both. Butyric and caproic acid concentrations were enriched around 100-fold, and iso-butyric and valeric acid around 3-5-fold in mother's milk, while other SCFAs were less prevalent in milk than in plasma. INTERPRETATION Butyric and caproic acid might be actively transported into breast milk to meet the needs of the infant, although mechanistic studies are needed to confirm this. The negative associations between certain SCFAs on sensitisation and atopic disease adds to prior evidence regarding their immunoregulatory potential. FUNDING Swedish Research Council (Nr. 2013-3145, 2019-0137 and 2023-02217 to A-S.S.), Swedish Research Council for Health, Working Life and Welfare FORTE, Nr 2018-00485 to A.W.), The Swedish Asthma and Allergy Association's Research Fund (2020-0020 to A.S.).
Collapse
Affiliation(s)
- Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Léna Andrieux
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden; Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
| | - Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Robert Saalman
- Institute of Clinical Sciences, Department of Pediatrics, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Rikard Fristedt
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Umeå 901 87, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
21
|
Frampton J, Serrano-Contreras JI, Garcia-Perez I, Franco-Becker G, Penhaligan J, Tan ASY, Cepas de Oliveira AC, Milner AJ, Murphy KG, Frost G, Chambers ES. The impact of acute exercise on appetite regulation: unravelling the potential involvement of gut microbial activity. J Physiol 2024; 602:529-530. [PMID: 38226960 DOI: 10.1113/jp286101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Affiliation(s)
- James Frampton
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jose Ivan Serrano-Contreras
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Isabel Garcia-Perez
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Georgia Franco-Becker
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jack Penhaligan
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Abbigail S Y Tan
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ana Claudia Cepas de Oliveira
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Annabelle J Milner
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
22
|
Ye J, Gong M, Zhang Y, Xu Q, Zhao J. Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice. J Nutr 2024; 154:626-637. [PMID: 38110182 DOI: 10.1016/j.tjnut.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.
Collapse
Affiliation(s)
- Jiangcheng Ye
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingxiu Gong
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
23
|
dos Santos A, Galiè S. The Microbiota-Gut-Brain Axis in Metabolic Syndrome and Sleep Disorders: A Systematic Review. Nutrients 2024; 16:390. [PMID: 38337675 PMCID: PMC10857497 DOI: 10.3390/nu16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Over recent decades, a growing body of evidence has emerged linking the composition of the gut microbiota to sleep regulation. Interestingly, the prevalence of sleep disorders is commonly related to cardiometabolic comorbidities such as diabetes, impaired lipid metabolism, and metabolic syndrome (MetS). In this complex scenario, the role of the gut-brain axis as the main communicating pathway between gut microbiota and sleep regulation pathways in the brain reveals some common host-microbial biomarkers in both sleep disturbances and MetS. As the biological mechanisms behind this complex interacting network of neuroendocrine, immune, and metabolic pathways are not fully understood yet, the present systematic review aims to describe common microbial features between these two unrelated chronic conditions. RESULTS This systematic review highlights a total of 36 articles associating the gut microbial signature with MetS or sleep disorders. Specific emphasis is given to studies evaluating the effect of dietary patterns, dietary supplementation, and probiotics on MetS or sleep disturbances. CONCLUSIONS Dietary choices promote microbial composition and metabolites, causing both the amelioration and impairment of MetS and sleep homeostasis.
Collapse
Affiliation(s)
- Adriano dos Santos
- Integrative Medicine Nutrition Department, ADS Vitality B.V., 2517 AS The Hague, The Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milano, Italy;
| |
Collapse
|
24
|
Thing M, Werge MP, Kimer N, Hetland LE, Rashu EB, Nabilou P, Junker AE, Galsgaard ED, Bendtsen F, Laupsa-Borge J, McCann A, Gluud LL. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2024; 24:43. [PMID: 38262952 PMCID: PMC10804800 DOI: 10.1186/s12876-024-03129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Alterations in the production of short-chain fatty acids (SCFAs) may reflect disturbances in the gut microbiota and have been linked to metabolic dysfunction-associated steatotic liver disease (MASLD). We assessed plasma SCFAs in patients with MASLD and healthy controls. METHODS Fasting venous blood samples were collected and eight SCFAs were measured using gas chromatography-tandem mass spectrometry (GC-MS/MS). Relative between-group differences in circulating SCFA concentrations were estimated by linear regression, and the relation between SCFA concentrations, MASLD, and fibrosis severity was investigated using logistic regression. RESULTS The study includes 100 patients with MASLD (51% with mild/no fibrosis and 49% with significant fibrosis) and 50 healthy controls. Compared with healthy controls, MASLD patients had higher plasma concentrations of propionate (21.8%, 95% CI 3.33 to 43.6, p = 0.02), formate (21.9%, 95% CI 6.99 to 38.9, p = 0.003), valerate (35.7%, 95% CI 4.53 to 76.2, p = 0.02), and α-methylbutyrate (16.2%, 95% CI 3.66 to 30.3, p = 0.01) but lower plasma acetate concentrations (- 30.0%, 95% CI - 40.4 to - 17.9, p < 0.001). Among patients with MASLD, significant fibrosis was positively associated with propionate (p = 0.02), butyrate (p = 0.03), valerate (p = 0.03), and α-methylbutyrate (p = 0.02). Six of eight SCFAs were significantly increased in F4 fibrosis. CONCLUSIONS In the present study, SCFAs were associated with MASLD and fibrosis severity, but further research is needed to elucidate the potential mechanisms underlying our observations and to assess the possible benefit of therapies modulating gut microbiota.
Collapse
Affiliation(s)
- Mira Thing
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Mikkel Parsberg Werge
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Nina Kimer
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Liv Eline Hetland
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Elias Badal Rashu
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Puria Nabilou
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | - Anders Ellekaer Junker
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | | | - Flemming Bendtsen
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark
| | | | | | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Kettegard Alle 30, Hvidovre, 2650, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| |
Collapse
|
25
|
Pham NHT, Joglekar MV, Wong WKM, Nassif NT, Simpson AM, Hardikar AA. Short-chain fatty acids and insulin sensitivity: a systematic review and meta-analysis. Nutr Rev 2024; 82:193-209. [PMID: 37290429 PMCID: PMC10777678 DOI: 10.1093/nutrit/nuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT There is substantial evidence that reduced short-chain fatty acids (SCFAs) in the gut are associated with obesity and type 2 diabetes, although findings from clinical interventions that can increase SCFAs are inconsistent. OBJECTIVE This systematic review and meta-analysis aimed to assess the effect of SCFA interventions on fasting glucose, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR). DATA SOURCES Relevant articles published up to July 28, 2022, were extracted from PubMed and Embase using the MeSH (Medical Subject Headings) terms of the defined keywords [(short-chain fatty acids) AND (obesity OR diabetes OR insulin sensitivity)] and their synonyms. Data analyses were performed independently by two researchers who used the Cochrane meta-analysis checklist and the PRISMA guidelines. DATA EXTRACTION Clinical studies and trials that measured SCFAs and reported glucose homeostasis parameters were included in the analysis. Standardized mean differences (SMDs) with 95%CIs were calculated using a random-effects model in the data extraction tool Review Manager version 5.4 (RevMan 5.4). The risk-of-bias assessment was performed following the Cochrane checklist for randomized and crossover studies. DATA ANALYSIS In total, 6040 nonduplicate studies were identified, 23 of which met the defined criteria, reported fasting insulin, fasting glucose, or HOMA-IR values, and reported change in SCFA concentrations post intervention. Meta-analyses of these studies indicated that fasting insulin concentrations were significantly reduced (overall effect: SMD = -0.15; 95%CI = -0.29 to -0.01, P = 0.04) in treatment groups, relative to placebo groups, at the end of the intervention. Studies with a confirmed increase in SCFAs at the end of intervention also had a significant effect on lowering fasting insulin (P = 0.008). Elevated levels of SCFAs, compared with baseline levels, were associated with beneficial effects on HOMA-IR (P < 0.00001). There was no significant change in fasting glucose concentrations. CONCLUSION Increased postintervention levels of SCFAs are associated with lower fasting insulin concentrations, offering a beneficial effect on insulin sensitivity. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021257248.
Collapse
Affiliation(s)
- Nhan H T Pham
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mugdha V Joglekar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Najah T Nassif
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ann M Simpson
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anandwardhan A Hardikar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- is with the Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
26
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Zhang L, Chen N, Zhan L, Bi T, Zhou W, Zhang L, Zhu L. Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116811. [PMID: 37336336 DOI: 10.1016/j.jep.2023.116811] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erchen decoction (ECD) is a traditional Chinese medicine formula comprising six distinct herbs and has been documented to possess a protective effect against obesity. The study conducted previously demonstrated that ECD has the potential to effectively modulate the composition of gut microbiota and levels of short-chain fatty acids (SCFAs) in obese rat. However, the regulatory mechanism of ECD on gut microbiota and SCFAs and further improvement of obesity have not been thoroughly explained. AIM OF THE STUDY The objective of this study was to examine the therapeutic effect and molecular mechanism of ECD in a rat model of high-fat diet (HFD) feeding. MATERIALS AND METHODS Rats with HFD-induced obesity were treated with ECD. Upon completion of the study, serum and liver samples were procured to conduct biochemical, pathological, and Western blotting analyses. The investigation of alterations in the gut microbiota subsequent to ECD treatment was conducted through the utilization of 16S rRNA sequencing. The metabolic alterations in the cecal contents were examined through the utilization of mass spectrometry-ultraperformance liquid chromatography. RESULTS ECD treatment improved lipid metabolic disorders and reduced hepatic steatosis in HFD-induced obese rats. Obese rat treated with ECD showed a higher abundance of SCFA-producing bacteria, including Lactobacillus, Bifidobacterium, and Butyricicoccus, and lower abundance of disease-related bacteria, such as Bacteroides, Parabacteroides, and Sediminibacterium. Additionally, ECD caused an increase in total SCFAs levels; in particular, butyric acid was dramatically increased in the HFD group. Rats treated with ECD also exhibited significantly increased butyric acid concentrations in the serum and liver. The subsequent reduction in histone deacetylase 1 expression and increase in acetyl-histone 3-lysine 9 (H3K9ac) levels contributed to the promotion of fatty acid β-oxidation (FAO) in liver by ECD. CONCLUSION This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis. The mechanism might be related to the promotion of FAO via a butyric acid-mediated increase in H3K9ac levels in the liver.
Collapse
Affiliation(s)
- Ling Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ning Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| | - Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lianlian Zhu
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
29
|
Beau A, Benoit B, Le Barz M, Meugnier E, Penhoat A, Calzada C, Pinteur C, Loizon E, Chanon S, Vieille-Marchiset A, Sauvinet V, Godet M, Laugerette F, Holowacz S, Jacouton E, Michalski MC, Vidal H. Inhibition of intestinal FXR activity as a possible mechanism for the beneficial effects of a probiotic mix supplementation on lipid metabolism alterations and weight gain in mice fed a high fat diet. Gut Microbes 2023; 15:2281015. [PMID: 37985749 PMCID: PMC10730200 DOI: 10.1080/19490976.2023.2281015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Supplementation with probiotics has emerged as a promising therapeutic tool to manage metabolic diseases. We investigated the effects of a mix of Bifidobacterium animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 on high-fat (HF) diet -induced metabolic disease in mice. Supplementation with the probiotic mix in HF diet-fed mice (HF-Pr2) reduced weight and fat mass gains, decreased hepatic lipid accumulation, and lowered plasma triglyceride peak during an oral lipid tolerance test. At the molecular level, the probiotic mix protected against HF-induced rise in mRNA levels of genes related to lipid uptake, metabolism, and storage in the liver and white adipose tissues, and strongly decreased mRNA levels of genes related to inflammation in the white adipose tissue and to oxidative stress in the liver. Regarding intestinal homeostasis, the probiotic mix did not prevent HF-induced gut permeability but slightly modified microbiota composition without correcting the dysbiosis induced by the HF diet. Probiotic supplementation also modified the cecal bile acid (BA) profile, leading to an increase in the Farnesoid-X-Receptor (FXR) antagonist/agonist ratio between BA species. In agreement, HF-Pr2 mice exhibited a strong inhibition of FXR signaling pathway in the ileum, which was associated with lipid metabolism protection. This is consistent with recent reports proposing that inhibition of intestinal FXR activity could be a potent mechanism to overcome metabolic disorders. Altogether, our results demonstrate that the probiotic mix evaluated, when administered preventively to HF diet-fed mice could limit obesity and associated lipid metabolism disorders, likely through the inhibition of FXR signaling in the intestinal tract.
Collapse
Affiliation(s)
- Alice Beau
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Bérengère Benoit
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Mélanie Le Barz
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Catherine Calzada
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Claudie Pinteur
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Loizon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Stéphanie Chanon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Aurélie Vieille-Marchiset
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Fabienne Laugerette
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Holowacz
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Elsa Jacouton
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| |
Collapse
|
30
|
Kennedy KM, Plagemann A, Sommer J, Hofmann M, Henrich W, Barrett JF, Surette MG, Atkinson S, Braun T, Sloboda DM. Parity modulates impact of BMI and gestational weight gain on gut microbiota in human pregnancy. Gut Microbes 2023; 15:2259316. [PMID: 37811749 PMCID: PMC10563629 DOI: 10.1080/19490976.2023.2259316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Dysregulation of maternal adaptations to pregnancy due to high pre-pregnancy BMI (pBMI) or excess gestational weight gain (GWG) is associated with worsened health outcomes for mothers and children. Whether the gut microbiome contributes to these adaptations is unclear. We longitudinally investigated the impact of pBMI and GWG on the pregnant gut microbiome. We show that the gut microbiota of participants with higher pBMI changed less over the course of pregnancy in primiparous but not multiparous participants. This suggests that previous pregnancies may have persistent impacts on maternal adaptations to pregnancy. This ecological memory appears to be passed on to the next generation, as parity modulated the impact of maternal GWG on the infant gut microbiome. This work supports a role of the gut microbiome in maternal adaptations to pregnancy and highlights the need for longitudinal sampling and accounting for parity as key considerations for studies of the microbiome in pregnancy and infants. Understanding how these factors contribute to and shape maternal health is essential for the development of interventions impacting the microbiome, including pre/probiotics.
Collapse
Affiliation(s)
- Katherine M. Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Andreas Plagemann
- Department of Obstetrics and Department of ‘Experimental Obstetrics’, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Sommer
- Department of Obstetrics and Department of ‘Experimental Obstetrics’, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie Hofmann
- Department of Obstetrics and Department of ‘Experimental Obstetrics’, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics and Department of ‘Experimental Obstetrics’, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jon F.R. Barrett
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Stephanie Atkinson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Thorsten Braun
- Department of Obstetrics and Department of ‘Experimental Obstetrics’, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
31
|
Zeng SY, Liu YF, Liu JH, Zeng ZL, Xie H, Liu JH. Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives. Aging Dis 2023; 14:2015-2027. [PMID: 37199577 PMCID: PMC10676789 DOI: 10.14336/ad.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium that widely colonizes the mucus layer of the human and animal gut. The role of this symbiotic bacterium in host metabolism, inflammation, and cancer immunotherapy has been extensively investigated over the past 20 years. Recently, a growing number of studies have revealed a link between A. muciniphila, and aging and aging-related diseases (ARDs). Research in this area is gradually shifting from correlation analysis to exploration of causal relationships. Here, we systematically reviewed the association of A. muciniphila with aging and ARDs (including vascular degeneration, neurodegenerative diseases, osteoporosis, chronic kidney disease, and type 2 diabetes). Furthermore, we summarize the potential mechanisms of action of A. muciniphila and offer perspectives for future studies.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiang-Hua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
32
|
Kortesniemi M, Noerman S, Kårlund A, Raita J, Meuronen T, Koistinen V, Landberg R, Hanhineva K. Nutritional metabolomics: Recent developments and future needs. Curr Opin Chem Biol 2023; 77:102400. [PMID: 37804582 DOI: 10.1016/j.cbpa.2023.102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Kårlund
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Jasmin Raita
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Topi Meuronen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
33
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornick CreGreen S, Schmidt NW. Gut microbial changes associated with obesity in youth with type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299251. [PMID: 38076970 PMCID: PMC10705628 DOI: 10.1101/2023.12.01.23299251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. OBJECTIVE To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. RESULTS Bacterial community composition showed differences in species type (β-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri , among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). CONCLUSIONS Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.
Collapse
|
34
|
Feng Y, Xu D. Short-chain fatty acids are potential goalkeepers of atherosclerosis. Front Pharmacol 2023; 14:1271001. [PMID: 38027009 PMCID: PMC10679725 DOI: 10.3389/fphar.2023.1271001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by gut bacteria and play a crucial role in various inflammatory diseases. Increasing evidence suggests that SCFAs can improve the occurrence and progression of atherosclerosis. However, the molecular mechanisms through which SCFAs regulate the development of atherosclerosis have not been fully elucidated. This review provides an overview of the research progress on SCFAs regarding their impact on the risk factors and pathogenesis associated with atherosclerosis, with a specific focus on their interactions with the endothelium and immune cells. These interactions encompass the inflammation and oxidative stress of endothelial cells, the migration of monocytes/macrophages, the lipid metabolism of macrophages, the proliferation and migration of smooth muscle cells, and the proliferation and differentiation of Treg cells. Nevertheless, the current body of research is insufficient to comprehensively understand the full spectrum of SCFAs' mechanisms of action. Therefore, further in-depth investigations are imperative to establish a solid theoretical foundation for the development of clinical therapeutics in this context.
Collapse
Affiliation(s)
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Wang A, Li Z, Sun Z, Zhang D, Ma X. Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J Nutr Biochem 2023; 120:109370. [PMID: 37245797 DOI: 10.1016/j.jnutbio.2023.109370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Heart failure (HF) represents a group of complex clinical syndromes with high morbidity and mortality and has a significant global health burden. Inflammation and metabolic disorders are closely related to the development of HF, which are complex and depend on the severity and type of HF and common metabolic comorbidities such as obesity and diabetes. An increasing body of evidence indicates the importance of short-chain fatty acids (SCFAs) in regulating cardiac function. In addition, SCFAs represent a unique class of metabolites and play a distinct role in shaping systemic immunity and metabolism. In this review, we reveal the role of SCFAs as a link between metabolism and immunity, which regulate cardiac and systemic immune and metabolic systems by acting as energy substrates, inhibiting the expression of histone deacetylase (HDAC) regulated genes and activating G protein-coupled receptors (GPCRs) signaling. Ultimately cardiac efficiency is improved, cardiac inflammation alleviated and cardiac function in failing hearts enhanced. In conclusion, SCFAs represent a new therapeutic approach for HF.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Zhuo Sun
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
36
|
Dongoran RA, Tu FC, Liu CH. Current insights into the interplay between gut microbiota-derived metabolites and metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:290-299. [PMID: 38035056 PMCID: PMC10683522 DOI: 10.4103/tcmj.tcmj_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent and challenging disease associated with a significant health and economic burden. MAFLD has been subjected to and widely investigated in many studies; however, the underlying pathogenesis and its progression have yet to understand fully. Furthermore, precise biomarkers for diagnosing and specific drugs for treatment are yet to be discovered. Increasing evidence has proven gut microbiota as the neglected endocrine organ that regulates homeostasis and immune response. Targeting gut microbiota is an essential strategy for metabolic diseases, including MAFLD. Gut microbiota in the gut-liver axis is connected through tight bidirectional links through the biliary tract, portal vein, and systemic circulation, producing gut microbiota metabolites. This review focuses on the specific correlation between gut microbiota metabolites and MAFLD. Gut microbiota metabolites are biologically active in the host and, through subsequent changes and biological activities, provide implications for MAFLD. Based on the review studies, gut-liver axis related-metabolites including short-chain fatty acids, bile acids (BAs), lipopolysaccharide, choline and its metabolites, indole and its derivates, branched-chain amino acids, and methionine cycle derivates was associated with MAFLD and could be promising MAFLD diagnosis biomarkers, as well as the targets for MAFLD new drug discovery.
Collapse
Affiliation(s)
- Rachmad Anres Dongoran
- Indonesian Food and Drug Authority, Jakarta, Indonesia
- Center for Chinese Studies, National Central Library, Taipei, Taiwan
- Program in Asia Pacific Regional Studies, Department of Taiwan and Regional Studies, College of Humanities and Social Sciences, National Dong Hwa University, Hualien, Taiwan
| | - Fang-Cen Tu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
37
|
Leyderman M, Wilmore JR, Shope T, Cooney RN, Urao N. Impact of intestinal microenvironments in obesity and bariatric surgery on shaping macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00033. [PMID: 38037591 PMCID: PMC10683977 DOI: 10.1097/in9.0000000000000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Obesity is associated with alterations in tissue composition, systemic cellular metabolism, and low-grade chronic inflammation. Macrophages are heterogenous innate immune cells ubiquitously localized throughout the body and are key components of tissue homeostasis, inflammation, wound healing, and various disease states. Macrophages are highly plastic and can switch their phenotypic polarization and change function in response to their local environments. Here, we discuss how obesity alters the intestinal microenvironment and potential key factors that can influence intestinal macrophages as well as macrophages in other organs, including adipose tissue and hematopoietic organs. As bariatric surgery can induce metabolic adaptation systemically, we discuss the potential mechanisms through which bariatric surgery reshapes macrophages in obesity.
Collapse
Affiliation(s)
- Michael Leyderman
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Timothy Shope
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Robert N. Cooney
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
38
|
Xiao C, Fedirko V, Claussen H, Richard Johnston H, Peng G, Paul S, Maner-Smith KM, Higgins KA, Shin DM, Saba NF, Wommack EC, Bruner DW, Miller AH. Circulating short chain fatty acids and fatigue in patients with head and neck cancer: A longitudinal prospective study. Brain Behav Immun 2023; 113:432-443. [PMID: 37543249 PMCID: PMC10528227 DOI: 10.1016/j.bbi.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Fatigue among patients with head and neck cancer (HNC) has been associated with higher inflammation. Short-chain fatty acids (SCFAs) have been shown to have anti-inflammatory and immunoregulatory effects. Therefore, this study aimed to examine the association between SCFAs and fatigue among patients with HNC undergoing treatment with radiotherapy with or without concurrent chemotherapy. Plasma SCFAs and the Multidimensional Fatigue Inventory-20 were collected prior to and one month after the completion of treatment in 59 HNC patients. The genome-wide gene expression profile was obtained from blood leukocytes prior to treatment. Lower butyrate concentrations were significantly associated with higher fatigue (p = 0.013) independent of time of assessment, controlling for covariates. A similar relationship was observed for iso/valerate (p = 0.025). Comparison of gene expression in individuals with the top and bottom 33% of butyrate or iso/valerate concentrations prior to radiotherapy revealed 1,088 and 881 significantly differentially expressed genes, respectively (raw p < 0.05). The top 10 Gene Ontology terms from the enrichment analyses revealed the involvement of pathways related to cytokines and lipid and fatty acid biosynthesis. These findings suggest that SCFAs may regulate inflammatory and immunometabolic responses and, thereby, reduce inflammatory-related symptoms, such as fatigue.
Collapse
Affiliation(s)
- Canhua Xiao
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA.
| | - Veronika Fedirko
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Integrated Computational Core, Emory University, Atlanta, GA, USA
| | | | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Sudeshna Paul
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA
| | | | | | - Dong M Shin
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Nabil F Saba
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deborah W Bruner
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
39
|
Arroyo CB, Ocariz MG, Rogova O, Al-Majdoub M, Björck I, Tovar J, Spégel P. A randomized trial involving a multifunctional diet reveals systematic lipid remodeling and improvements in cardiometabolic risk factors in middle aged to aged adults. Front Nutr 2023; 10:1236153. [PMID: 37781111 PMCID: PMC10538628 DOI: 10.3389/fnut.2023.1236153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background A multifunctional diet (MFD) combining foods and ingredients with proven functional properties, such as fatty fish and fiber-rich foods, among others, was developed and shown to markedly reduce cardiometabolic risk-associated factors. Objective Here, we aim at examining metabolic physiological changes associated with these improvements. Methods Adult overweight individuals without other risk factors were enrolled in an 8-week randomized controlled intervention following a parallel design, with one group (n = 23) following MFD and one group (n = 24) adhering to a control diet (CD) that followed the caloric formula (E%) advised by the Nordic Nutritional Recommendations. Plasma metabolites and lipids were profiled by gas chromatography and ultrahigh performance liquid chromatography/mass spectrometry. Results Weight loss was similar between groups. The MFD and CD resulted in altered levels of 137 and 78 metabolites, respectively. Out of these, 83 were uniquely altered by the MFD and only 24 by the CD. The MFD-elicited alterations in lipid levels depended on carbon number and degree of unsaturation. Conclusion An MFD elicits weight loss-independent systematic lipid remodeling, promoting increased circulating levels of long and highly unsaturated lipids. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT02148653?term=NCT02148653&draw=2&rank=1, NCT02148653.
Collapse
Affiliation(s)
| | - Maider Greño Ocariz
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Oksana Rogova
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Mahmoud Al-Majdoub
- Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | | | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Food for Health Science Centre Lund University, Lund, Sweden
| | - Peter Spégel
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B, Bedu-Addo K, Plange-Rhule J, Oti Boateng P, Forrester TE, Williams M, Lambert EV, Rae D, Sinyanya N, Luke A, Layden BT, O'Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun 2023; 14:5160. [PMID: 37620311 PMCID: PMC10449869 DOI: 10.1038/s41467-023-40874-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | | | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Oti Boateng
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Terrence E Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Marie Williams
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Nandipha Sinyanya
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Stephen O'Keefe
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jack A Gilbert
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA.
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
41
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
42
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
43
|
Rosendo-Silva D, Viana S, Carvalho E, Reis F, Matafome P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern Emerg Med 2023; 18:1287-1302. [PMID: 37014495 PMCID: PMC10412677 DOI: 10.1007/s11739-023-03262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023]
Abstract
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Faculty of Medicine, Pole III of University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
| |
Collapse
|
44
|
Canfora EE, Vliex LMM, Wang T, Nauta A, Bouwman FG, Holst JJ, Venema K, Zoetendal EG, Blaak EE. 2'-fucosyllactose alone or combined with resistant starch increases circulating short-chain fatty acids in lean men and men with prediabetes and obesity. Front Nutr 2023; 10:1200645. [PMID: 37529001 PMCID: PMC10388544 DOI: 10.3389/fnut.2023.1200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Background Infusion of short-chain fatty acids (SCFA) to the distal colon beneficially affects human substrate and energy metabolism. Here, we hypothesized that the combination of 2'-fucosyllactose (2'-FL) with resistant starch (RS) increases distal colonic SCFA production and improves metabolic parameters. Methods In this randomized, crossover study, 10 lean (BMI 20-24.9 kg/m2) and nine men with prediabetes and overweight/obesity (BMI 25-35 kg/m2) were supplemented with either 2'-FL, 2'-FL+RS, or placebo one day before a clinical investigation day (CID). During the CID, blood samples were collected after a overnight fast and after intake of a liquid high-fat mixed meal to determine plasma SCFA (primary outcomes). Secondary outcomes were fasting and postprandial plasma insulin, glucose, free fatty acid (FFA), glucagon-like peptide-1, and peptide YY concentrations. In addition, fecal SCFA and microbiota composition, energy expenditure and substrate oxidation (indirect calorimetry), and breath hydrogen excretion were determined. Results In lean men, supplementation with 2'-FL increased postprandial plasma acetate (P = 0.017) and fasting H2 excretion (P = 0.041) compared to placebo. Postprandial plasma butyrate concentration increased after 2'-FL and 2'-FL+RS as compared to placebo (P < 0.05) in lean men and men with prediabetes and overweight/obesity. Additionally, 2'-FL+RS decreased fasting and postprandial plasma FFA concentrations compared to placebo (P < 0.05) in lean men. Conclusion Supplementation of 2'-FL with/without RS the day before investigation increased systemic butyrate concentrations in lean men as well as in men with prediabetes and obesity, while acetate only increased in lean men. The combination of 2'-FL with RS showed a putatively beneficial metabolic effect by lowering plasma FFA in lean men, indicating a phenotype-specific effect. Clinical trial registration nr. NCT04795804.
Collapse
Affiliation(s)
- Emanuel E. Canfora
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Lars M. M. Vliex
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Taojun Wang
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Freek G. Bouwman
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jens J. Holst
- NovoNordisk Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Koen Venema
- Maastricht University—Campus Venlo, Centre for Healthy Eating and Food Innovation, Venlo, Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Ellen E. Blaak
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
45
|
Huang Y, Wang Z, Ye B, Ma JH, Ji S, Sheng W, Ye S, Ou Y, Peng Y, Yang X, Chen J, Tang S. Sodium butyrate ameliorates diabetic retinopathy in mice via the regulation of gut microbiota and related short-chain fatty acids. J Transl Med 2023; 21:451. [PMID: 37420234 PMCID: PMC10329333 DOI: 10.1186/s12967-023-04259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) development is associated with disturbances in the gut microbiota and related metabolites. Butyric acid is one of the short-chain fatty acids (SCFAs), which has been found to possess a potential antidiabetic effect. However, whether butyrate has a role in DR remains elusive. This study aimed to investigate the effect and mechanism of sodium butyrate supplementation on DR. METHODS C57BL/6J mice were divided into three groups: Control group, diabetic group, and diabetic with butyrate supplementation group. Type 1 diabetic mouse model was induced by streptozotocin. Sodium butyrate was administered by gavage to the experimental group daily for 12 weeks. Optic coherence tomography, hematoxylin-eosin, and immunostaining of whole-mount retina were used to value the changes in retinal structure. Electroretinography was performed to assess the retinal visual function. The tight junction proteins in intestinal tissue were evaluated using immunohistochemistry. 16S rRNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the gut microbiota and systemic SCFAs. RESULTS Butyrate decreased blood glucose, food, and water consumption. Meanwhile, it alleviated retinal thinning and activated microglial cells but improved electroretinography visual function. Additionally, butyrate effectively enhanced the expression of ZO-1 and Occludin proteins in the small intestine. Crucially, only butyric acid, 4-methylvaleric acid, and caproic acid were significantly decreased in the plasma of diabetic mice and improved after butyrate supplementation. The deeper correlation analysis revealed nine genera strongly positively or negatively correlated with the above three SCFAs. Of note, all three positively correlated genera, including norank_f_Muribaculaceae, Ileibacterium, and Dubosiella, were significantly decreased in the diabetic mice with or without butyrate treatment. Interestingly, among the six negatively correlated genera, Escherichia-Shigella and Enterococcus were increased, while Lactobacillus, Bifidobacterium, Lachnospiraceae_NK4A136_group, and unclassified_f_Lachnospiraceae were decreased after butyrate supplementation. CONCLUSION Together, these findings demonstrate the microbiota regulating and diabetic therapeutic effects of butyrate, which can be used as a potential food supplement alternative to DR medicine.
Collapse
Affiliation(s)
- Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Eye Institute, Changsha, China
| | - Zhijie Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo Ye
- Department of Ophthalmology, Nanchang Aier Eye Hospital, Nanchang, China
| | | | | | - Wang Sheng
- Department of Ophthalmology, Changsha Xiangjiang Aier Eye Hospital, Changsha, China
| | - Suna Ye
- Aier Eye Institute, Changsha, China
| | - Yiwen Ou
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Eye Institute, Changsha, China
| | | | - Xu Yang
- Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.
- Aier Eye Institute, Changsha, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.
- Aier Eye Institute, Changsha, China.
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Hunan, China.
| |
Collapse
|
46
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
47
|
Martínez-Sánchez MA, Balaguer-Román A, Fernández-Ruiz VE, Almansa-Saura S, García-Zafra V, Ferrer-Gómez M, Frutos MD, Queipo-Ortuño MI, Ruiz-Alcaraz AJ, Núñez-Sánchez MÁ, Ramos-Molina B. Plasma short-chain fatty acid changes after bariatric surgery in patients with severe obesity. Surg Obes Relat Dis 2023; 19:727-734. [PMID: 36842931 DOI: 10.1016/j.soard.2022.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Obesity has reached epidemic dimensions in recent decades. Bariatric surgery (BS) is one of the most effective interventions for weight loss and metabolic improvement in patients with obesity. Short-chain fatty acids (SCFA) are gut microbiota-derived metabolites with a key role in body weight control and insulin sensitivity. Although BS is known to induce significant changes in the gut microbiota composition, its impact on the circulating levels of certain metabolites produced by the gut microbiota such as SCFA remains poorly understood. OBJECTIVE To determine the impact of BS on the circulating SCFA levels in patients with severe obesity. SETTING University hospital. METHODS An observational, prospective study was performed on 51 patients undergoing Roux-en-Y gastric bypass. Plasma samples were collected at baseline (1 day before surgery) and at 6 and 12 months after BS. Plasma SCFA levels were determined by liquid chromatography-mass spectrometry. RESULTS The results revealed significant changes in the circulating levels of SCFA after BS. A marked increase in propionate, butyrate, isobutyrate, and isovalerate levels and a decrease in acetate, valerate, hexanoate, and heptanoate levels were observed 12 months after BS. Furthermore, the changes in the levels of propionate, butyrate, and isobutyrate negatively correlated with changes in body mass index, while those of isobutyrate correlated negatively with changes in the homeostatic model assessment for insulin resistance index. CONCLUSION These results suggest that propionate, butyrate, and isobutyrate levels could be related to weight loss and improved insulin sensitivity in patients with severe obesity after BS.
Collapse
Affiliation(s)
- María A Martínez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer-Román
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Virginia E Fernández-Ruiz
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Sonia Almansa-Saura
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Victoria García-Zafra
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María D Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María I Queipo-Ortuño
- Department of Medical Oncology, Virgen de la Victoria and Regional University Hospitals-IBIMA, UMA-CIMES, Málaga, Spain; Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María Á Núñez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Bruno Ramos-Molina
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
48
|
Zhang F, Wang D. Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases. Front Microbiol 2023; 14:1191445. [PMID: 37440890 PMCID: PMC10333588 DOI: 10.3389/fmicb.2023.1191445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS).
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Dali Wang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
49
|
Wang Y, Salonen A, Jian C. Can prebiotics help tackle the childhood obesity epidemic? Front Endocrinol (Lausanne) 2023; 14:1178155. [PMID: 37305030 PMCID: PMC10253620 DOI: 10.3389/fendo.2023.1178155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Globally, excess weight during childhood and adolescence has become a public health crisis with limited treatment options. Emerging evidence suggesting the involvement of gut microbial dysbiosis in obesity instills hope that targeting the gut microbiota could help prevent or treat obesity. In pre-clinical models and adults, prebiotic consumption has been shown to reduce adiposity partially via restoring symbiosis. However, there is a dearth of clinical research into its potential metabolic benefits in the pediatric population. Here, we provide a succinct overview of the common characteristics of the gut microbiota in childhood obesity and mechanisms of action of prebiotics conferring metabolic benefits. We then summarize available clinical trials in children with overweight or obesity investigating the effects of prebiotics on weight management. This review highlights several controversial aspects in the microbiota-dependent mechanisms by which prebiotics are thought to affect host metabolism that warrant future investigation in order to design efficacious interventions for pediatric obesity.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Jati S, Mahata S, Das S, Chatterjee S, Mahata SK. Catestatin: Antimicrobial Functions and Potential Therapeutics. Pharmaceutics 2023; 15:1550. [PMID: 37242791 PMCID: PMC10220906 DOI: 10.3390/pharmaceutics15051550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The rapid increase in drug-resistant and multidrug-resistant infections poses a serious challenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides (AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential alternatives for antibiotic-resistant "superbugs". The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgA352-372; bCgA344-364) was initially identified in 1997 as an acute nicotinic-cholinergic antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that N-terminal 15 amino acids of bovine CST (bCST1-15 aka cateslytin) exert antibacterial, antifungal, and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1-15 (where L-amino acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against various bacterial strains. Beyond antimicrobial effects, D-bCST1-15 potentiated (additive/synergistic) antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1-15 neither triggered bacterial resistance nor elicited cytokine release. The present review will highlight the antimicrobial effects of CST, bCST1-15 (aka cateslytin), D-bCST1-15, and human variants of CST (Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their potential as a therapy for antibiotic-resistant "superbugs".
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sumana Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Soumita Das
- Department of Biomedical and Nutritional Science, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|