1
|
Shlapa Y, Siposova K, Sarnatskaya V, Drajnova M, Silvestre-Albero J, Lykhova O, Maraloiu VA, Solopan SO, Molcan M, Musatov A, Belous A. Bioactive Carbon@CeO 2 Composites as Efficient Antioxidants with Antiamyloid and Radioprotective Potentials. ACS APPLIED BIO MATERIALS 2024; 7:6749-6767. [PMID: 39320157 DOI: 10.1021/acsabm.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Blending carbon particles (CPs) and nanoscale bioactive cerium dioxide is a promising approach for designing composites for biomedical applications, combining the sorption and antioxidant potentials of each individual component. To address this issue, it is crucial to assess the correlation between the components' ratio, physicochemical parameters, and biofunctionality of the composites. Thus, the current research was aimed at fabricating C@CeO2 composites with different molar ratios and the examination of how the parameters of the composites affect their bioactivity. XRD, X-ray photoelectron spectroscopy, and electron microscopy data verified the formation of C@CeO2 composites. CeO2 nanoparticles (NPs) of 4-6 nm are highly dispersed on the surfaces of amorphous CPs. The presence of CeO2 NPs on the carbon surface decreased its adsorption potential in a dose-dependent manner. Besides, the coexistence of carbon and CeO2 in a single composite promotes some redox interactions between O-functionalities and Ce3+/Ce4+ species, resulting in changes in the chemical state of the surface of the composites. These observations suggest the strong connection between these parameters and the biofunctionality of the composites. The presence of CeO2 NPs on the surface of carbon led to a significant increase in the stability of the prepared composites in their aqueous suspensions. The enhancement of bioactivity of the newly prepared C@CeO2 compared to bare carbon and CeO2 was validated by testing their pseudomimetic (catalase/peroxidase-like and superoxide dismutase-like), antiamyloid, and radioprotective activities.
Collapse
Affiliation(s)
- Yuliia Shlapa
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| | - Katarina Siposova
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Veronika Sarnatskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Street, Kyiv 03022, Ukraine
| | - Michaela Drajnova
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
- Institute of Chemistry, Faculty of Science, P.J. Safarik University in Kosice, Moyzesova 11, Kosice 040 01, Slovakia
| | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Instituto Universitario de Materiales-Departamento de Química Inorgánica, University of Alicante, Ctra. San Vicente-Alicante s/n, Alicante E-03080, Spain
| | - Olexandra Lykhova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Street, Kyiv 03022, Ukraine
| | | | - Sergii Oleksandrovich Solopan
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Andrey Musatov
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Anatolii Belous
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| |
Collapse
|
2
|
Liu M, Li N, Meng S, Yang S, Jing B, Zhang J, Jiang J, Qiu S, Deng F. Bio-inspired Cu 2O cathode for O 2 capturing and oxidation boosting in electro-Fenton for sulfathiazole decay. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135484. [PMID: 39173382 DOI: 10.1016/j.jhazmat.2024.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A hydrophobic Cu2O cathode (CuxO-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)2 nanorods by oxidizing copper foam (Cu-F) with (NH4)2S2O8, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized CuxO-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O2-capturing ability of CuxO-L cathode, which led to high H2O2 production due to a 2 nm thick hydrophobic gas layer facilitated O2-capturing; (Ⅱ) a relative high concentration of Cu+ at the CuxO-L cathode promoted the activation of H2O2 into·OH. In addition, the performance of EF with the CuxO-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O2-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 China
| | - Shiyu Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Adewuyi A, Li Q. Per- and polyfluoroalkyl substances contamination of drinking water sources in Africa: Pollution sources and possible treatment methods. CHEMOSPHERE 2024; 365:143368. [PMID: 39306102 DOI: 10.1016/j.chemosphere.2024.143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Despite the detection of poly- and perfluorinated alkyl substances (PFAS) in the water system in Africa, the effort towards mitigating PFAS in water in Africa needs to be better understood. Therefore, this review evaluated the contamination status and mitigation methods for handling PFAS-contaminated water systems in Africa. The findings revealed the presence of PFAS in wastewater treatment plant (WWTP) effluents, surface water and commercially available bottled and tap water in African countries. The concentration of PFAS in drinking water sources reviewed ranged from < limits of quantification to 778 ng L-1. The sources of PFAS in water systems in Africa are linked to uncontrolled importation of PFAS-containing products, WWTP effluents and inappropriate disposal of PFAS-containing materials. The information on treatment methods for PFAS-contaminated water systems is scanty. Unfortunately, the treatment method is challenged by poor water research infrastructure and facilities, lack of awareness, poor research funding and weak legislation; however, adsorption and membrane technology seem favourable for removing PFAS from water systems in Africa. It is essential to focus on monitoring and assessing drinking water quality in Africa to reduce the disease burden that this may cause. Most African countries' currently implemented water treatment facilities cannot efficiently remove PFAS during treatment. Therefore, governments in Africa need to fund more research to develop an efficient water treatment technique that is sustainable in Africa.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, 6100 Main Street, Houston, 77005, USA; Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
4
|
Kurbakov MY, Sulimova VV, Kopylov AV, Seredin OS, Boiko DA, Galushko AS, Cherepanova VA, Ananikov VP. Determining the orderliness of carbon materials with nanoparticle imaging and explainable machine learning. NANOSCALE 2024; 16:13663-13676. [PMID: 38963335 DOI: 10.1039/d4nr00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Carbon materials have paramount importance in various fields of materials science, from electronic devices to industrial catalysts. The properties of these materials are strongly related to the distribution of defects-irregularities in electron density on their surfaces. Different materials have various distributions and quantities of these defects, which can be imaged using a procedure that involves depositing palladium nanoparticles. The resulting scanning electron microscopy (SEM) images can be characterized by a key descriptor-the ordering of nanoparticle positions. This work presents a highly interpretable machine learning approach for distinguishing between materials with ordered and disordered arrangements of defects marked by nanoparticle attachment. The influence of the degree of ordering was experimentally evaluated on the example of catalysis via chemical reactions involving carbon-carbon bond formation. This represents an important step toward automated analysis of SEM images in materials science.
Collapse
Affiliation(s)
| | | | | | - Oleg S Seredin
- Tula State University, Lenina Ave. 92, 300012 Tula, Russia
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
| | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
| | - Vera A Cherepanova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Kumar V, Kuang W, Fifield LS. Carbon Fiber-Based Vitrimer Composites: A Path toward Current Research That Is High-Performing, Useful, and Sustainable. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3265. [PMID: 38998348 PMCID: PMC11243385 DOI: 10.3390/ma17133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
In the polymeric material industry, thermosets and related composites have played a substantial role in the production of rubber and plastics. One important subset of these is thermoset composites with carbon reinforcement. The incorporation of carbon fillers and fibers gives polymeric materials improved electrical and mechanical properties, among other benefits. However, the covalently crosslinked network of thermosets presents significant challenges for recycling and reprocessing because of its intractable nature. The introduction of vitrimer materials opens a new avenue to produce biodegradable and recyclable thermosets. Carbon-reinforced vitrimer composites are pursued for high-performance, long-lasting materials with attractive physical properties, the ability to be recycled and processed, and other features that respond uniquely to stimuli. The development of carbon-reinforced vitrimer composites over the last few years is summarized in this article. First, an overview of vitrimers and the methods used to prepare carbon fiber-reinforced vitrimer composites is provided. Because of the vitrimer nature of such composites, reprocessing, healing, and recycling are viable ways to greatly extend their service life; these approaches are thoroughly explained and summarized. The conclusion is our prediction for developing carbon-based vitrimer composites.
Collapse
Affiliation(s)
| | | | - Leonard S. Fifield
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; (V.K.); (W.K.)
| |
Collapse
|
6
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
7
|
Tzialla O, Theodorakopoulos GV, Beltsios KG, Pilatos G, Reddy KSK, Srinivasakannan C, Tuci G, Giambastiani G, Karanikolos GN, Katsaros FK, Kouvelos E, Romanos GE. Utilizing Carbonaceous Materials Derived from [BMIM][TCM] Ionic Liquid Precursor: Dual Role as Catalysts for Oxygen Reduction Reaction and Adsorbents for Aromatics and CO 2. Chempluschem 2024; 89:e202300785. [PMID: 38436555 DOI: 10.1002/cplu.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.
Collapse
Affiliation(s)
- Ourania Tzialla
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - George V Theodorakopoulos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Konstantinos G Beltsios
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
| | - George Pilatos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - K Suresh Kumar Reddy
- Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), P.O. Box 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
- University of Florence, Department of Chemistry U. "Schiff" - DICUS - and INSTM Research Unit, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Georgios N Karanikolos
- Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), 26504, Patras, Greece
| | - Fotios K Katsaros
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Evangelos Kouvelos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - George Em Romanos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| |
Collapse
|
8
|
Yang J, Liu P, Fan Z, Li Y, Qiao H, Xu X, Han S, Suo X. Hollow carbon fiber wrapped by regular rGO wave-like folds for efficient solar driven interfacial water steam generation. Sci Rep 2024; 14:13997. [PMID: 38886202 PMCID: PMC11183090 DOI: 10.1038/s41598-024-64144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient seawater desalination is an effective way to solve the shortages of fresh water and energy but with limitations of the low fresh water production rate and high cost. Here, a hollow carbon fiber (HCF) wrapped by regular reduced graphene oxide (rGO) wave-like folds (rGO@HCF) is prepared on account of the differences in thermal shrinkage performance between graphene oxide (GO) and willow catkins fiber. Under one sun irradiation (1 kW m-2), the dry and wet surface temperature of the resulting evaporator reached up to 119.1 °C and 61.7 °C, respectively, and the water steam production rate reached 3.42 kg m-2 h-1. Also, for the outdoor experiment, the rGO@HCF exhibits good evaporator performance which reach up 27.8 kg m-2 day-1. Additionally, rGO@HCF also shows good seawater desalination performance and excellent durability for longtime work. DSC results indicate that the evaporation enthalpy of bulk water and adsorbed water decreased from 2503.92 to 1020.54 J g-1. The excellent evaporating performance is mainly attributed to the regular wave-like microstructure surface of the HCF, which can enhance the light absorption, reduced the vaporization enthalpy of the adsorption water. The findings not only introduce a novel approach for agricultural utilization, but also establish a crucial theoretical foundation for the design of regular wave-like microstructures.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China
| | - Peiqi Liu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China
| | - Zhiyuan Fan
- Leicester International Institute, Dalian University of Technology, Panjin, 124221, Liaoning, China
| | - Yingying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China
| | - Hongtao Qiao
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xidong Suo
- Department of Chemistry, Xinzhou Normal University, Xinzhou, 034000, Shan Xi, China.
| |
Collapse
|
9
|
Hao LT, Kim S, Lee M, Park SB, Koo JM, Jeon H, Park J, Oh DX. Next-generation all-organic composites: A sustainable successor to organic-inorganic hybrid materials. Int J Biol Macromol 2024; 269:132129. [PMID: 38718994 DOI: 10.1016/j.ijbiomac.2024.132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
This Review presents an overview of all-organic nanocomposites, a sustainable alternative to organic-inorganic hybrids. All-organic nanocomposites contain nanocellulose, nanochitin, and aramid nanofibers as highly rigid reinforcing fillers. They offer superior mechanical properties and lightweight characteristics suitable for diverse applications. The Review discusses various methods for preparing the organic nanofillers, including top-down and bottom-up approaches. It highlights in situ polymerization as the preferred method for incorporating these nanomaterials into polymer matrices to achieve homogeneous filler dispersion, a crucial factor for realizing desired performance. Furthermore, the Review explores several applications of all-organic nanocomposites in diverse fields including food packaging, performance-advantaged plastics, and electronic materials. Future research directions-developing sustainable production methods, expanding biomedical applications, and enhancing resistance against heat, chemicals, and radiation of all-organic nanocomposites to permit their use in extreme environments-are explored. This Review offers insights into the potential of all-organic nanocomposites to drive sustainable growth while meeting the demand for high-performance materials across various industries.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials & Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Zhou Y, Yin H, Li J, Shao K, Dong H, Ling C, Wang X, Xu M. Construction of poly (ionic liquid)-derived gold/silver alloy@nitrogen-doped carbon shell and its application for ratiometric electrochemical detection of nitric oxide. Talanta 2024; 272:125839. [PMID: 38428134 DOI: 10.1016/j.talanta.2024.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A nitrogen-doped carbon shell loaded with a gold and silver alloy (Au/Ag@NCS) was constructed for highly sensitive electrochemical detection of NO. The Au/Ag@NCS material was prepared by use of SiO2 particles as a template to polymerize imidazolium-based ionic liquids loaded with gold and silver salts, and subsequent carbonization treatment and template removal. The hollow structure of the carbon material acted as a carrier for electrochemical sensing, offering high specific surface area, large pore capacity, robust electron conductivity, and excellent mechanical stability. The inclusion of gold in the composite enhanced its catalytic and sensing capabilities, while silver oxidation was employed as a reference signal for accurate detection. By utilization of the Au/Ag@NCS-modified electrode, a wide detection range from 0.5 nM to 1.05 μM with a low detection limit of 0.32 nM was achieved for NO detection. The electrochemical sensor also exhibited high selectivity and excellent stability. The fabricated sensor was further utilized to explore the release of NO from breast cancer cells, revealing that the electrochemical platform could be regarded as an important method to study the daily tests of NO in clinical application.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Hewen Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junru Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Kexian Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Cuixia Ling
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
11
|
Brzęczek-Szafran A, Gwóźdź M, Gaida B, Krzywiecki M, Pawlyta M, Blacha-Grzechnik A, Kolanowska A, Chrobok A, Janas D. Bio-based protic salts as precursors for sustainable free-standing film electrodes. Sci Rep 2024; 14:11106. [PMID: 38750130 PMCID: PMC11096361 DOI: 10.1038/s41598-024-61553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.
Collapse
Affiliation(s)
| | - Magdalena Gwóźdź
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Bartłomiej Gaida
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Maciej Krzywiecki
- Department of Applied Physics, Institute of Physics CSE, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Mirosława Pawlyta
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | | | - Anna Kolanowska
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Anna Chrobok
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Dawid Janas
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland.
| |
Collapse
|
12
|
Zhang P, Yang Y, Duan X, Wang S. Oxidative polymerization versus degradation of organic pollutants in heterogeneous catalytic persulfate chemistry. WATER RESEARCH 2024; 255:121485. [PMID: 38522399 DOI: 10.1016/j.watres.2024.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Catalytic polymerization pathways in advanced oxidation processes (AOPs) have recently drawn much attention for organic pollutant elimination owing to the rapid removal kinetics, high selectivity, and recovery of organic carbon from wastewater. This work presents a review on the polymerization regimes in AOPs and their applications in wastewater decontamination. The review mainly highlights three critical issues in polymerization reactions induced by persulfate activation (Poly-PS-AOPs), including heterogeneous catalysts, persulfate activation pathways, and properties of organic substrates. The dominant influencing factors on the selection of catalysts, activation regimes of reactive oxygen species, and polymerization processes of organic substrates are discussed in detail. Moreover, we systematically demonstrate the merits and challenges of Poly-PS-AOPs upon pollutant degradation and polymer synthesis. We particularly highlight that Poly-PS-AOPs technology could be promising in the treatment of industrial wastewater containing heterocyclic organics and the synthesis of polymers and polymer-functionalized materials for advanced environmental and energy applications.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Moon S, Senokos E, Trouillet V, Loeffler FF, Strauss V. Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors. NANOSCALE 2024; 16:8627-8638. [PMID: 38606506 PMCID: PMC11064777 DOI: 10.1039/d4nr00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 μW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 μM with an extrapolated limit of detection of 0.5 μM (S/N = 3) and high sensitivity (13.38 μA μM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.
Collapse
Affiliation(s)
- Sanghwa Moon
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Evgeny Senokos
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Volker Strauss
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
14
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
15
|
Ferdous AR, Shah SS, Shah SNA, Johan BA, Al Bari MA, Aziz MA. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules 2024; 29:2081. [PMID: 38731570 PMCID: PMC11085522 DOI: 10.3390/molecules29092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This comprehensive review addresses the need for sustainable and efficient energy storage technologies against escalating global energy demand and environmental concerns. It explores the innovative utilization of waste materials from oil refineries and coal processing industries as precursors for carbon-based electrodes in next-generation energy storage systems, including batteries and supercapacitors. These waste-derived carbon materials, such as semi-coke, coal gasification fine ash, coal tar pitch, petroleum coke, and petroleum vacuum residue, offer a promising alternative to conventional electrode materials. They present an optimal balance of high carbon content and enhanced electrochemical properties while promoting environmental sustainability through effectively repurposing waste materials from coal and hydrocarbon industries. This review systematically examines recent advancements in fabricating and applying waste-derived carbon-based electrodes. It delves into the methodologies for converting industrial by-products into high-quality carbon electrodes, with a particular emphasis on carbonization and activation processes tailored to enhance the electrochemical performance of the derived materials. Key findings indicate that while higher carbonization temperatures may impede the development of a porous structure, using KOH as an activating agent has proven effective in developing mesoporous structures conducive to ion transport and storage. Moreover, incorporating heteroatom doping (with elements such as sulfur, potassium, and nitrogen) has shown promise in enhancing surface interactions and facilitating the diffusion process through increased availability of active sites, thereby demonstrating the potential for improved storage capabilities. The electrochemical performance of these waste-derived carbon materials is evaluated across various configurations and electrolytes. Challenges and future directions are identified, highlighting the need for a deeper understanding of the microstructural characteristics that influence electrochemical performance and advocating for interdisciplinary research to achieve precise control over material properties. This review contributes to advancing electrode material technology and promotes environmental sustainability by repurposing industrial waste into valuable resources for energy storage. It underscores the potential of waste-derived carbon materials in sustainably meeting global energy storage demands.
Collapse
Affiliation(s)
- Ar Rafi Ferdous
- Department of Petroleum and Mining Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh;
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Syed Niaz Ali Shah
- Innovation and Technology Transfer, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Md Abdullah Al Bari
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
Aldroubi S, Geneste A, Guiffrey P, El-Sakhawy M, Kamel S, Bou Malham I, Hesemann P, Mehdi A, Brun N. Ionothermal Carbonization of Sugarcane Bagasse in 1-Alkyl-3-methylimidazolium Ionic Liquids: Insights into the Role of the Chloroferrate Anion. J Phys Chem B 2024; 128:3485-3498. [PMID: 38549268 DOI: 10.1021/acs.jpcb.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report the ionothermal carbonization (ITC) of lignocellulosic biomass in imidazolium tetrachloroferrate ionic liquids (ILs) as an advantageous approach for the preparation of nanostructured carbonaceous materials, namely, ionochars. In a previous study, we investigated the role of the imidazolium cation and demonstrated the possibility of controlling both the textural and morphological properties of ionochars by cation engineering. Although essential for providing intermediate Lewis acidity and relatively high thermal stability, the role of the chloroferrate anion is still open to debate. Herein, we investigated the ITC of sugarcane bagasse and its main component, cellulose, in 1-alkyl-3-methylimidazolium ILs with different chloroferrate anions. We identified anionic speciation and its impact on the properties of the IL by Raman spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The obtained ionochars were characterized by gas physisorption, electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and 13C solid-state CP-MAS NMR spectroscopy. We show that the anionic species have a predominant impact on the textural and morphological properties of the ionochars.
Collapse
Affiliation(s)
- Soha Aldroubi
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Amine Geneste
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 12622 Giza, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 12622 Giza, Egypt
| | | | - Peter Hesemann
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Ahmad Mehdi
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Nicolas Brun
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
17
|
Hou Y, Fu Q, Zhong H, Yu J, Tao Y, Gong Z, Li J, Wei S, Qiu J, Wang J, Zhu F, Ouyang G. High-performance plastic-derived metal-free catalysts for organic pollutants degradation via Fenton-like reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170185. [PMID: 38244619 DOI: 10.1016/j.scitotenv.2024.170185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
The preparation of waste plastics-derived catalysts is an effective strategy for the waste reclamation. However, plastic-derived material is unsuitable for wastewater purification due to its small specific surface area (SSA) and inadequate active sites (such as N/O sites). Herein, we synthesized graphene-like nanosheets using g-C3N4 as the self-sacrificing soft template and plastic as the carbon precursor. Consequently, this strategy greatly promoted the efficiencies of the emerging organic pollutants degradation with the SSA and N content of the plastic-derived biochar increasing up to 1043.4 m2/g and 17.53 at.%, respectively. In detail, 100 % sulfadiazine (SD) removal could be achieved in 180 s via the activation of peroxymonosulfate (PMS) and the catalytic activity is far higher than previous research. Mechanism experiments corroborated that such a striking performance was attributed to the generation of SO4•-, O2•- and 1O2. Meanwhile, kinds of plastic precursors, even medical waste (i.e., masks, gauze, operating caps and degreasing cotton) were also applicable. And the practical application of the plastic-derived catalyst was further demonstrated by treating pollutants in a continuous flow mode with in situ fabricated membrane. This work provides valuable insights into waste plastics processing and water pollutants removal.
Collapse
Affiliation(s)
- Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huajie Zhong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519087, China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519087, China
| | - Jianqiang Li
- JiangXi ZhengPuYiHe Technology Co. Ltd, Nanchang 330000, China
| | - Songbo Wei
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Junlang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519087, China.
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519087, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Science, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
18
|
Salihovic M, Pameté E, Arnold S, Sulejmani I, Bartschmid T, Hüsing N, Fritz-Popovski G, Dun C, Urban JJ, Presser V, Elsaesser MS. Black goes green: single-step solvent exchange for sol-gel synthesis of carbon spherogels as high-performance supercapacitor electrodes. ENERGY ADVANCES 2024; 3:482-494. [PMID: 38371916 PMCID: PMC10867810 DOI: 10.1039/d3ya00480e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m2 g-1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g-1 at 200 mA g-1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.
Collapse
Affiliation(s)
- Miralem Salihovic
- Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria
| | - Emmanuel Pameté
- INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany
| | - Stefanie Arnold
- INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany
- Department of Materials Science & Engineering, Saarland University, Campus D2 2 66123 Saarbrücken Germany
| | - Irena Sulejmani
- Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria
| | - Theresa Bartschmid
- Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria
| | - Nicola Hüsing
- Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria
| | | | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley Berkeley CA 94720 USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley Berkeley CA 94720 USA
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany
- Department of Materials Science & Engineering, Saarland University, Campus D2 2 66123 Saarbrücken Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2 66123 Saarbrücken Germany
| | - Michael S Elsaesser
- Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria
| |
Collapse
|
19
|
Barker RE, Brand MC, Clark JH, North M. Nitrogen-Doped Starbons®: Methodology Development and Carbon Dioxide Capture Capability. Chemistry 2024; 30:e202303436. [PMID: 37877704 PMCID: PMC10952171 DOI: 10.1002/chem.202303436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Five nitrogen sources (glycine, β-alanine, urea, melamine and nicotinamide) and three heating methods (thermal, monomodal microwave and multimodal microwave) are used to prepare nitrogen-doped Starbons® derived from starch. The materials are initially produced at 250-300 °C (SNx 300y ), then heated in vacuo to 800 °C to produce nitrogen-doped SNx 800y 's. Melamine gives the highest nitrogen incorporation without destroying the Starbon® pore structure and the microwave heating methods give higher nitrogen incorporations than thermal heating. The carbon dioxide adsorption capacities of the nitrogen-doped Starbons® determined gravimetrically, in many cases exceed those of S300 and S800. The carbon dioxide, nitrogen and methane adsorption isotherms of the most promising materials are measured volumetrically. Most of the nitrogen-doped materials show higher carbon dioxide adsorption capacities than S800, but lower methane and nitrogen adsorption capacities. As a result, the nitrogen-doped Starbons® exhibit significantly enhanced carbon dioxide versus nitrogen and methane versus nitrogen selectivities compared to S800.
Collapse
Affiliation(s)
- Ryan E. Barker
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of YorkYO10 5DDYorkUK
| | - Michael C. Brand
- Department of Chemistry andMaterials Innovation Factory andLeverhulme Research Centre for Functional Materials DesignUniversity of LiverpoolL69 7ZDLiverpoolUK
| | - James H. Clark
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of YorkYO10 5DDYorkUK
| | - Michael North
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of YorkYO10 5DDYorkUK
| |
Collapse
|
20
|
Pawar OY, Lim S. 3D-Printed piezoelectric nanogenerator with aligned graphitic carbon nitrate nanosheets for enhancing piezoelectric performance. J Colloid Interface Sci 2024; 654:868-877. [PMID: 37898071 DOI: 10.1016/j.jcis.2023.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Carbon-based materials are attracting increasing attention in the field of electronic devices because of their nontoxicity, availability, low cost, and easy synthesis. In this study, we fabricated a printed piezoelectric nanogenerator (PENG) based on a Polyvinylidene fluoride (PVDF) and graphitic carbon nitrate (g-C3N4) composite. Piezoelectric films with different weight percentages (0, 5, 7.5, 10, and 15 wt%) of g-C3N4 nanosheets (CNNSs) were fabricated. The PVDF/CNNS with 7.5% CNNS exhibited higher performance. We observed that the printing process aligned all CNNS along the x-axis, which improved stress management and eventually improved the performance of the fabricated device. The fabricated device exhibited better performance without pooling and generated a peak-to-peak voltage of 6.65 V with a current of 0.195 µA, corresponding to a power density of 4.86 µW/cm2. The device generated a voltage of up to 18.8 V with footsteps.
Collapse
Affiliation(s)
- O Y Pawar
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
21
|
Boopathi G, Ragavan R, Jaimohan SM, Sagadevan S, Kim I, Pandurangan A, Sivaprakash P. Mesoporous graphitic carbon electrodes derived from boat-fruited shells of Sterculia Foetida for symmetric supercapacitors for energy storage applications. CHEMOSPHERE 2024; 348:140650. [PMID: 37951405 DOI: 10.1016/j.chemosphere.2023.140650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In recent years, intensive research efforts have focused on translating biomass waste into value-added carbon materials broadcasted for their significant role in energy and environmental applications. For the first time, high-performance carbonaceous materials for energy storage applications were developed from the multi-void structure of the boat-fruited shells of Sterculia Foetida (SF). In that view, synthesized mesoporous graphitic activated carbon (g-AC) via the combination of carbonization at various elevating temperatures of 700, 800, and 900 °C, respectively, and alkali activation by KOH, with a high specific surface area of 1040.5 m2 g-1 and a mesopore volume of 0.295 cm3 g-1. In a three-electrode configuration, the improved electrode (SF-K900) exhibited excellent electrochemical behavior, which was observed in an aqueous electrolyte (1 M H2SO4) with a high specific capacitance of 308.6 F/g at a current density of 1 A/g, owing to the interconnected mesopore structures and high surface area of SF-K900. The symmetric supercapacitor (SSC) delivered the specific capacitance of 138 F/g at 1 A/g with a high energy density (ED) of 13.4 Wh/kg at the power density (PD) of 24.12 kW/kg with remarkable cycle stability and supercapacitive retention of 93% over 5000 cycles. Based on the findings, it is possible to develop low-cost active electrode materials for high-rate performance SSC using mesoporous g-AC derived from SF boat-fruited shells.
Collapse
Affiliation(s)
- G Boopathi
- Department of Chemistry, Anna University, Chennai, 600025, India
| | - R Ragavan
- Department of Chemistry, Anna University, Chennai, 600025, India
| | - S M Jaimohan
- Advanced Materials Laboratory, Central Leather Research Institute, Chennai, 600020, India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, 42601, Republic of Korea
| | - A Pandurangan
- Department of Chemistry, Anna University, Chennai, 600025, India.
| | - P Sivaprakash
- Department of Mechanical Engineering, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
22
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
23
|
Min J, Jung Y, Ahn J, Lee JG, Lee J, Ko SH. Recent Advances in Biodegradable Green Electronic Materials and Sensor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211273. [PMID: 36934454 DOI: 10.1002/adma.202211273] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
As environmental issues have become the dominant agenda worldwide, the necessity for more environmentally friendly electronics has recently emerged. Accordingly, biodegradable or nature-derived materials for green electronics have attracted increased interest. Initially, metal-green hybrid electronics are extensively studied. Although these materials are partially biodegradable, they have high utility owing to their metallic components. Subsequently, carbon-framed materials (such as graphite, cylindrical carbon nanomaterials, graphene, graphene oxide, laser-induced graphene) have been investigated. This has led to the adoption of various strategies for carbon-based materials, such as blending them with biodegradable materials. Moreover, various conductive polymers have been developed and researchers have studied their potential use in green electronics. Researchers have attempted to fabricate conductive polymer composites with high biodegradability by shortening the polymer chains. Furthermore, various physical, chemical, and biological sensors that are essential to modern society have been studied using biodegradable compounds. These recent advances in green electronics have paved the way toward their application in real life, providing a brighter future for society.
Collapse
Affiliation(s)
- JinKi Min
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Gun Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
24
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
25
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
26
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
27
|
Sanchez-Duenas L, Gomez E, Larrañaga M, Blanco M, Goitandia AM, Aranzabe E, Vilas-Vilela JL. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113940. [PMID: 37297073 DOI: 10.3390/ma16113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
In the last decades, the demand for electronics and, therefore, electronic waste, has increased. To reduce this electronic waste and the impact of this sector on the environment, it is necessary to develop biodegradable systems using naturally produced materials with low impact on the environment or systems that can degrade in a certain period. One way to manufacture these types of systems is by using printed electronics because the inks and the substrates used are sustainable. Printed electronics involve different methods of deposition, such as screen printing or inkjet printing. Depending on the method of deposition selected, the developed inks should have different properties, such as viscosity or solid content. To produce sustainable inks, it is necessary to ensure that most of the materials used in the formulation are biobased, biodegradable, or not considered critical raw materials. In this review, different inks for inkjet printing or screen printing that are considered sustainable, and the materials that can be used to formulate them, are collected. Printed electronics need inks with different functionalities, which can be mainly classified into three groups: conductive, dielectric, or piezoelectric inks. Materials need to be selected depending on the ink's final purpose. For example, functional materials such as carbon or biobased silver should be used to secure the conductivity of an ink, a material with dielectric properties could be used to develop a dielectric ink, or materials that present piezoelectric properties could be mixed with different binders to develop a piezoelectric ink. A good combination of all the components selected must be achieved to ensure the proper features of each ink.
Collapse
Affiliation(s)
- Leire Sanchez-Duenas
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Estibaliz Gomez
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Mikel Larrañaga
- Electronics and Communications Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Miren Blanco
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Amaia M Goitandia
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Estibaliz Aranzabe
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - José Luis Vilas-Vilela
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
28
|
Baird V, Barker RE, Longhurst B, McElroy CR, Meng S, North M, Wang J. Biomass Derived, Hierarchically Porous, Activated Starbons® as Adsorbents for Volatile Organic Compounds. CHEMSUSCHEM 2023:e202300370. [PMID: 37013699 DOI: 10.1002/cssc.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Indexed: 06/16/2023]
Abstract
The use of potassium hydroxide activated Starbons® derived from starch and alginic acid as adsorbents for 29 volatile organic compounds (VOCs) was investigated. In every case, the alginic acid derived Starbon (A800K2) was found to be the optimal adsorbent, significantly outperforming both commercial activated carbon and starch derived, activated Starbon (S800K2). The saturated adsorption capacity of A800K2 depends on both the size of the VOC and the functional groups it contains. The highest saturated adsorption capacities were obtained with small VOCs. For VOC's of similar size, the presence of polarizable electrons in lone pairs or π-bonds within non-polar VOCs was beneficial. Analysis of porosimetry data suggests that the VOC's are being adsorbed within the pore structure of A800K2 rather than just on its surface. The adsorption was completely reversible by thermal treatment of the saturated Starbon under vacuum.
Collapse
Affiliation(s)
- Victoria Baird
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Ryan E Barker
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Benjamin Longhurst
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - C Rob McElroy
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
- School of Chemistry, University of Lincoln, Lincoln UK, LN6 7DL, United Kingdom
| | - Siyu Meng
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Michael North
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| | - Junzhong Wang
- Green Chemistry Centre of Excellence, University of York, York, UK, YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Mulla MY, Isacsson P, Dobryden I, Beni V, Östmark E, Håkansson K, Edberg J. Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200235. [PMID: 37020627 PMCID: PMC10069311 DOI: 10.1002/gch2.202200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Indexed: 06/19/2023]
Abstract
Wood is an inherently hygroscopic material which tends to absorb moisture from its surrounding. Moisture in wood is a determining factor for the quality of wood being employed in construction, since it causes weakening, deformation, rotting, and ultimately leading to failure of the structures resulting in costs to the economy, the environment, and to the safety of residents. Therefore, monitoring moisture in wood during the construction phase and after construction is vital for the future of smart and sustainable buildings. Employing bio-based materials for the construction of electronics is one way to mitigate the environmental impact of such electronics. Herein, a bio-graphene sensor for monitoring the moisture inside and around wooden surfaces is fabricated using laser-induced graphitization of a lignin-based ink precursor. The bio-graphene sensors are used to measure humidity in the range of 10% up to 90% at 25 °C. Using laser induced graphitization, conductor resistivity of 18.6 Ω sq-1 is obtained for spruce wood and 57.1 Ω sq-1 for pine wood. The sensitivity of sensors fabricated on spruce and pine wood is 2.6 and 0.74 MΩ per % RH. Surface morphology and degree of graphitization are investigated using scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis methods.
Collapse
Affiliation(s)
- Mohammad Yusuf Mulla
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| | - Patrik Isacsson
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Department of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköping UniversityNorrköpingSE‐601 74Sweden
- Ahlstrom Group InnovationApprieu38140France
| | - Illia Dobryden
- Bioeconomy and HealthRISE Research Institutes of SwedenDrottning Kristinas väg 61StockholmSE‐114 28Sweden
| | - Valerio Beni
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| | - Emma Östmark
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Stora Enso ABInnovation Centre for BiomaterialsBox 70395StockholmSE‐107 24Sweden
| | - Karl Håkansson
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Bioeconomy and HealthRISE Research Institutes of SwedenDrottning Kristinas väg 61StockholmSE‐114 28Sweden
| | - Jesper Edberg
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| |
Collapse
|
30
|
Smith P, Obando AG, Griffin A, Robertson M, Bounds E, Qiang Z. Additive Manufacturing of Carbon Using Commodity Polypropylene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208029. [PMID: 36763617 DOI: 10.1002/adma.202208029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Indexed: 05/17/2023]
Abstract
Carbon materials are essential to the development of modern society with indispensable use in various applications, such as energy storage and high-performance composites. Despite great progress, on-demand carbon manufacturing with control over 3D macroscopic configuration is still an intractable challenge, hindering their direct use in many areas requiring structured materials and products. This work introduces a simple and scalable method to generate complex, large-scale carbon structures using easily accessible materials and technologies. 3D-printed, commercial polypropylene (PP) parts can be thermally stabilized through cracking-facilitated diffusion and crosslinking. The newly elucidated mechanism from this work allows thick PP parts to yield carbonaceous products with complex structures through a subsequent pyrolysis step. The approach for enabling PP-to-carbon conversion has consistent product yield and controlled dimensional shrinkage. Under optimized processing conditions, these PP-derived carbons exhibit robust mechanical properties and excellent joule heating performance, demonstrated by their versatile use as heating elements. Furthermore, this process can be extended to recycled PP, enabling the conversion of waste plastic materials to value-added products. This work provides an innovative approach to create structured carbon materials with direct access to complex geometry, which can be transformative to, and broadly benefit, many important technological applications.
Collapse
Affiliation(s)
- Paul Smith
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Alejandro Guillen Obando
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Anthony Griffin
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Ethan Bounds
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| |
Collapse
|
31
|
Arévalo-Fester J, Briceño A. Insights into Selective Removal by Dye Adsorption on Hydrophobic vs Multivalent Hydrophilic Functionalized MWCNTs. ACS OMEGA 2023; 8:11233-11250. [PMID: 37008137 PMCID: PMC10061520 DOI: 10.1021/acsomega.2c08203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Hydrophilic functionalized carbon nanotubes (MWCNT-COOH) were developed via hydrothermal glucose-coated carbonization, mixing MWCNTs with glucose in different weight ratios. Methyl violet (MV), methylene blue (MB), alizarin yellow (AY), and methyl orange (MO) were used as dye models for adsorption studies. Comparative dye adsorption capacity onto the pristine (MWCNT-raw) and functionalized (MWCNT-COOH-11) CNTs was evaluated in aqueous solution. These results revealed that MWCNT-raw is capable of adsorbing either anionic or cationic dyes. In contrast, an induced selective cation dye adsorption capacity is significantly enhanced on multivalent hydrophilic MWCNT-COOH, in comparison to a pristine surface. This ability can be tuned to the selective adsorption of cations over anionic dyes or between anionic mixtures from binary systems. An insight into adsorbate-adsorbent interactions shows that hierarchical supramolecular interactions dominate the adsorption processes, which is ascribed to the chemical modification by switching from a hydrophobic to a hydrophilic surface, dye charge, temperature, and potential matching multivalent acceptor/donor capacity between chemical groups in the adsorbent interface. The dye adsorption isotherm and thermodynamics on both surfaces were also studied. Changes in the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were evaluated. Thermodynamic parameters were endothermic on MWCNT-raw, whereas the adsorption process on MWCNT-COOH-11 revealed that adsorption processes were spontaneous and exothermic, accompanied by a significant reduction of entropy values as a consequence of a multivalent effect. This approach provides an eco-friendly, low-cost alternative for the preparation of supramolecular nanoadsorbents with unprecedented properties to achieve remarkable selective adsorption independent of the presence of intrinsic porosity.
Collapse
Affiliation(s)
- José Arévalo-Fester
- Instituto
Zuliano de Investigaciones Tecnológicas (INZIT), Km 15, La Cañada de Urdaneta, Estado Zulia 4001, Venezuela
- Instituto
Venezolano de Investigaciones Científicas (IVIC), Centro de
Química, Laboratorio de Síntesis y Caracterización
de Nuevos Materiales. P.O. Box 21817, Caracas 1020-A, Venezuela
| | - Alexander Briceño
- Instituto
Venezolano de Investigaciones Científicas (IVIC), Centro de
Química, Laboratorio de Síntesis y Caracterización
de Nuevos Materiales. P.O. Box 21817, Caracas 1020-A, Venezuela
| |
Collapse
|
32
|
Stepacheva AA, Markova ME, Lugovoy YV, Kosivtsov YY, Matveeva VG, Sulman MG. Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Carbon materials are widely used in catalysis as effective catalyst supports. Carbon supports can be produced from coal, organic precursors, biomass, and polymer wastes. Biomass is one of the promising sources used to produce carbon-based materials with a high surface area and a hierarchical structure. In this review, we briefly discuss the methods of biomass-derived carbon supported catalyst preparation and their application in biodiesel production, organic synthesis reactions, and electrocatalysis.
Collapse
|
33
|
Lei X, Lian Q, Zhang X, Karsili TK, Holmes W, Chen Y, Zappi ME, Gang DD. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121138. [PMID: 36702432 DOI: 10.1016/j.envpol.2023.121138] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have drawn great attention due to their wide distribution in water bodies and toxicity to human beings. Adsorption is considered as an efficient treatment technique for meeting the increasingly stringent environmental and health standards for PFAS. This paper systematically reviewed the current approaches of PFAS adsorption using different adsorbents from drinking water as well as synthetic and real wastewater. Adsorbents with large mesopores and high specific surface area adsorb PFAS faster, their adsorption capacities are higher, and the adsorption process are usually more effective under low pH conditions. PFAS adsorption mechanisms mainly include electrostatic attraction, hydrophobic interaction, anion exchange, and ligand exchange. Various adsorbents show promising performances but challenges such as requirements of organic solvents in regeneration, low adsorption selectivity, and complicated adsorbent preparations should be addressed before large scale implementation. Moreover, the aid of decision-making tools including response surface methodology (RSM), techno-economic assessment (TEA), life cycle assessment (LCA), and multi criteria decision analysis (MCDA) were discussed for engineering applications. The use of these tools is highly recommended prior to scale-up to determine if the specific adsorption process is economically feasible and sustainable. This critical review presented insights into the most fundamental aspects of PFAS adsorption that would be helpful to the development of effective adsorbents for the removal of PFAS in future studies and provide opportunities for large-scale engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tolga K Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| |
Collapse
|
34
|
Zhang P, Wu M, Liang C, Luo D, Li B, Ma J. In-situ exsolution of Fe-Ni alloy catalysts for H2 and carbon nanotube production from microwave plasma-initiated decomposition of plastic wastes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130609. [PMID: 37056000 DOI: 10.1016/j.jhazmat.2022.130609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
The management of plastic wastes has become an urgent issue due to the overconsumption of single-use plastic products. As a promising avenue for plastic waste valorization, chemical recycling by converting plastics into value-added products has attracted tremendous attention. In this paper, the Fe-Ni alloy catalysts via in-situ exsolution were employed for the straightforward microwave plasma-initiated decomposition of plastic wastes for high yield H2 and carbon nanotubes. The partial substitution of Fe by Ni promoted in-situ exsolution of alloy nanoparticles homogeneously. Specifically, characterization results showed that the introduction of Ni modulated metal-support interaction, which further affected the crystalline phase, nanoparticle size and oxygen vacancies. The exsolved Fe-Ni alloy catalyst exhibited the highest catalytic activity, over which 96 % hydrogen of plastic wastes rapidly evolved out in the form of gas products accompanied with high-purity carbon nanotubes. The H2 yield was 415 mmol·g-1Hplastic, which exhibited an over 2 times improvement versus the supported catalyst. Moreover, the successive cycle test displayed the potential for converting plastic wastes into H2-rich fuels and high-quality CNTs continuously. Generally, the in-situ exsolution strategy of Fe-Ni alloy catalysts contributed to the sustainable and high-efficient recycling of plastic wastes into H2-rich gas products and carbon nanotubes under microwave plasma.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Mudi Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Cai Liang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Dengshan Luo
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Bin Li
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Jiliang Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
35
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
36
|
Xu C, Li S, Hou Z, Yang L, Fu W, Wang F, Kuang Y, Zhou H, Chen L. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
37
|
Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts 2023. [DOI: 10.3390/catal13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.
Collapse
|
38
|
Yin K, Feng N, Godbert N, Xing P, Li H. Self-Assembly of Cholesteryl Carbon Dots with Circularly Polarized Luminescence in Solution and Solvent-Free Phases. J Phys Chem Lett 2023; 14:1088-1095. [PMID: 36700617 DOI: 10.1021/acs.jpclett.2c03829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating carbon dots (CDs) into chiral self-assemblies will endow the system with intriguing optoelectronic, catalytic, and chiroptical activities. Utilization of chiral substituents to rationally manipulate chiral self-assembly of the CDs, however, remains a major challenge. In this work, cholesteryl monoprotected ethylene diamine was used as a precursor to synthesize CDs with a cholesteryl periphery. The rigid, apolar, and chiral cholesteryl facilitates the polarity-sensitive self-assembly of CDs in organic solvents, showing circularly polarized luminescence (CPL) with dissymmetry g-factor at 10-3 grade. Temperature-variable characterizations suggested the formation of thermotropic liquid crystals within a wide temperature range driven by the interdigitation of cholesteryl segments, which further anchor the graphitic CD cores into tetragonal and cubic arrays. Self-assembly in a solvent-free state arouses sufficient chirality transfer and boosted the g-factors to 10-2 order of magnitude. This work unveils multiple and chiral self-assembly of CDs controlled by the cholesteryl substituents, exhibiting variable architectures and tunable CPL.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Nicolas Godbert
- Laboratorio di Materiali Molecolari Inorganici, Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende (CS) 87036, Italy
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
39
|
Nishchakova AD, Bulushev DA, Trubina SV, Stonkus OA, Shubin YV, Asanov IP, Kriventsov VV, Okotrub AV, Bulusheva LG. Highly Dispersed Ni on Nitrogen-Doped Carbon for Stable and Selective Hydrogen Generation from Gaseous Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:545. [PMID: 36770506 PMCID: PMC9921425 DOI: 10.3390/nano13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Ni supported on N-doped carbon is rarely studied in traditional catalytic reactions. To fill this gap, we compared the structure of 1 and 6 wt% Ni species on porous N-free and N-doped carbon and their efficiency in hydrogen generation from gaseous formic acid. On the N-free carbon support, Ni formed nanoparticles with a mean size of 3.2 nm. N-doped carbon support contained Ni single-atoms stabilized by four pyridinic N atoms (N4-site) and sub-nanosized Ni clusters. Density functional theory calculations confirmed the clustering of Ni when the N4-sites were fully occupied. Kinetic studies revealed the same specific Ni mass-based reaction rate for single-atoms and clusters. The N-doped catalyst with 6 wt% of Ni showed higher selectivity in hydrogen production and did not lose activity as compared to the N-free 6 wt% Ni catalyst. The presented results can be used to develop stable Ni catalysts supported on N-doped carbon for various reactions.
Collapse
Affiliation(s)
- Alina D. Nishchakova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Dmitri A. Bulushev
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Svetlana V. Trubina
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Olga A. Stonkus
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Yury V. Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Igor P. Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vladimir V. Kriventsov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander V. Okotrub
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Lyubov G. Bulusheva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
40
|
Hu X, Liu WJ, Ma LL, Yu HQ. Sustainable Conversion of Harmful Algae Biomass into a CO 2 Reduction Electrocatalyst for Two-Fold Carbon Utilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1157-1166. [PMID: 36602942 DOI: 10.1021/acs.est.2c07145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Harmful algae blooms (HABs) frequently occur all over the world and cause great harm to the environment, human health, and aquatic ecosystems. However, owing to their great growth rate and large nutrient intake capacity, algae can enrich a large amount of carbon (CO2) and nutritional elements (N and P) in their biomass. Thus, this could be applied as a robust approach to battle global warming and water eutrophication if the harmful algae biomass was effectively harvested and utilized. Herein, we propose a thermochemical approach to convert algae biomass into a nitrogen-doped electrocatalyst for CO2 reduction. The as-synthesized carbon catalyst exhibits a favorable electrochemical CO2 reduction activity. The key drivers of the environmental impacts in the thermochemical conversion approach with a comparison with the commonly used landfilling approach are identified with life cycle assessment. The former presents much lower environmental burdens in terms of impacts such as freshwater/terrestrial ecotoxicity and human toxicity than the latter. Moreover, if the thermochemical conversion process was successfully applied for biomass conversion worldwide, 2.17 × 108 tons of CO2-eq, 8.42 × 106 tons of N, and 1.21 × 106 tons of P could be removed from the global carbon and other element cycles. Meanwhile, the thermochemical approach is also similar to landfilling in terms of costs. The results from this work provide a brand-new perspective for achieving twofold CO2 utilization and efficiently battling harmful algae blooms.
Collapse
Affiliation(s)
- Xiao Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lin-Lin Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
41
|
Miah T, Demoro P, Nduka I, De Luca F, Abate S, Arrigo R. Orange Peel Biomass-derived Carbon Supported Cu Electrocatalysts Active in the CO 2 -Reduction to Formic Acid. Chemphyschem 2023; 24:e202200589. [PMID: 36623937 DOI: 10.1002/cphc.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/14/2022] [Indexed: 01/11/2023]
Abstract
We report a green, wet chemistry approach towards the production of C-supported Cu electrocatalysts active in the CO2 reduction to formic acid. We use citrus peels as a C support precursor and as a source of reducing agents for the Cu cations. We show that orange peel is a suitable starting material compared to lemon peel for the one-pot hydrothermal synthesis of Cu nanostructures affording better Cu dispersion as well as productivity and selectivity towards formic acid. We rationalize this finding in terms of the beneficial chemical composition of the orange peel, which favors both the reduction of the Cu precursor as well as the carbon matrix. This work demonstrates new viable opportunities for the reuse of citrus waste on a rational basis.
Collapse
Affiliation(s)
- Tanvir Miah
- School of Science, Engineering and Environment, University of Salford, M5 4WT, Manchester, UK
| | - Palmarita Demoro
- ERIC aisbl and CASPE/INSTM, Dpt. ChiBioFarAM, University of Messina, Viale F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Izuchika Nduka
- School of Science, Engineering and Environment, University of Salford, M5 4WT, Manchester, UK
| | - Federica De Luca
- ERIC aisbl and CASPE/INSTM, Dpt. ChiBioFarAM, University of Messina, Viale F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Salvatore Abate
- ERIC aisbl and CASPE/INSTM, Dpt. ChiBioFarAM, University of Messina, Viale F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, M5 4WT, Manchester, UK
| |
Collapse
|
42
|
Influence of the Method of Fe Deposition on the Surface of Hydrolytic Lignin on the Activity in the Process of Its Conversion in the Presence of CO 2. Int J Mol Sci 2023; 24:ijms24021279. [PMID: 36674811 PMCID: PMC9866296 DOI: 10.3390/ijms24021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Hydrolytic lignin is one of the non-demanded carbon materials. Its CO2-assisted conversion is an important way to utilize it. The use of the catalysts prepared by metal deposition on the surface of hydrolytic lignin makes it possible to apply milder conditions of the conversion process with CO2 and to improve the economic indicators. The development of methods of deposition of the active phase is a problem of high importance for any heterogeneous catalytic processes. This work aimed at investigating the influence of the conditions of iron deposition on the surface of hydrolytic lignin on the process of CO2-assisted conversion of lignin. Different Fe precursors (Fe(NO3)3, FeSO4, Fe2(SO4)3), solvents (water, isopropanol, acetone, and ethanol), and concentrations of the solution were used; the properties of Fe/lignin composites were estimated by SEM, EDX, TEM, XRD methods and catalytic tests. All the prepared samples demonstrate a higher conversion compared to starting lignin itself in the carbon dioxide-assisted conversion process. The carbon dioxide conversion was up to 66% at 800 °C for the sample prepared from Fe(NO3)3 using a twofold water volume compared to incipient wetness water volume as a solvent (vs. 39% for pure lignin).
Collapse
|
43
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
44
|
Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203325. [PMID: 35639091 DOI: 10.1002/adma.202203325] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanochitin and nanochitosan (with random-copolymer-based multiscale architectures of glucosamine and N-acetylglucosamine units) have recently attracted immense attention for the development of green, sustainable, and advanced functional materials. Nanochitin and nanochitosan are multiscale materials from small oligomers, rod-shaped nanocrystals, longer nanofibers, to hierarchical assemblies of nanofibers. Various physical properties of chitin and chitosan depend on their molecular- and nanostructures; translational research has utilized them for a wide range of applications (biomedical, industrial, environmental, and so on). Instead of reviewing the entire extensive literature on chitin and chitosan, here, recent developments in multiscale-dependent material properties and their applications are highlighted; immune, medical, reinforcing, adhesive, green electrochemical materials, biological scaffolds, and sustainable food packaging are discussed considering the size, shape, and assembly of chitin nanostructures. In summary, new perspectives for the development of sustainable advanced functional materials based on nanochitin and nanochitosan by understanding and engineering their multiscale properties are described.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeyoung Park
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| |
Collapse
|
45
|
Zhou X, Jiao J, Jiao W, Wang R. Oxidative desulfurization of model oil over the bowl-shaped N-doped carbon material loaded by the defective silicotungstic acid. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Lee YC, Jung SC. A first-principles study on atomic-scale pore design of microporous carbon electrodes for lithium-ion batteries. NANOSCALE ADVANCES 2022; 4:5378-5391. [PMID: 36540113 PMCID: PMC9724750 DOI: 10.1039/d2na00621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Porous carbon materials are considered attractive lithium storage media because their large specific surface areas and pore volumes provide high adsorption capacity. This first-principles study elucidates the atomic-scale mechanisms of lithium storage and diffusion in microporous carbon. Microporous carbon structures with initial densities of 1.5, 2.0, and 2.5 g cm-3 store up to 7.5-8.2 Li ions per C6 corresponding to the capacities of 2783-3032 mA h g-1, which are 7-8 times higher than that for graphite. Fully lithiated microporous carbon has about 62% of Li ions inside the pore cavity and on the pore surface, responsible for reversible capacity, and about 38% of Li ions inside the pore wall, responsible for irreversible capacity. As lithiation proceeds, microporous carbon structures with different total pore volumes evolve to have similar total pore volumes but different average pore volumes. The average pore volume has a great influence on Li ion conductivity, as evidenced by the highest conductivity of 103.5 mS cm-1 for the largest average pore diameter of 9.3 Å. Inside large pore cavities, Li ions diffuse rapidly without encountering carbon atoms that impede Li diffusion, suggesting that a high Li-to-C ratio around Li causes fast Li ion motion. This study offers not only a comprehensive understanding of the lithiation of microporous carbon but also design directions for developing efficient microporous carbon electrodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Young Chul Lee
- Department of Physics, Pukyong National University Busan 48513 Republic of Korea
| | - Sung Chul Jung
- Department of Physics, Pukyong National University Busan 48513 Republic of Korea
| |
Collapse
|
47
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203899. [PMID: 36285802 PMCID: PMC9798988 DOI: 10.1002/advs.202203899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Indexed: 06/04/2023]
Abstract
Addressing climate change challenges by reducing greenhouse gas levels requires innovative adsorbent materials for clean energy applications. Recent progress in machine learning has stimulated technological breakthroughs in the discovery, design, and deployment of materials with potential for high-performance and low-cost clean energy applications. This review summarizes basic machine learning methods-data collection, featurization, model generation, and model evaluation-and reviews their use in the development of robust adsorbent materials. Key case studies are provided where these methods are used to accelerate adsorbent materials design and discovery, optimize synthesis conditions, and understand complex feature-property relationships. The review provides a concise resource for researchers wishing to use machine learning methods to rapidly develop effective adsorbent materials with a positive impact on the environment.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - Tu C. Le
- School of EngineeringSTEM CollegeRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Dehong Chen
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - David A. Winkler
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- School of Biochemistry and ChemistryLa Trobe UniversityKingsbury DriveBundoora3042Australia
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Rachel A. Caruso
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| |
Collapse
|
48
|
Kim M, Xin R, Earnshaw J, Tang J, Hill JP, Ashok A, Nanjundan AK, Kim J, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc 2022; 17:2990-3027. [PMID: 36064756 DOI: 10.1038/s41596-022-00718-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs), or porous coordination polymers, are crystalline porous materials formed by coordination bonding between inorganic and organic species on the basis of the self-assembly of the reacting units. The typical characteristics of MOFs, including their large specific surface areas, ultrahigh porosities and excellent thermal and chemical stabilities, as well as their great potential for chemical and structural modifications, make them excellent candidates for versatile applications. Their poor electrical conductivity, however, has meant that they have not been useful for electrochemical applications. Fortuitously, the direct carbonization of MOFs results in a rearrangement of the carbon atoms of the organic units into a network of carbon atoms, which means that the products have useful levels of conductivity. The direct carbonization of zeolitic imidazolate framework (ZIF)-type MOFs, particularly ZIF-8, has successfully widened the scope of possible applications of MOFs to include electrochemical reactions that could be used in, for example, energy storage, energy conversion, electrochemical biosensors and capacitive deionization of saline water. Here, we present the first detailed protocols for synthesizing high-quality ZIF-8 and its modified forms of hollow ZIF-8, core-shell ZIF-8@ZIF-67 and ZIF-8@mesostuctured polydopamine. Typically, ZIF-8 synthesis takes 27 h to complete, and subsequent nanoarchitecturing procedures leading to hollow ZIF-8, ZIF-8@ZIF-67 and ZIF-8@mPDA take 6, 14 and 30 h, respectively. The direct-carbonization procedure takes 12 h. The resulting nanoporous carbons are suitable for electrochemical applications, in particular as materials for supercapacitors.
Collapse
Affiliation(s)
- Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jacob Earnshaw
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, China
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Ashok Kumar Nanjundan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Christine Young
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, Tokyo, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Republic of Korea.
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, Tokyo, Japan.
| |
Collapse
|
49
|
Let S, Dam GK, Samanta P, Fajal S, Dutta S, Ghosh SK. Palladium-Anchored N-Heterocyclic Carbenes in a Porous Organic Polymer: A Heterogeneous Composite Catalyst for Eco-Friendly C–C Coupling. J Org Chem 2022; 87:16655-16664. [DOI: 10.1021/acs.joc.2c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gourab K. Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sujit K. Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
50
|
Zhang C, Fu Y, Gao W, Bai T, Cao T, Jin J, Xin B. Deep Eutectic Solvent-Mediated Electrocatalysts for Water Splitting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228098. [PMID: 36432198 PMCID: PMC9694663 DOI: 10.3390/molecules27228098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As green, safe, and cheap solvents, deep eutectic solvents (DESs) provide tremendous opportunities to open up attractive perspectives for electrocatalysis. In this review, the achievement of DESs in the preparation of catalysts for electrolytic water splitting is described in detail according to their roles combined with our own work. DESs are generally employed as green media, templates, and electrolytes. A large number of hydrogen bonds in DESs result in supramolecular structures which have the ability to shape the morphologies of nanomaterials and then tune their performance. DESs can also serve as reactive reagents of metal electrocatalysts through directly participating in synthesis. Compared with conventional heteroatom sources, they have the advantages of high safety and designability. The "all-in-one" transformation strategy is expected to realize 100% atomic transformation of reactants. The aim of this review is to offer readers a deeper understanding on preparing DES-mediated electrocatalysts with higher performance for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Yongqi Fu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Wei Gao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Tianyi Cao
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-13685345517
| |
Collapse
|