1
|
Wang S, Xiong F, Liu Y, Feng Z. Exploring flavonoid intake and all-cause mortality in diverse health conditions: Insights from NHANES 2007-2010 and 2017-2018. Nutrition 2024; 127:112556. [PMID: 39236523 DOI: 10.1016/j.nut.2024.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Flavonoids exhibit antioxidative, anti-inflammatory, and anticancer properties, yet the relationship between flavonoid intake and all-cause mortality in the obese population remains unclear. METHODS This study included NHANES participants from 2007 to 2010 and 2017 to 2018. Cox regression analysis evaluated the impact of total flavonoid intake on all-cause mortality among participants with varying comorbidity profiles. Subgroup analysis was conducted by separately analyzing the six sub-classes of total flavonoids (anthocyanidins, flavan-3-ols, flavanones, flavones, flavonols, and isoflavones). Sensitivity analysis was used to investigate the impact of total flavonoid intake on all-cause mortality among patients with different comorbidities. RESULTS During a median follow-up period of 9.92 years (interquartile range (IQR), 5.54-14.29 years), a total of 639 participants died. COX regression analysis revealed a positive impact of flavonoid intake on all-cause mortality among participants with chronic kidney disease, with greater benefits observed in obese participants [hazard ratio (HR): 0.22, 95% CI: 0.11-0.44). In metabolically healthy obese participants (HR: 0.15, 95% CI: 0.07-0.35), obese individuals with diabetes (HR: 0.51, 95% CI: 0.29-0.88), and obese individuals with comorbid cardiovascular disease (HR: 0.37, 95% CI: 0.17-0.83), flavonoid intake was associated with a reduced risk of all-cause mortality. Restricted cubic spline (RCS) analysis indicated a non-linear relationship in obese participants, with optimal intake levels ranging from 319.4978 to 448.6907 mg/day, varying based on different comorbidity profiles. Subgroup analysis revealed varying effects of total flavonoid components in different health conditions, with hazard ratios ranging from 0.06 for higher levels of flavonol to 0.59 for higher levels of anthocyanidins in the Cox model. Sensitivity analyses further indicated that individuals with obesity and comorbid diabetes or CKD see the greatest benefit from flavonoid intake. CONCLUSIONS The consumption of flavonoids may be associated with a decreased risk of all-cause mortality. Consumption of flavonoids is particularly beneficial for individuals with obesity and comorbidities.
Collapse
Affiliation(s)
- Senlin Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, China; College of Medicine, Southwest Jiao Tong University, Chengdu, China; Research Center for Obesity and Metabolic Health, College of Medicine, Southwest Jiao Tong University, Chengdu, China
| | - Feng Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, China; Research Center for Obesity and Metabolic Health, College of Medicine, Southwest Jiao Tong University, Chengdu, China
| | - Zhonghui Feng
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, Sichuan, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China; Research Center for Obesity and Metabolic Health, College of Medicine, Southwest Jiao Tong University, Chengdu, China.
| |
Collapse
|
2
|
de Souza LVM, Dos Santos KS, Barcellos TDMA, Alvares TDS. The effect of flour-based foods intake in the reduction of cardiometabolic risk: A systematic review. Crit Rev Food Sci Nutr 2024; 64:9400-9411. [PMID: 37222569 DOI: 10.1080/10408398.2023.2212758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cardiometabolic risk triggers a state of chronic and subclinical inflammation, conferring a higher risk of morbidity and mortality. Thus, minimal processing of foods with high nutritional value, in the form of flour, becomes an effective dietary strategy in preventing and treating cardiometabolic risk factors. This systematic review aims to evaluate the evidence on the effect of flour-based food intake on reducing the most common cardiometabolic risk factors. We included all randomized controlled trials published up to April 2023 in the main databases PubMed, Scopus and Web of Science. Eleven clinical trials were included. The amount of flour used in the studies ranged from 1.5 g to 36 g/day, and the supplementation period ranged from six weeks to 120 days. Green jackfruit flour, green banana flour, soy flour, flour from rind of the yellow passion fruit, and fenugreek powder demonstrated significant results in improve parameters of glucose homeostasis. Chia flour, green banana flour, soy flour, and fenugreek powder showed improvements in blood pressure measurements. Brazil nut flour and chia flour reduced total cholesterol. Chia flour also increased HDL cholesterol levels. The evidence presented in the current systematic review indicates that flour-derived foods intake is related to improve cardiometabolic risk factors parameters.
Collapse
Affiliation(s)
- Leonardo Victor Miranda de Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Karen Souza Dos Santos
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Tatiana de Muros Amaral Barcellos
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Thiago da Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Akbulut HF, Akbulut M. Mineral composition, the profile of phenolic compounds, organic acids, sugar and in vitro antioxidant capacity, and antimicrobial activity of organic extracts of Juniperus drupacea fruits. Food Sci Nutr 2023; 11:6435-6446. [PMID: 37823141 PMCID: PMC10563755 DOI: 10.1002/fsn3.3586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023] Open
Abstract
Juniperus drupacea fruit is widely used in traditional and complementary medicine in Turkey for the treatment of different diseases in various forms such as molasses and tar. This study was carried out to evaluate the phenolic compounds, organic acid, sugar, and macro- and micromineral distributions of methanol and water extracts of J. drupace fruit, as well as their antioxidant and antimicrobial potential. For this purpose, total phenolic content by spectrophotometer, phenolics, organic acids, and sugars distributions by HPLC in extracts of J. drupacea fruits, and macro- and micromineral element content by ICP-AES in fruit were determined. 2,2-diphenyl-l-picrylhydrazyl assay (DPPH assay) was used to evaluate in vitro antioxidant activity in extracts. The antimicrobial potential of J. drupacea fruit methanol extract against some gram-positive and gram-negative pathogenic bacteria was evaluated using disk diffusion and minimum inhibitory concentration (MIC) methods. The potassium macroelement and the iron microelement were found at high content in J. drupacea fruit. The total phenolic content in the methanol extracts was higher than the water extracts. Among the individual phenolic compounds, catechin, a flavonoid that was the highest in both extractions, was determined as 300.49 μg/g in methanol extract and 314.88 μg/g in water extract. DPPH scavenging activity was higher in methanol extracts. While the methanol extract of J. drupacea had no-inhibitory effect on the gram-negative bacteria tested, it exhibited a strong inhibition on the gram-positive bacteria Listeria innocua, Listeria monocytogenes, Staphylococcus carnosus, and Enterococcus faecalis.
Collapse
Affiliation(s)
- Hatice Feyza Akbulut
- Department of Medicinal and Aromatic Plants, Cumra Vocational SchoolSelçuk UniversityKonyaTurkey
| | - Mehmet Akbulut
- Department of Food Engineering, Agriculture FacultySelcuk UniversityKonyaTurkey
| |
Collapse
|
4
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
6
|
Tan S, Ke Z, Zhou C, Luo Y, Ding X, Luo G, Li W, Shi S. Polyphenol Profile, Antioxidant Activity, and Hypolipidemic Effect of Longan Byproducts. Molecules 2023; 28:molecules28052083. [PMID: 36903329 PMCID: PMC10004001 DOI: 10.3390/molecules28052083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Longan, a popular fruit in Asia, has been used in traditional Chinese medicine to treat several diseases for centuries. Recent studies have indicated that longan byproducts are rich in polyphenols. The aim of this study was to analyze the phenolic composition of longan byproduct polyphenol extracts (LPPE), evaluate their antioxidant activity in vitro, and investigate their regulating effect on lipid metabolism in vivo. The results indicated that the antioxidant activity of LPPE was 231.350 ± 21.640, 252.380 ± 31.150, and 558.220 ± 59.810 (mg Vc/g) as determined by DPPH, ABTS, and FRAP, respectively. UPLC-QqQ-MS/MS analysis indicated that the main compounds in LPPE were gallic acid, proanthocyanidin, epicatechin, and phlorizin. LPPE supplementation prevented the body weight gain and decreased serum and liver lipids in high-fat diet-induced-obese mice. Furthermore, RT-PCR and Western blot analysis indicated that LPPE upregulated the expression of PPARα and LXRα and then regulated their target genes, including FAS, CYP7A1, and CYP27A1, which are involved in lipid homeostasis. Taken together, this study supports the concept that LPPE can be used as a dietary supplement in regulating lipid metabolism.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (S.T.); (S.S.)
| | - Zunli Ke
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chongbing Zhou
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuping Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaobo Ding
- Luzhou Academy of Agricultural Sciences, Luzhou 646000, China
| | - Gangjun Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Shengyou Shi
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (S.T.); (S.S.)
| |
Collapse
|
7
|
Sosnowska D, Kajszczak D, Podsędek A. The Effect of Different Growth Stages of Black Chokeberry Fruits on Phytonutrients, Anti-Lipase Activity, and Antioxidant Capacity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228031. [PMID: 36432132 PMCID: PMC9695515 DOI: 10.3390/molecules27228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
The present study investigated the nutrients, biologically-active compounds, as well as antioxidant and anti-lipase activities of chokeberry fruits across four different stages of development, from the unripe green to mature black forms. The highest content of total phenolics (12.30% dry weight (DW)), including proanthocyanidins (6.83% DW), phenolic acids (6.57% DW), flavanols (0.56% DW), flavonols (0.62% DW), and flavanones (0.10% DW), was observed in unripe fruits. The unripe green fruits were also characterized by the highest content of protein (2.02% DW), ash (4.05% DW), total fiber (39.43% DW), and chlorophylls (75.48 mg/100 g DW). Ripe black fruits were the richest source of total carotenoids (8.53 mg/100 g DW), total anthocyanins (2.64 g/100 g DW), and total sugars (33.84% DW). The phenolic compounds of green fruits were dominated by phenolic acids (above 83% of the total content), the semi-mature fruits by both phenolic acids and anthocyanins (90%), while the mature berries were dominated by anthocyanins (64%). Unripe fruits were the most effective inhibitor of pancreatic lipase in triolein emulsion, scavenger of 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation, and reducer of ferric ion. Biological activities were mainly correlated with total proanthocyanidins and total phenolics. Considering their strong anti-lipase and antioxidant activities, unripe chokeberry fruits may have potential applications in nutraceuticals and functional foods.
Collapse
|
8
|
Martínez-Meza Y, Pérez-Jiménez J, Salgado-Rodríguez LM, Castellanos-Jiménez AK, Reynoso-Camacho R. In Vivo Evaluation of the Cardiometabolic Potential of Grape Pomace: Effect of Applying Instant Controlled Pressure Drop. Foods 2022; 11:3537. [PMID: 36360149 PMCID: PMC9655148 DOI: 10.3390/foods11213537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Grape pomace (GP) is a source of polyphenols which may be present as free structures or associated with dietary fiber. Instant controlled pressure drop (DIC) is a technology which can modify the association of polyphenols with food matrixes, but how these modifications affect the health benefits associated with GP remains to be elucidated. In this study, in rats fed a high-fat-fructose diet (HFF), we evaluated the in vivo cardiometabolic effects of the modification of polyphenols in GP caused by DIC at 0.2 MPa for 60 s (DIC1) and 0.4 MPa for 120 s (DIC2). These treatments increased anthocyanin and total flavonoid contents, respectively, while all the supplementations caused significant improvements in insulin resistance and plasma triacylglycerols. Thus, the bioactive compounds present in GP (including a major fraction of non-extractable proanthocyanidins) caused these modifications independently of the specific polyphenol profiles which may have resulted from these DIC treatments. Additionally, only intact GP led to an increase in HDL cholesterol, while only DIC2-treated GP improved hepatic steatosis. In conclusion, GP always improves insulin sensitivity in this animal model of obesity, while the different compositions of GP modified by DIC may be associated with other cardiometabolic parameters.
Collapse
Affiliation(s)
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Arreaza-Gil V, Escobar-Martínez I, Muguerza B, Aragonès G, Suárez M, Torres-Fuentes C, Arola-Arnal A. The effects of grape seed proanthocyanidins in cafeteria diet-induced obese Fischer 344 rats are influenced by faecal microbiota in a photoperiod dependent manner. Food Funct 2022; 13:8363-8374. [PMID: 35916585 DOI: 10.1039/d2fo01206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenols are of high interest due to their beneficial health effects, including anti-obesity properties. The gut microbiota may play an important role in polyphenol-mediated effects as these bacteria are significantly involved in the metabolism of polyphenols. Moreover, seasonal rhythms have been demonstrated to influence both the gut microbiota composition and polyphenol bioavailability. Thus, the goal of this study was to evaluate the impact of photoperiods and microbiota on polyphenol functionality in an obesogenic context. Towards this aim, cafeteria diet-fed Fischer 344 rats were housed under three different photoperiod conditions (L6: 6 h of light, L12: 12 h of light and L18: 18 h of light) for 9 weeks. During the last 4 weeks of the experiment, rats were daily administered with an oral dose of a grape seed proanthocyanidin extract (GSPE) (25 mg per kg body weight). Additionally, rats treated with GSPE and an antibiotic cocktail (ABX) in their drinking water were included for a better understanding of the gut microbiota role in GSPE functionality. Vehicle and non-ABX treated rats were included as controls. GSPE decreased body weight gain and fat depots only under L18 conditions. Interestingly, the gut microbiota composition was strongly altered in this photoperiod. GSPE + ABX-treated rats gained significantly less body weight compared to the rats of the rest of the treatments under L18 conditions. These results suggest that GSPE functionality is modulated by the gut microbiota in a photoperiod dependent manner. These novel findings corroborate seasonal rhythms as key factors that must be taken into account when investigating the effects of polyphenols in the treatment or prevention of chronic diseases.
Collapse
Affiliation(s)
- Verónica Arreaza-Gil
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Iván Escobar-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| |
Collapse
|
11
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
12
|
Sosnowska D, Podsędek A, Kucharska AZ. Proanthocyanidins as the main pancreatic lipase inhibitors in chokeberry fruits. Food Funct 2022; 13:5616-5625. [PMID: 35506494 DOI: 10.1039/d1fo04429j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic lipase inhibitors are recognized as important in strategies for the management of overweight and obesity. The phytocompounds in chokeberry fruit show multidirectional pro-health effects, including anti-obesity activity. The aims of this study were to fractionate and identify the phenolic compounds of chokeberry fruit phenolic-rich extract that are active as pancreatic lipase inhibitors. Phenolic compounds were fractionated using Sephadex LH-20 resin, followed by polyphenol profile analysis using chromatographic and spectrophotometric methods, while pancreatic inhibitory activity was determined using 4-methylumbelliferyl oleate and emulsified triolein as enzyme substrates. Among the six fractions isolated from extract, two fractions rich in highly polymerized proanthocyanidins showed the greatest ability to inhibit pancreatic lipase activity. In comparison, fractions containing mainly low-molecular-weight phenolic compounds, such as phenolic acids, flavonols and anthocyanins, were 11-64 times less active. The most active fraction showed a mixed mode of pancreatic lipase inhibition, as determined by Lineweaver-Burk plot analysis, and exhibited a cumulative effect with orlistat. This study shows that black chokeberry polyphenols, particularly highly polymerized procyanidins, can effectively inhibit pancreatic lipase activity determined by in vitro methods.
Collapse
Affiliation(s)
- Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland.
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland.
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland.
| |
Collapse
|
13
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
14
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
15
|
Abdou HM, Abd Elkader HTAE, El-Gendy AH, Eweda SM. Neurotoxicity and neuroinflammatory effects of bisphenol A in male rats: the neuroprotective role of grape seed proanthocyanidins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9257-9268. [PMID: 34505250 DOI: 10.1007/s11356-021-16311-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Exposure to bisphenol A (BPA) contributes to neurological disorders, but the underlying mechanisms are still not completely understood. We studied the neurotoxic effect of BPA and how it promotes inflammation and alteration in the neurotransmission synthesis, release, and transmission. This study was also designed to investigate the neuroprotective effect of grape seed proanthocyanidins (GSPE) against BPA-induced neurotoxicity in rats. Rats were equally divided into 4 groups with 7 rats in each: control group, BPA group, GSPE + BPA group, and GSPE group. Rats were orally treated with their respective doses (50 mg BPA/kg BW and/or 200 mg GSPE/kg BW) daily for 70 days. BPA elicits significant elevation in malondialdehyde (MDA) and nitric oxide (NO) associated with a significant reduction in glutathione (GSH), total thiols, glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione-S-transferase (GST). BPA exposure results in increased dopamine and serotonin levels, elevation in acetylcholinesterase (AChE) activity, and reduction in Na/K-ATPase and total ATPase activities in the brain. Also, BPA induces upregulation in the gene expression of the inflammatory markers, tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2), and in the tumor suppressor and pro-oxidant p53 protein. The pretreatment with GSPE attenuates or ameliorate all the oxidative and neurotoxic parameters induced by BPA. Our results suggest that GSPE has a promising role in modulating BPA-induced neuroinflammation and neurotoxicity and its antioxidant and free radical scavenging activities may in part be responsible for such effects.
Collapse
Affiliation(s)
- Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt
| | | | - Amel H El-Gendy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt
| | - Saber Mohamed Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt.
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Han X, Zhao W, Zhou Q, Chen H, Yuan J, Zhang XF, Zhang Z. Procyanidins from Hawthorn ( Crataegus Pinnatifida) Alleviates Lipid Metabolism Disorder via Inhibiting Insulin Resistance and Oxidative Stress, Normalizing Gut Microbiota Structure and Intestinal Barrier, Further Suppressing Hepatic Inflammation and Lipid Accumulation. Food Funct 2022; 13:7901-7917. [DOI: 10.1039/d2fo00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, lipid metabolism disorder (LMD) has been regarded as a risky factor leading to multiple diseases and affecting human health. Procyanidins have been reported to be the potential therapy for...
Collapse
|
17
|
Sheng K, Zhang G, Kong X, Wang J, Mu W, Wang Y. Encapsulation and characterisation of grape seed proanthocyanidin extract using sodium alginate and different cellulose derivatives. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kangliang Sheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Life Sciences Anhui University Hefei Anhui 230601 China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei Anhui 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing Hefei Anhui 230601 China
| | - Guanghui Zhang
- School of Life Sciences Anhui University Hefei Anhui 230601 China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei Anhui 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing Hefei Anhui 230601 China
| | - Xiaowei Kong
- School of Life Sciences Anhui University Hefei Anhui 230601 China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei Anhui 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing Hefei Anhui 230601 China
| | - Jingmin Wang
- School of Life Sciences Anhui University Hefei Anhui 230601 China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei Anhui 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing Hefei Anhui 230601 China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Yongzhong Wang
- School of Life Sciences Anhui University Hefei Anhui 230601 China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei Anhui 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing Hefei Anhui 230601 China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| |
Collapse
|
18
|
Choi M, Mukherjee S, Yun JW. Anthocyanin oligomers stimulate browning in 3T3-L1 white adipocytes via activation of the β3-adrenergic receptor and ERK signaling pathway. Phytother Res 2021; 35:6281-6294. [PMID: 34523169 DOI: 10.1002/ptr.7276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Microbial fermentation of grape-skin extracts is found to synthesize anthocyanin oligomers (AO), which are more active than the monomeric anthocyanins that are effective for some metabolic diseases such as diabetes and obesity. This study investigated the functional role of AO in 3T3-L1 white adipocyte metabolism, with a focus on inducing browning. To achieve this, we determined the expressions of core genes and protein markers responsible for browning and lipid metabolism in response to AO treatment of 3T3-L1 white adipocytes. AO exposure significantly increases the expressions of beige-specific genes (Cidea, Cited1, Ppargc1α, Prdm16, Tbx1, Tmem26, and Ucp1) and brown-fat signature proteins (UCP1, PRDM16, and PGC-1α), and suppresses the expressions of lipogenic marker proteins while enhancing the protein levels of lipolysis in white adipocytes. The mechanistic study revealed stimulation of white fat browning via activation of the β3-AR/PKA/p38 axis and ERK/CREB signaling pathway subsequent to AO treatment. In conclusion, our current findings indicate the beneficial effects of AO for the treatment of obesity with interesting properties such as regulating the browning of adipocytes and increasing thermogenic activity. Although further research based on animal models or clinical trials remains, AO treatment can bring more insights into the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
19
|
Sierra-Cruz M, Miguéns-Gómez A, Grau-Bové C, Rodríguez-Gallego E, Blay M, Pinent M, Ardévol A, Terra X, Beltrán-Debón R. Grape-Seed Proanthocyanidin Extract Reverts Obesity-Related Metabolic Derangements in Aged Female Rats. Nutrients 2021; 13:nu13062059. [PMID: 34208508 PMCID: PMC8234113 DOI: 10.3390/nu13062059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and ageing are current issues of global concern. Adaptive homeostasis is compromised in the elderly, who are more likely to suffer age-related health issues, such as obesity, metabolic syndrome, and cardiovascular disease. The current worldwide prevalence of obesity and higher life expectancy call for new strategies for treating metabolic disorders. Grape-seed proanthocyanidin extract (GSPE) is reported to be effective in ameliorating these pathologies, especially in young animal models. In this study, we aimed to test the effectiveness of GSPE in modulating obesity-related pathologies in aged rats fed an obesogenic diet. To do so, 21-month-old rats were fed a high-fat/high-sucrose diet (cafeteria diet) for 11 weeks. Two time points for GSPE administration (500 mg/kg body weight), i.e., a 10-day preventive GSPE treatment prior to cafeteria diet intervention and a simultaneous GSPE treatment with the cafeteria diet, were assayed. Body weight, metabolic parameters, liver steatosis, and systemic inflammation were analysed. GSPE administered simultaneously with the cafeteria diet was effective in reducing body weight, total adiposity, and liver steatosis. However, the preventive treatment was effective in reducing only mesenteric adiposity in these obese, aged rats. Our results confirm that the simultaneous administration of GSPE improves metabolic disruptions caused by the cafeteria diet also in aged rats.
Collapse
|
20
|
Grohmann T, Litts C, Horgan G, Zhang X, Hoggard N, Russell W, de Roos B. Efficacy of Bilberry and Grape Seed Extract Supplement Interventions to Improve Glucose and Cholesterol Metabolism and Blood Pressure in Different Populations-A Systematic Review of the Literature. Nutrients 2021; 13:1692. [PMID: 34067538 PMCID: PMC8156535 DOI: 10.3390/nu13051692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Intervention with fruit extracts may lower glucose and lipid levels, as well as blood pressure. We reviewed the efficacy of bilberry and grape seed extracts to affect these outcomes across populations with varying health status, age and ethnicity, across intervention doses and durations, in 24 intervention studies with bilberry and blackcurrant (n = 4) and grape seed extract (n = 20). Bilberry and blackcurrant extract lowered average levels of glycated hemoglobin (HbA1c), at least in Chinese subjects, especially in those who were older, who were diagnosed with Type 2 Diabetes Mellitus (T2DM) and who were participating in longer-term studies. We also found good evidence that across studies and in subjects with hypercholesterolemia, T2DM or metabolic syndrome, intervention with bilberry and blackcurrant extract, and to some extent grape seed extract, significantly lowered total and low density lipoprotein (LDL) cholesterol levels after four weeks. Intervention with grape seed extract may reduce systolic and diastolic blood pressure in subjects with hypertension or metabolic syndrome. Differential responsiveness in cholesterol and blood pressure outcomes between stratified populations could not be explained by age, dose or study duration. In conclusion, bilberry and blackcurrant extract appears effective in lowering HbA1c and total and LDL cholesterol, whereas grape seed extract may lower total and LDL cholesterol, and blood pressure, in specific population groups.
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Caroline Litts
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
- Formerly Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Graham Horgan
- Biomathematics & Statistics Scotland, Aberdeen AB25 2ZD, UK;
| | - Xuguang Zhang
- By-Health Ltd. Co, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Luogang District, Guangzhou 510000, China;
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Wendy Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (T.G.); (C.L.); (N.H.); (W.R.)
| |
Collapse
|
21
|
Siegień J, Buchholz T, Popowski D, Granica S, Osińska E, Melzig MF, Czerwińska ME. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem 2021; 355:129414. [PMID: 33773461 DOI: 10.1016/j.foodchem.2021.129414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
A screening of inhibitory activity of α-amylase, as well as pancreatic lipase (PL), under the influence of aqueous and ethanolic preparations from 12 plant materials was performed. The most active aqueous extracts from the fruits of Chaenomeles japonica (CJ) and Hippophaë rhamnoides (HR) were selected for artificial gastrointestinal digestion (GID). The aim of this study was to evaluate the inhibitory effect of the fractions obtained after GID on PL and α-amylase activities using a fluorescence assay. The changes in the composition of crude extracts in GID aliquots were followed by analysis with HPLC-DAD-MSn method in order to indicate active constituents. The main constituents of CJ and HR extracts were procyanidins and isorhamnetin derivatives, respectively. The most abundant compounds of extracts were found in all compartments of the digestion model correlated with relevant lipase/α-amylase inhibitory activity. What is more, the gastric and intestinal fractions inhibited enzymatic activity by at least 40%.
Collapse
Affiliation(s)
- Justyna Siegień
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Tina Buchholz
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska street, 02-776 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland.
| |
Collapse
|
22
|
Xiao Y, Yang C, Xu H, Wu Q, Zhou Y, Zhou X, Miao J. Procyanidin B2 prevents dyslipidemia via modulation of gut microbiome and related metabolites in high-fat diet fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients 2020; 12:nu12113251. [PMID: 33114190 PMCID: PMC7690777 DOI: 10.3390/nu12113251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 ± 0.91 g) compared to VH treatment (21.19 ± 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue.
Collapse
|
24
|
Podsędek A, Zakłos-Szyda M, Polka D, Sosnowska D. Effects of Viburnum opulus fruit extracts on adipogenesis of 3T3-L1 cells and lipase activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:813-869. [PMID: 32536248 DOI: 10.1142/s0192415x2050041x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proanthocyanidins (PAs) are a group of polyphenols enriched in plant and human food. In recent decades, epidemiological studies have upheld the direct relationship between PA consumption and health benefits; therefore, studies on PAs have become a research hotspot. Although the oral bioavailability of PAs is quite low, pharmacokinetics data revealed that some small molecules and colonic microbial metabolites of PAs could be absorbed and exert their health beneficial effects. The pharmacological effects of PAs mainly include anti-oxidant, anticancer, anti-inflammation, antimicrobial, cardiovascular protection, neuroprotection, and metabolism-regulation behaviors. Moreover, current toxicological studies show that PAs have no observable toxicity to humans. This review summarizes the resources, extraction, structures, pharmacokinetics, pharmacology, and toxicology of PAs and discusses the limitations of current studies. Areas for further research are also proposed.
Collapse
Affiliation(s)
- Yan-Xi Zeng
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Sen Wang
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Lu Wei
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Ying-Yu Cui
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China.,Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China.,Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China.,Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
26
|
Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103861] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Tie F, Wang J, Liang Y, Zhu S, Wang Z, Li G, Wang H. Proanthocyanidins Ameliorated Deficits of Lipid Metabolism in Type 2 Diabetes Mellitus Via Inhibiting Adipogenesis and Improving Mitochondrial Function. Int J Mol Sci 2020; 21:E2029. [PMID: 32188147 PMCID: PMC7139784 DOI: 10.3390/ijms21062029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
Proanthocyanidins are the major active compounds extracted from Iris lactea Pall. var. Chinensis (Fisch.) Koidz (I. lactea). Proanthocyanidins exhibit a variety of pharmacological activities such as anti-oxidation, anti-inflammation, anti-tumor, and lowering blood lipids. However, the underlying mechanism of its regulating effect on lipid metabolism in diabetic conditions remains unclear. The present study investigated the effects of I. lactea-derived proanthocyanidins on lipid metabolism in mice of type 2 diabetes mellitus (T2DM). Results demonstrated a beneficial effect of total proanthocyanidins on dysregulated lipid metabolism and hepatic steatosis in high-fat-diet/streptozocin (STZ)-induced T2DM. To identify the mechanisms, six flavan-3-ols were isolated from proanthocyanidins of I. lacteal and their effects on adipogenesis and dexamethasone (Dex)-induced mitochondrial dysfunctions in 3T3-L1 adipocytes were determined. In vitro studies showed flavan-3-ols inhibited adipogenesis and restored mitochondrial function after Dex-induced insulin resistance, being suggested by increased mitochondrial membrane potential, intracellular ATP contents, mitochondrial mass and mitochondrial biogenesis, and reduced reactive oxygen species. Among the six flavan-3-ols, procyanidin B3 and procyanidin B1 exhibited the strongest effects. Our study suggests potential of proanthocyanidins as therapeutic target for diabetes.
Collapse
Affiliation(s)
- Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
- Institutes of Life Science, University of Chinese Academy of Science, Beijing 100049, China
| | - Jifei Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
- Institutes of Life Science, University of Chinese Academy of Science, Beijing 100049, China
| | - Yuexin Liang
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Shujun Zhu
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Zhenhua Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
| | - Gang Li
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
| |
Collapse
|
28
|
Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, Levy É, Marette A, Roy D, Desjardins Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep 2020; 10:2217. [PMID: 32041991 PMCID: PMC7010699 DOI: 10.1038/s41598-020-58863-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Blueberries are a rich source of polyphenols, widely studied for the prevention or attenuation of metabolic diseases. However, the health contribution and mechanisms of action of polyphenols depend on their type and structure. Here, we evaluated the effects of a wild blueberry polyphenolic extract (WBE) (Vaccinium angustifolium Aiton) on cardiometabolic parameters, gut microbiota composition and gut epithelium histology of high-fat high-sucrose (HFHS) diet-induced obese mice and determined which constitutive polyphenolic fractions (BPF) was responsible for the observed effects. To do so, the whole extract was separated in three fractions, F1) Anthocyanins and phenolic acids, F2) oligomeric proanthocyanidins (PACs), phenolic acids and flavonols (PACs degree of polymerization DP < 4), and F3) PACs polymers (PACs DP > 4) and supplied at their respective concentration in the whole extract. After 8 weeks, WBE reduced OGTT AUC by 18.3% compared to the HFHS treated rodents and the F3 fraction contributed the most to this effect. The anthocyanin rich F1 fraction did not reproduce this response. WBE and the BPF restored the colonic mucus layer. Particularly, the polymeric PACs-rich F3 fraction increased the mucin-secreting goblet cells number. WBE caused a significant 2-fold higher proportion of Adlercreutzia equolifaciens whereas oligomeric PACs-rich F2 fraction increased by 2.5-fold the proportion of Akkermansia muciniphila. This study reveals the key role of WBE PACs in modulating the gut microbiota and restoring colonic epithelial mucus layer, providing a suitable ecological niche for mucosa-associated symbiotic bacteria, which may be crucial in triggering health effects of blueberry polyphenols.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Laurence Daoust
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Lemia Boutkrabt
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Thibault Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada. .,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada.
| |
Collapse
|
29
|
Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Macho-González A, Garcimartín A, López-Oliva M, Celada P, Bastida S, Benedí J, Sánchez-Muniz F. Carob-fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Ginés I, Gil-Cardoso K, D’Addario C, Falconi A, Bellia F, Blay MT, Terra X, Ardévol A, Pinent M, Beltrán-Debón R. Long-Lasting Effects of GSPE on Ileal GLP-1R Gene Expression Are Associated with a Hypomethylation of the GLP-1R Promoter in Female Wistar Rats. Biomolecules 2019; 9:biom9120865. [PMID: 31842341 PMCID: PMC6995503 DOI: 10.3390/biom9120865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Flavonoids have been shown to modulate GLP-1 in obesity. GLP-1 induces some of its effects through the intestinal GLP-1 receptor (GLP-1R), though no data exist on how flavonoids affect this receptor. Here, we examine how a dose of grape seed proanthocyanidin extract (GSPE) with anti-obesity activity affects intestinal GLP-1R and analyze whether epigenetics play a role in the long-lasting effects of GSPE. We found that 10-day GSPE administration prior to the cafeteria diet upregulated GLP-1R mRNA in the ileum 17 weeks after the GSPE treatment. This was associated with a hypomethylation of the GLP-1R promoter near the region where the SP1 transcription factor binds. In the colon, the cafeteria diet upregulated GLP-1R without showing any GSPE effect. In conclusion, we have identified long-lasting GSPE effects on GLP-1R gene expression in the ileum that are partly mediated by hypomethylation at the gene promoter and may affect the SP1 binding factor.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.D.); (A.F.); (F.B.)
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.D.); (A.F.); (F.B.)
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.D.); (A.F.); (F.B.)
| | - M Teresa Blay
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| | - Ximena Terra
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
- Correspondence: ; Tel.: +34-977-55-9566; Fax: +34-977-55-8232
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (I.G.); (K.G.-C.); (M.T.B.); (X.T.); (A.A.); (R.B.-D.)
| |
Collapse
|
32
|
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients 2019; 11:E2435. [PMID: 31614852 PMCID: PMC6835351 DOI: 10.3390/nu11102435] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, proanthocyanidins (PACs) are attracting attention not only from the food industry but also from public health organizations due to their health benefits. It is well-known that grapes are a good source of PACs and for that reason, the industry is also focused on grape by-products identification and bioactivity evaluation. Grape seeds extract (GSPE) is a rich source of PACs, mainly composed of monomeric catechin and epicatechin, gallic acid and polymeric and oligomeric proanthocyanidins. Thus, this review encompasses the state-of-art structure and the most recent evidence about the impact of GSPE on chronic diseases, with a focus on oxidative stress, inflammation and metabolic syndrome (MeS)-related disorders such as obesity, diabetes and cardiovascular risk disease in vivo to offer new perspectives in the field that allow further research. Despite the controversial results, is undeniable that PACs from grape seeds are highly antioxidants, thus, the capacity of GSPE to improve oxidative stress might mediate the inflammation process and the progress of MeS-related pathologies. However, further well-design animal studies with standardized dosages and GSPE composition are necessary to shed light into the cause-effect relationship in a more accurate way to later allow a deeper study of the effect of GSPE in humans.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Eduardo Guerra-Hernández
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| |
Collapse
|
33
|
Ginés I, Gil-Cardoso K, Serrano J, Casanova-Marti À, Lobato M, Terra X, Blay MT, Ardévol A, Pinent M. Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes (Basel) 2019; 10:genes10080598. [PMID: 31398921 PMCID: PMC6723337 DOI: 10.3390/genes10080598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Àngela Casanova-Marti
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Lobato
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
34
|
Tao W, Zhang Y, Shen X, Cao Y, Shi J, Ye X, Chen S. Rethinking the Mechanism of the Health Benefits of Proanthocyanidins: Absorption, Metabolism, and Interaction with Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:971-985. [PMID: 33336996 DOI: 10.1111/1541-4337.12444] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Proanthocyanidins, as the oligomers or polymers of flavan-3-ol, are widely discovered in plants such as fruits, vegetables, cereals, nuts, and leaves, presenting a major part of dietary polyphenols. Although proanthocyanidins exert several types of bioactivities, such as antioxidant, antimicrobial, cardioprotective, and neuroprotective activity, their exact mechanisms remain unclear. Due to the complexity of the structure of proanthocyanidins, such as their various monomers, different linkages and isomers, investigation of their bioavailability and metabolism is limited, which further hinders the explanation of their bioactivities. Since the large molecular weight and degree of polymerization limit the bioavailability of proanthocyanidins, the major effective site of proanthocyanidins is proposed to be in the gut. Many studies have revealed the effects of proanthocyanidins from different sources on changing the composition of gut microbiota based on in vitro and in vivo models and the bioactivities of their metabolites. However, the metabolic routes of proanthocyanidins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of proanthocyanidins ranging from monomers to polymers, as well as the mutual interactions between proanthocyanidins and gut microbiota, in order to better understand how proanthocyanidins exert their health-promoting functions.
Collapse
Affiliation(s)
- Wenyang Tao
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Yu Zhang
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Xuemin Shen
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Xingqian Ye
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Shiguo Chen
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| |
Collapse
|
35
|
Parada J, Pérez-Correa JR, Pérez-Jiménez J. Design of low glycemic response foods using polyphenols from seaweed. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Ginés I, Gil-Cardoso K, Terra X, Blay MT, Pérez-Vendrell AM, Pinent M, Ardévol A. Grape Seed Proanthocyanidins Target the Enteroendocrine System in Cafeteria-Diet-Fed Rats. Mol Nutr Food Res 2019; 63:e1800912. [PMID: 30980498 DOI: 10.1002/mnfr.201800912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/01/2019] [Indexed: 12/16/2022]
Abstract
SCOPE The effects on the enteroendocrine system of three different grape seed proanthocyanidin extract (GSPE) treatments are analyzed in rats on a cafeteria diet for 17 weeks. METHODS AND RESULTS GSPE is administered in a corrective manner (15 last days of the cafeteria diet) at two doses, 100 and 500 mg GSPE per kg bw. A third, longer treatment in which GSPE (500 mg kg-1 bw) is administered daily every other week during the 17 weeks of the cafeteria diet is also tested. Most GSPE treatments lead to ghrelin accumulation in the stomach, limited CCK secretion in the duodenum, and increased GLP-1 and PYY mRNA in colon. GSPE also increases cecal hypertrophy and reduces butyrate content. When the treatment is administered daily every other week during 17 weeks, there is also an increase in colon size. These effects are accompanied by a reduced food intake at the end of the experiment when GSPE is administered at 500 mg GSPE kg-1 during the last 15 days, but not on the other treatments, despite an observed reduction in body weight in the longer treatment. CONCLUSION GSPE modulates the enteroendocrine system in models in which it also reduces food intake or body weight.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| | - MTeresa Blay
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| | | | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, 43007, Tarragona, Spain
| |
Collapse
|
37
|
Wisnuwardani RW, De Henauw S, Forsner M, Gottrand F, Huybrechts I, Knaze V, Kersting M, Donne CL, Manios Y, Marcos A, Molnár D, Rothwell JA, Scalbert A, Sjöström M, Widhalm K, Moreno LA, Michels N. Polyphenol intake and metabolic syndrome risk in European adolescents: the HELENA study. Eur J Nutr 2019; 59:801-812. [PMID: 30903362 DOI: 10.1007/s00394-019-01946-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE The role of polyphenol intake during adolescence to prevent metabolic syndrome (MetS) is little explored. This study aimed to evaluate the association between intake of total polyphenols, polyphenol classes and the 10 most consumed individual polyphenols with MetS risk in European adolescents. METHODS Of the cross-sectional HELENA study, 657 adolescents (54% girls; 14.8% overweight; 12.5-17.5 year) had a fasting blood sample and polyphenol intake data from two non-consecutive 24-h recalls matched with the Phenol-Explorer database. MetS was defined via the pediatric American Heart Association definition. Multilevel linear regressions examined the associations of polyphenol quartiles with MetS components, while logistic regression examined the associations with MetS risk. RESULTS After adjusting for all potential confounders (socio-demographics and nine nutrients), total polyphenol intake, polyphenol classes and individual polyphenols were not associated with MetS risk. From all MetS components, only BMI z-score was modestly inversely associated with total polyphenol intake. Further sub analyses on polyphenol classes revealed that flavonoid intake was significantly associated with higher diastolic blood pressure and lower BMI, and phenolic acid intake was associated with higher low-density cholesterol. For individual polyphenols, the above BMI findings were often confirmed (not independent from dietary intake) and a few associations were found with insulin resistance. CONCLUSION Higher intakes of total polyphenols and flavonoids were inversely associated with BMI. No consistent associations were found for other MetS components.
Collapse
Affiliation(s)
- Ratih Wirapuspita Wisnuwardani
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C.Heymanslaan 10-4K3, 9000, Ghent, Belgium. .,Department of Public Health Nutrition, Faculty of Public Health, Mulawarman University, Samarinda, East Kalimantan, Indonesia.
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C.Heymanslaan 10-4K3, 9000, Ghent, Belgium
| | - Maria Forsner
- Department of Nursing, Umeå University, Umeå, Sweden.,School of Education, Health and Social Sciences, Dalarna University, Falun, Sweden
| | | | - Inge Huybrechts
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C.Heymanslaan 10-4K3, 9000, Ghent, Belgium.,International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Viktoria Knaze
- International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Mathilde Kersting
- Research Department of Child Nutrition, Pediatric University Clinic Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Cinzia Le Donne
- CREA Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178, Rome, Italy
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Madrid, Spain
| | - Dénes Molnár
- Department of Pediatrics, University of Pécs, Pecs, Hungary
| | - Joseph A Rothwell
- International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Augustin Scalbert
- International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Michael Sjöström
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kurt Widhalm
- Department of Pediatric, Division of Clinical Nutrition, Medical University of Vienna, Vienna, Austria
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Edificio del SAI, C/Pedro Cerbuna s/n, 50009, Zaragoza, Spain
| | - Nathalie Michels
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C.Heymanslaan 10-4K3, 9000, Ghent, Belgium
| |
Collapse
|
38
|
Shi Y, Jia M, Xu L, Fang Z, Wu W, Zhang Q, Chung P, Lin Y, Wang S, Zhang Y. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother Res 2019; 33:1222-1232. [PMID: 30848548 DOI: 10.1002/ptr.6318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the possible signaling pathways underlying the regulation of grape seed proanthocyanidins extracts (GSPE) on lipid metabolism. One hundred male C57BL/6 mice were divided into four groups: control group (normal diet), GSPE group (normal diet + GSPE), high-fat diet group (HFD), and high-fat diet plus GSPE (200 mg/kg/day) group (HFD + GSPE). Mice received the diets for 180 days. Body weight and serum lipid levels were measured. Autophagic flux characteristics, such as accumulation of lipids, mitochondria, and autophagosomes in the liver, were detected using transmission electron microscopy. Expression profile of microRNAs (miRNAs) in the liver was determined using RNA microarray and quantitative real time polymerase chain reaction (qRt-PCR). GSPE significantly decreased the weight gain, serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol but increased high-density lipoprotein cholesterol in the HFD mice. Autophagic flux was significantly increased by HFD but decreased by GSPE treatment. GSPE significantly attenuated HFD-induced miR-96 upregulation, which in turn reduced the expressions of miR-96 downstream molecules, FOXO1, mTOR, p-mTOR, and LC3A/B. These results suggested that the miR-96 is involved in the protective effect of GSPE against HFD-induced dyslipidemia. Possible mechanisms might be through mTOR and FOXO1, which facilitate autophagic flux for clearance of lipid accumulation.
Collapse
Affiliation(s)
- Yawei Shi
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghan Jia
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Lixia Xu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeng Fang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peter Chung
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ying Lin
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Macho-González A, Garcimartín A, López-Oliva ME, Ruiz-Roso B, Martín de la Torre I, Bastida S, Benedí J, Sánchez-Muniz FJ. Can Carob-Fruit-Extract-Enriched Meat Improve the Lipoprotein Profile, VLDL-Oxidation, and LDL Receptor Levels Induced by an Atherogenic Diet in STZ-NAD-Diabetic Rats? Nutrients 2019; 11:nu11020332. [PMID: 30717491 PMCID: PMC6413123 DOI: 10.3390/nu11020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Carob fruit extract (CFE) has shown remarkable in vitro antioxidant properties and reduces postprandial hyperglycemia and hyperlipidemia in healthy animals. Development of functional meat products that contain bioactive components are presented as a great nutritional strategy. Until now, the effect of the consumption of restructured meat enriched with CFE in a murine model of diabetes has not been investigated. The objective of this study was to evaluate the effect on glycemia, lipemia, lipoprotein profile, Ldlr, arylesterase (AE), and very low-density lipoproteins (VLDL) and liver oxidation in streptozotocin-nicotinamide (STZ-NAD) growing Wistar diabetic rats fed restructured meat in the frame of a high cholesterol/high saturated-fat diet. In the present study, three groups (D, ED and DE) were fed cholesterol-enriched (1.4% cholesterol and 0.2% cholic acid) and high saturated-fat diets (50% of total energy from fats and 20.4% from saturated fatty acids). Rats were subjected to a STZ-NAD administration at the 3rd week. Group D did not receive CFE, while ED and DE rat groups received CFE before and after the diabetic induction, respectively. After eight weeks, D rats showed hyperglycemia and hypercholesterolemia, an increased amount cholesterol-enriched VLDL (β-VLDL), IDL and LDL particles and triglyceride-enriched HDL. ED and DE partially blocked the hypercholesterolemic induction with respect to D group (p < 0.001) and improved glycemia, cholesterol levels, lipoprotein profile, Ldlr, plasma AE activity and liver oxidation (p < 0.001). Fecal fat, moisture and excretion were higher while dietary digestibility was lower in ED and DE vs. D counterparts (p < 0.0014). In conclusion, CFE-enriched meat shows, for the first time, hypoglycemic and hypolipidemic effects in STZ-NAD animals fed high cholesterol/high saturated-fat diets. Likewise, it manages to reverse possible diabetes lipoprotein alterations if CFE-enriched meat is consumed before pathology development or improves said modifications if Type 2 Diabetes Mellitus is already established.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Baltasar Ruiz-Roso
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Isabel Martín de la Torre
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
40
|
Oxidative Stress and Nutraceuticals in the Modulation of the Immune Function: Current Knowledge in Animals of Veterinary Interest. Antioxidants (Basel) 2019; 8:antiox8010028. [PMID: 30669304 PMCID: PMC6356544 DOI: 10.3390/antiox8010028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In the veterinary sector, many papers deal with the relationships between inflammation and oxidative stress. However, few studies investigate the mechanisms of action of oxidised molecules in the regulation of immune cells. Thus, authors often assume that these events, sometime leading to oxidative stress, are conserved among species. The aim of this review is to draw the state-of-the-art of the current knowledge about the role of oxidised molecules and dietary antioxidant compounds in the regulation of the immune cell functions and suggest some perspectives for future investigations in animals of veterinary interest.
Collapse
|
41
|
Therapeutic potential of rice-derived polyphenols on obesity-related oxidative stress and inflammation. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
In vitro evaluation of the anti-digestion and antioxidant effects of grape seed procyanidins according to their degrees of polymerization. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
André DM, Horimoto CM, Calixto MC, Alexandre EC, Antunes E. Epigallocatechin-3-gallate protects against the exacerbation of allergic eosinophilic inflammation associated with obesity in mice. Int Immunopharmacol 2018; 62:212-219. [PMID: 30015241 DOI: 10.1016/j.intimp.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
Obesity is linked to worse asthma symptoms. Epigallocatechin-3-gallate (EGCG) reduces airway inflammation, but no study investigated the effects of EGCG on obesity-associated asthma. We aimed here to evaluate the effects of EGCG on allergen-induced airway inflammation in high-fat diet-fed mice. Male C57Bl/6 mice maintained on either standard-chow or high-fat diet for 12 weeks were treated or not with EGCG (10 mg/kg/day, gavage, two weeks). Animals were intranasally challenged with ovalbumin (OVA). In lung tissue and bronchoalveolar lavage fluid (BALF), cell counting and markers of inflammation and oxidative stress were evaluated. High-fat diet-fed mice exhibited significantly higher body weight and epididymal fat mass compared with lean group. EGCG treatment reduced by 20% the epididymal fat mass in obese mice (P < 0.05). The OVA-induced increases of total cells and eosinophils in lung tissue of obese mice were significantly reduced EGCG treatment. The increased levels of TNF-α, IL-4, IL-5 and eotaxin in BALF of obese mice were normalized by EGCG. Likewise, the enhanced expression of inducible nitric oxide synthase (iNOS) and nitric oxide metabolite (NOx) levels in obese mice were normalized by EGCG. Reactive‑oxygen species (ROS) and superoxide dismutase (SOD) levels were elevated and reduced, respectively, in lung tissue of obese mice, both of which were restored by EGCG. In lean mice, EGCG had no significant effect in evaluated parameter (body measures, and inflammatory and oxidative markers). EGCG turns to normal the levels of inflammatory and oxidative stress markers in lungs of obese mice, suggesting it could be an option to attenuate obesity-related asthma.
Collapse
Affiliation(s)
- Diana Majolli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cristina Maki Horimoto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
44
|
Brannan RG, Peters TE, Black KJ, Kukor BJ. Valorization of underutilized North American pawpaw (Asimina triloba): investigation as a lipid oxidation inhibitor in turkey homogenate model system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2210-2214. [PMID: 28963764 DOI: 10.1002/jsfa.8706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The objective of this study was to characterize the ability of extracts from nine varieties of pawpaw pulp standardized to the phenolics level of 0.1% grape seed extract (GSE) on inhibition of the formation of thiobarbituric reactive substances (TBARS) in a turkey model system. The antioxidant activity of the extracts was also determined using four common assays. RESULTS Over the 240 min sampling time, the standardized pawpaw extracts from all nine varieties were as effective as GSE in inhibiting TBARS formation in turkey muscle homogenate compared to the untreated control. Extracts from all pawpaw varieties and GSE began to inhibit TBARS formation at 60 min of incubation, and by 240 min TBARS were reduced from 35 μmol malondialdehyde kg-1 tissue in the homogenate to which no antioxidant was added to 4-18 μmol malondialdehyde kg-1 tissue in the antioxidant-enriched extracts. There does not appear to be a clear relationship between inhibition of TBARS and any of the antioxidant capacity measurements (ORAC, DPPH inhibition, reducing potential as measured by FRAP assay, or pyrogallol red bleaching). CONCLUSION The results of this research indicate that there is potential to add value to pawpaw as a functional food source of natural antioxidants, particularly in meat products. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Robert G Brannan
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, USA
| | - Trisha E Peters
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, USA
| | - Kathleen J Black
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, USA
| | - Benjamin J Kukor
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, USA
| |
Collapse
|
45
|
Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018. [PMID: 29518911 PMCID: PMC5872733 DOI: 10.3390/nu10030315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is highly associated with the pathologies included in the concept of the Metabolic Syndrome. Grape-seed proanthocyanins (GSPE) have showed very positive effects against all these metabolic disruptions; however, there is, as yet, no consensus about their effectiveness against an obesogenic challenge, such as a cafeteria diet. We determined the effectiveness of a dose of 500 mg GSPE/kg b.w. (body weight) against the obesogenic effects of a 17-week cafeteria diet, administered as a sub-chronic treatment, 10–15 days before, intermittently and at the end of the diet, in Wistar rats. Body weight, adiposity, indirect calorimetry and plasma parameters were analyzed. GSPE pre-treatment showed a long-lasting effect on body weight and adiposity that was maintained for seven weeks after the last dose. A corrective treatment was administered for the last two weeks of the cafeteria diet intervention; however, it did not effectively correct any of the parameters assessed. The most effective treatment was an intermittent GSPE dosage, administered every second week during the cafeteria diet. This limited body weight gain, adiposity and most lipotoxic effects. Our results support the administration of this GSPE dose, keeping an intermittent interval between dosages longer than every second week, to improve obesogenic disruptions produced by a cafeteria diet.
Collapse
|
46
|
Schell J, Betts NM, Foster M, Scofield RH, Basu A. Cranberries improve postprandial glucose excursions in type 2 diabetes. Food Funct 2018; 8:3083-3090. [PMID: 28748974 DOI: 10.1039/c7fo00900c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent research supports a favorable role of cranberries on cardiometabolic health. Postprandial metabolism, especially hyperglycemia, has been shown to be an independent cardiovascular risk and few clinical studies have reported the role of berries in improving postprandial dysmetabolism. We investigated the postprandial effects of dried cranberries following a high-fat breakfast challenge in obese participants with type 2 diabetes (T2DM), in a randomized crossover trial. Blood draw and vascular measurements were conducted at fasting, 1, 2 and 4 hours (h), following the consumption of a fast-food style high-fat breakfast (70 g fat, 974 kcal) with or without cranberries (40 g). Analyses of our data (n = 25; BMI (kg m-2) (mean ± s.d.) = 39.5 ± 6.5; age (years) = 56 ± 6) revealed that postprandial increases in glucose were significantly lower in the cranberry vs. control at 2 & 4 h (p < 0.05). No significant differences were noted in insulin, insulin resistance evaluated by homeostasis model assessment, lipid profiles and blood pressure between the cranberry and control groups. Among the biomarkers of inflammation and oxidation, postprandial serum interleukin-18 and malondialdehyde were significantly lower at 4 h, and serum total nitrite was higher at 2 h in the cranberry vs. control group (all p < 0.05). No effects were noted on C-reactive protein or interlukin-6. Overall, dietary cranberries had notable effects in improving high-fat breakfast induced postprandial glucose and selected biomarkers of inflammation and oxidation in participants with T2DM. These findings provide evidence that adding whole cranberries to a high-fat meal may improve postprandial blood glucose management and warrant further investigation.
Collapse
Affiliation(s)
- Jace Schell
- Department of Nutritional Sciences, College of Human Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | | | |
Collapse
|
47
|
Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 2018; 9:1672-1682. [DOI: 10.1039/c7fo02028g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An 8-day treatment of GSPE changed the microbiota composition, and several microbiota taxa correlated with metabolic parameters and enterohormones.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Kevin J. Portune
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - Yolanda Sanz
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - M. Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| |
Collapse
|
48
|
Caimari A, Mariné-Casadó R, Boqué N, Crescenti A, Arola L, Del Bas JM. Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci Rep 2017; 7:12573. [PMID: 28974704 PMCID: PMC5626783 DOI: 10.1038/s41598-017-12597-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Previously, we demonstrated that a grape seed procyanidin extract (GSPE) supplementation in pregnant and lactating rats exerted both healthy and deleterious programming effects on their offspring. Here, we evaluated whether the administration of GSPE during lactation (100 mg.kg−1.day−1) in rats elicited beneficial effects in their normoweight (STD-GSPE group) and cafeteria-fed obese (CAF-GSPE group) adult male offspring. STD-GSPE and CAF-GSPE offspring showed increased energy expenditure and circulating total and high-molecular-weight adiponectin. However, these rats showed hyperinsulinemia, decreased insulin sensitivity, increased insulin resistance, down-regulated mRNA levels of adiponectin receptors in inguinal white adipose tissue (Adipor1 and Adipor2) and soleus muscle (Adipor2), and decreased levels of phosphorylated AMPK, the downstream post-receptor target of adiponectin, in the soleus muscle. These deleterious effects could be related to an increased lipid transfer to the pups through the milk, since GSPE-supplemented dams displayed decreased fat content and increased expression of lipogenic genes in their mammary glands, in addition to increased circulating total adiponectin and non-esterified free fatty acids. In conclusion, maternal intake of GSPE during lactation induced insulin resistance and an adiponectin resistance-like phenotype in their normoweight and obese offspring. These findings raise concerns about the possibility of using GSPE as a nutraceutical supplement during this period.
Collapse
Affiliation(s)
- Antoni Caimari
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain. .,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain.
| | - Roger Mariné-Casadó
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Noemí Boqué
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Anna Crescenti
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
49
|
Zhu Y, Shi Z, Yao Y, Hao Y, Ren G. Antioxidant and anti-cancer activities of proanthocyanidins-rich extracts from three varieties of sorghum (Sorghum bicolor) bran. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1351526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yingying Zhu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Haidian, People’s Republic of China
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhenxing Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Haidian, People’s Republic of China
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Haidian, People’s Republic of China
| | - Yuqiong Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Haidian, People’s Republic of China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Haidian, People’s Republic of China
| |
Collapse
|
50
|
Liu W, Zhao S, Wang J, Shi J, Sun Y, Wang W, Ning G, Hong J, Liu R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol Nutr Food Res 2017; 61. [PMID: 28500724 DOI: 10.1002/mnfr.201601082] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Obesity and associated metabolic complications is a worldwide public health issue. Gut microbiota have been recently linked to obesity and its related inflammation. In this study, we have explored the anti-inflammatory effect of grape seed proanthocyanindin extract (GSPE) in the high-fat diet (HFD)-induced obesity and identified the contribution of the gut microbiota to GSPE effects on metabolism. METHODS AND RESULTS Mice were fed a normal diet and a high-fat diet with or without GSPE (300 mg/kg body weight/day) by oral gavage for 7 weeks. Supplementation with GSPE significantly decreased plasma levels of inflammatory factors such as TNF-α, IL-6 and MCP-1, companied with ameliorated macrophage infiltration in epidydimal fat and liver tissues. Furthermore, GSPE also reduced epidydimal fat mass and improved insulin sensitivity. 16S rDNA analyses revealed that GSPE supplementation modulated the gut microbiota composition and certain bacteria including Clostridium XIVa, Roseburia and Prevotella. More importantly, depleting gut microbiota by antibiotics treatment abolished the beneficial effects of GSPE on inflammation and adiposity. CONCLUSION Our study identifies the novel links between gut microbiota alterations and metabolic benefits by GSPE supplementation, providing possibilities for the prevention and treatment of metabolic disorders by targeting gut microbiota through a potential prebiotic agent GSPE.
Collapse
Affiliation(s)
- Wen Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Zhao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Shi
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingkai Sun
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jie Hong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|