1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Wan Q, Liu X, Xu J, Zhao R, Yang S, Feng J, Cao Z, Li J, He X, Chen H, Ye J, Chen H, Chen Y. Body Composition and Progression of Biopsy-Proven Non-Alcoholic Fatty Liver Disease in Patients With Obesity. J Cachexia Sarcopenia Muscle 2024. [PMID: 39389917 DOI: 10.1002/jcsm.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Obesity is a significant risk factor for the progression of non-alcoholic fatty liver disease (NAFLD). However, a convenient and efficacious non-invasive test for monitoring NAFLD progression in patients with obesity is currently lacking. This study aims to investigate the associations between CT-based body composition and the progression of biopsy-proven NAFLD in patients with obesity. METHODS Liver biopsy was conducted in patients with obesity, and the progression of NAFLD was evaluated by the NAFLD activity score (NAS). Body composition was assessed through abdominal computed tomography (CT) scans. RESULTS A total of 602 patients with an average age of 31.65 (±9.33) years old were included, comprising 217 male patients and 385 female patients. The wall skeletal muscle index (SMI), total SMI, and visceral fat index (VFI) were positively correlated with NAS in both male and female patients. Multivariate regression analysis demonstrated significant associations between high liver steatosis and wall SMI (HR: 1.60, 95% CI: 1.12 to 2.30), total SMI (HR: 1.50, 95% CI: 1.02 to 2.08), VSI (HR: 2.16, 95% CI: 1.48 to 3.14), visceral fat to muscle ratio (HR: 1.51, 95% CI: 1.05 to 2.18), and visceral to subcutaneous fat ratio (HR: 1.51, 95% CI: 1.07 to 2.12). Non-alcoholic steatohepatitis (NASH) was significantly associated with wall SMI (HR: 1.52, 95% CI: 1.06 to 2.19) and VSI (HR: 1.50, 95% CI: 1.03 to 2.17). Liver fibrosis ≥ F2 was significantly associated with psoas muscle index (HR: 0.64, 95% CI: 0.44 to 0.93) and psoas skeletal muscle density (HR: 0.61, 95% CI: 0.41 to 0.89). CONCLUSIONS Our study suggested that certain CT-based body composition indicators, notably high VFI, were significantly associated with the progression of NAFLD in patients with obesity. Great attentions and timely managements should be given to these patients with body composition characteristics associated with the risk of NAFLD progression.
Collapse
Affiliation(s)
- Qianyi Wan
- Department of General Surgery, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jinghao Xu
- Department of General Surgery, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Rui Zhao
- Department of General Surgery, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Shiqin Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jianrong Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhan Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingru Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaopeng He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Haiou Chen
- West China School of Medicine, Sichuan University, Chengdu, China
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jinbao Ye
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of General Surgery, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lambert JO, Beck A, Showell NN. Lifestyle Interventions in Pediatric Primary Care. Pediatr Clin North Am 2024; 71:943-955. [PMID: 39343503 DOI: 10.1016/j.pcl.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pediatric clinicians should offer guidance on age-appropriate nutrition, physical activity, sleep and screen time for families of children and adolescents with obesity. They should build rapport with families, ask permission before discussing obesity-related health concerns, use preferred terminology, and recommend whole family change. Using principles of shared decision-making, pediatric clinicians and families should set individualized goals for lifestyle changes, prioritizing reducing sugar-sweetened beverage intake, increasing physical activity, and reducing screen time. Families of children and adolescents with obesity should be connected to the highest level of support accessible to and desired by the family, including intensive health behavior and lifestyle treatment programs.
Collapse
Affiliation(s)
- Jennifer O Lambert
- Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 2088, Baltimore, MD 21287, USA
| | - Amy Beck
- University of California San Francisco, 550 16th Street, San Francisco, CA 94158, USA
| | - Nakiya N Showell
- Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 2023, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Gentzel M. Obesity, Metabolic Syndrome, and Sugar-Sweetened Beverages (SSBs) in America: A Novel Bioethical Argument for a Radical Public Health Proposal. JOURNAL OF BIOETHICAL INQUIRY 2024:10.1007/s11673-024-10369-5. [PMID: 39259474 DOI: 10.1007/s11673-024-10369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/08/2024] [Indexed: 09/13/2024]
Abstract
The prevalence of obesity, metabolic syndrome, and the associated long-term chronic diseases (cardiovascular disease, type II diabetes, cancer, Alzheimer's disease, depression) have reached epidemic levels in the United States and Western nations. In response to this public health calamity, the author of this paper presents and defends a novel bioethical argument: the consistency argument for outlawing SSBs (sugar-sweetened beverages) for child consumption (the "consistency argument"). This argument's radical conclusion states that the government is justified in outlawing SSBs consumption for child consumption. The reasoning is as follows: if one accepts that the physical harm caused by chronic alcohol consumption justifies the government outlawing alcoholic beverages for child consumption, and there is strong evidence that comparable physical harms result from chronic SSBs consumption, then, mutatis mutandis, the government is also justified in outlawing child consumption of SSBs. To support this argument, the author provides extensive evidence based on epidemiological observational studies, interventional studies, controlled trials, large meta-analyses, and the pathophysiology and biological mechanisms of action behind SSBs and chronic disease. Chronic consumption of large doses of SSBs and alcoholic beverages both drive the same diseases: obesity and insulin resistance, cardiovascular disease, hypertension, and cancer. Chronic SSB consumption carries the additional risk of Alzheimer's disease, dementia, and depression. The author concludes this paper by considering prominent objections to the consistency argument, and then demonstrating that each objection is unsound.
Collapse
|
5
|
Faienza MF, Cognetti E, Farella I, Antonioli A, Tini S, Antoniotti V, Prodam F. Dietary fructose: from uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39157959 DOI: 10.1080/10408398.2024.2392150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fructose consumption in pediatric subjects is rising, as the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Despite increasing evidence supporting the detrimental effects of fructose in the development of Metabolic Syndrome (MetS) and its related comorbidities, the association between fructose intake and liver disease remains unclear, mainly in youths. The current narrative review aims to illustrate the correlation between fructose metabolism and liver functions besides its impact on obesity and MASLD in pediatrics. Fructose metabolism is involved in the liver through the classical lipogenic pathway via de novo lipogenesis (DNL) or in the alternative pathway via uric acid accumulation. Hyperuricemia is one of the main features of MALSD patients, underlining how uric acid is growing interest as a new marker of disease. Observational and interventional studies conducted in children and adolescents, who consumed large amounts of fructose and glucose in their diet, were included. Most of these studies emphasized the association between high fructose intake and weight gain, dyslipidemia, insulin resistance, and MASLD/MASH, even in normal-weight children. Conversely, reducing fructose intake ameliorates liver fat accumulation, lipid profile, and weight. In conclusion, fructose seems a potent inducer of both insulin resistance and hepatic fat accumulation.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Cognetti
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Precision and Regenerative Medicine and Ionian Area, Clinica Medica "A. Murri", University of Bari "Aldo Moro", Bari, Italy
| | | | - Sabrina Tini
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | | | - Flavia Prodam
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Schenker RB, Machle CJ, Schmidt KA, Allayee H, Kohli R, Goran MI. Associations of dietary sugars with liver stiffness in Latino adolescents with obesity differ on PNPLA3 and liver disease severity. Liver Int 2024; 44:1768-1774. [PMID: 38634702 PMCID: PMC11251846 DOI: 10.1111/liv.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common paediatric liver disease. Latinos have high MASLD risk due to 50% prevalence of GG genotype of PNPLA3. Our primary aim was to evaluate associations between dietary carbohydrates/sugars and liver stiffness in Latino adolescents with obesity. Our secondary aim was to examine effect modification by (a) PNPLA3 genotype or (b) liver disease severity. Data were obtained from 114 Latino adolescents with obesity involved in two prior studies. No associations were seen between dietary carbohydrates/sugars and liver stiffness in the group as a whole. In subjects with GG genotype of PNPLA3, total sugar, fructose, sucrose, and glucose were associated with liver stiffness. Positive relationships between carbohydrate, total sugar, and sucrose and liver stiffness were stronger in those with MASLD and fibrosis compared to those with healthy livers and MASLD without fibrosis.
Collapse
Affiliation(s)
- Rachel B Schenker
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Christopher J Machle
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Kelsey A Schmidt
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, California, USA
| | - Rohit Kohli
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Michael I Goran
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, Porta G, Lee WS, Lefere S, Turan S, Alisi A, Weiss R, Faienza MF, Ashraf A, Sundaram SS, Srivastava A, De Bruyne R, Kang Y, Bacopoulou F, Zhou YH, Darma A, Lupsor-Platon M, Hamaguchi M, Misra A, Méndez-Sánchez N, Ng NBH, Marcus C, Staiano AE, Waheed N, Alqahtani SA, Giannini C, Ocama P, Nguyen MH, Arias-Loste MT, Ahmed MR, Sebastiani G, Poovorawan Y, Al Mahtab M, Pericàs JM, Reverbel da Silveira T, Hegyi P, Azaz A, Isa HM, Lertudomphonwanit C, Farrag MI, Nugud AAA, Du HW, Qi KM, Mouane N, Cheng XR, Al Lawati T, Fagundes EDT, Ghazinyan H, Hadjipanayis A, Fan JG, Gimiga N, Kamal NM, Ștefănescu G, Hong L, Diaconescu S, Li M, George J, Zheng MH. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. MED 2024; 5:797-815.e2. [PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).
Collapse
Affiliation(s)
- Le Zhang
- Department of Paediatrics, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mortada El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, Sau Paulo, Brazil
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sander Lefere
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Serap Turan
- Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center and the Bruce Rappaport School of Medicine, Technion, Haifa, Israel
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ambika Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shikha S Sundaram
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Pediatric Liver Center, Children's Hospital Colorado, University of Colorado School of Medicine and Anschutz Medical Campus, Aurora, CO, USA
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation, New Delhi, India
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nicholas Beng Hui Ng
- Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Saleh A Alqahtani
- Organ Transplantation Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maria Teresa Arias-Loste
- Hospital Universitario Marqués de Valdecilla, Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Rabea Ahmed
- Department of Pediatrics, Jahra Hospital, Kuwait and Department of Pediatrics, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Division of Infectious Diseases, McGill University Health Centre, Montreal, QC, Canada
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hasan M Isa
- Pediatric Department, Salmaniya Medical Complex and Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mona Issa Farrag
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abd Alwahab Nugud
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hong-Wei Du
- Department of Paediatrics, First Hospital of Jilin University, Changchun, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nezha Mouane
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Academic Children's Hospital Ibn Sina, Mohammed V University, Rabat, Morocco
| | - Xin-Ran Cheng
- Department of Paediatric Genetics, Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Eleonora D T Fagundes
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hasmik Ghazinyan
- Department of Hepatology, Nikomed Medical Center, Yerevan, Armenia
| | | | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Nicoleta Gimiga
- Clinical Department of Pediatric Gastroenterology, "St. Mary" Emergency Children's Hospital, Iași, Romania; Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Naglaa M Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt; Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Gabriela Ștefănescu
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University "Titu Maiorescu", Bucuresti, Romania
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
8
|
Golabi P, Owrangi S, Younossi ZM. Global perspective on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis - prevalence, clinical impact, economic implications and management strategies. Aliment Pharmacol Ther 2024; 59 Suppl 1:S1-S9. [PMID: 38813821 DOI: 10.1111/apt.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The metabolically-based liver disease, nonalcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease currently affecting 38% of the world's adult population. NAFLD can be progressive leading to nonalcoholic steatohepatitis (NASH), liver transplantation, liver cancer, liver-related mortality and is associated with decreased quality of life from impaired physical functioning and increased healthcare resource utilisation. However, screening for NAFLD is cost-prohibitive but screening for high risk NAFLD (NAFLD with F2 fibrosis or greater) is imperative. AIM To review the global perspective on NAFLD and NASH METHODS: We retrieved articles from PubMed using search terms NAFLD, prevalence, clinical burden, economic burden and management strategies. RESULTS NAFLD/NASH shows geographical variation across the globe. Highest prevalence rates are in South America and the Middle East and North Africa; lowest prevalence is in Africa. NAFLD's economic impact is from direct and indirect medical costs and loss in worker productivity. It is projected that, over the next two decades, the total cost of NAFLD and diabetes will exceed $1.5 trillion (USD). Risk stratification algorithms identifying "high risk NAFLD" were made following non-invasive tests for NAFLD identification and fibrosis development. These algorithms should be used in primary care and endocrinology settings so timely and appropriate interventions (lifestyle and cardiometabolic risk factor management) can be initiated. CONCLUSIONS To reduce the burgeoning burden of NAFLD/NASH, management should include risk stratification algorithms for accurate identification of patients, linkage to appropriate settings, and initiation of effective treatment regimens.
Collapse
Affiliation(s)
- Pegah Golabi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| | - Soroor Owrangi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
9
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
10
|
Zhu AQ, Luo N, Zhou XT, Yuan M, Zhang CM, Pan TL, Li KP. Transcriptomic insights into the lipotoxicity of high-fat high-fructose diet in rat and mouse. J Nutr Biochem 2024; 128:109626. [PMID: 38527560 DOI: 10.1016/j.jnutbio.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Along with the increasing prevalence of obesity worldwide, the deleterious effects of high-calorie diet are gradually recognized through more and more epidemiological studies. However, the concealed and chronic causality whitewashes its unhealthy character. Given an ingenious mechanism orchestrates the metabolic adaptation to high-fat high-fructose (HFF) diet and connive its lipotoxicity, in this study, an experimental rat/mouse model of obesity was induced and a comparative transcriptomic analysis was performed to probe the mystery. Our results demonstrated that HFF diet consumption altered the transcriptomic pattern as well as different high-calorie diet fed rat/mouse manifested distinct hepatic transcriptome. Validation with RT-qPCR and Western blotting confirmed that SREBP1-FASN involved in de novo lipogenesis partly mediated metabolic self-adaption. Moreover, hepatic ACSL1-CPT1A-CPT2 pathway involved in fatty acids β-oxidation, played a key role in the metabolic adaption to HFF. Collectively, our findings enrich the knowledge of the chronic adaptation mechanisms and also shed light on future investigations. Meanwhile, our results also suggest that efforts to restore the fatty acids metabolic fate could be a promising avenue to fight against obesity and associated steatosis and insulin resistance challenged by HFF diet.
Collapse
Affiliation(s)
- An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chu-Mei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian-Ling Pan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
11
|
Cucuzzella M, Bailes J, Favret J, Paddu N, Bradley AB. Beyond Obesity and Overweight: The Clinical Assessment and Treatment of Excess Body Fat in Children : Part 1 - Insulin Resistance as the Root Cause of Pediatric Obesity. Curr Obes Rep 2024; 13:276-285. [PMID: 38709471 DOI: 10.1007/s13679-024-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE OF REVIEW Pediatric obesity and comorbidities related to insulin resistance continue to be a growing public health crisis. If lifestyle measures are unsuccessful, pharmacological and surgical interventions are offered. In this paper, we describe the driving force of the obesity crisis: hyperinsulinemia and the development of insulin resistance. We give historical background of key policy issues which have contributed to this pandemic as well as the physiologic mechanisms of insulin resistance. The prevalence of obesity will continue to rise unless the root cause of hyperinsulinemia is addressed. RECENT FINDINGS Current research on insulin resistance demonstrates that a decreased consumption of carbohydrates is an effective first-line dietary intervention for the treatment of obesity and related metabolic diseases. Evidence shows it is safe and beneficial. A low-carbohydrate eating pattern can be helpful to address pediatric obesity. However, there must be policy guardrails in place to ensure that this is a sustainable and viable option for children and their families. There must be a change in the nutritional environment to help individuals battle the chronic disease of obesity.
Collapse
Affiliation(s)
- Mark Cucuzzella
- West Virginia University School of Medicine, Morgantown, WV, USA.
| | | | - Jenny Favret
- Duke Pediatrics Healthy Lifestyles Program, Durham, NC, USA
| | - Nina Paddu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
12
|
Distefano JK, Gerhard GS. Effects of dietary sugar restriction on hepatic fat in youth with obesity. Minerva Pediatr (Torino) 2024; 76:439-448. [PMID: 37284808 PMCID: PMC11229704 DOI: 10.23736/s2724-5276.23.07209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children. Like adults, children can develop the progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), which is characterized by hepatic inflammation, often in the presence of fibrosis. Children with NAFLD are at higher risk of liver-related complications, metabolic dysfunction, and cardiovascular disease in adulthood. Many factors contribute to the escalating prevalence of NAFLD in the pediatric population, among which are an array of dietary patterns such as overnutrition, poor diet quality, and heavy consumption of fat and sugar, including fructose. Findings from an increasing number of epidemiological studies support a connection between high habitual sugar consumption and NAFLD, especially within the context of obesity, but these studies are not able to demonstrate whether sugar is a contributing factor or instead an indicator of an overall poor diet (or lifestyle) quality. To date, only four randomized controlled dietary interventions assessing the effects of sucrose/fructose restriction on hepatic fat fraction in youth with obesity have been published. The objectives of this review are to summarize the key findings from these dietary interventions to achieve a better understanding of the strength of the relationship between dietary sugar restriction and liver fat reduction, despite their inherent limitations, and to discuss the potential impact of weight loss and fat mass reduction on improvement in hepatic steatosis.
Collapse
Affiliation(s)
- Johanna K Distefano
- Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA -
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Rivera JC, Espinoza-Derout J, Hasan KM, Molina-Mancio J, Martínez J, Lao CJ, Lee ML, Lee DL, Wilson J, Sinha-Hikim AP, Friedman TC. Hepatic steatosis induced by nicotine plus Coca-Cola™ is prevented by nicotinamide riboside (NR). Front Endocrinol (Lausanne) 2024; 15:1282231. [PMID: 38756999 PMCID: PMC11097688 DOI: 10.3389/fendo.2024.1282231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.
Collapse
Affiliation(s)
- Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Jocelyn Molina-Mancio
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jason Martínez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Martin L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Biostatistics Department, UCLA Fielding School of Public Health, Los Angeles, CA, United States
| | - Desean L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Julian Wilson
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Fordham TM, Morelli NS, Garcia-Reyes Y, Ware MA, Rahat H, Sundararajan D, Fuller KNZ, Severn C, Pyle L, Malloy CR, Jin ES, Parks EJ, Wolfe RR, Cree MG. Metabolic effects of an essential amino acid supplement in adolescents with PCOS and obesity. Obesity (Silver Spring) 2024; 32:678-690. [PMID: 38439205 DOI: 10.1002/oby.23988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, insulin resistance, and hepatic steatosis (HS). Because dietary essential amino acid (EAA) supplementation has been shown to decrease HS in various populations, this study's objective was to determine whether supplementation would decrease HS in PCOS. METHODS A randomized, double-blind, crossover, placebo-controlled trial was conducted in 21 adolescents with PCOS (BMI 37.3 ± 6.5 kg/m2, age 15.6 ± 1.3 years). Liver fat, very low-density lipoprotein (VLDL) lipogenesis, and triacylglycerol (TG) metabolism were measured following each 28-day phase of placebo or EAA. RESULTS Compared to placebo, EAA was associated with no difference in body weight (p = 0.673). Two markers of liver health improved: HS was lower (-0.8% absolute, -7.5% relative reduction, p = 0.013), as was plasma aspartate aminotransferase (AST) (-8%, p = 0.004). Plasma TG (-9%, p = 0.015) and VLDL-TG (-21%, p = 0.031) were reduced as well. VLDL-TG palmitate derived from lipogenesis was not different between the phases, nor was insulin sensitivity (p > 0.400 for both). Surprisingly, during the EAA phase, participants reported consuming fewer carbohydrates (p = 0.038) and total sugars (p = 0.046). CONCLUSIONS Similar to studies in older adults, short-term EAA supplementation in adolescents resulted in significantly lower liver fat, AST, and plasma lipids and thus may prove to be an effective treatment in this population. Additional research is needed to elucidate the mechanisms for these effects.
Collapse
Affiliation(s)
- Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nazeen S Morelli
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Meredith A Ware
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Haseeb Rahat
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Divya Sundararajan
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cameron Severn
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Pyle
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Robert R Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie G Cree
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
16
|
Calcaterra V, Degrassi I, Taranto S, Porro C, Bianchi A, L’assainato S, Silvestro GS, Quatrale A, Zuccotti G. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) and Thyroid Function in Childhood Obesity: A Vicious Circle? CHILDREN (BASEL, SWITZERLAND) 2024; 11:244. [PMID: 38397356 PMCID: PMC10887660 DOI: 10.3390/children11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a multisystem disorder characterized by the presence of fatty liver degeneration associated with excess adiposity or prediabetes/type 2 diabetes or metabolic dysregulation. An intricate relationship between the liver and thyroid has been reported in both health and disease. Simultaneously, there is a strong correlation between obesity and both MAFLD and thyroid dysfunction. In this narrative review, we highlighted the relationship between MAFLD and thyroid function in children and adolescents with obesity in order to explore how thyroid hormones (THs) act as predisposing factors in the onset, progression, and sustainability of MAFLD. THs are integral to the intricate balance of metabolic activities, ensuring energy homeostasis, and are indispensable for growth and development. Regarding liver homeostasis, THs have been suggested to interact with liver lipid homeostasis through a series of processes, including stimulating the entry of free fatty acids into the liver for esterification into triglycerides and increasing mitochondrial β-oxidation of fatty acids to impact hepatic lipid accumulation. The literature supports a correlation between MAFLD and obesity, THs and obesity, and MAFLD and THs; however, results in the pediatric population are very limited. Even though the underlying pathogenic mechanism involved in the relationship between MAFLD and thyroid function remains not fully elucidated, the role of THs as predisposing factors of MAFLD could be postulated. A potential vicious circle among these three conditions cannot be excluded. Identifying novel elements that may contribute to MAFLD could offer a practical approach to assessing children at risk of developing the condition.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Irene Degrassi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Cecilia Porro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Sara L’assainato
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Giustino Simone Silvestro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
17
|
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the United States is 38%, having increased by 50% within the past 3 decades. The estimated NAFLD prevalence among people with type 2 diabetes is 55-70%. The presence of type 2 diabetes is associated with a higher likelihood of progression of NAFLD to fibrosis development, liver transplant, and death. Cardiovascular disease is the main cause of mortality among people with NAFLD, and the risk of death is significantly higher in people with both NAFLD and type 2 diabetes. NAFLD carries high patient and economic burdens but low awareness among both the general public and health care providers. This article reviews the epidemiology of NAFLD and discusses the need for appropriate risk stratification, referral for specialty care, management of cardiometabolic risk factors, and treatment of the disease. The authors present a call to action to raise awareness of NAFLD and address its increasing burden in a systematic and efficient manner.
Collapse
Affiliation(s)
- Zobair M. Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA; The Global NASH Council, Washington, DC, and the Center for Outcomes Research in Liver Diseases, Washington, DC
| | - Linda Henry
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA; The Global NASH Council, Washington, DC, and the Center for Outcomes Research in Liver Diseases, Washington, DC
| |
Collapse
|
18
|
Jafari A, Faghfouri AH, Nikpayam O. The effect of low-fructose diet on anthropometric and metabolic factors: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:281-293. [PMID: 38176960 DOI: 10.1016/j.numecd.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 01/06/2024]
Abstract
AIMS In recent decades, there has been a rise in the consumption of sugars containing fructose, raising concerns about their association with metabolic disorders and obesity. We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of a low-fructose diet on anthropometric and metabolic variables. DATA SYNTHESIS We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of low-fructose diets on anthropometric and metabolic factors. Relevant studies were identified by searching electronic databases such as PubMed, Scopus, and Web of Science up to January 2023. The quality of the included studies was assessed using the Cochrane risk-of-bias tool. Ten trials with varying intervention durations (ranging from 4 to 24 weeks) and a total of 750 participants were included. The analysis revealed that a low-fructose diet had no significant effect on weight but did have a significant impact on body mass index (SMD = -0.2; 95 % CI: -0.37, -0.04, P = 0.017) and waist circumference (SMD = -0.48; 95 % CI: -0.67, -0.29, P < 0.0001). Furthermore, a low-fructose diet significantly affected systolic blood pressure (SMD = -0.24; 95 % CI: -0.39, -0.09, P = 0.002), fasting blood glucose (SMD = -0.23; 95 % CI: -0.40, -0.07, P = 0.005), hemoglobin A1c (SMD = -0.62; 95 % CI: -0.93, -0.31, P < 0.0001), and triglyceride levels (SMD = -0.17; 95 % CI: -0.33, -0.02, P = 0.028). However, it had no significant effect on diastolic blood pressure, insulin levels, or homeostatic model assessment of insulin resistance. Subgroup analysis indicated that a low-fructose diet had a greater effect on healthy participants aged over 50 years. CONCLUSIONS Meta-analysis results suggest that low-fructose diets significantly reduce body mass index, waist circumference, systolic blood pressure, fasting blood glucose, hemoglobin A1c, and triglyceride levels. Additionally, the results of the current study suggest that a low-fructose diet may be more effective in healthy individuals who are older than 50 years old compared to those younger than 50 years old.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Omid Nikpayam
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
19
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
20
|
Hong JG, Carbajal Y, Trotman J, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Friedman SL, DeRossi C, Chu J. Mannose Supplementation Curbs Liver Steatosis and Fibrosis in Murine MASH by Inhibiting Fructose Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576067. [PMID: 38293175 PMCID: PMC10827199 DOI: 10.1101/2024.01.17.576067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) can progress to cirrhosis and liver cancer. There are no approved medical therapies to prevent or reverse disease progression. Fructose and its metabolism in the liver play integral roles in MASH pathogenesis and progression. Here we focus on mannose, a simple sugar, which dampens hepatic stellate cell activation and mitigates alcoholic liver disease in vitro and in vivo . In the well-validated FAT-MASH murine model, oral mannose supplementation improved both liver steatosis and fibrosis at low and high doses, whether administered either at the onset of the model ("Prevention") or at week 6 of the 12-week MASH regimen ("Reversal"). The in vivo anti-fibrotic effects of mannose supplementation were validated in a second model of carbon tetrachloride-induced liver fibrosis. In vitro human and mouse primary hepatocytes revealed that the anti-steatotic effects of mannose are dependent on the presence of fructose, which attenuates expression of ketohexokinase (KHK), the main enzyme in fructolysis. KHK is decreased with mannose supplementation in vivo and in vitro, and overexpression of KHK abrogated the anti-steatotic effects of mannose. Our study identifies mannose as a simple, novel therapeutic candidate for MASH that mitigates metabolic dysregulation and exerts anti-fibrotic effects.
Collapse
|
21
|
Hieronimus B, Medici V, Lee V, Nunez MV, Sigala DM, Bremer AA, Cox CL, Keim NL, Schwarz JM, Pacini G, Tura A, Havel PJ, Stanhope KL. Effects of Consuming Beverages Sweetened with Fructose, Glucose, High-Fructose Corn Syrup, Sucrose, or Aspartame on OGTT-Derived Indices of Insulin Sensitivity in Young Adults. Nutrients 2024; 16:151. [PMID: 38201980 PMCID: PMC10780640 DOI: 10.3390/nu16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California, Davis, CA 95616, USA
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
| | | | - Desiree M. Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Andrew A. Bremer
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Chad L. Cox
- Department of Chemistry and Department of Family and Consumer Sciences, California State University, Sacramento, CA 95819, USA
| | - Nancy L. Keim
- United States Department of Agriculture, Western Human Nutrition Research Center, Davis, CA 95819, USA
| | - Jean-Marc Schwarz
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Giovanni Pacini
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Andrea Tura
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
| |
Collapse
|
22
|
Zachou M, Flevari P, Nasiri-Ansari N, Varytimiadis C, Kalaitzakis E, Kassi E, Androutsakos T. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur J Clin Pharmacol 2024; 80:127-150. [PMID: 37938366 PMCID: PMC10781828 DOI: 10.1007/s00228-023-03586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of liver disease, affecting 30% of the global population. NAFLD prevalence is particularly high in obese individuals and patients with type 2 diabetes mellitus (T2DM). NAFLD ranges from simple fat deposition in the liver to necroinflammation and fibrosis (non-alcoholic steatohepatitis (NASH)), NASH-cirrhosis, and/or hepatocellular carcinoma. Insulin resistance plays a key role in NAFLD pathogenesis, alongside dysregulation of adipocytes, mitochondrial dysfunction, genetic factors, and changes in gut microbiota. Since insulin resistance is also a major predisposing factor of T2DM, the administration of anti-diabetic drugs for the management of NAFLD seems reasonable. METHODS In this review we provide the NAFLD-associated mechanisms of action of some of the most widely used anti-diabetic drugs, namely metformin, pioglitazone, sodium-glucose transport protein-2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor analogs (GLP1 RAs), and dipeptyl-peptidase-4 inhibitors (DPP4i) and present available data regarding their use in patients with NAFLD, with and without T2DM. RESULTS Both metformin and DPP4i have shown rather contradictory results, while pioglitazone seems to benefit patients with NASH and is thus the only drug approved for NASH with concomitant significant liver fibrosis by all major liver societies. On the other hand, SGLT2i and GLP1 RAs seem to be beneficiary in patients with NAFLD, showing both remarkable results, with SGLT2i proving to be more efficient in the only head-to-head study so far. CONCLUSION In patients with NAFLD and diabetes, pioglitazone, GLP1 RAs, and SGLT2i seem to be logical treatment options. Larger studies are needed before these drugs can be recommended for non-diabetic individuals.
Collapse
Affiliation(s)
- Maria Zachou
- Gastroenterology Department, "Sismanoglio" General Hospital, 151 26, Athens, Greece
| | - Pagona Flevari
- Expertise Center in Rare Haematological Diseases-Haemoglobinopathies, "Laiko" General Hospital, 115 27, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | | | - Evangelos Kalaitzakis
- Department of Gastroenterology, University Hospital of Heraklion, University of Crete, 715 00, Heraklion, Greece
| | - Eva Kassi
- Unit of Molecular Endocrinology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, "Laiko" Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 115 27, Athens, Greece.
| |
Collapse
|
23
|
Weiner J, Dommel S, Gebhardt C, Hanschkow M, Popkova Y, Krause K, Klöting N, Blüher M, Schiller J, Heiker JT. Differential expression of immunoregulatory cytokines in adipose tissue and liver in response to high fat and high sugar diets in female mice. Front Nutr 2023; 10:1275160. [PMID: 38024380 PMCID: PMC10655005 DOI: 10.3389/fnut.2023.1275160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
A comprehensive understanding of how dietary components impact immunoregulatory gene expression in adipose tissue (AT) and liver, and their respective contributions to metabolic health in mice, remains limited. The current study aimed to investigate the metabolic consequences of a high-sucrose diet (HSD) and a high-fat diet (HFD) in female mice with a focus on differential lipid- and sucrose-induced changes in immunoregulatory gene expression in AT and liver. Female C57BL/6 J mice were fed a purified and macronutrient matched high fat, high sugar, or control diets for 12 weeks. Mice were extensively phenotyped, including glucose and insulin tolerance tests, adipose and liver gene and protein expression analysis by qPCR and Western blot, tissue lipid analyses, as well as histological analyses. Compared to the control diet, HSD- and HFD-fed mice had significantly higher body weights, with pronounced obesity along with glucose intolerance and insulin resistance only in HFD-fed mice. HSD-fed mice exhibited an intermediate phenotype, with mild metabolic deterioration at the end of the study. AT lipid composition was significantly altered by both diets, and inflammatory gene expression was only significantly induced in HFD-fed mice. In the liver however, histological analysis revealed that both HSD- and HFD-fed mice had pronounced ectopic lipid deposition indicating hepatic steatosis, but more pronounced in HSD-fed mice. This was in line with significant induction of pro-inflammatory gene expression specifically in livers of HSD-fed mice. Overall, our findings suggest that HFD consumption in female mice induces more profound inflammation in AT with pronounced deterioration of metabolic health, whereas HSD induced more pronounced hepatic steatosis and inflammation without yet affecting glucose metabolism.
Collapse
Affiliation(s)
- Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Dommel
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Lampignano L, Tatoli R, Donghia R, Bortone I, Castellana F, Zupo R, Lozupone M, Panza F, Conte C, Sardone R. Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects. Nutr Metab Cardiovasc Dis 2023; 33:2233-2241. [PMID: 37541928 DOI: 10.1016/j.numecd.2023.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population. METHODS AND RESULTS We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks. CONCLUSION This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.
Collapse
Affiliation(s)
| | - Rossella Tatoli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | | | - Roberta Zupo
- Department of Interdisciplinary Medicine, University "Aldo Moro", Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| |
Collapse
|
25
|
Younossi ZM, Zelber-Sagi S, Henry L, Gerber LH. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:708-722. [PMID: 37402873 DOI: 10.1038/s41575-023-00800-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dynamic chronic liver disease that develops in close association with metabolic irregularities. Between 2016 and 2019, the global prevalence among adults was reported as 38% and among children and adolescents it was about 10%. NAFLD can be progressive and is associated with increased mortality from cardiovascular disease, extrahepatic cancers and liver complications. Despite these numerous adverse outcomes, no pharmacological treatments currently exist to treat nonalcoholic steatohepatitis, the progressive form of NAFLD. Therefore, the main treatment is the pursuit of a healthy lifestyle for both children and adults, which includes a diet rich in fruits, nuts, seeds, whole grains, fish and chicken and avoiding overconsumption of ultra-processed food, red meat, sugar-sweetened beverages and foods cooked at high heat. Physical activity at a level where one can talk but not sing is also recommended, including leisure-time activities and structured exercise. Avoidance of smoking and alcohol is also recommended. Policy-makers, community and school leaders need to work together to make their environments healthy by developing walkable and safe spaces with food stores stocked with culturally appropriate and healthy food items at affordable prices as well as providing age-appropriate and safe play areas in both schools and neighbourhoods.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA.
- Inova Medicine, Inova Health System, Falls Church, VA, USA.
| | | | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| | - Lynn H Gerber
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
26
|
Huneault HE, Ramirez Tovar A, Sanchez-Torres C, Welsh JA, Vos MB. The Impact and Burden of Dietary Sugars on the Liver. Hepatol Commun 2023; 7:e0297. [PMID: 37930128 PMCID: PMC10629746 DOI: 10.1097/hc9.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
NAFLD, or metabolic dysfunction-associated steatotic liver disease, has increased in prevalence hand in hand with the rise in obesity and increased free sugars in the food supply. The causes of NAFLD are genetic in origin combined with environmental drivers of the disease phenotype. Dietary intake of added sugars has been shown to have a major role in the phenotypic onset and progression of the disease. Simple sugars are key drivers of steatosis, likely through fueling de novo lipogenesis, the conversion of excess carbohydrates into fatty acids, but also appear to upregulate lipogenic metabolism and trigger hyperinsulinemia, another driver. NAFLD carries a clinical burden as it is associated with obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Patient quality of life is also impacted, and there is an enormous economic burden due to healthcare use, which is likely to increase in the coming years. This review aims to discuss the role of dietary sugar in NAFLD pathogenesis, the health and economic burden, and the promising potential of sugar reduction to improve health outcomes for patients with this chronic liver disease.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ana Ramirez Tovar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Cristian Sanchez-Torres
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jean A. Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Miriam B. Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Gugliucci A. Sugar and Dyslipidemia: A Double-Hit, Perfect Storm. J Clin Med 2023; 12:5660. [PMID: 37685728 PMCID: PMC10488931 DOI: 10.3390/jcm12175660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The availability of sugar has expanded over the past 50 years, due to improved industrial processes and corn subsidies, particularly in the form of sweetened beverages. This correlates with a surge in the prevalence of cardiometabolic disorders, which has brought this issue back into the spotlight for public health. In this narrative review, we focus on the role of fructose in the genesis of cardiometabolic dyslipidemia (an increase in serum triglyceride-rich lipoproteins (TRL): VLDL, chylomicrons (CM), and their remnants) bringing together the most recent data on humans, which demonstrates the crucial interaction between glucose and fructose, increasing the synthesis while decreasing the catabolism of these particles in a synergistic downward spiral. After reviewing TRL metabolism, we discuss the fundamental principles governing the metabolism of fructose in the intestine and liver and the effects of dysregulated fructolysis, in conjunction with the activation of carbohydrate-responsive element-binding protein (ChREBP) by glucose and the resulting crosstalk. The first byproduct of fructose catabolism, fructose-1-P, is highlighted for its function as a signaling molecule that promotes fat synthesis. We emphasize the role of fructose/glucose interaction in the liver, which enhances de novo lipogenesis, triglyceride (TG) synthesis, and VLDL production. In addition, we draw attention to current research that demonstrates how fructose affects the activity of lipoprotein lipase by increasing the concentration of inhibitors such as apolipoprotein CIII (apoCIII) and angiopoietin-like protein 3 (ANGPTL3), which reduce the catabolism of VLDL and chylomicrons and cause the building up of their atherogenic remnants. The end outcome is a dual, synergistic, and harmful action that encourages atherogenesis. Thus, considering the growing concerns regarding the connection between sugar consumption and cardiometabolic disease, current research strongly supports the actions of public health organizations aimed at reducing sugar intake, including dietary guidance addressing "safe" limits for sugar consumption.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
28
|
Choudhuri G, Shah S, Kulkarni A, Jagtap N, Gaonkar P, Desai A, Adhav C. Non-alcoholic Steatohepatitis in Asians: Current Perspectives and Future Directions. Cureus 2023; 15:e42852. [PMID: 37664266 PMCID: PMC10473263 DOI: 10.7759/cureus.42852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease (NAFLD), which, apart from excess fat in the liver, may be characterised by some level of inflammatory infiltration and fibrogenesis, occasionally progressing to liver cirrhosis or hepatocellular carcinoma (HCC). The objective of the current review is to elucidate the rising prevalence, the role of microbiome and genetics in pathogenesis, diagnostic challenges, and novel treatment alternatives for NASH. Newer diagnostic techniques are being developed since using liver biopsy in a larger population is not a reasonable option and is primarily restricted to clinical research, at least in developing countries. Besides these technical challenges, another important factor leading to deviation from guideline practice is the lack of health insurance coverage in countries like India. It leads to reluctance on the part of physicians and patients to delay required tests to curb out-of-pocket expenditure. There is no cure for NASH, with liver transplantation remaining the last option for those who progress to end-stage liver disease (ESLD) or are detected with early-stage HCC. Thus, lifestyle modification remains the only viable option for many, but compliance and long-term adherence remain major challenges. In obese individuals, bariatric surgery and weight reduction have shown favourable results. In patients with less severe obesity, endoscopic bariatric metabolic therapies (EBMT) are rapidly emerging as less invasive therapies. However, access and acceptability remain poor for these weight reduction methods. Therefore, intense research is being conducted for potential newer drug classes with several agents currently in phase II or III of clinical development. Some of these have demonstrated promising results, such as a reduction in hepatic fat content, and attenuation of fibrosis with an acceptable tolerability profile in phase II studies. The developments in the management of NASH have been fairly encouraging. Further well-designed long-term prospective studies should be undertaken to generate evidence with definitive results.
Collapse
Affiliation(s)
| | - Saumin Shah
- Gastroenterology, Gujarat Gastro and Vascular Hospital, Surat, IND
| | - Anand Kulkarni
- Gastroenterology and Hepatology, Asian Institute of Gastroenterology, Hyderabad, IND
| | - Nitin Jagtap
- Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, IND
| | | | | | | |
Collapse
|
29
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
30
|
Sandel P, Ma L, Wang H, Pasman EA. You Are What You Eat: A Review on Dietary Interventions for Treating Pediatric Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:3350. [PMID: 37571287 PMCID: PMC10421125 DOI: 10.3390/nu15153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
As the obesity pandemic worsens, cases of pediatric nonalcoholic fatty liver disease (NAFLD) and complications of this disease, such as progressive liver failure, in young adults will continue to rise. Lifestyle changes in the form of dietary modifications and exercise are currently first-line treatments. Large pediatric-specific randomized controlled trials to support specific interventions are currently lacking. A variety of dietary modifications in children with NAFLD have been suggested and studied with mixed results, including low-sugar and high-protein diets, the Mediterranean diet, and the Dietary Approach to Stop Hypertension (DASH). The roles of dietary supplements such as Vitamin E, polyunsaturated fatty acids (PUFAs), ginger, and probiotics have also been investigated. A further understanding of specific dietary interventions and supplements is needed to provide both generalizable and sustainable dietary recommendations to reverse the progression of NAFLD in the pediatric population.
Collapse
Affiliation(s)
- Piper Sandel
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Lawrence Ma
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Helen Wang
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Eric A. Pasman
- Division of Pediatric Gastroenterology, Department of Pediatrics, Naval Medical Center San Diego, San Diego, CA 92134, USA;
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
31
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine (Baltimore) 2023; 3. [PMCID: PMC10368226 DOI: 10.1097/id9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 10/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world’s largest chronic liver disease in the 21st century, affecting 20%–30% of the world’s population. As the epidemiology, etiology, and pathogenesis of NAFLD have been studied in-depth, it has been gradually recognized that most patients with NAFLD have one or more combined metabolic abnormalities known as metabolic syndrome. In 2020, the international expert group changed the name of NAFLD to metabolic-associated fatty liver disease (MAFLD) and proposed new diagnostic criteria for MAFLD and MAFLD-related liver cirrhosis, as well as the conceptual framework of other cause-related fatty liver diseases to avoid diagnosis based on the exclusion of other causes and better reflect its pathogenesis. However, there are still many ambiguities in the term, and changing the name does not address the unmet key needs in the field. The change from NAFLD to MAFLD was not just a change of definition. The problems and challenges are summarized as follows: epidemiology, children, rationality of “metabolism,” diagnostic criteria, double/multiple causes, drug discovery, clinical trials, and awareness raising. Metabolic-associated fatty liver disease has complex disease characteristics, and there are still some problems that need to be solved.
Collapse
Affiliation(s)
- Minghui Zeng
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Lin Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqin Li
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| |
Collapse
|
33
|
Gugliucci A. Triglyceride-Rich Lipoprotein Metabolism: Key Regulators of Their Flux. J Clin Med 2023; 12:4399. [PMID: 37445434 DOI: 10.3390/jcm12134399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The residual risk for arteriosclerotic cardiovascular disease after optimal statin treatment may amount to 50% and is the consequence of both immunological and lipid disturbances. Regarding the lipid disturbances, the role of triglyceride-rich lipoproteins (TRLs) and their remnants has come to the forefront in the past decade. Triglycerides (TGs) stand as markers of the remnants of the catabolism of TRLs that tend to contain twice as much cholesterol as compared to LDL. The accumulation of circulating TRLs and their partially lipolyzed derivatives, known as "remnants", is caused mainly by ineffective triglyceride catabolism. These cholesterol-enriched remnant particles are hypothesized to contribute to atherogenesis. The aim of the present narrative review is to briefly summarize the main pathways of TRL metabolism, bringing to the forefront the newly discovered role of apolipoproteins, the key physiological function of lipoprotein lipase and its main regulators, the importance of the fluxes of these particles in the post-prandial period, their catabolic rates and the role of apo CIII and angiopoietin-like proteins in the partition of TRLs during the fast-fed cycle. Finally, we provide a succinct summary of the new and old therapeutic armamentarium and the outcomes of key current trials with a final outlook on the different methodological approaches to measuring TRL remnants, still in search of the gold standard.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
34
|
Spiezia C, Di Rosa C, Fintini D, Ferrara P, De Gara L, Khazrai YM. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients 2023; 15:nu15112435. [PMID: 37299398 DOI: 10.3390/nu15112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Childhood obesity is a global public health problem. Worldwide, 41 million children under 5 years and 340 million children and adolescents between 5 and 19 years are overweight. In addition, the recent COVID-19 epidemic has further amplified this social phenomenon. Obesity is a condition associated with various comorbidities, such as nonalcoholic fatty liver disease (NAFLD). The pathophysiology of NAFLD in obesity is intricate and involves the interaction and dysregulation of several mechanisms, such as insulin resistance, cytokine signaling, and alteration of the gut microbiota. NAFLD is defined as the presence of hepatic steatosis in more than 5% of hepatocytes, evaluated by histological analysis. It can evolve from hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma, and end-stage liver failure. Body weight reduction through lifestyle modification remains the first-line intervention for the management of pediatric NAFLD. Indeed, studies suggest that diets low in fat and sugar and conversely rich in dietary fibers promote the improvement of metabolic parameters. This review aims to evaluate the existing relationship between obesity and NAFLD in the pediatric population and to assess the dietary patterns and nutritional supplementations that can be recommended to prevent and manage obesity and its comorbidities.
Collapse
Affiliation(s)
- Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, Bambino Gesù Children's Hospital, IRCCS L.go S.Onofrio, 4-00165 Roma, Italy
| | - Pietro Ferrara
- Operative Research Unit of Pediatrics, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| | - Laura De Gara
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| |
Collapse
|
35
|
Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J Endocrinol 2023; 257:e220270. [PMID: 36753292 PMCID: PMC10083579 DOI: 10.1530/joe-22-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Despite the existence of numerous studies supporting a pathological link between fructose consumption and the development of the metabolic syndrome and its sequelae, such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. With this article, we shed a light on the impact of sugar/fructose intake on hepatic de novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects with type 2 diabetes and/or NAFLD. In this review, we present findings from human intervention studies using physiological doses of sugar as well as mechanistic animal studies. There is evidence from both human and animal studies that fructose is a more potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver's prominent physiological role in fructose metabolism, which may be disrupted under pathological conditions by increased hepatic expression of fructolytic and lipogenic enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the liver), but it may also impair several metabolic processes through DNL-related fatty acids (e.g. beta-cell function, insulin secretion, or insulin sensitivity).
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- 1Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
| | - Philipp A Gerber
- 1Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
| |
Collapse
|
36
|
Mulindwa F, Schwarz JM, Brusselaers N, Dujanga S, Yendewa G, Castelnuovo B. Implementation of longitudinal insulin kinetic studies in busy field settings in Uganda: experience from the "glucose metabolism changes in Ugandan HIV patients on dolutegravir based anti-retroviral therapy" (GLUMED study). Pan Afr Med J 2023; 44:184. [PMID: 37484585 PMCID: PMC10362648 DOI: 10.11604/pamj.2023.44.184.39734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Frank Mulindwa
- Makerere University Infectious Diseases Institute, Capacity Building Unit, Kampala, Uganda
- Global Health Institute, Antwerp University, Antwerp, Belgium
| | - Jean-Marc Schwarz
- University of California San Francisco, School of Medicine, California, United States of America
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, Vallejo, California, United States of America
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Simon Dujanga
- Kampala City Council Authority Kisenyi Health Center IV HIV clinic, Kampala, Uganda
| | - George Yendewa
- Department of Internal Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barbara Castelnuovo
- Makerere University Infectious Diseases Institute, Capacity Building Unit, Kampala, Uganda
| |
Collapse
|
37
|
Takagi K, Sugihira T, Kitamura M, Kawai M, Mitsuguchi Y, Tsukamoto K, Nakanishi H, Makino T. Inhibitory effect of Bofutsushosan (Fangfengtongshengsan) extract on the absorption of fructose in rats and mice. J Nat Med 2023; 77:535-543. [PMID: 37040005 DOI: 10.1007/s11418-023-01697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Bofutsushosan (BTS; fangfengtongshengsan in Chinese) is a formula in traditional Japanese Kampo and Chinese medicine comprising 18 crude drugs and used to treat obesity and metabolic syndrome. In our previous study, BTS boiling water extract inhibited the uptake of fructose absorbed via glucose transporter 5 into cultured cells. In this study, the inhibitory effect of BTS extract on the absorption of fructose from the intestine was investigated in vivo. The extract of BTS was orally administered to rats at doses equivalent to 25-fold of the daily dose for humans. One minute after sample administration, fructose was orally administered and blood samples were collected from the jugular vein 0.5, 1, 1.5, 2, and 4 h after the administration of fructose. The absorption of fructose from the intestine was significantly reduced by treatment with BTS extract, and this in vivo study reproduced previous in vitro results. Subsequently, the blood samples were collected from the portal vein 30 min after the oral administration of fructose in mice. BTS extract significantly reduced fructose absorption in mice, and compared the effect of modified BTS samples by removing one to several crude drugs from BTS. We found that the dried rhizome of Rheum palmatum (RR) significantly contributed to the inhibitory effect of BTS on fructose absorption. We found sennoside A to be the active ingredient of RR for the inhibition of fructose absorption, and that its effect almost saturated at a dose of 3 mg/kg. These results support the action mechanisms of BTS when used for the treatment of obesity in clinics and drug stores.
Collapse
Affiliation(s)
- Kohei Takagi
- Basic Research and Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Takashi Sugihira
- Basic Research and Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Miho Kitamura
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Mami Kawai
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Yoko Mitsuguchi
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kosei Tsukamoto
- Internal Medicine and Functional Food Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hirofumi Nakanishi
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
38
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Harlan TS, Gow RV, Kornstädt A, Alderson PW, Lustig RH. The Metabolic Matrix: Re-engineering ultraprocessed foods to feed the gut, protect the liver, and support the brain. Front Nutr 2023; 10:1098453. [PMID: 37063330 PMCID: PMC10097968 DOI: 10.3389/fnut.2023.1098453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) protect the liver, (2) feed the gut, and (3) support the brain. The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a proof-of-concept. The key aim of our work is to not only make ultraprocessed food healthier but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.
Collapse
Affiliation(s)
- Timothy S. Harlan
- Division of General Internal Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Rachel V. Gow
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | | | - P. Wolfram Alderson
- Human & Environmental Health Department, Kuwaiti Danish Dairy Company, Kuwait City, Kuwait
| | - Robert H. Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Cohen CC, Huneault H, Accardi CJ, Jones DP, Liu K, Maner-Smith KM, Song M, Welsh JA, Ugalde-Nicalo PA, Schwimmer JB, Vos MB. Metabolome × Microbiome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys. Metabolites 2023; 13:401. [PMID: 36984841 PMCID: PMC10053986 DOI: 10.3390/metabo13030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Dietary sugar reduction is one therapeutic strategy for improving nonalcoholic fatty liver disease (NAFLD), and the underlying mechanisms for this effect warrant further investigation. Here, we employed metabolomics and metagenomics to examine systemic biological adaptations associated with dietary sugar restriction and (subsequent) hepatic fat reductions in youth with NAFLD. Data/samples were from a randomized controlled trial in adolescent boys (11-16 years, mean ± SD: 13.0 ± 1.9 years) with biopsy-proven NAFLD who were either provided a low free-sugar diet (LFSD) (n = 20) or consumed their usual diet (n = 20) for 8 weeks. Plasma metabolomics was performed on samples from all 40 participants by coupling hydrophilic interaction liquid chromatography (HILIC) and C18 chromatography with mass spectrometry. In a sub-sample (n = 8 LFSD group and n = 10 usual diet group), 16S ribosomal RNA (rRNA) sequencing was performed on stool to examine changes in microbial composition/diversity. The diet treatment was associated with differential expression of 419 HILIC and 205 C18 metabolite features (p < 0.05), which were enriched in amino acid pathways, including methionine/cysteine and serine/glycine/alanine metabolism (p < 0.05), and lipid pathways, including omega-3 and linoleate metabolism (p < 0.05). Quantified metabolites that were differentially changed in the LFSD group, compared to usual diet group, and representative of these enriched metabolic pathways included increased serine (p = 0.001), glycine (p = 0.004), 2-aminobutyric acid (p = 0.012), and 3-hydroxybutyric acid (p = 0.005), and decreased linolenic acid (p = 0.006). Microbiome changes included an increase in richness at the phylum level and changes in a few genera within Firmicutes. In conclusion, the LFSD treatment, compared to usual diet, was associated with metabolome and microbiome changes that may reflect biological mechanisms linking dietary sugar restriction to a therapeutic decrease in hepatic fat. Studies are needed to validate our findings and test the utility of these "omics" changes as response biomarkers.
Collapse
Affiliation(s)
- Catherine C. Cohen
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Helaina Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Carolyn J. Accardi
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Emory Integrated Lipidomics Core, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ming Song
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Patricia A. Ugalde-Nicalo
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Heitkamp HC. [Current aspects on nutrition in hypercholesterolemia]. Wien Med Wochenschr 2023; 173:90-96. [PMID: 35377094 DOI: 10.1007/s10354-022-00916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND New European and American guidelines for nutrition in hypercholesterolemia coincided with a lowered target value for LDL(Low density lipoprotein)-cholesterol. METHODS Guidelines, their development and supporting meta-analyses were searched in Medline/PubMed and Cochrane database and analyzed for the influence of fat, carbohydrates and protein on reduction of LDL-cholesterol as well as the differences between European and American guidelines. RESULTS In contrast to European guidelines, American guidelines increasingly refrain from controlling fat in nutrition, based on studies on the influence of nutrition on LDL-cholesterol and saturated fat; instead, monosaccharides and disaccharides are to be reduced from 15% to 10% of total calories for avoidance of high LDL-cholesterol and a non-alcoholic fatty liver. In predisposed persons the ratio of triglycerides to HDL-cholesterol should be checked when controlling LDL-cholesterol, an early indicator of type 2 diabetes mellitus and non-alcoholic fatty liver disease. Substituting animal fat with plant fat hardly influences LDL-cholesterol. Whole fat milk should be consumed as a source of protein. The nutritional pattern is more important than single components. CONCLUSION Fat content in nutrition is increasingly less important in hypercholesterolemia but the reduction of monosaccharides and disaccharides gains importance.
Collapse
Affiliation(s)
- Hans-Christian Heitkamp
- Institut für Sportmedizin, Fakultät Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, 33098, Paderborn, Deutschland.
| |
Collapse
|
42
|
Newberry C, Kumar S. Dietary and nutrition considerations in caring for patients with nonalcoholic fatty liver disease: Updates for the practicing clinician. Nutr Clin Pract 2023; 38:70-79. [PMID: 36183354 DOI: 10.1002/ncp.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide, affecting up to one-third of the global population. The disease is defined by excess fat deposition in the liver and has a strong correlation with metabolic syndrome, which, in turn, is also a risk factor for disease progression, including the development of steatohepatitis, advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Although a number of medications are being explored for disease mitigation, nothing is currently approved, and the mainstay of therapy remains dietary and lifestyle intervention that promotes weight loss as well as management of comorbid conditions. The landscape that guides care for patients with NAFLD continues to evolve. Clinicians caring for these patients need to consider underlying disease state and nutrition risk in addition to concurrent related diagnoses, such as insulin resistance and hyperlipidemia, when formulating treatment plans. The following is a comprehensive review of the current dietary and nutrition considerations in the management of patients with NAFLD, with a special emphasis on implications for the practicing clinician.
Collapse
Affiliation(s)
- Carolyn Newberry
- Division of Gastroenterology, Innovative Center for Health and Nutrition in Gastroenterology (ICHANGE), Weill Cornell Medical Center, New York, New York, USA
| | - Sonal Kumar
- Division of Gastroenterology, Innovative Center for Health and Nutrition in Gastroenterology (ICHANGE), Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
43
|
Ebbeling CB, Ludwig DS. Treatment for childhood obesity: Using a biological model to inform dietary targets. J Pediatr 2022; 255:22-29. [PMID: 36509158 DOI: 10.1016/j.jpeds.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
44
|
Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers (Basel) 2022; 14:cancers14246042. [PMID: 36551528 PMCID: PMC9775518 DOI: 10.3390/cancers14246042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Per capita sugar consumption has increased in the United States to over 45 kg per year. The average person in the US currently consumes significantly more added sugar in their diet than the World Health Organization's, the American Cancer Society's, and the American Heart Association's recommendations for daily sugar consumption. Evidence from epidemiologic and preclinical studies demonstrates that excess sugar consumption can lead to development of cancer and progression of disease for those with cancer independent of the association between sugar and obesity. Human epidemiologic studies and mechanistic preclinical studies in multiple cancers support a causal link between excess sugar and cancer. Preclinical studies show that high-sucrose or high-fructose diets activate several mechanistic pathways, including inflammation, glucose, and lipid metabolic pathways. Although human studies are limited, compelling human and primate studies have explored the link between added sugar and metabolic syndrome (MetS), a risk factor for cancer. Substantial evidence suggests a causal link between MetS and added sugar, indicating important implications in the association between excess sugar consumption and cancer. Human clinical trials are needed to determine whether sugar increases cancer development and progression independently of its established role in causing obesity as well as for further exploration of the mechanisms involved.
Collapse
|
45
|
Li X, Li M, Xu L, Zeng X, Zhang T, Yang H, Li H, Zhou Z, Wang Y, Zhang C, Zhu Y, Huang Y, Zhang Z, Yang W. Associations between low-carbohydrate and low-fat diets and hepatic steatosis. Obesity (Silver Spring) 2022; 30:2317-2328. [PMID: 36058841 DOI: 10.1002/oby.23551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study assessed the cross-sectional associations of low-carbohydrate diets (LCDs) and low-fat diets (LFDs) with hepatic steatosis in the National Health and Nutrition Examination Survey. METHODS Diet was measured using the 24-hour recalls. Hepatic steatosis was defined by vibration-controlled transient elastography. The odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. Substitution analysis was performed using the leave-one-out model. RESULTS Participants with higher adherence scores (comparing extreme tertiles) for an overall (OR = 0.76, 95% CI: 0.61-0.96, ptrend = 0.049) or a healthful LCD (OR = 0.61, 95% CI: 0.43-0.87, ptrend < 0.001) exhibited lower odds of steatosis. Replacing 5% of the energy from carbohydrates with total fat and protein (OR = 0.91, 95% CI: 0.83-0.99) or unsaturated fat and plant protein (OR = 0.89, 95% CI: 0.84-0.94) was associated with lower steatosis prevalence. High overall (OR = 1.65, 95% CI: 1.13-2.40, ptrend = 0.006) or unhealthful (OR = 1.41, 95% CI: 1.10-1.80, ptrend < 0.001) LFD scores were associated with increased likelihood of steatosis. CONCLUSIONS These findings suggest that the associations between LCDs and LFDs and steatosis may depend on the quality and food sources of the macronutrients.
Collapse
Affiliation(s)
- Xiude Li
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Meiling Li
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Linsheng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueke Zeng
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Tengfei Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Hu Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Haowei Li
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhihao Zhou
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Chenghao Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Yong Huang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Koene E, Schrauwen-Hinderling VB, Schrauwen P, Brouwers MCGJ. Novel insights in intestinal and hepatic fructose metabolism: from mice to men. Curr Opin Clin Nutr Metab Care 2022; 25:354-359. [PMID: 35838297 DOI: 10.1097/mco.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The rise in fructose consumption in parallel with the current epidemic of obesity and related cardiometabolic disease requires a better understanding of the pathophysiological pathways that are involved. RECENT FINDINGS Animal studies have shown that fructose has various effects on the intestines that subsequently affect intrahepatic lipid accumulation and inflammation. Fructose adversely affects the gut microbiome - as a producer of endotoxins and intermediates of de novo lipogenesis - and intestinal barrier function. Furthermore, intestinal fructose metabolism shields fructose away from the liver. Finally, fructose 1-phosphate (F1-P) serves as a signal molecule that promotes intestinal cell survival and, consequently, intestinal absorption capacity. Intervention and epidemiological studies have convincingly shown that fructose, particularly derived from sugar-sweetened beverages, stimulates de novo lipogenesis and intrahepatic lipid accumulation in humans. Of interest, individuals with aldolase B deficiency, who accumulate F1-P, are characterized by a greater intrahepatic lipid content. First phase II clinical trials have recently shown that reduction of F1-P, by inhibition of ketohexokinase, reduces intrahepatic lipid content. SUMMARY Experimental evidence supports current measures to reduce fructose intake, for example by the implementation of a tax on sugar-sweetened beverages, and pharmacological inhibition of fructose metabolism to reduce the global burden of cardiometabolic disease.
Collapse
Affiliation(s)
- Evi Koene
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
- Department of Radiology and Nuclear Medicine, Maastricht University
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
| | - Martijn C G J Brouwers
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome. Cell Rep Med 2022; 3:100742. [PMID: 36130480 PMCID: PMC9512695 DOI: 10.1016/j.xcrm.2022.100742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Diets rich in added sugars are associated with metabolic diseases, and studies have shown a link between these pathologies and changes in the microbiome. Given the reported associations in animal models between the microbiome and brown adipose tissue (BAT) function, and the alterations in the microbiome induced by high-glucose or high-fructose diets, we investigated the potential causal link between high-glucose or -fructose diets and BAT dysfunction in humans. Primary outcomes are changes in BAT cold-induced thermogenesis and the fecal microbiome (clinicaltrials.gov, NCT03188835). We show that BAT glucose uptake, but not thermogenesis, is impaired by a high-fructose but not high-glucose diet, in the absence of changes in the gastrointestinal microbiome. We conclude that decreased BAT glucose metabolism occurs earlier than other pathophysiological abnormalities during fructose overconsumption in humans. This is a potential confounding factor for studies relying on 18F-FDG to assess BAT thermogenesis. Fructose overfeeding decreases brown adipose tissue glucose metabolism These changes occur independently of oxidative metabolism No change is observed with glucose overfeeding The gut microbiome is not affected by fructose/glucose overfeeding
Collapse
|
48
|
Hong H, Su J, Huang C, Lu X, Cui Z. Comprehensive insights into the function and molecular and pharmacological regulation of neuron-derived orphan receptor 1, an orphan receptor. Front Pharmacol 2022; 13:981490. [PMID: 36110555 PMCID: PMC9468329 DOI: 10.3389/fphar.2022.981490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuron-derived orphan receptor 1 (NOR1), also called nuclear receptor subfamily 4 group A member 3 (NR4A3), is a nuclear receptor belonging to the NR4A family. Since no endogenous ligand has been identified to date, NOR1 is also referred to as an orphan receptor. NOR1 is expressed in a variety of cells and tissues, including neurons, vascular smooth muscle cells, T lymphocytes, dendritic cells, tumor cells, heart, liver, and pancreas. Because NOR1 was first identified in apoptotic neurons, it is functionally associated with the regulation of cell migration and the growth of neuronal synapses. In-depth studies have shown that NOR1 can be edited by the immediate early gene and functions as a transcription factor. NOR1 has been shown to be rapidly induced by a number of stimulants including growth factors, fatty acids, and neurotransmitters. Elevated NOR1 levels may be involved in a number of pathophysiological processes. These include regulation of cellular apoptosis and regeneration, neuron formation, contextual fearing memory, inflammation, vascular smooth muscle proliferation, insulin secretion, and tumor development, whereby NOR1 mediates the pathogenesis of numerous diseases such as cerebral ischemia, depression, post-traumatic stress disorder, atherosclerosis, abdominal aortic aneurysm, cardiac hypertrophy, diabetes, osteoarthritis, rheumatoid arthritis, and cancer. However, to date, comprehensive insights into the function of NOR1 are not available in sources published online. In this review, we provide a brief overview of the function and molecular and pharmacological regulation of NOR1 in various pathological or physiological conditions to advance the development of NOR1 as a novel target for disease treatment.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
49
|
Metabolic dysfunction-associated fatty liver disease in obese youth with insulin resistance and type 2 diabetes. Curr Opin Pediatr 2022; 34:414-422. [PMID: 35836399 DOI: 10.1097/mop.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to present the new definition of the disease, defining the epidemiology, risk factors with a particular attention to the role of insulin resistance (IR) and to define the main treatments explored. RECENT FINDINGS Nonalcoholic fatty liver disease (NAFLD) was previously considered a primary liver disease, but it would be more correct to consider it a component of the metabolic syndrome (MetS) in which IR might play a key role. Based on these findings, it has been recently proposed to modify the classic term of NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) that better reflects the pathophysiology of this complex disease. SUMMARY Currently, no treatments approved in childhood are available, thus the only recommended approach is the prevention and correction of the known risk factors, and particularly of IR. However, further studies are needed to better clarify the pathogenetic mechanisms of NAFLD in order to establish more tailored therapies.
Collapse
|
50
|
Schmidt KA, Jones RB, Rios C, Corona Y, Berger PK, Plows JF, Alderete TL, Fogel J, Hampson H, Hartiala JA, Cai Z, Allayee H, Nayak KS, Sinatra FR, Harlan G, Pickering TA, Salvy SJ, Mack WJ, Kohli R, Goran MI. Clinical Intervention to Reduce Dietary Sugar Does Not Affect Liver Fat in Latino Youth, Regardless of PNPLA3 Genotype: A Randomized Controlled Trial. J Nutr 2022; 152:1655-1665. [PMID: 35218194 PMCID: PMC9258557 DOI: 10.1093/jn/nxac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) among Latinos is partially attributed to a prevalent C>G polymorphism in the patatin-like phospholipase 3 (PNPLA3) gene. Cross-sectional analyses in Latino children showed the association between dietary sugar and liver fat was exacerbated by GG genotype. Pediatric feeding studies show extreme sugar restriction improves liver fat, but no prior trial has examined the impact of a clinical intervention or whether effects differ by PNPLA3 genotype. OBJECTIVES We aimed to test effects of a clinical intervention to reduce dietary sugar compared with standard dietary advice on change in liver fat, and secondary-endpoint changes in liver fibrosis, liver enzymes, and anthropometrics; and whether effects differ by PNPLA3 genotype (assessed retrospectively) in Latino youth with obesity (BMI ≥ 95th percentile). METHODS This parallel-design trial randomly assigned participants (n = 105; mean baseline liver fat: 12.7%; mean age: 14.8 y) to control or sugar reduction (goal of ≤10% of calories from free sugar) for 12 wk. Intervention participants met with a dietitian monthly and received delivery of bottled water. Changes in liver fat, by MRI, were assessed by intervention group via general linear models. RESULTS Mean free sugar intake decreased in intervention compared with control [11.5% to 7.3% compared with 13.9% to 10.7% (% energy), respectively; P = 0.02], but there were no significant effects on liver outcomes or anthropometrics (Pall > 0.10), and no PNPLA3 interactions (Pall > 0.10). In exploratory analyses, participants with whole-body fat mass (FM) reduction (mean ± SD: -1.9 ± 2.4 kg), irrespective of randomization, had significant reductions in liver fat compared with participants without FM reduction (median: -2.1%; IQR: -6.5% to -0.8% compared with 0.3%; IQR: -1.0% to 1.1%; P < 0.001). CONCLUSIONS In Latino youth with obesity, a dietitian-led sugar reduction intervention did not improve liver outcomes compared with control, regardless of PNPLA3 genotype. Results suggest FM reduction is important for liver fat reduction, confirming clinical recommendations of weight loss and a healthy diet for pediatric NAFLD.This trial was registered at clinicaltrials.gov as NCT02948647.
Collapse
Affiliation(s)
- Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Roshonda B Jones
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Claudia Rios
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yesica Corona
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paige K Berger
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jasmine F Plows
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jennifer Fogel
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Hailey Hampson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Jaana A Hartiala
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zhiheng Cai
- Department of Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krishna S Nayak
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Frank R Sinatra
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Gregory Harlan
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Trevor A Pickering
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah-Jeanne Salvy
- Cancer Research Center for Health Equity, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wendy Jean Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohit Kohli
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Division of Gastroenterology and Hepatology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|