1
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Conneely LJ, Hurgobin B, Ng S, Tamiru-Oli M, Lewsey MG. Characterization of the Cannabis sativa glandular trichome epigenome. BMC PLANT BIOLOGY 2024; 24:1075. [PMID: 39538149 PMCID: PMC11562870 DOI: 10.1186/s12870-024-05787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The relationship between epigenomics and plant specialised metabolism remains largely unexplored despite the fundamental importance of epigenomics in gene regulation and, potentially, yield of products of plant specialised metabolic pathways. The glandular trichomes of Cannabis sativa are an emerging model system that produce large quantities of cannabinoid and terpenoid specialised metabolites with known medicinal and commercial value. To address this lack of epigenomic data, we mapped H3K4 trimethylation, H3K56 acetylation, H3K27 trimethylation post-translational modifications and the histone variant H2A.Z, using chromatin immunoprecipitation, in C. sativa glandular trichomes, leaf, and stem tissues. Corresponding transcriptomic (RNA-seq) datasets were integrated, and tissue-specific analyses conducted to relate chromatin states to glandular trichome specific gene expression. RESULTS The promoters of cannabinoid and terpenoid biosynthetic genes, specialised metabolite transporter genes, defence related genes, and starch and sucrose metabolism were enriched specifically in trichomes for histone marks H3K4me3 and H3K56ac, consistent with active transcription. We identified putative trichome-specific enhancer elements by identifying intergenic regions of H3K56ac enrichment, a histone mark that maintains enhancer accessibility, then associated these to putative target genes using the tissue specific gene transcriptomic data. Bi-valent chromatin loci specific to glandular trichomes, marked with H3K4 trimethylation and H3K27 trimethylation, were associated with genes of MAPK signalling pathways and plant specialised metabolism pathways, supporting recent hypotheses that implicate bi-valent chromatin in plant defence. The histone variant H2A.Z was largely found in intergenic regions and enriched in chromatin that contained genes involved in DNA homeostasis. CONCLUSION We report the first genome-wide histone post-translational modification maps for C. sativa glandular trichomes, and more broadly for glandular trichomes in plants. Our findings have implications in plant adaptation and stress responses and provide a basis for enhancer-mediated, targeted, gene transformation studies in plant glandular trichomes.
Collapse
Affiliation(s)
- Lee J Conneely
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, Bundoora, VIC, Australia
| | - Bhavna Hurgobin
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Sophia Ng
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Muluneh Tamiru-Oli
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
3
|
Jiang Y, Zhang XY, Li S, Xie YC, Luo XM, Yang Y, Pu Z, Zhang L, Lu JB, Huang HJ, Zhang CX, He SY. Rapid intracellular acidification is a plant defense response countered by the brown planthopper. Curr Biol 2024; 34:5017-5027.e4. [PMID: 39406243 DOI: 10.1016/j.cub.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
Collapse
Affiliation(s)
- Yanjuan Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Sheng Yang He
- DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Medina CA, Heuschele DJ, Zhao D, Lin M, Beil CT, Sheehan MJ, Xu Z. Multi-trait modeling and machine learning discover new markers associated with stem traits in alfalfa. FRONTIERS IN PLANT SCIENCE 2024; 15:1429976. [PMID: 39315379 PMCID: PMC11418689 DOI: 10.3389/fpls.2024.1429976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
Alfalfa biomass can be fractionated into leaf and stem components. Leaves comprise a protein-rich and highly digestible portion of biomass for ruminant animals, while stems constitute a high fiber and less digestible fraction, representing 50 to 70% of the biomass. However, little attention has focused on stem-related traits, which are a key aspect in improving the nutritional value and intake potential of alfalfa. This study aimed to identify molecular markers associated with four morphological traits in a panel of five populations of alfalfa generated over two cycles of divergent selection based on 16-h and 96-h in vitro neutral detergent fiber digestibility in stems. Phenotypic traits of stem color, presence of stem pith cells, winter standability, and winter injury were modeled using univariate and multivariate spatial mixed linear models (MLM), and the predicted values were used as response variables in genome-wide association studies (GWAS). The alfalfa panel was genotyped using a 3K DArTag SNP markers for the evaluation of the genetic structure and GWAS. Principal component and population structure analyses revealed differentiations between populations selected for high- and low-digestibility. Thirteen molecular markers were significantly associated with stem traits using either univariate or multivariate MLM. Additionally, support vector machine (SVM) and random forest (RF) algorithms were implemented to determine marker importance scores for stem traits and validate the GWAS results. The top-ranked markers from SVM and RF aligned with GWAS findings for solid stem pith, winter standability, and winter injury. Additionally, SVM identified additional markers with high variable importance for solid stem pith and winter injury. Most molecular markers were located in coding regions. These markers can facilitate marker-assisted selection to expedite breeding programs to increase winter hardiness or stem palatability.
Collapse
Affiliation(s)
- Cesar A Medina
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Deborah J Heuschele
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
- Plant Science Research Unit, USDA-ARS, Saint Paul, MN, United States
| | - Dongyan Zhao
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Meng Lin
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Craig T Beil
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Moira J Sheehan
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Zhanyou Xu
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
- Plant Science Research Unit, USDA-ARS, Saint Paul, MN, United States
| |
Collapse
|
5
|
Piccinini L, Nirina Ramamonjy F, Ursache R. Imaging plant cell walls using fluorescent stains: The beauty is in the details. J Microsc 2024; 295:102-120. [PMID: 38477035 DOI: 10.1111/jmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.
Collapse
Affiliation(s)
- Luca Piccinini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Fabien Nirina Ramamonjy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Lu Y, Mao X, Wang C, Zheng Y, Duo H, Sun E, Yu H, Chen Z, Zuo C. Inhibition of PbeXTH1 and PbeSEOB1 is required for the Valsa canker resistance contributed by Wall-associated kinase gene MbWAK1. PHYSIOLOGIA PLANTARUM 2024; 176:e14330. [PMID: 38698648 DOI: 10.1111/ppl.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
Wall-associated kinases (WAKs) have been determined to recognize pathogenic signals and initiate plant immune responses. However, the roles of the family members in host resistance against Valsa canker, a serious fungal disease of apples and pears, are largely unknown. Here, we identified MbWAK1 in Malus baccata, a resistant germplasm differentially expressed during infection by Valsa mali (Vm). Over-expression of MbWAK1 enhanced the Valsa canker resistance of apple and pear fruits and 'Duli-G03' (Pyrus betulifolia) suspension cells. A large number of phloem, cell wall, and lipid metabolic process-related genes were differentially expressed in overexpressed suspension cell lines in response to Valsa pyri (Vp) signals. Among these, the expression of xyloglucan endotransglucosylase/hydrolase (XTH) gene PbeXTH1 and sieve element occlusion B-like (SEOB) gene PbeSEOB1 were significantly inhibited. Transient expression of PbeXTH1 or PbeSEOB1 compromised the expressional induction of MbWAK1 and the resistance contributed by MbWAK1. In addition, PbeXTH1 and PbeSEOB1 suppressed the immune response induced by MbWAK1. Our results enriched the molecular mechanisms for MbWAK1 against Valsa canker and resistant breeding.
Collapse
Affiliation(s)
- Yuan Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chao Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yan Zheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hu Duo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
7
|
Li R, Wang X, Hu Y, Huang G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus Liberibacter asiaticus infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1388163. [PMID: 38660443 PMCID: PMC11039969 DOI: 10.3389/fpls.2024.1388163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Introduction Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
8
|
Sugiyama S, Suda K, Kono K. Cytoplasmic zoning by protein phase transition after membrane permeabilization. J Biochem 2024; 175:147-153. [PMID: 37972304 PMCID: PMC10873517 DOI: 10.1093/jb/mvad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Biological membranes, including plasma membrane (PM) and organelle membranes, restrict the flux of ions, molecules and organelles. However, the barrier function of biological membranes is frequently compromised by various perturbations, including physical membrane damage and protein- or chemical-induced pore formation. Recent evidence suggests that, upon PM damage, protein gelation and solid condensation are utilized to restrict ion/molecule/organelle flux across the damaged membranes by zoning the cytoplasm. In addition, membrane permeabilization dramatically alters intramembrane and extramembrane ion/molecule concentrations via the flux across the permeabilized membrane. The changes in ion/molecule concentration and their downstream pathways induce protein phase transition to form zones for biological processes or protein sequestration. Here, we review the mechanisms and functions of protein phase transition after biological membrane permeabilization.
Collapse
Affiliation(s)
- Shinju Sugiyama
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Kojiro Suda
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Keiko Kono
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
9
|
Zhu Y, Stahl A, Rostás M, Will T. Temporal and species-specific resistance of sugar beet to green peach aphid and black bean aphid: mechanisms and implications for breeding. PEST MANAGEMENT SCIENCE 2024; 80:404-413. [PMID: 37708325 DOI: 10.1002/ps.7770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris ssp. vulgaris), a key crop for sugar production, faces significant yield losses caused by the black bean aphid Aphis fabae (Scop.) and the green peach aphid Myzus persicae (Sulzer), which also transmits viruses. The restriction on neonicotinoid usage in Europe has intensified this problem, emphasizing the urgent need for breeding resistant crop varieties. This study evaluated 26 sugar beet germplasms for resistance against both aphid species by using performance and feeding behavior assays. Additionally, whole plant bioassays and semi-field experiments were carried out with Myzus persicae. RESULTS Our findings demonstrate the presence of temporal resistance against both aphid species in the primary sugar beet gene pool. Beet yellows virus (BYV) carrying aphids showed enhanced performance. Different levels of plant defense mechanisms were involved including resistance against Myzus persicae before reaching the phloem, particularly in sugar beet line G3. In contrast, resistance against Aphis fabae turned out to be predominately phloem-located. Furthermore, a high incidence of black inclusion bodies inside the stomach of Myzus persicae was observed for approximately 85% of the plant genotypes tested, indicating a general and strong incompatibility between sugar beet and Myzus persicae in an initial phase of interaction. CONCLUSION Sugar beet resistance against aphids involved different mechanisms and is species-specific. The identification of these mechanisms and interactions represents a crucial milestone in advancing the breeding of sugar beet varieties with improved resistance. © 2023 Julius Kühn-Institut and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunsheng Zhu
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Andreas Stahl
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
10
|
Pagano A, Gomes C, Timmerman E, Sulima P, Przyborowski JA, Kruszka D, Impens F, Paiva JAP. Revealing the transitory and local effect of zebularine on development and on proteome dynamics of Salix purpurea. FRONTIERS IN PLANT SCIENCE 2024; 14:1304327. [PMID: 38298602 PMCID: PMC10827895 DOI: 10.3389/fpls.2023.1304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Introduction DNA methylation plays major roles in the epigenetic regulation of gene expression, transposon and transcriptional silencing, and DNA repair, with implications in developmental processes and phenotypic plasticity. Relevantly for woody species, DNA methylation constitutes a regulative layer in cell wall dynamics associated with xylogenesis. The use of methyltransferase and/or demethylase inhibitors has been proven informative to shed light on the methylome dynamics behind the regulation of these processes. Methods The present work employs the cytidine analog zebularine to inhibit DNA methyltransferases and induce DNA hypomethylation in Salix purpurea plantlets grown in vitro and in soil. An integrative approach was adopted to highlight the effects of zebularine on proteomic dynamics, revealing age-specific (3 weeks of in vitro culture and 1 month of growth in soil) and tissue-specific (stem and root) effects. Results and discussion After 3 weeks of recovery from zebularine treatment, a decrease of 5-mC levels was observed in different genomic contexts in the roots of explants that were exposed to zebularine, whereas a functionally heterogeneous subset of protein entries was differentially accumulated in stem samples, including entries related to cell wall biosynthesis, tissue morphogenesis, and hormonal regulation. Significant proteomic remodeling was revealed in the development from in vitro to in-soil culture, but no significant changes in 5-mC levels were observed. The identification of tissue-specific proteomic hallmarks in combination with hypomethylating agents provides new insights into the role of DNA methylation and proteome in early plant development in willow species. Proteomic data are available via ProteomeXchange with identifier PXD045653. WGBS data are available under BioProject accession PRJNA889596.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dariusz Kruszka
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Jorge Almiro Pinto Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
11
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
12
|
Prigigallo MI, Staropoli A, Vinale F, Bubici G. Interactions between plant-beneficial microorganisms in a consortium: Streptomyces microflavus and Trichoderma harzianum. Microb Biotechnol 2023; 16:2292-2312. [PMID: 37464583 PMCID: PMC10686133 DOI: 10.1111/1751-7915.14311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
The construction of microbial consortia is challenging due to many variables to be controlled, including the cross-compatibility of the selected strains and their additive or synergistic effects on plants. In this work, we investigated the interactions in vitro, in planta, and at the molecular level of two elite biological control agents (BCAs), that is Streptomyces microflavus strain AtB-42 and Trichoderma harzianum strain M10, to understand their attitude to cooperate in a consortium. In vitro, we observed a strong cross-antagonism between AtB-42 and M10 in agar plates due to diffusible metabolites and volatile organic compounds. In liquid co-cultures, M10 hindered the growth of AtB-42 very likely because of secondary metabolites and strong competition for the nutrients. The interaction in the co-culture induced extensive transcriptional reprogramming in both strains, especially in the pathways related to ribosomes, protein synthesis, and oxidoreductase activity, suggesting that each strain recognized the counterpart and activated its defence responses. The metabolome of both strains was also significantly affected. In contrast, in the soil, M10 growth was partially contrasted by AtB-42. The roots of tomato seedlings inoculated with the consortium appeared smaller than the control and single-strain-inoculated plants, indicating that plants diverted some energy from the development to defence activation, as evidenced by the leaf transcriptome. The consortium induced a stronger transcriptional change compared to the single inoculants, as demonstrated by a higher number of differentially expressed genes. Although the cross-antagonism observed in vitro, the two strains exerted a synergistic effect on tomato seedlings by inducing resistance responses stronger than the single inoculants. Our observations pose a question on the usefulness of the sole in vitro assays for selecting BCAs to construct a consortium. In vivo experiments should be preferred, and transcriptomics may greatly help to elucidate the activity of the BCAs beyond the phenotypic effects on the plant.
Collapse
Affiliation(s)
| | - Alessia Staropoli
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle RicerchePorticiItaly
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
| | - Francesco Vinale
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle RicercheBariItaly
| |
Collapse
|
13
|
Broussard L, Abadie C, Lalande J, Limami AM, Lothier J, Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int J Mol Sci 2023; 24:ijms24086917. [PMID: 37108078 PMCID: PMC10139104 DOI: 10.3390/ijms24086917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.
Collapse
Affiliation(s)
- Louis Broussard
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Byatt TC, Martin P. Parallel repair mechanisms in plants and animals. Dis Model Mech 2023; 16:286774. [PMID: 36706000 PMCID: PMC9903144 DOI: 10.1242/dmm.049801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
All organisms have acquired mechanisms for repairing themselves after accidents or lucky escape from predators, but how analogous are these mechanisms across phyla? Plants and animals are distant relatives in the tree of life, but both need to be able to efficiently repair themselves, or they will perish. Both have an outer epidermal barrier layer and a circulatory system that they must protect from infection. However, plant cells are immotile with rigid cell walls, so they cannot raise an animal-like immune response or move away from the insult, as animals can. Here, we discuss the parallel strategies and signalling pathways used by plants and animals to heal their tissues, as well as key differences. A more comprehensive understanding of these parallels and differences could highlight potential avenues to enhance healing of patients' wounds in the clinic and, in a reciprocal way, for developing novel alternatives to agricultural pesticides.
Collapse
Affiliation(s)
- Timothy C. Byatt
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| | - Paul Martin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| |
Collapse
|
15
|
Noll GA, Furch ACU, Rose J, Visser F, Prüfer D. Guardians of the phloem - forisomes and beyond. THE NEW PHYTOLOGIST 2022; 236:1245-1260. [PMID: 36089886 DOI: 10.1111/nph.18476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The phloem is a highly specialized vascular tissue that forms a fundamentally important transport and signaling pathway in plants. It is therefore a system worth protecting. The main function of the phloem is to transport the products of photosynthesis throughout the whole plant, but it also transports soluble signaling molecules and propagates electrophysiological signals. The phloem is constantly threatened by mechanical injuries, phloem-sucking pests and parasites, and the spread of pathogens, which has led to the evolution of efficient defense mechanisms. One such mechanism involves structural phloem proteins, which are thought to facilitate sieve element occlusion following injury and to defend the plant against pathogens. In leguminous plants, specialized structural phloem proteins known as forisomes form unique mechanoproteins via sophisticated molecular interaction and assembly mechanisms, thus enabling reversible sieve element occlusion. By understanding the structure and function of forisomes and other structural phloem proteins, we can develop a toolbox for biotechnological applications in material science and medicine. Furthermore, understanding the involvement of structural phloem proteins in plant defense mechanisms will allow phloem engineering as a new strategy for the development of crop varieties that are resistant to pests, pathogens and parasites.
Collapse
Affiliation(s)
- Gundula A Noll
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| | - Alexandra C U Furch
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany
| | - Judith Rose
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
| | - Franziska Visser
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| |
Collapse
|
16
|
Swamy MJ, Bobbili KB, Mondal S, Narahari A, Datta D. Cucurbitaceae phloem exudate lectins: Purification, molecular characterization and carbohydrate binding characteristics. PHYTOCHEMISTRY 2022; 201:113251. [PMID: 35644485 DOI: 10.1016/j.phytochem.2022.113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Much of the plant lectin research was focused on these proteins from seeds, whereas lectins from other plant tissues have been less investigated. Although presence of lectins in the phloem exudate of Cucurbitaceae species was reported over 40 years ago, only a few proteins from this family have been purified and characterized with respect to ligand binding properties, primary and secondary structures, while no 3D structure of a member of this family is known so far. Unlike lectins from other plant families and sources (e.g., seeds and tubers), which exhibit specificity towards different carbohydrate structures, all the Cucurbitaceae phloem exudate lectins characterized so far have been shown to recognize only chitooligosaccharides or glycans containing chitooligosaccharides. Interestingly, some of these proteins also bind various types of RNAs, suggesting that they may also play a role in the transport of RNA information molecules in the phloem. The present review gives an overview of the current knowledge of Cucurbitaceae phloem exudate lectins with regard to their purification, determination of primary and secondary structures, elucidation of thermodynamics and kinetics of carbohydrate binding and computational modeling to get information on their 3D structures. Finally, future perspectives of research on this important class of proteins are considered.
Collapse
Affiliation(s)
- Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India.
| | | | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | | | - Debparna Datta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
17
|
Abstract
Although the phloem is a highly specialized tissue, certain pathogens, including phytoplasmas, spiroplasmas, and viruses, have evolved to access and live in this sequestered and protected environment, causing substantial economic harm. In particular, Candidatus Liberibacter spp. are devastating citrus in many parts of the world. Given that most phloem pathogens are vectored, they are not exposed to applied chemicals and are therefore difficult to control. Furthermore, pathogens use the phloem network to escape mounted defenses. Our review summarizes the current knowledge of phloem anatomy, physiology, and biochemistry relevant to phloem/pathogen interactions. We focus on aspects of anatomy specific to pathogen movement, including sieve plate structure and phloem-specific proteins. Phloem sampling techniques are discussed. Finally, pathogens that cause particular harm to the phloem of crop species are considered in detail.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Plant Gene Expression Center, USDA-ARS, Albany, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
18
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
19
|
Identification of Sieve Element Occlusion Gene (SEOs) Family in Rubber Trees (Hevea brasiliensis Muell. Arg.) Provides Insights to the Mechanism of Laticifer Plugging. FORESTS 2022. [DOI: 10.3390/f13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P proteins encoded by SEOs (sieve element occlusion) have been shown to be associated with the blockage of sieve tubes after injury in many plants, but the presence of SEO genes and their association with rubber tree laticifer plugging and latex yield remain unclear. Through a systematic identification and analysis, seven SEO genes were identified from the rubber tree genome. The physicochemical properties of their proteins, gene structures, conserved domains, and locations on chromosomes were analyzed. According to their phylogenetic distance, HbSEOs were divided into two clusters. The transcript levels of HbSEO genes varied with tissues, in which HbSEO3 and HbSEO4 were most highly expressed in leaf, bark, and latex. HbSEOs could be induced by ethephon, methyl jasmonate, mechanical injury, and tapping; furthermore, they were highly expressed in trees with short flow duration, suggesting their possible association with rubber tree laticifer plugging and latex yield. To our knowledge, this is the first report of HbSEOs in rubber trees. It provides us with a better understanding of the mechanism of laticifer plugging.
Collapse
|
20
|
Azizpor P, Sullivan L, Lim A, Groover A. Facile Labeling of Sieve Element Phloem-Protein Bodies Using the Reciprocal Oligosaccharide Probe OGA 488. FRONTIERS IN PLANT SCIENCE 2022; 13:809923. [PMID: 35222474 PMCID: PMC8867008 DOI: 10.3389/fpls.2022.809923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Sieve elements of many angiosperms contain structural phloem proteins (P-proteins) that can interact to create large P-protein bodies. P-protein bodies can occlude sieve plates upon injury but the range of functional and physiological roles of P-proteins remains uncertain, in part because of challenges in labeling and visualization methods. Here, we show that a reciprocal oligosaccharide probe, OGA488, can be used in rapid and sensitive labeling of P-protein bodies in Arabidopsis, poplar, snap bean and cucumber in histological sections. OGA488 labeling of knockouts of the two Arabidopsis P-protein-encoding genes, AtSEOR1 and AtSEOR2, indicated that labeling is specific to AtSEOR2. That protein bodies were labeled and visible in Atseor1 knockouts indicates that heterodimerization of AtSEOR1 and AtSEOR2 may not be necessary for P-protein body formation. Double labeling with a previously characterized stain for P-proteins, sulphorhodamine 101, confirmed P-protein labeling and also higher specificity of OGA488 for P-proteins. OGA488 is thus robust and easily used to label P-proteins in histological sections of multiple angiosperm species.
Collapse
Affiliation(s)
| | | | | | - Andrew Groover
- US Forest Service, Pacific Southwest Research Station, Davis, CA, United States
| |
Collapse
|
21
|
Walker GP. Sieve element occlusion: Interactions with phloem sap-feeding insects. A review. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153582. [PMID: 34953413 DOI: 10.1016/j.jplph.2021.153582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Phloem sieve element (SE) occlusion has been hypothesized for decades to be a mechanism of resistance against phloem sap-feeding insects. Few studies have tested this hypothesis although it is likely a widespread phenomenon. This review focuses on SE occlusion by callose and P-proteins. Both are reversible, which would allow the plant to defend itself against phloem sap-feeders when SEs are penetrated and resume normal function when the insects give up and withdraw their stylets. Callose (β-1,3 glucans with some β-1,6 branches) serves many roles in plant physiology in many different tissues, each being under the control of different callose synthase genes; only callose deposited in SE sieve pores is relevant to SE occlusion. The amount of callose in sieve pores (and consequently how much it impedes sap flow) is determined by the balance in activity between callose synthase and β-1,3 glucanase. Sieve pore callose deposition has been shown to provide resistance to some phloem sap-feeders in a few studies, and in one, the difference in resistance between a susceptible and resistant rice variety was due to the ability or inability of the insect to upregulate the plants' β-1,3 glucanase that degrades the callose deposition. P-proteins occur only in dicotyledons and include a variety of proteins, not all of which are involved in SE occlusion. In some plants, P-proteins form distinct bodies in mature functional SEs. In papilionid legumes, these discrete bodies, called forisomes can expand and contract. In their expanded state, they effectively plug SEs and stop the flow of sap while in their contracted state, they provide negligible resistance to sap flow. Expansion of forisomes is triggered by an influx of Ca2+ into the SE. Penetration of a legume (Vicia faba) SE by a generalist aphid not adapted to legumes triggers forisome expansion which occludes the SE and prevents the aphid from ingesting sap. In contrast, a legume specialist aphid, Acyrthosiphon pisum, does not trigger forisome expansion and readily ingests sap from V. faba. P-protein bodies in SEs of non-legumes do not appear to be involved in SE occlusion. In most dicotyledons, P-proteins do not form discrete bodies, but rather occur as filamentous aggregations adhering to the parietal margins of the SE and in response to damage, are released into the lumen where they are carried by the flow of sap to the downstream sieve plate where they back up and clog the sieve pores. Their effectiveness at actually stopping the flow of sap is controversial. In one study, they seemed to provide little resistance to the flow of sap while in other studies, they provided considerable resistance. In response to injury in melon, they completely stop the flow of sap, and in an aphid-resistant melon, penetration of SEs by the melon aphid, Aphis gossypii, triggers P-protein occlusion which prevents the aphids from ingesting sap. The first P-protein described, PP1, occurs only in the genus Cucurbita, and although it has been often cited to function as a SE occlusion protein, experimental evidence suggests it does not play a significant role in SE occlusion. The most common strategy for phloem sap-feeders to mitigate P-protein occlusion seems to be avoid triggering it. A widely cited in vitro study suggested that aphid saliva can reverse P-protein occlusion, but a subsequent study demonstrated that saliva was ineffective at reversing P-protein occlusion in vivo. Lastly, SE callose deposition in wheat triggered by Russian wheat aphid has been hypothesized to create an artificial sink that benefits the aphid, but additional studies are needed to test that hypothesis.
Collapse
Affiliation(s)
- G P Walker
- Department of Entomology, University of California, Riverside, United States.
| |
Collapse
|
22
|
Liu Y, Vasina VV, Kraner ME, Peters WS, Sonnewald U, Knoblauch M. Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element-specific proteins reveal differentiation of the endomembrane system. Proc Natl Acad Sci U S A 2022; 119:e2112755119. [PMID: 34983847 PMCID: PMC8740716 DOI: 10.1073/pnas.2112755119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA 99154
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN 46835
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99154;
| |
Collapse
|
23
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Wei X, Mira A, Yu Q, Gmitter FG. The Mechanism of Citrus Host Defense Response Repression at Early Stages of Infection by Feeding of Diaphorina citri Transmitting Candidatus Liberibacter asiaticus. FRONTIERS IN PLANT SCIENCE 2021; 12:635153. [PMID: 34168662 PMCID: PMC8218908 DOI: 10.3389/fpls.2021.635153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/29/2021] [Indexed: 06/01/2023]
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus, presumably caused by "Candidatus Liberibacter asiaticus" (CaLas). Although transcriptomic profiling of HLB-affected citrus plants has been studied extensively, the initial steps in pathogenesis have not been fully understood. In this study, RNA sequencing (RNA-seq) was used to compare very early transcriptional changes in the response of Valencia sweet orange (VAL) to CaLas after being fed by the vector, Diaphorina citri (Asian citrus psyllid, or ACP). The results suggest the existence of a delayed defense reaction against the infective vector in VAL, while the attack by the healthy vector prompted immediate and substantial transcriptomic changes that led to the rapid erection of active defenses. Moreover, in the presence of CaLas-infected psyllids, several downregulated differentially expressed genes (DEGs) were identified on the pathways, such as signaling, transcription factor, hormone, defense, and photosynthesis-related pathways at 1 day post-infestation (dpi). Surprisingly, a burst of DEGs (6,055) was detected at 5 dpi, including both upregulated and downregulated DEGs on the defense-related and secondary metabolic pathways, and severely downregulated DEGs on the photosynthesis-related pathways. Very interestingly, a significant number of those downregulated DEGs required ATP binding for the activation of phosphate as substrate; meanwhile, abundant highly upregulated DEGs were detected on the ATP biosynthetic and glycolytic pathways. These findings highlight the energy requirement of CaLas virulence processes. The emerging picture is that CaLas not only employs virulence strategies to subvert the host cell immunity, but the fast-replicating CaLas also actively rewires host cellular metabolic pathways to obtain the necessary energy and molecular building blocks to support virulence and the replication process. Taken together, the very early response of citrus to the CaLas, vectored by infective ACP, was evaluated for the first time, thus allowing the changes in gene expression relating to the primary mechanisms of susceptibility and host-pathogen interactions to be studied, and without the secondary effects caused by the development of complex whole plant symptoms.
Collapse
Affiliation(s)
- Xu Wei
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- College of Horticulture and Landscape, Southwest University, Chongqing, China
| | - Amany Mira
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Fred G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
25
|
Vieira P, Vicente CSL, Branco J, Buchan G, Mota M, Nemchinov LG. The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetrans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:645-657. [PMID: 33400561 DOI: 10.1094/mpmi-09-20-0267-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of crops. Like other plant pathogens, P. penetrans deploys a battery of secreted protein effectors to manipulate plant hosts and induce disease. Although several candidate effectors of P. penetrans have been identified, detailed mechanisms of their functions and particularly their host targets remain largely unexplored. In this study, a repertoire of candidate genes encoding pioneer effectors of P. penetrans was amplified from mixed life stages of the nematode, and candidate effectors were cloned and subjected to transient expression in a heterologous host, Nicotiana benthamiana, using potato virus X-based gene vector. Among seven analyzed genes, the candidate effector designated as Ppen10370 triggered pleiotropic phenotypes substantially different from those produced by wild type infection. Transcriptome analysis of plants expressing Ppen10370 demonstrated that observed phenotypic changes were likely related to disruption of core biological processes in the plant due to effector-originated activities. Cross-species comparative analysis of Ppen10370 identified homolog gene sequences in five other Pratylenchus species, and their transcripts were found to be localized specifically in the nematode esophageal glands by in situ hybridization. RNA silencing of the Ppen10370 resulted in a significant reduction of nematode reproduction and development, demonstrating an important role of the esophageal gland effector for parasitism.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paulo Vieira
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Cláudia S L Vicente
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P.-Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Jordana Branco
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Buchan
- Electron & Confocal Microscopy Unit, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Manuel Mota
- NemaLab, MED-Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Lev G Nemchinov
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A
| |
Collapse
|
26
|
Veličković D, Chu RK, Henkel C, Nyhuis A, Tao N, Kyle JE, Adkins JN, Anderton CR, Paurus V, Bloodsworth K, Bramer LM, Cornett DS, Curtis WR, Burnum‐Johnson KE. Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:28-35. [PMID: 37283847 PMCID: PMC10168036 DOI: 10.1002/pei3.10038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/08/2023]
Abstract
Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Rosalie K. Chu
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | | | | | | | - Jennifer E. Kyle
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Joshua N. Adkins
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Christopher R. Anderton
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Vanessa Paurus
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Kent Bloodsworth
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Lisa M. Bramer
- Computing & Analytics DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | | | - Wayne R. Curtis
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPAUSA
| | | |
Collapse
|
27
|
Skipping the Insect Vector: Plant Stolon Transmission of the Phytopathogen ' Ca. Phlomobacter fragariae' from the Arsenophonus Clade of Insect Endosymbionts. INSECTS 2021; 12:insects12020093. [PMID: 33499057 PMCID: PMC7912703 DOI: 10.3390/insects12020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Numerous plant sap-feeding insects are vectors of plant-pathogenic bacteria that cause devastating crop diseases. Some of these bacteria had initially been insect endosymbionts that eventually evolved the capacity to survive in plants after being frequently transmitted to plants by their insect hosts during feeding. An example for this evolutionary transition is the bacterial symbiont ‘Candidatus Phlomobacter fragariae’ (hereafter Phlomobacter) of the planthopper Cixius wagneri. Upon transmission to strawberry plants by its insect vector, the bacterium accumulates in the plant phloem and causes Strawberry Marginal Chlorosis disease. Using quantitative PCR and transmission electron microscopy, we demonstrate an additional plant-to-plant transmission route: Phlomobacter can be transmitted from an infected plant to daughter plants through stolons, a specific type of stem from which daughter plants can develop. Our results show that Phlomobacter was abundant in stolons and was efficiently transmitted to daughter plants, which developed disease symptoms. Hence, Phlomobacter is not only able to survive in plants, but can even be transmitted to new plant generations, independently from its ancestral insect host. Abstract The genus Arsenophonus represents one of the most widespread clades of insect endosymbionts, including reproductive manipulators and bacteriocyte-associated primary endosymbionts. Two strains belonging to the Arsenophonus clade have been identified as insect-vectored plant pathogens of strawberry and sugar beet. The bacteria accumulate in the phloem of infected plants, ultimately causing leaf yellows and necrosis. These symbionts therefore represent excellent model systems to investigate the evolutionary transition from a purely insect-associated endosymbiont towards an insect-vectored phytopathogen. Using quantitative PCR and transmission electron microscopy, we demonstrate that ‘Candidatus Phlomobacter fragariae’, bacterial symbiont of the planthopper Cixius wagneri and the causative agent of Strawberry Marginal Chlorosis disease, can be transmitted from an infected strawberry plant to multiple daughter plants through stolons. Stolons are horizontally growing stems enabling the nutrient provisioning of daughter plants during their early growth phase. Our results show that Phlomobacter was abundant in the phloem sieve elements of stolons and was efficiently transmitted to daughter plants, which rapidly developed disease symptoms. From an evolutionary perspective, Phlomobacter is, therefore, not only able to survive within the plant after transmission by the insect vector, but can even be transmitted to new plant generations, independently from its ancestral insect host.
Collapse
|
28
|
Fungal Wound Healing through Instantaneous Protoplasmic Gelation. Curr Biol 2021; 31:271-282.e5. [DOI: 10.1016/j.cub.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
|
29
|
Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y. Chromosome-level draft genome of a diploid plum (Prunus salicina). Gigascience 2020; 9:giaa130. [PMID: 33300949 PMCID: PMC7727024 DOI: 10.1093/gigascience/giaa130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Plums are one of the most economically important Rosaceae fruit crops and comprise dozens of species distributed across the world. Until now, only limited genomic information has been available for the genetic studies and breeding programs of plums. Prunus salicina, an important diploid plum species, plays a predominant role in modern commercial plum production. Here we selected P. salicina for whole-genome sequencing and present a chromosome-level genome assembly through the combination of Pacific Biosciences sequencing, Illumina sequencing, and Hi-C technology. FINDINGS The assembly had a total size of 284.2 Mb, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb. A total of 96.56% of the assembled sequences were anchored onto 8 pseudochromosomes, and 24,448 protein-coding genes were identified. Phylogenetic analysis showed that P. salicina had a close relationship with Prunus mume and Prunus armeniaca, with P. salicina diverging from their common ancestor ∼9.05 million years ago. During P. salicina evolution 146 gene families were expanded, and some cell wall-related GO terms were significantly enriched. It was noteworthy that members of the DUF579 family, a new class involved in xylan biosynthesis, were significantly expanded in P. salicina, which provided new insight into the xylan metabolism in plums. CONCLUSIONS We constructed the first high-quality chromosome-level plum genome using Pacific Biosciences, Illumina, and Hi-C technologies. This work provides a valuable resource for facilitating plum breeding programs and studying the genetic diversity mechanisms of plums and Prunus species.
Collapse
Affiliation(s)
- Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 1190 Tianyuan Road, Guangzhou 510650, China
| | - Weizhuo Peng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Jingjing Hao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Juntao Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Jianjun Pan
- Agricultural Technology Extension Center of Conghua District, 468 Tianlu Road, Guangzhou 510900, Guangdong Province, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| |
Collapse
|
30
|
Curtolo M, de Souza Pacheco I, Boava LP, Takita MA, Granato LM, Galdeano DM, de Souza AA, Cristofani-Yaly M, Machado MA. Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Sci Rep 2020; 10:20865. [PMID: 33257732 PMCID: PMC7705011 DOI: 10.1038/s41598-020-77840-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
Huanglongbing (HLB), caused mainly by ‘Candidatus Liberibacter asiaticus’ (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.
Collapse
Affiliation(s)
- Maiara Curtolo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil. .,Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Inaiara de Souza Pacheco
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil.,Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Leonardo Pires Boava
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Laís Moreira Granato
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Diogo Manzano Galdeano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | | | | | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| |
Collapse
|
31
|
Liu Y, Peters WS, Froelich DR, Howell AH, Mooney S, Evans JE, Hellmann HA, Knoblauch M. Aspartate Residues in a Forisome-Forming SEO Protein Are Critical for Protein Body Assembly and Ca2+ Responsiveness. PLANT & CELL PHYSIOLOGY 2020; 61:1699-1710. [PMID: 33035344 DOI: 10.1093/pcp/pcaa093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Forisomes are protein bodies known exclusively from sieve elements of legumes. Forisomes contribute to the regulation of phloem transport due to their unique Ca2+-controlled, reversible swelling. The assembly of forisomes from sieve element occlusion (SEO) protein monomers in developing sieve elements and the mechanism(s) of Ca2+-dependent forisome contractility are poorly understood because the amino acid sequences of SEO proteins lack conventional protein-protein interaction and Ca2+-binding motifs. We selected amino acids potentially responsible for forisome-specific functions by analyzing SEO protein sequences in comparison to those of the widely distributed SEO-related (SEOR), or SEOR proteins. SEOR proteins resemble SEO proteins closely but lack any Ca2+ responsiveness. We exchanged identified candidate residues by directed mutagenesis of the Medicago truncatula SEO1 gene, expressed the mutated genes in yeast (Saccharomyces cerevisiae) and studied the structural and functional phenotypes of the forisome-like bodies that formed in the transgenic cells. We identified three aspartate residues critical for Ca2+ responsiveness and two more that were required for forisome-like bodies to assemble. The phenotypes observed further suggested that Ca2+-controlled and pH-inducible swelling effects in forisome-like bodies proceeded by different yet interacting mechanisms. Finally, we observed a previously unknown surface striation in native forisomes and in recombinant forisome-like bodies that could serve as an indicator of successful forisome assembly. To conclude, this study defines a promising path to the elucidation of the so-far elusive molecular mechanisms of forisome assembly and Ca2+-dependent contractility.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | | | - Alexander H Howell
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Sutton Mooney
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - James E Evans
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354, USA
| | - Hanjo A Hellmann
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| |
Collapse
|
32
|
Characterization of Local and Systemic Impact of Whitefly ( Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int J Mol Sci 2020; 21:ijms21197241. [PMID: 33008056 PMCID: PMC7583044 DOI: 10.3390/ijms21197241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum ‘Florida Lanai’), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato’s response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato’s local and systemic response to whitefly feeding and ToMoV infection.
Collapse
|
33
|
Ogden AJ, Bhatt JJ, Brewer HM, Kintigh J, Kariuki SM, Rudrabhatla S, Adkins JN, Curtis WR. Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. Int J Mol Sci 2020; 21:E4461. [PMID: 32586033 PMCID: PMC7352395 DOI: 10.3390/ijms21124461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jishnu J. Bhatt
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Heather M. Brewer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jack Kintigh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Samwel M. Kariuki
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Sairam Rudrabhatla
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg Campus, 777 W Harrisburg Pike, Middletown, PA 17057, USA;
| | - Joshua N. Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Wayne R. Curtis
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| |
Collapse
|
34
|
Garg V, Kühn C. What determines the composition of the phloem sap? Is there any selectivity filter for macromolecules entering the phloem sieve elements? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:284-291. [PMID: 32248039 DOI: 10.1016/j.plaphy.2020.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
In view of recent findings, it is still a matter of debate whether the composition of the phloem sap of higher plants is specific and based on a plasmodesmal selectivity filter for macromolecular transport, or whether simply related to size, abundance and half-life of the macromolecules within the phloem sap. A range of reports indicates specific function of phloem-mobile signaling molecules such as the florigen making it indispensable to discriminate specific macromolecules entering the phloem from others which cannot cross this selectivity filter. Nevertheless, several findings have discussed for a non-selective transport via plasmodesmata, or contamination of the phloem sap by degradation products coming from immature still developing young sieve elements undergoing differentiation. Here, we discuss several possibilities, and raise the question how selectivity of the phloem sap composition could be achieved thereby focusing on mobility and dynamics of sucrose transporter mRNA and proteins.
Collapse
Affiliation(s)
- Varsha Garg
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Christina Kühn
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany.
| |
Collapse
|
35
|
Knoblauch J, Knoblauch M, Vasina VV, Peters WS. Sieve elements rapidly develop 'nacreous walls' following injury - a common wounding response? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:797-808. [PMID: 31883138 DOI: 10.1111/tpj.14665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Thick glistening cell walls occur in sieve tubes of all major land plant taxa. Historically, these 'nacreous walls' have been considered a diagnostic feature of sieve elements; they represent a conundrum, though, in the context of the widely accepted pressure-flow theory as they severely constrict sieve tubes. We employed the cucurbit Gerrardanthus macrorhizus as a model to study nacreous walls in sieve elements by standard and in situ confocal microscopy and electron microscopy, focusing on changes in functional sieve tubes that occur when prepared for microscopic observation. Over 90% of sieve elements in tissue sections processed for microscopy by standard methods exhibit nacreous walls. Sieve elements in whole, live plants that were actively transporting as shown by phloem-mobile tracers, lacked nacreous walls and exhibited open lumina of circular cross-sections instead, an appropriate structure for Münch-type mass flow of the cell contents. Puncturing of transporting sieve elements with micropipettes triggered the rapid (<1 min) development of nacreous walls that occluded the cell lumen almost completely. We conclude that nacreous walls are preparation artefacts rather than structural features of transporting sieve elements. Nacreous walls in land plants resemble the reversibly swellable walls found in various algae, suggesting that they may function in turgor buffering, the amelioration of osmotic stress, wounding-induced sieve tube occlusion, and possibly local defence responses of the phloem.
Collapse
Affiliation(s)
- Jan Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| |
Collapse
|
36
|
Peng H, Walker GP. Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons. INSECT SCIENCE 2020; 27:33-48. [PMID: 29845727 PMCID: PMC7379274 DOI: 10.1111/1744-7917.12610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 05/23/2023]
Abstract
Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii Glover on susceptible and resistant melons (cv. Iroquois and TGR-1551, respectively). Average phloem phase bout duration on TGR-1551 was <7% of the duration on Iroquois. Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion (EPG waveform E2) in contrast to only 7% of aphids on Iroquois. Average bout duration of waveform E2 (scored as zero if phloem phase did not attain E2) on TGR-1551 was <3% of the duration on Iroquois. Conversely, average bout duration of EPG waveform E1 (sieve element salivation) was 2.8 times greater on TGR-1551 than on Iroquois. In a second experiment, liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element. Phloem near the penetration site was then examined by confocal laser scanning microscopy. Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois. Usually in TGR-1551, occlusion was also observed in nearby nonpenetrated sieve elements. Next, a calcium channel blocker, trivalent lanthanum, was used to prevent phloem occlusion in TGR-1551, and A. gossypii feeding behavior and the plant's phloem response were compared between lanthanum-treated and control TGR-1551. Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants. This study provides strong evidence that phloem occlusion is a mechanism for resistance against A. gossypii in TGR-1551.
Collapse
Affiliation(s)
- Hsuan‐Chieh Peng
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Gregory P. Walker
- Department of EntomologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
37
|
Kloth KJ, Kormelink R. Defenses against Virus and Vector: A Phloem-Biological Perspective on RTM- and SLI1-Mediated Resistance to Potyviruses and Aphids. Viruses 2020; 12:E129. [PMID: 31979012 PMCID: PMC7077274 DOI: 10.3390/v12020129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
Combining plant resistance against virus and vector presents an attractive approach to reduce virus transmission and virus proliferation in crops. RestrictedTobacco-etch virus Movement (RTM) genes confer resistance to potyviruses by limiting their long-distance transport. Recently, a close homologue of one of the RTM genes, SLI1, has been discovered but this gene instead confers resistance to Myzus persicae aphids, a vector of potyviruses. The functional connection between resistance to potyviruses and aphids, raises the question whether plants have a basic defense system in the phloem against biotic intruders. This paper provides an overview on restricted potyvirus phloem transport and restricted aphid phloem feeding and their possible interplay, followed by a discussion on various ways in which viruses and aphids gain access to the phloem sap. From a phloem-biological perspective, hypotheses are proposed on the underlying mechanisms of RTM- and SLI1-mediated resistance, and their possible efficacy to defend against systemic viruses and phloem-feeding vectors.
Collapse
Affiliation(s)
- Karen J. Kloth
- Laboratory of Entomology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
38
|
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of Small Regulatory RNAs between Plants and Their Pests. PLANT PHYSIOLOGY 2020; 182:51-62. [PMID: 31636103 PMCID: PMC6945882 DOI: 10.1104/pp.19.00931] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 05/09/2023]
Abstract
Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research.
Collapse
Affiliation(s)
- Collin Hudzik
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Michael J Axtell
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
39
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
40
|
Rose J, Visser F, Müller B, Senft M, Groscurth S, Sicking KF, Twyman RM, Prüfer D, Noll GA. Identification and molecular analysis of interaction sites in the MtSEO-F1 protein involved in forisome assembly. Int J Biol Macromol 2019; 144:603-614. [PMID: 31843608 DOI: 10.1016/j.ijbiomac.2019.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022]
Abstract
Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several "sieve element occlusion by forisome" (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains -an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)- but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly. To identify key amino acids involved in MtSEO-F1 dimerization and complex formation, we investigated protein-protein interactions by bimolecular fluorescence complementation and the analysis of yeast two-hybrid and random mutagenesis libraries. We identified a SEO-NTD core region as the major dimerization site, with abundant hydrophobic residues and rare charged residues suggesting dimerization is driven by the hydrophobic effect. We also found that ~45% of the full-length MtSEO-F1 sequence must be conserved for higher-order protein assembly, indicating that large interaction surfaces facilitate stable interactions, contributing to the high resilience of forisome bodies. Interestingly, the removal of 62 amino acids from the C-terminus did not disrupt forisome assembly. This is the first study unraveling interaction sites and mechanisms within the MtSEO-F1 protein at the level of dimerization and complex formation.
Collapse
Affiliation(s)
- Judith Rose
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Franziska Visser
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Matthias Senft
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Sira Groscurth
- Stem Cell Network North Rhine-Westphalia, Merowingerplatz 1, 40225 Düsseldorf, Germany
| | - Kevin F Sicking
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | | | - Dirk Prüfer
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Gundula A Noll
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
41
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
42
|
Braich S, Baillie RC, Jewell LS, Spangenberg GC, Cogan NOI. Generation of a Comprehensive Transcriptome Atlas and Transcriptome Dynamics in Medicinal Cannabis. Sci Rep 2019; 9:16583. [PMID: 31719627 PMCID: PMC6851104 DOI: 10.1038/s41598-019-53023-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Cannabinoids are the main medicinal compounds of interest in the plant Cannabis sativa, that are primarily synthesised in the glandular trichomes; found on female floral buds. The content, composition and yield of secondary metabolites (cannabinoids and terpenoids) is influenced by the plant's genetics and environment. Some initial gene expression experiments have been performed from strains of this plant species that contrasted in cannabinoid production, however the present knowledge about detailed trichome transcriptomics in this species is limited. An extensive transcriptome atlas was generated by RNA sequencing using root, shoot, flower and trichome tissues from a female plant strain (Cannbio-2) and was enhanced with the addition of vegetative and reproductive tissues from a male cannabis plant. Differential gene expression analysis identified genes preferentially expressed in different tissues. Detailed trichomics was performed from extractions specifically from glandular trichomes as well as female floral tissues at varying developmental stages, to identify stage-specific differentially expressed genes. Candidate genes involved in terpene and cannabinoid synthesis were identified and the majority were found to have an abundant expression in trichomes. The comprehensive transcriptome is a significant resource in cannabis for further research of functional genomics to improve the yield of specialised metabolites with high pharmacological value.
Collapse
Affiliation(s)
- Shivraj Braich
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Rebecca C Baillie
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, Australia
| | - Larry S Jewell
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, Australia
| | - German C Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Noel O I Cogan
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
43
|
van Bel AJE, Musetti R. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3737-3755. [PMID: 30972422 DOI: 10.1093/jxb/erz172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Giessen, Germany
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
44
|
Scanning Electron Microscopy of the Phloem. Methods Mol Biol 2019. [PMID: 31197784 DOI: 10.1007/978-1-4939-9562-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vascular plants, sugars are transported through the phloem tissue from areas of production, the leaves, to heterotrophic organs, where they are needed for growth and storage. Inside the phloem, transport takes place in specialized cells called sieve elements. Sieve elements are connected end-to-end by sieve plates to form a sieve tube. Sieve plates have small perforations called sieve pores. Transport of sugars is pushed through the tubes, plates, and pores by osmotic potential differences in the plant. Physical constraints govern the speed and volume of sugar flow through this tube system. Understanding the phloem requires precise anatomical measurements to model the effect of sieve element physical parameters on flow. Presented is a detailed method to prepare phloem tissue for scanning electron microscopy to obtain large quantities of high-resolution data of the plants sugar transport tissue.
Collapse
|
45
|
Sevanto S. Methods for Assessing the Role of Phloem Transport in Plant Stress Responses. Methods Mol Biol 2019; 2014:311-336. [PMID: 31197806 DOI: 10.1007/978-1-4939-9562-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
46
|
Super-Resolution Microscopy of Phloem Proteins. Methods Mol Biol 2019. [PMID: 31197788 DOI: 10.1007/978-1-4939-9562-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Super-resolution microscopy bridges the gap between light and electron microscopy and gives new opportunities for the study of proteins that contribute to phloem function. The established super-resolution techniques are derived from fluorescence microscopy and depend on fluorescent dyes, proteins tagged with GFP variants or fluorochrome-decorated antibodies. Compared with confocal microscopy they improve the resolution between 2.5 and 10 times and, thus, allow a much more precise (co-) localization of membranes, plasmodesmata, and structural proteins. However, they are limited to thin tissue slices rather than intact plant organs and can only show immobilized or only slowly moving targets. Accordingly, the first super-resolution micrographs of the phloem were recorded from fixed tissue which was sectioned using a vibratome or microtome. As with transmission electron microscopy, preparation of phloem tissue for super-resolution microscopy is challenged by the sudden pressures release when dissecting the functional tissue (see Chapter 2 ).This chapter describes a protocol for investigation of proteins in the plasma membranes of sieve elements and companion cells. It illustrates how high-resolution fluorescence imaging can provide information that could not be obtained with confocal or electron microscopy. Further, a brief introduction outlines the theoretical background of super-resolution techniques suitable for phloem imaging and summarizes the findings of the first available super-resolution studies on the phloem. The protocol focusses on the crucial steps for super-resolution microscopy of immunolocalized phloem proteins, adjusted to the use of three-dimensional structured illumination microscopy (3D-SIM).
Collapse
|
47
|
Li LQ, Lyu CC, Li JH, Tong Z, Lu YF, Wang XY, Ni S, Yang SM, Zeng FC, Lu LM. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress. Int J Mol Sci 2019; 20:ijms20010221. [PMID: 30626112 PMCID: PMC6337362 DOI: 10.3390/ijms20010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The protein–protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Cheng-Cheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jia-Hao Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Zhu Tong
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shi-Min Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Fu-Chun Zeng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
48
|
Sui X, Nie J, Li X, Scanlon MJ, Zhang C, Zheng Y, Ma S, Shan N, Fei Z, Turgeon R, Zhang Z. Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:982-996. [PMID: 30194881 DOI: 10.1111/tpj.14084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 05/17/2023]
Abstract
The phloem of the Cucurbitaceae has long been a subject of interest due to its complex nature and the economic importance of the family. As in a limited number of other families, cucurbit phloem is bicollateral, i.e. with sieve tubes on both sides of the xylem. To date little is known about the specialized functions of the internal phloem (IP) and external phloem (EP). Here, a combination of microscopy, fluorescent dye transport analysis, micro-computed tomography, laser capture microdissection and RNA-sequencing (RNA-Seq) were used to study the functions of IP and EP in the vascular bundles (VBs) of cucumber fruit. There is one type of VB in the peduncle, but four in the fruit: peripheral (PeVB), main (MVB), carpel (CVB) and placental (PlVB). The VBs are bicollateral, except for the CVB and PlVB. Phloem mobile tracers and 14 C applied to leaves are transported primarily in the EP, and to a lesser extent in the IP. RNA-Seq data indicate preferential gene transcription in the IP related to differentiation/development, hormone transport, RNA or protein modification/processing/transport, and nitrogen compound metabolism and transport. The EP preferentially expresses genes for stimulus/stress, defense, ion transport and secondary metabolite biosynthesis. The MVB phloem is preferentially involved in photoassimilate transport, unloading and long-distance signaling, while the PeVB plays a more substantial role in morphogenesis and/or development and defense response. CVB and PlVB transcripts are biased toward development of reproductive organs. These findings provide an integrated view of the differentiated structure and function of the vascular tissue in cucumber fruit.
Collapse
Affiliation(s)
- Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
49
|
Pagliari L, Buoso S, Santi S, Van Bel AJE, Musetti R. What Slows Down Phytoplasma Proliferation? Speculations on the Involvement of AtSEOR2 Protein in Plant Defence Signalling. PLANT SIGNALING & BEHAVIOR 2018; 13:e1473666. [PMID: 29969363 PMCID: PMC6103281 DOI: 10.1080/15592324.2018.1473666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 05/13/2023]
Abstract
Considering the crude methods used to control phytoplasma diseases, a deeper knowledge on the defence mechanisms recruited by the plant to face phytoplasma invasion is required. Recently, we demonstrated that Arabidopsis mutants lacking AtSEOR1 gene showed a low phytoplasma titre. In wild type plants AtSEOR1 and AtSEOR2 are tied in filamentous proteins. Knockout of the AtSEOR1 gene may pave the way for an involvement of free AtSEOR2 proteins in defence mechanisms. Among the proteins conferring resistance against pathogenic bacteria, AtRPM1-interacting protein has been found to interact with AtSEOR2 in a high-quality, matrix-based yeast-two hybrid assay. For this reason, we investigated the expression levels of Arabidopsis AtRIN4, and the associated AtRPM1 and AtRPS2 genes in healthy and Chrysanthemum yellows-infected wild-type and Atseor1ko lines.
Collapse
Affiliation(s)
- L. Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - S. Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - S. Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - A. J. E. Van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - R. Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
50
|
Sun M, Voorrips RE, Steenhuis-Broers G, van’t Westende W, Vosman B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC PLANT BIOLOGY 2018; 18:138. [PMID: 29945550 PMCID: PMC6020309 DOI: 10.1186/s12870-018-1340-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/04/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The green peach aphid (GPA), Myzus persicae, is economically one of the most threatening pests in pepper cultivation, which not only causes direct damage but also transmits many viruses. Breeding aphid resistant pepper varieties is a promising and environmentally friendly method to control aphid populations in the field and in the greenhouse. Until now, no strong sources of resistance against the GPA have been identified. Therefore the main aims of this study were to identify pepper materials with a good level of resistance to GPA and to elucidate possible resistance mechanisms. RESULTS We screened 74 pepper accessions from different geographical areas for resistance to M. persicae. After four rounds of evaluation we identified one Capsicum baccatum accession (PB2013071) as highly resistant to M. persicae, while the accessions PB2013062 and PB2012022 showed intermediate resistance. The resistance of PB2013071 resulted in a severely reduced uptake of phloem compared to the susceptible accession, as determined by Electrical Penetration Graph (EPG) studies. Feeding of M. persicae induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in resistant, but not in susceptible plants. CONCLUSIONS Three aphid resistant pepper accessions were identified, which will be important for breeding aphid resistant pepper varieties in the future. The most resistant accession PB2013071 showed phloem-based resistance against aphid infestation.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Greet Steenhuis-Broers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Wendy van’t Westende
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|