1
|
Oakes A, Liu Y, Dubielecka PM. Complement or insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024; 116:966-984. [PMID: 38836653 PMCID: PMC11531810 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer, and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression, and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal-components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling, and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
| | - Yuchen Liu
- Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201-1595, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
- Legorreta Cancer Center, Brown University, One Hoppin St., Coro West, Suite 5.01, Providence, RI 02903, USA
| |
Collapse
|
2
|
Mickael C, Jordan M, Posey JN, Tuder RM, Nozik ES, Thurman JM, Stenmark KR, Graham BB, Delaney CA. Activation of platelets and the complement system in mice with Schistosoma-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L661-L668. [PMID: 39254088 DOI: 10.1152/ajplung.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Collapse
Grants
- K01HL161024 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R25HL146166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Entelligence Young Investigator Award Entelligence
- Early Career Investigator American Thoracic Society (ATS)
- P01HL152961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1R35HL139726 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK076690 HHS | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joshua M Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Cassidy A Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
5
|
Johansen A, Thiede B, Anonsen JH, Nilsson GE. Surviving without oxygen involves major tissue specific changes in the proteome of crucian carp ( Carassius carassius). PeerJ 2023; 11:e14890. [PMID: 36915662 PMCID: PMC10007964 DOI: 10.7717/peerj.14890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
The crucian carp (Carassius carassius) can survive complete oxygen depletion (anoxia) for several months at low temperatures, making it an excellent model for studying molecular adaptations to anoxia. Still, little is known about how its global proteome responds to anoxia and reoxygenation. By applying mass spectrometry-based proteome analyses on brain, heart and liver tissue from crucian carp exposed to normoxia, five days anoxia, and reoxygenation, we found major changes in particularly cardiac and hepatic protein levels in response to anoxia and reoxygenation. These included tissue-specific differences in mitochondrial proteins involved in aerobic respiration and mitochondrial membrane integrity. Enzymes in the electron transport system (ETS) decreased in heart and increased massively in liver during anoxia and reoxygenation but did not change in the brain. Importantly, the data support a special role for the liver in succinate handling upon reoxygenation, as suggested by a drastic increase of components of the ETS and uncoupling protein 2, which could allow for succinate metabolism without excessive formation of reactive oxygen species (ROS). Also during reoxygenation, the levels of proteins involved in the cristae junction organization of the mitochondria changed in the heart, possibly functioning to suppress ROS formation. Furthermore, proteins involved in immune (complement) system activation changed in the anoxic heart compared to normoxic controls. The results emphasize that responses to anoxia are highly tissue-specific and related to organ function.
Collapse
Affiliation(s)
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Climate & Environment Department, NORCE, Norwegian Research Centre AS, Stavanger, Norway
| | | |
Collapse
|
6
|
KUNIYOSHI N, HANADA S, ANDO R, YUSTINASARI LR, KURATOMI M, KAGAWA S, IMAI H, KUSAKABE KT. Expression dynamics of Crry at the implantation sites in normal pregnancy and response against miscarriage induction. J Vet Med Sci 2023; 85:92-98. [PMID: 36450590 PMCID: PMC9887214 DOI: 10.1292/jvms.22-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
In mammals, immune tolerance against fetal tissue has been established for normal pregnancy progression. It is known that Crry regulates complemental activity to prevent injury of the mouse embryo and extra-embryonic tissue. This study aimed to examine the expression appearance and normal localization sites of Crry in the mouse placenta. Also, the emergency responses of Crry were verified at the time of experimental miscarriage induction. Moreover, we investigated an existing similar protein of Crry in animal placentas other than mice. Crry expression level showed a peak at day 8.5 of pregnancy. Trophoblast giant cells and decidual cells indicated a positive reaction to anti-Crry antibody. After treatments of interferon-γ, Crry expression was increased significantly in the survived implantation sites as compared with the controls. However, there was no significant difference in the miscarriage-initiated sites. It disclosed that Crry distributes from the early to middle periods of the placentas and involves complement regulation at the extraembryonic tissue and decidua basalis. Crry also showed an ability to respond to risk against external initiation for urgent miscarriage. Finally, we found anti-mouse Crry antibody-bound proteins in the placenta of many animals. It suggests a potency of Crry to make an environment of immune tolerance in many types of mammal placentas.
Collapse
Affiliation(s)
- Nobue KUNIYOSHI
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Saki HANADA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Reina ANDO
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria KURATOMI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Seizaburo KAGAWA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
7
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
8
|
Arora G, Lynn GE, Tang X, Rosen CE, Hoornstra D, Sajid A, Hovius JW, Palm NW, Ring AM, Fikrig E. CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever. mBio 2022; 13:e0116122. [PMID: 36036625 PMCID: PMC9600505 DOI: 10.1128/mbio.01161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Savchenko VG, Lukina EA, Mikhaylova EA, Tsvetaeva NV, Latyshev VD, Lukina KA, Fidarova ZT, Galtseva IV, Dvirnik VN, Ptushkin VV, Afanasyev BV, Kulagin AD, Shilova ER, Maschan AA, Smetanina NS, Lugovskaya SA. Clinical guidelines for the management of patients with paroxysmal nocturnal hemoglobinuria. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2022. [DOI: 10.35754/0234-5730-2022-67-3-426-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Introduction. Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal disease of the blood system characterized by intravascular hemolysis, bone marrow dysfunction and an increased risk of thrombotic and organ complications.Aim — to provide relevant clinical recommendations for the provision of medical care to adults and children with PNH.Basic information. Experts from the National Hematological Society association which is focused on the promotion of hematology, transfusiology and bone marrow transplantation along with experts from the public organization, National Society of Pediatric Hematologists and Oncologists, have developed current clinical recommendations for providing medical care to adults and children with PNH. The recommendations address in detail the issues of etiology, pathogenesis, epidemiology, and clinical manifestations of the disease. Special attention is paid to the diagnosis, differential diagnosis, and treatment of PNH based on the principles of evidence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - V. V. Ptushkin
- Botkin City Clinical Hospital of the Moscow Health Department
| | - B. V. Afanasyev
- Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, Pavlov First State Medical University of St. Petersburg
| | - A. D. Kulagin
- Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, Pavlov First State Medical University of St. Petersburg
| | - E. R. Shilova
- Russian Research Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency
| | - A. A. Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | - N. S. Smetanina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | | |
Collapse
|
10
|
Goerlich CE, Singh AK, Griffith BP, Mohiuddin MM. The immunobiology and clinical use of genetically engineered porcine hearts for cardiac xenotransplantation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:715-726. [PMID: 36895262 PMCID: PMC9994617 DOI: 10.1038/s44161-022-00112-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
A summary of the scientific rationale of the advancements that led to the first genetically modified pig-to-human cardiac xenotransplantation is lacking in a complex and rapidly evolving field. Here, we aim to aid the general readership in the understanding of the gradual progression of cardiac (xeno)transplantation research, the immunobiology of cardiac xenotransplantation (including the latest immunosuppression, cardiac preservation and genetic engineering required for successful transplantation) and the regulatory landscape related to the clinical application of cardiac xenotransplantation for people with end-stage heart failure. Finally, we provide an overview of the outcomes and lessons learned from the first genetically modified pig-to-human cardiac heart xenotransplantation.
Collapse
Affiliation(s)
- Corbin E. Goerlich
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Avneesh K. Singh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammad M. Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Colden MA, Kumar S, Munkhbileg B, Babushok DV. Insights Into the Emergence of Paroxysmal Nocturnal Hemoglobinuria. Front Immunol 2022; 12:830172. [PMID: 35154088 PMCID: PMC8831232 DOI: 10.3389/fimmu.2021.830172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal Nocturnal Hemoglobinuria (PNH) is a disease as simple as it is complex. PNH patients develop somatic loss-of-function mutations in phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene (PIGA), required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. Ubiquitous in eukaryotes, GPI anchors are a group of conserved glycolipid molecules responsible for attaching nearly 150 distinct proteins to the surface of cell membranes. The loss of two GPI-anchored surface proteins, CD55 and CD59, from red blood cells causes unregulated complement activation and hemolysis in classical PNH disease. In PNH patients, PIGA-mutant, GPI (-) hematopoietic cells clonally expand to make up a large portion of patients’ blood production, yet mechanisms leading to clonal expansion of GPI (-) cells remain enigmatic. Historical models of PNH in mice and the more recent PNH model in rhesus macaques showed that GPI (-) cells reconstitute near-normal hematopoiesis but have no intrinsic growth advantage and do not clonally expand over time. Landmark studies identified several potential mechanisms which can promote PNH clonal expansion. However, to what extent these contribute to PNH cell selection in patients continues to be a matter of active debate. Recent advancements in disease models and immunologic technologies, together with the growing understanding of autoimmune marrow failure, offer new opportunities to evaluate the mechanisms of clonal expansion in PNH. Here, we critically review published data on PNH cell biology and clonal expansion and highlight limitations and opportunities to further our understanding of the emergence of PNH clones.
Collapse
Affiliation(s)
- Melissa A. Colden
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- *Correspondence: Daria V. Babushok,
| |
Collapse
|
12
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Detsika MG, Goudevenou K, Geurts AM, Gakiopoulou H, Grapsa E, Lianos EA. Generation of a novel decay accelerating factor (DAF) knock-out rat model using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9), genome editing. Transgenic Res 2021; 30:11-21. [PMID: 33387103 DOI: 10.1007/s11248-020-00222-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf-/-) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf-/- rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf-/- rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.
Collapse
Affiliation(s)
- Maria G Detsika
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, G.P. Livanos and M. Simou Laboratories, National and Kapodistrian University of Athens, 3 Ploutarchou Street, 10675, Athens, Greece.
| | - K Goudevenou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, G.P. Livanos and M. Simou Laboratories, National and Kapodistrian University of Athens, 3 Ploutarchou Street, 10675, Athens, Greece
| | - A M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H Gakiopoulou
- Department of Pathology, University of Athens School of Medicine, Athens, Greece
| | - E Grapsa
- Department of Nephrology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias A Lianos
- Veterans Affairs Medical Center and Virginia Tech. Carilion School of Medicine, 1970 Roanoke Blvd., Salem, VA, 24153, USA
| |
Collapse
|
15
|
Banadakoppa M, Pennington K, Balakrishnan M, Yallampalli C. Complement inhibitor Crry expression in mouse placenta is essential for maintaining normal blood pressure and fetal growth. PLoS One 2020; 15:e0236968. [PMID: 32745140 PMCID: PMC7398533 DOI: 10.1371/journal.pone.0236968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Abstract
Many circumstantial evidences from human and animal studies suggest that complement cascade dysregulation may play an important role in pregnancy associated complications including preeclampsia. Deletion of rodent specific complement inhibitor gene, Complement Receptor 1-related Gene/Protein y (Crry) produces embryonic lethal phenotype due to complement activation. It is not clear if decreased expression of Crry during pregnancy produces hypertensive phenotype. We downregulated Crry in placenta by injecting inducible lentivialshRNA vectors into uterine horn of pregnant C57BL/6 mice at the time of blastocyst hatching. Placenta specific downregulation of Crry without significant loss of embryos was achieved upon induction of shRNA using an optimal doxycycline dose at mid gestation. Crry downregulation resulted in placental complement deposition. Late-gestation measurements showed that fetal weights were reduced and blood pressure increased in pregnant mice upon downregulation of Crry suggesting a critical role for Crry in fetal growth and blood pressure regulation.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MB); (CY)
| | - Kathleen Pennington
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meena Balakrishnan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chandra Yallampalli
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MB); (CY)
| |
Collapse
|
16
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
17
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
18
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
19
|
Xin Y, Hertle E, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Associations of dicarbonyl stress with complement activation: the CODAM study. Diabetologia 2020; 63:1032-1042. [PMID: 31993713 PMCID: PMC7145776 DOI: 10.1007/s00125-020-05098-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Reactive α-dicarbonyl compounds are major precursors of AGEs and may lead to glycation of circulating and/or cell-associated complement regulators. Glycation of complement regulatory proteins can influence their capacity to inhibit complement activation. We investigated, in a human cohort, whether greater dicarbonyl stress was associated with more complement activation. METHODS Circulating concentrations of dicarbonyl stress markers, i.e. α-dicarbonyls (methylglyoxal [MGO], glyoxal [GO] and 3-deoxyglucosone [3-DG]), and free AGEs (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL] and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine [MG-H1]), and protein-bound AGEs (CML, CEL, pentosidine), as well as the complement activation products C3a and soluble C5b-9 (sC5b-9), were measured in 530 participants (59.5 ± 7.0 years [mean ± SD], 61% men) of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Multiple linear regression analyses were used to investigate the associations between dicarbonyl stress (standardised) and complement activation (standardised) with adjustment of potential confounders, including age, sex, lifestyle, use of medication and markers of obesity. In addition, the associations of two potentially functional polymorphisms (rs1049346, rs2736654) in the gene encoding glyoxalase 1 (GLO1), the rate-limiting detoxifying enzyme for MGO, with C3a and sC5b-9 (all standardized) were evaluated. RESULTS After adjustment for potential confounders, plasma concentration of the dicarbonyl GO was inversely associated with sC5b-9 (β -0.12 [95% CI -0.21, -0.02]) and the protein-bound AGE CEL was inversely associated with C3a (-0.17 [-0.25, -0.08]). In contrast, the protein-bound AGE pentosidine was positively associated with sC5b-9 (0.15 [0.05, 0.24]). No associations were observed for other α-dicarbonyls and other free or protein-bound AGEs with C3a or sC5b-9. Individuals with the AG and AA genotype of rs1049346 had, on average, 0.32 and 0.40 SD lower plasma concentrations of sC5b-9 than those with the GG genotype, while concentrations of C3a did not differ significantly between rs1049346 genotypes. GLO1 rs2736654 was not associated with either C3a or sC5b-9. CONCLUSIONS/INTERPRETATION Plasma concentrations of dicarbonyl stress markers showed distinct associations with complement activation products: some of them were inversely associated with either C3a or sC5b-9, while protein-bound pentosidine was consistently and positively associated with sC5b-9. This suggests different biological relationships of individual dicarbonyl stress markers with complement activation.
Collapse
Affiliation(s)
- Ying Xin
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Elisabeth Hertle
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Shin B, Won H, Adams DJ, Lee SK. CD55 Regulates Bone Mass in Mice by Modulating RANKL-Mediated Rac Signaling and Osteoclast Function. J Bone Miner Res 2020; 35:130-142. [PMID: 31487060 DOI: 10.1002/jbmr.3861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023]
Abstract
CD55 is a glycosylphosphatidylinositol (GPI)-anchored protein that regulates complement-mediated and innate and adaptive immune responses. Although CD55 is expressed in various cell types in the bone marrow, its role in bone has not been investigated. In the current study, trabecular bone volume measured by μCT in the femurs of CD55KO female mice was increased compared to wild type (WT). Paradoxically, osteoclast number was increased in CD55KO with no differences in osteoblast parameters. Osteoclasts from CD55KO mice exhibited abnormal actin-ring formation and reduced bone-resorbing activity. Moreover, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) treatment failed to activate Rac guanosine triphosphatase (GTPase) in CD55KO bone marrow macrophage (BMM) cells. In addition, apoptotic caspases activity was enhanced in CD55KO, which led to the poor survival of mature osteoclasts. Our results imply that CD55KO mice have increased bone mass due to defective osteoclast resorbing activity resulting from reduced Rac activity in osteoclasts. We conclude that CD55 plays an important role in the survival and bone-resorption activity of osteoclasts through regulation of Rac activity. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bongjin Shin
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Heeyeon Won
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Douglas J Adams
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA.,Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sun-Kyeong Lee
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
21
|
Hanna RM, Hasnain H, Abdelnour L, Yanny B, Burwick RM. Atypical hemolytic uremic syndrome in a patient with protein-losing enteropathy. J Int Med Res 2019; 47:4027-4032. [PMID: 31364428 PMCID: PMC6726804 DOI: 10.1177/0300060519864808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is an ultra-rare disease induced by many triggers, all of which produce a common end phenotype of microangiopathic hemolysis and thrombotic microangiopathy. We herein describe a 63-year-old woman with ongoing protein-losing enteropathy and frequent transudates caused by hypoalbuminemia. The patient was treated with eculizumab with a full hematologic and partial renal response. Protein-losing enteropathy is an inflammatory condition that has been linked with increased complement activation, which can trigger aHUS in patients with loss of CD55 expression. The patient in the present case had an increased estimated glomerular filtration rate but stage IV to V chronic kidney disease. One year later, she remains off dialysis with a stable estimated glomerular filtration rate. We herein report an unusual trigger of complement activation that in turn triggered aHUS in this patient.
Collapse
Affiliation(s)
- Ramy M Hanna
- 1 Division of Nephrology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Huma Hasnain
- 1 Division of Nephrology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Lama Abdelnour
- 1 Division of Nephrology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Beshoy Yanny
- 2 Department of Medicine, Division of Digestive Diseases, Hepatology UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Richard M Burwick
- 3 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
22
|
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9:2147. [PMID: 30319615 PMCID: PMC6170629 DOI: 10.3389/fimmu.2018.02147] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
23
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
24
|
Martinko AJ, Truillet C, Julien O, Diaz JE, Horlbeck MA, Whiteley G, Blonder J, Weissman JS, Bandyopadhyay S, Evans MJ, Wells JA. Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins. eLife 2018; 7:31098. [PMID: 29359686 PMCID: PMC5796798 DOI: 10.7554/elife.31098] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022] Open
Abstract
While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRASG12V, and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS-induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS-transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS-transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell.
Collapse
Affiliation(s)
- Alexander J Martinko
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
| | - Olivier Julien
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Juan E Diaz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Gordon Whiteley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Josip Blonder
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Sourav Bandyopadhyay
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim 2018; 67:91-104. [PMID: 29353867 PMCID: PMC5955741 DOI: 10.1538/expanim.17-0153] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian fertilization is comprised of many steps including sperm survival in the
uterus, sperm migration in the female reproductive tract, physiological and morphological
changes to the spermatozoa, and sperm-egg interaction in the oviduct. In
vitro studies have revealed essential factors for these fertilization steps for
over half a century. However, the molecular mechanism of fertilization has recently been
revised by the emergence of genetically modified animals. Here, we focus on essential
factors for sperm fertilizing ability and describe recent advances in our knowledge of the
mechanisms of mammalian fertilization, especially of sperm migration from the uterus into
the oviduct.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
26
|
Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev 2017; 274:152-171. [PMID: 27782321 DOI: 10.1111/imr.12475] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Bergfeld A, Dasari P, Werner S, Hughes TR, Song WC, Hortschansky P, Brakhage AA, Hünig T, Zipfel PF, Beyersdorf N. Direct Binding of the pH-Regulated Protein 1 (Pra1) from Candida albicans Inhibits Cytokine Secretion by Mouse CD4 + T Cells. Front Microbiol 2017; 8:844. [PMID: 28553273 PMCID: PMC5425473 DOI: 10.3389/fmicb.2017.00844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022] Open
Abstract
Opportunistic infections with the saprophytic yeast Candida albicans are a major cause of morbidity in immunocompromised patients. While the interaction of cells and molecules of innate immunity with C. albicans has been studied to great depth, comparatively little is known about the modulation of adaptive immunity by C. albicans. In particular, direct interaction of proteins secreted by C. albicans with CD4+ T cells has not been studied in detail. In a first screening approach, we identified the pH-regulated antigen 1 (Pra1) as a molecule capable of directly binding to mouse CD4+ T cells in vitro. Binding of Pra1 to the T cell surface was enhanced by extracellular Zn2+ ions which Pra1 is known to scavenge from the host in order to supply the fungus with Zn2+. In vitro stimulation assays using highly purified mouse CD4+ T cells showed that Pra1 increased proliferation of CD4+ T cells in the presence of plate-bound anti-CD3 monoclonal antibody. In contrast, secretion of effector cytokines such as IFNγ and TNF by CD4+ T cells upon anti-CD3/ anti-CD28 mAb as well as cognate antigen stimulation was reduced in the presence of Pra1. By secreting Pra1 C. albicans, thus, directly modulates and partially controls CD4+ T cell responses as shown in our in vitro assays.
Collapse
Affiliation(s)
- Arne Bergfeld
- Institute for Virology and Immunobiology, University of WürzburgWürzburg, Germany
| | - Prasad Dasari
- Department of Infection Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-InstituteJena, Germany.,Friedrich Schiller UniversityJena, Germany
| | - Sandra Werner
- Institute for Virology and Immunobiology, University of WürzburgWürzburg, Germany
| | - Timothy R Hughes
- Complement Biology Group, Division of Infection and Immunity, Cardiff School of Medicine, and the School of Biosciences, Cardiff UniversityCardiff, UK
| | - Wen-Chao Song
- Centre for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, PhiladelphiaPA, USA
| | - Peter Hortschansky
- Friedrich Schiller UniversityJena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell InstituteJena, Germany
| | - Axel A Brakhage
- Friedrich Schiller UniversityJena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell InstituteJena, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of WürzburgWürzburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-InstituteJena, Germany.,Friedrich Schiller UniversityJena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of WürzburgWürzburg, Germany
| |
Collapse
|
28
|
Ueda Y, Gullipalli D, Song WC. Modeling complement-driven diseases in transgenic mice: Values and limitations. Immunobiology 2016; 221:1080-90. [PMID: 27371974 DOI: 10.1016/j.imbio.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Remarkable advances have been made over past decades in understanding the pathogenesis of complement-mediated diseases. This has led to development of new therapies for, and in some cases re-classification of, complement-driven diseases. This success is due to not only insight from human patients but also studies using transgenic animal models. Animal models that mimic human diseases are useful tools to understand the mechanism of disease and develop new therapies but there are also limitations due to species differences in their complement systems. This review provides a summary of transgenic animal models for three human diseases that are at the forefront of anti-complement therapy, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). They are discussed here as examples to highlight the values and limitations of animal modeling in complement-driven diseases.
Collapse
Affiliation(s)
- Yoshiyasu Ueda
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
29
|
Schmidt CQ, Harder MJ, Nichols EM, Hebecker M, Anliker M, Höchsmann B, Simmet T, Csincsi ÁI, Uzonyi B, Pappworth IY, Ricklin D, Lambris JD, Schrezenmeier H, Józsi M, Marchbank KJ. Selectivity of C3-opsonin targeted complement inhibitors: A distinct advantage in the protection of erythrocytes from paroxysmal nocturnal hemoglobinuria patients. Immunobiology 2016; 221:503-11. [PMID: 26792457 DOI: 10.1016/j.imbio.2015.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated cell lysis due to deficiency of GPI-anchored complement regulators. Blockage of the lytic pathway by eculizumab is the only available therapy for PNH patients and shows remarkable benefits, but regularly yields PNH erythrocytes opsonized with fragments of complement protein C3, rendering such erythrocytes prone to extravascular hemolysis. This effect is associated with insufficient responsiveness seen in a subgroup of PNH patients. Novel C3-opsonin targeted complement inhibitors act earlier in the cascade, at the level of activated C3 and are engineered from parts of the natural complement regulator Factor H (FH) or complement receptor 2 (CR2). This inhibitor class comprises three variants of "miniFH" and the clinically developed "FH-CR2" fusion-protein (TT30). We show that the approach of FH-CR2 to target C3-opsonins was more efficient in preventing complement activation induced by foreign surfaces, whereas the miniFH variants were substantially more active in controlling complement on PNH erythrocytes. Subtle differences were noted in the ability of each version of miniFH to protect human PNH cells. Importantly, miniFH and FH-CR2 interfered only minimally with complement-mediated serum killing of bacteria when compared to untargeted inhibition of all complement pathways by eculizumab. Thus, the molecular design of each C3-opsonin targeted complement inhibitor determines its potency in respect to the nature of the activator/surface providing potential functionality in PNH.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Eva-Maria Nichols
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Hebecker
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Markus Anliker
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Britta Höchsmann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ádám I Csincsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Isabel Y Pappworth
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kevin J Marchbank
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Fujihara Y, Ikawa M. GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res 2015; 57:538-45. [PMID: 26593072 DOI: 10.1194/jlr.r063032] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) contain a covalently linked GPI anchor located on outer cell membranes. GPI-APs are ubiquitously conserved from protozoa to vertebrates and are critical for physiological events such as development, immunity, and neurogenesis in vertebrates. Both membrane-anchored and soluble GPI-APs play a role in regulating their protein conformation and functional properties. Several pathways mediate the release of GPI-APs from the plasma membrane by vesiculation or cleavage. Phospholipases and putative substrate-specific GPI-AP-releasing enzymes, such as NOTUM, glycerophosphodiesterase 2, and angiotensin-converting enzyme, have been characterized in mammals. Here, the protein modifications resulting from the cleavage of the GPI anchor are discussed in the context of its physiological functions.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Lefebvre J, Clarkson M, Massa F, Bradford ST, Charlet A, Buske F, Lacas-Gervais S, Schulz H, Gimpel C, Hata Y, Schaefer F, Schedl A. Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int 2015; 88:321-31. [DOI: 10.1038/ki.2015.140] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 01/26/2023]
|
32
|
Yu M, Kang K, Bu P, Bell BA, Kaul C, Qiao JB, Sturgill-Short G, Yu X, Tarchick MJ, Beight C, Zhang SX, Peachey NS. Deficiency of CC chemokine ligand 2 and decay-accelerating factor causes retinal degeneration in mice. Exp Eye Res 2015; 138:126-33. [PMID: 26149093 DOI: 10.1016/j.exer.2015.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/15/2022]
Abstract
CC chemokine ligand 2 (CCL2) recruits macrophages to reduce inflammatory responses. Decay-accelerating factor (DAF) is a membrane regulator of the classical and alternative pathways of complement activation. In view of the link between complement genes and retinal diseases, we evaluated the retinal phenotype of C57BL/6J mice and mice lacking Ccl2 and/or Daf1 at 12 months of age, using scanning laser ophthalmoscopic imaging, electroretinography (ERG), histology, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. In comparison to C57BL/6J mice, mutant mice had an increased number of autofluorescent foci, with the greatest number in the Ccl2(-/-)/Daf1(-/-) retina. ERG amplitudes in Ccl2(-/-)/Daf1(-/-), Ccl2(-/-) and Daf1(-/-) mice were reduced, with the greatest reduction in Ccl2(-/-)/Daf1(-/-) mice. TUNEL-positive cells were not seen in C57BL/6J retina, but were prevalent in the outer and inner nuclear layers of Ccl2(-/-)Daf1(-/-) mice and were present at reduced density in Ccl2(-/-) or Daf1(-/-) mice. Cell loss was most pronounced in the outer and inner nuclear layers of Ccl2(-/-)/Daf1(-/-) mice. The levels of the endoplasmic reticulum chaperone GPR78 and transcription factor ATF4 were significantly increased in the Ccl2(-/-)/Daf1(-/-) retina. In comparison to the C57BL/6J retina, the phosphorylation of NF-κB p65, p38, ERK and JNK was significantly upregulated while SIRT1 was significantly downregulated in the Ccl2(-/-)/Daf1(-/-) retina. Our results suggest that loss of Ccl2 and Daf1 causes retinal neuronal death and degeneration which is related to increased endoplasmic reticulum stress, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Kai Kang
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ping Bu
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Charles Kaul
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - James B Qiao
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| | - Gwen Sturgill-Short
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiaoshan Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew J Tarchick
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Craig Beight
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, SUNY-Buffalo and SUNY Eye Institute, Buffalo, NY, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
33
|
Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev 2015; 36:272-88. [PMID: 25859860 PMCID: PMC4446516 DOI: 10.1210/er.2014-1099] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.
Collapse
Affiliation(s)
- Pamela Ghosh
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rupam Sahoo
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anand Vaidya
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Chorev
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A Halperin
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Complement and HIV-I infection/HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:184-98. [PMID: 24639397 DOI: 10.1007/s13365-014-0243-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
The various neurological complications associated with HIV-1 infection, specifically HIV-associated neurocognitive disorders (HAND) persist as a major public health burden worldwide. Despite the widespread use of anti-retroviral therapy, the prevalence of HAND is significantly high. HAND results from the direct effects of an HIV-1 infection as well as secondary effects of HIV-1-induced immune reaction and inflammatory response. Complement, a critical mediator of innate and acquired immunity, plays important roles in defeating many viral infections by the formation of a lytic pore or indirectly by opsonization and recruitment of phagocytes. While the role of complement in the pathogenesis of HIV-1 infection and HAND has been previously recognized for over 15 years, it has been largely underestimated thus far. Complement can be activated through HIV-1 envelope proteins, mannose-binding lectins (MBL), and anti-HIV-1 antibodies. Complement not only fights against HIV-1 infection but also enhances HIV-1 infection. In addition, HIV-1 can hijack complement regulators such as CD59 and CD55 and can utilize these regulators and factor H to escape from complement attack. Normally, complement levels in brain are much lower than plasma levels and there is no or little complement deposition in brain cells. Interestingly, local production and deposition of complement are dramatically increased in HIV-1-infected brain, indicating that complement may contribute to the pathogenesis of HAND. Here, we review the current understanding of the role of complement in HIV-1 infection and HAND, as well as potential therapeutic approaches targeting the complement system for the treatment and eradications of HIV-1 infection.
Collapse
|
35
|
Asimakopoulos JV, Terpos E, Papageorgiou L, Kampouropoulou O, Christoulas D, Giakoumis A, Samarkos M, Vaiopoulos G, Konstantopoulos K, Angelopoulou MK, Vassilakopoulos TP, Meletis J. The presence of CD55- and/or CD59-deficient erythrocytic populations in patients with rheumatic diseases reflects an immune-mediated bone-marrow derived phenomenon. Med Sci Monit 2014; 20:123-39. [PMID: 24463881 PMCID: PMC3915003 DOI: 10.12659/msm.889727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Complement has the potential to provoke severe impairment to host tissues, as shown in autoimmune diseases where complement activation has been associated with diminished CD55 and/or CD59 expression on peripheral blood cell membranes. The aim of this study was to evaluate the presence of CD55- and/or CD59-deficient erythrocytic populations in patients with different rheumatic diseases and to investigate possible correlations with clinical or laboratory parameters. Material/Methods CD55 and CD59 expression was evaluated in erythrocytes of 113 patients with rheumatic diseases, 121 normal individuals, and 10 patients with paroxysmal nocturnal hemoglobinuria (PNH) using the Sephacryl gel microtyping system. Ham and sucrose tests were also performed. Results Interestingly, the majority of patients (104/113, 92%) demonstrated CD55- and/or CD59-deficient erythrocytes: 47 (41.6%) with concomitant deficiency of CD55 and CD59, 50 (44.2%) with isolated deficiency of CD55, and 6 (6.2%) with isolated deficiency of CD59. In normal individuals, only 2 (1%) had concomitant CD55/CD59 negativity and 3 (2%) had isolated CD55 or CD59 deficiency. All PNH patients exhibited simultaneous CD55/CD59 deficiency. Positive Ham and sucrose tests were found only in PNH patients. There was no association between the CD55- and/or CD59-deficient erythrocytes and hemocytopenias or undergoing treatment. However, CD55 expression significantly influenced hemoglobin values (F=6.092, p=0.015). Conclusions This study provides evidence supporting the presence of erythrocytes with CD55 and/or CD59 deficiency in patients with rheumatic diseases. Moreover, CD55 deficiency on red cells influences hemoglobin concentration. Further studies using molecular techniques will clarify the exact pathophysiological mechanisms of this deficiency.
Collapse
Affiliation(s)
- John V Asimakopoulos
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, "Alexandra" General Hospital, Athens, Greece
| | - Loula Papageorgiou
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Olga Kampouropoulou
- 1st Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Dimitris Christoulas
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, "Alexandra" General Hospital, Athens, Greece
| | - Anastasios Giakoumis
- 1st Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Michael Samarkos
- 1st Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - George Vaiopoulos
- 1st Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Konstantinos Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Maria K Angelopoulou
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - Theodoros P Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | - John Meletis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
36
|
Barata L, Miwa T, Sato S, Kim D, Mohammed I, Song WC. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack. THE JOURNAL OF IMMUNOLOGY 2013; 190:2886-95. [PMID: 23390291 DOI: 10.4049/jimmunol.1202536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.
Collapse
Affiliation(s)
- Lidia Barata
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19401, USA
| | | | | | | | | | | |
Collapse
|
37
|
Solana ME, Ferrer MF, Novoa MM, Song WC, GÓmez RM. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis. Muscle Nerve 2012; 46:582-7. [DOI: 10.1002/mus.23347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Frolíková M, Stopková R, Antalíková J, Johnson PM, Stopka P, Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. FOLIA ZOOLOGICA 2012. [DOI: 10.25225/fozo.v61.i1.a12.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michaela Frolíková
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Jana Antalíková
- Department of Immunogenetics, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovak Republic
| | - Peter M. Johnson
- Division of Immunology, School of Infection and Host Defence, Duncan Building, University of Liverpool, L69 3BX, Liverpool, U.K
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Kateřina Dvořáková-Hortová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| |
Collapse
|
39
|
Kim SK, Kim J, Ko E, Kim H, Hwang DS, Lee S, Baek Y, Min BI, Nam S, Bae H. Gene Expression Profile of the Hypothalamus in DNP-KLH Immunized Mice Following Electroacupuncture Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:508689. [PMID: 21799680 PMCID: PMC3136536 DOI: 10.1093/ecam/nep222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/25/2009] [Indexed: 12/12/2022]
Abstract
Clinical evidence indicates that electroacupuncture (EA) is effective for allergic disorder. Recent animal studies have shown that EA treatment reduces levels of IgE and Th2 cytokines in BALB/c mice immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH). The hypothalamus, a brain center of the neural-immune system, is known to be activated by EA stimulation. This study was performed to identify and characterize the differentially expressed genes in the hypothalamus of DNP-KLH immunized mice that were stimulated with EA or only restrained. To this aim, we conducted a microarray analysis to evaluate the global gene expression profiles, using the hypothalamic RNA samples taken from three groups of mice: (i) normal control group (no treatments); (ii) IMH group (DNP-KLH immunization + restraint); and (iii) IMEA group (immunization + EA stimulation). The microarray analysis revealed that total 39 genes were altered in their expression levels by EA treatment. Ten genes, including T-cell receptor alpha variable region family 13 subfamily 1 (Tcra-V13.1), heat shock protein 1B (Hspa1b) and 2′–5′ oligoadenylate synthetase 1F (Oas1f), were up-regulated in the IMEA group when compared with the IMH group. In contrast, 29 genes, including decay accelerating factor 2 (Daf2), NAD(P)H dehydrogenase, quinone 1 (Nqo1) and programmed cell death 1 ligand 2 (Pdcd1lg2) were down-regulated in the IMEA group as compared with the IMH group. These results suggest that EA treatment can modulate immune response in DNP-KLH immunized mice by regulating expression levels of genes that are associated with innate immune, cellular defense and/or other kinds of immune system in the hypothalamus.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bani-Ahmad M, El-Amouri IS, Ko CM, Lin F, Tang-Feldman Y, Oakley OR. The role of decay accelerating factor in the immunopathogenesis of cytomegalovirus infection. Clin Exp Immunol 2010; 163:199-206. [PMID: 21166665 DOI: 10.1111/j.1365-2249.2010.04284.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A wide variety of the host immune elements play an influential role in the defence against cytomegalovirus (CMV) infection. However, the role of complement in the clearance of CMV infection is less well studied. Decay accelerating factor (DAF/CD55) is a membrane-bound complement regulatory protein that inhibits the formation and accelerates the decay of C3-convertase. Here we hypothesize that murine CMV (MCMV) utilizes DAF as an immunoevasive strategy through down-regulation of host adaptive responses against the virus. To test our hypothesis, DAF knock-out (DAF KO) C57BL/6 mice and wild-type (WT) littermates were infected with a sublethal dose of MCMV, and their immune responses were compared. WT mice lost 7·8% of their initial weight within the first 4 days after infection and quickly began to recover. This is in contrast to the DAF KO mice, that lost a total of 19·4% of their initial weight and did not start recovery until 6 days post-infection. Flow cytometric analysis of lung digests revealed that infected DAF KO mice had a significantly increased infiltration of inflammatory cells, the majority being CD8(+) T lymphocytes. Serum levels of tumour necrosis factor (TNF)-α and interferon (IFN)-γ were also increased markedly in the DAF KO mice compared to the infected WT mice. More interestingly, increased viral genome copies (DNA) in the splenocytes of DAF KO mice was accompanied with mRNA transcripts in the DAF KO mice, an indication of active viral replication. These data suggest an intriguing effect of reduced DAF expression on host responses following in vivo MCMV infection.
Collapse
Affiliation(s)
- M Bani-Ahmad
- Department of Clinical Sciences, University of Kentucky, Lexington, USA
| | | | | | | | | | | |
Collapse
|
41
|
Properdin homeostasis requires turnover of the alternative complement pathway. Proc Natl Acad Sci U S A 2010; 107:19444-8. [PMID: 20974943 DOI: 10.1073/pnas.1006608107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Properdin is a plasma protein and is also released from neutrophil granules following stimulation. At inflammatory sites it can bind bacteria and apoptotic bodies to trigger alternative pathway (AP) activation. Principles governing properdin homeostasis are unknown. We monitored properdin during AP activation and in complement-deficient mice. There was a >90% reduction of properdin in the Crry single-knockout mice (Crry SKO). These membrane complement regulatory protein-deficient mice feature accelerated AP turnover, leading to reduced C3 and fB. Injecting cobra venom factor into wild-type mice activated the AP and led to the consumption of C3, fB, and properdin. However, and unexpectedly, properdin was also deficient in C3(-/-), fB(-/-), and fD(-/-) mice. It was present in C1q(-/-), C4(-/-), and C5(-/-) mice. These findings implicate AP turnover in the maintenance of basal levels of properdin in the blood. To explore the mechanism, classical pathway-activating immune complexes were infused. Within 10 min, properdin was partially restored in fB(-/-) but not in C3(-/-) mice. Markedly reduced properdin in mice deficient in an AP component and its partial restoration by activating C3 suggest a requirement for continuous C3 activation via AP tickover to maintain properdin homeostasis. The mechanism underlying this C3-dependent process was not identified. Engagement of C3a and C5a receptors was ruled out. These findings represent an instructive example of how a positive regulator of an innate immune recognition and effector pathway is controlled. A rationale for such a means to supply properdin for immune reactions is proposed.
Collapse
|
42
|
Tchepeleva SN, Thurman JM, Ruff K, Perkins SJ, Morel L, Boackle SA. An allelic variant of Crry in the murine Sle1c lupus susceptibility interval is not impaired in its ability to regulate complement activation. THE JOURNAL OF IMMUNOLOGY 2010; 185:2331-9. [PMID: 20660348 DOI: 10.4049/jimmunol.1000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Sle1c subinterval on distal murine chromosome 1 confers loss of tolerance to chromatin. Cr2, which encodes complement receptors 1 and 2 (CR1/CR2; CD35/CD21), is a strong candidate gene for lupus susceptibility within this interval based on structural and functional alterations in its protein products. CR1-related protein/gene Y (Crry) lies 10 kb from Cr2 and encodes a ubiquitously expressed complement regulatory protein that could also play a role in the pathogenesis of systemic lupus erythematosus. Crry derived from B6.Sle1c congenic mice migrated at a higher m.w. by SDS-PAGE compared with B6 Crry, as a result of differential glycosylation. A single-nucleotide polymorphism in the first short consensus repeat of Sle1c Crry introduced a novel N-linked glycosylation site likely responsible for this structural alteration. Five additional single-nucleotide polymorphisms in the signal peptide and short consensus repeat 1 of Sle1c Crry were identified. However, the cellular expression of B6 and B6.Sle1c Crry and their ability to regulate the classical pathway of complement were not significantly different. Although soluble Sle1c Crry regulated the alternative pathway of complement more efficiently than B6 Crry, as a membrane protein, it regulated the alternative pathway equivalently to B6 Crry. These data fail to provide evidence for a functional effect of the structural alterations in Sle1c Crry and suggest that the role of Cr2 in the Sle1c autoimmune phenotypes can be isolated in recombinant congenic mice containing both genes.
Collapse
Affiliation(s)
- Svetlana N Tchepeleva
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res 2010; 59:897-905. [PMID: 20517706 PMCID: PMC2945462 DOI: 10.1007/s00011-010-0220-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/02/2010] [Accepted: 05/11/2010] [Indexed: 12/16/2022] Open
Abstract
Recent evidence has demonstrated that the complement cascade is involved in a variety of physiologic and pathophysiologic processes in addition to its role as an immune effector. Research in a variety of organ systems has shown that complement proteins are direct participants in maintenance of cellular turnover, healing, proliferation and regeneration. As a physiologic housekeeper, complement proteins maintain tissue integrity in the absence of inflammation by disposing of cellular debris and waste, a process critical to the prevention of autoimmune disease. Developmentally, complement proteins influence pathways including hematopoietic stem cell engraftment, bone growth, and angiogenesis. They also provide a potent stimulus for cellular proliferation including regeneration of the limb and eye in animal models, and liver proliferation following injury. Here, we describe the complement cascade as a mediator of tissue growth and regeneration.
Collapse
Affiliation(s)
- Martin J Rutkowski
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
44
|
Hoek RM, de Launay D, Kop EN, Yilmaz-Elis AS, Lin F, Reedquist KA, Verbeek JS, Medof ME, Tak PP, Hamann J. Deletion of either CD55 or CD97 ameliorates arthritis in mouse models. ACTA ACUST UNITED AC 2010; 62:1036-42. [PMID: 20131275 DOI: 10.1002/art.27347] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE CD55 (decay-accelerating factor) is best known for its role in the negative regulation of the complement system. Indeed, lack of this molecule leads to disease aggravation in many autoimmune disease models. However, CD55 is abundantly present on fibroblast-like synoviocytes and is also a ligand of the adhesion-class heptahelical receptor CD97, which is expressed by infiltrating macrophages. Treatment with antibodies to CD97 ameliorates the collagen-induced model of rheumatoid arthritis (RA) in DBA/1 mice, but the net contribution of CD55 is unknown. This study was undertaken to investigate the role of CD55 in experimental RA. METHODS Arthritis was induced in wild-type, CD55(-/-), and CD97(-/-) mice using collagen-induced and K/BxN serum-transfer models. Incidence of arthritis was monitored over time, and disease activity was assessed by clinical and immunohistochemical evaluation. RESULTS In contrast to observations in many inflammatory disease models, lack of CD55 resulted in decreased arthritis in experimental models of RA. Consistent with the previously reported effects of anti-CD97 antibody treatment, CD97(-/-) mice had reduced arthritis activity compared with wild-type controls. CONCLUSION Our findings indicate that the lack of CD55 or CD97 in 2 different models of arthritis increases resistance to the disease. These findings provide insight into a role for CD55 interaction with CD97 in the pathogenesis of RA and suggest that therapeutic strategies that disrupt CD55/CD97 may be clinically beneficial.
Collapse
Affiliation(s)
- Robert M Hoek
- Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huber SA. Autoimmunity in Coxsackievirus B3 induced myocarditis: role of estrogen in suppressing autoimmunity. Future Virol 2010; 5:273-286. [PMID: 20963181 DOI: 10.2217/fvl.10.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Picornaviruses are small, non-enveloped, single stranded, positive sense RNA viruses which cause multiple diseases including myocarditis/dilated cardiomyopathy, type 1 diabetes, encephalitis, myositis, orchitis and hepatitis. Although picornaviruses directly kill cells, tissue injury primarily results from autoimmunity to self antigens. Viruses induce autoimmunity by: aborting deletion of self-reactive T cells during T cell ontogeny; reversing anergy of peripheral autoimmune T cells; eliminating T regulatory cells; stimulating self-reactive T cells through antigenic mimicry or cryptic epitopes; and acting as an adjuvant for self molecules released during virus infection. Most autoimmune diseases (SLE, rheumatoid arthritis, Grave's disease) predominate in females, but diseases associated with picornavirus infections predominate in males. T regulatory cells are activated in infected females because of the combined effects of estrogen and innate immunity.
Collapse
Affiliation(s)
- SA Huber
- Department of Pathology, University of Vermont, 208 S Park Drive, Colchester, VT 05446, USA
| |
Collapse
|
46
|
Toomey CB, Cauvi DM, Song WC, Pollard KM. Decay-accelerating factor 1 (Daf1) deficiency exacerbates xenobiotic-induced autoimmunity. Immunology 2010; 131:99-106. [PMID: 20408894 DOI: 10.1111/j.1365-2567.2010.03279.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance T-cell responses and autoimmunity via increased expression of specific cytokines, most notably interferon (IFN)-gamma. To determine if Daf1 deficiency can exacerbate IFN-gamma-dependent murine mercury-induced autoimmunity (mHgIA), C57/BL6 Daf1(+/+) and Daf1(-/-) mice were exposed to mercuric chloride (HgCl(2)) and examined for differences in cytokine expression, T-cell activation and features of humoral autoimmunity. In the absence of Daf1, mHgIA was exacerbated, with increased serum immunoglobulin G (IgG), anti-nuclear autoantibodies (ANAs) and anti-chromatin autoantibodies. This aggravated response could not be explained by increased T-cell activation but was associated with increased levels of IFN-gamma, interleukin (IL)-2, IL-4 and IL-10 but not IL-17 in Daf1-deficient mice. Anti-CD3/anti-CD28 costimulation of Daf1(-/-) CD4(+) T cells in vitro was also found to increase cytokine expression, but the profile was different from that of mHgIA, suggesting that the cytokine changes observed in Daf1 deficiency reflect a response to mercury. The role of Daf1 in influencing cytokine expression was further examined by stimulation of CD4(+) T cells in the presence of anti-CD3 and CD97, a molecular partner for Daf1. This resulted in increased IL-10, decreased IL-17 and IL-21 and decreased IFN-gamma. These findings demonstrate that the absence of Daf1 exacerbates mHgIA, with changes in the profile of expressed cytokines. Interaction between Daf1 and its molecular partner CD97 was found to modify expression of mHgIA-promoting cytokines, suggesting a possible approach for the suppression of overaggressive cytokine production in autoimmunity.
Collapse
Affiliation(s)
- Christopher B Toomey
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
47
|
Lefèvre B, Wolf JP, Ziyyat A. Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)? Bioessays 2010; 32:143-52. [DOI: 10.1002/bies.200900159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Tarakanova VL, Molleston JM, Goodwin M, Virgin HW. MHV68 complement regulatory protein facilitates MHV68 replication in primary macrophages in a complement independent manner. Virology 2009; 396:323-8. [PMID: 19910013 DOI: 10.1016/j.virol.2009.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022]
Abstract
Murine gammaherpesvirus-68 (MHV68) is genetically related to human Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and provides a tractable model to study gammaherpesvirus-host interactions in vivo and in vitro. The MHV68-encoded v-RCA product inhibits murine complement activation and shares sequence homology with other virus and host regulators of complement activation. Here we show that v-RCA is required for efficient MHV68 replication in primary murine macrophages, but not in murine embryonic fibroblasts. v-RCA-deficient MHV68 mutant viruses display defects in viral DNA synthesis in infected macrophages. Importantly, attenuated growth of v-RCA mutant viruses is not rescued in macrophages lacking critical components of the complement system including C3, indicating that the macrophage-specific role of v-RCA in MHV68 replication is complement-independent. This contrasts with the situation in vivo in which attenuated neurovirulence of v-RCA mutant viruses is rescued in C3-deficient mice. This study shows a novel, complement independent cell-type-specific function of a gammaherpesvirus RCA protein.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
49
|
Leung VWY, Yun S, Botto M, Mason JC, Malik TH, Song W, Paixao-Cavalcante D, Pickering MC, Boyle JJ, Haskard DO. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low-density lipoprotein receptor-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1757-67. [PMID: 19729477 DOI: 10.2353/ajpath.2009.090183] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decay-accelerating factor (DAF; CD55) is a membrane protein that regulates complement pathway activity at the level of C3. To test the hypothesis that DAF plays an essential role in limiting complement activation in the arterial wall and protecting from atherosclerosis, we crossed DAF gene targeted mice (daf-1(-/-)) with low-density lipoprotein-receptor deficient mice (Ldlr(-/-)). Daf-1(-/-)Ldlr(-/-) mice had more extensive en face Sudan IV staining of the thoracoabdominal aorta than Ldlr(-/-) mice, both following a 12-week period of low-fat diet or a high-fat diet. Aortic root lesions in daf-1(-/-)Ldlr(-/-) mice on a low-fat diet showed increased size and complexity. DAF deficiency increased deposition of C3d and C5b-9, indicating the importance of DAF for downstream complement regulation in the arterial wall. The acceleration of lesion development in the absence of DAF provides confirmation of the proinflammatory and proatherosclerotic potential of complement activation in the Ldlr(-/-) mouse model. Because upstream complement activation is potentially protective, this study underlines the importance of DAF in shielding the arterial wall from the atherogenic effects of complement.
Collapse
Affiliation(s)
- Viola W Y Leung
- Vascular Science Section, Imperial College, National Heart and Lung Institute, the Division of Investigative Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Q, Huang D, Nacion K, Bu H, Lin F. Augmenting DAF levels in vivo ameliorates experimental autoimmune encephalomyelitis. Mol Immunol 2009; 46:2885-91. [PMID: 19660813 DOI: 10.1016/j.molimm.2009.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/22/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
Abstract
Recent studies in experimental autoimmune encephalomyelitis (EAE) have found that CNS injury in Daf1(-/-) mice is much greater than in wild types (WTs), suggesting that upregulating DAF levels in vivo might ameliorate disease. To test this, we generated a Daf1 transgenic (Tg) mouse which had elevated DAF levels on its cell surfaces. In by-stand C3b uptake assays, Daf1 Tg mouse erythrocytes took up less C3b on their surfaces than WT erythrocytes. When co-cultured with OT-II CD4(+) T cells together with OVA(323-339) peptide, Daf1 Tg mouse bone marrow derived dendritic cells (BM-DCs) produced less C5a and C3a than WT BM-DCs and stimulated a lesser T cell response. In MOG(35-55) immunization induced EAE model, Daf1 Tg mice exhibited delayed disease onset and decreased clinical scores compared to WTs. Histological analyses showed that there were less inflammation and demyelination in spinal cords in Daf1 Tg mice than those in WTs. In accordance with these results, Daf1 Tg mice had decreased MOG(35-55) specific Th1 and Th17 responses. These data provide further evidence that DAF suppresses autoreactive T cell responses in EAE, and indicate that augmenting its expression levels could be effective therapeutically in treating multiple sclerosis as well as other T cell mediated diseases.
Collapse
MESH Headings
- Animals
- CD55 Antigens/genetics
- CD55 Antigens/immunology
- CD55 Antigens/metabolism
- Complement C3a/immunology
- Complement C3a/metabolism
- Complement C5a/immunology
- Complement C5a/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Erythrocytes/immunology
- Erythrocytes/metabolism
- Glycoproteins/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|