1
|
Pradella F, Witte P, van Ewijk R. Ramadan during pregnancy and offspring health outcomes over the life course: a systematic review and meta-analysis. Hum Reprod Update 2024; 30:789-812. [PMID: 39178355 DOI: 10.1093/humupd/dmae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Intermittent fasting, such as during Ramadan, is prevalent among pregnant women. However, the association between Ramadan during pregnancy and offspring health along the life course has not been fully established. OBJECTIVE AND RATIONALE Fetal programming research indicates that prenatal exposures, particularly during early pregnancy, can cause long-term structural and physiological changes that adversely affect offspring health. Our objective was to systematically identify and assess the evidence regarding Ramadan during pregnancy. SEARCH METHODS A total of 31 studies were sourced from PubMed, EMBASE, Web of Science, and EconLit. Included studies evaluated outcomes in individuals with prenatal Ramadan exposure, compared to unexposed Muslim controls. Main outcomes were birth weight, gestational length, and sex ratio in newborns; height, mortality, and cognition in children; and disabilities, chronic diseases, and human capital accumulation in adults. Each study was evaluated for risk of bias. The overall quality of evidence was appraised using the GRADE system. Random-effects meta-analyses were conducted for outcomes analyzed in at least three primary studies. OUTCOMES The initial search identified 2933 articles, 1208 duplicates were deleted. There were 31 publications fulfilled the eligibility criteria for the qualitative synthesis; 22 studies were included in meta-analyses. The overall quality of the evidence was low to moderate and differed by study design and outcome. Among newborns, prenatal Ramadan exposure was not associated with birth weight (mean difference (MD) -3 g (95% CI -18 to 11; I2 = 70%) or the likelihood of prematurity (percentage point difference (PPD) 0.19 (95% CI -0.11 to 0.49; I2 = 0%)). The probability that the newborn is male was reduced (PPD -0.14 (95% CI -0.28 to -0.00; I2 = 0%)). This potentially reflects sex-specific mortality rates resulting from adverse in utero circumstances. In childhood, the exposed performed slightly poorer on cognitive tests (MD -3.10% of a standard deviation (95% CI -4.61 to -1.58; I2 = 51%)). Height among the exposed was reduced, and this pattern was already visible at ages below 5 years (height-for-age z-score MD -0.03 (95% CI -0.06 to -0.00; I2 = 76%)). A qualitative literature synthesis revealed that childhood mortality rates were increased in low-income contexts. In adulthood, the prenatally exposed had an increased likelihood of hearing disabilities (odds ratio 1.26 (95% CI 1.09 to 1.45; I2 = 32%)), while sight was not affected. Other impaired outcomes included chronic diseases or their symptoms, and indicators of human capital accumulation such as home ownership (qualitative literature synthesis). The first trimester emerged as a sensitive period for long-term impacts. WIDER IMPLICATIONS Despite the need for more high-quality studies to improve the certainty of the evidence, the synthesis of existing research demonstrates that Ramadan during pregnancy is associated with adverse offspring health effects in childhood and especially adulthood, despite an absence of observable effects at birth. Not all health effects may apply to all Muslim communities, which are diverse in backgrounds and behaviors. Notably, moderating factors like daytime activity levels and dietary habits outside fasting hours have hardly been considered. It is imperative for future research to address these aspects. REGISTRATION NUMBER PROSPERO (CRD42022325770).
Collapse
Affiliation(s)
- Fabienne Pradella
- Chair of Statistics and Econometrics, Johannes Gutenberg-University, Mainz, Germany
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
- Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Witte
- Chair of Statistics and Econometrics, Johannes Gutenberg-University, Mainz, Germany
| | - Reyn van Ewijk
- Chair of Statistics and Econometrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Jiang Y, Zhang H, Chen S, Ewart S, Holloway JW, Arshad H, Karmaus W. Intergenerational association of DNA methylation between parents and offspring. Sci Rep 2024; 14:19812. [PMID: 39191877 DOI: 10.1038/s41598-024-69317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Early patterning of DNA methylation (DNAm) may play an important role in later disease development. To better understand intergenerational epigenetic inheritance, we investigated the correlation between DNAm in blood in mother-newborn and in father-newborn pairs in the Isle of Wight (IoW) birth cohort. For parent-newborn pairs (n = 48), offspring DNAm was measured in cord blood and the parent's DNAm in whole blood. Mothers' DNAm was analyzed at birth (Guthrie card), age 18, early and late pregnancy respectively, and fathers' DNAm was measured during the mother's pregnancy. Linear regressions were applied to assess the intergenerational correlation of parental DNAm with that of offspring. Among various pairs of mother-newborn and father-newborn DNAm, the pairs where the mothers' DNAm was measured at age 18 years exhibited the highest number of CpGs with significant intergenerational correlation in DNAm, with 1829 CpGs (0.54%) of the 338,526 CpGs studied (FDR < 0.05). Amongst these 1829 CpGs, 986 (54%) are known quantitative trait loci (QTL) for CpG methylation (methQTL). When the mother's DNAm was assessed at early pregnancy, the number of CpGs showing intergenerational correlation was the smallest (384 CpGs, 0.11%). The second smallest number of such CpGs (559 CpGs, 0.17%) was found when investigating DNAm in offspring cord blood and father pairs. The low proportions of intergenerationally correlated CpGs suggest that epigenetic inheritance is limited.
Collapse
Affiliation(s)
- Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Science, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| |
Collapse
|
3
|
Gómez-Vilarrubla A, Mas-Parés B, Carreras-Badosa G, Bonmatí-Santané A, Martínez-Calcerrada JM, Niubó-Pallàs M, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. DNA Methylation Signatures in Paired Placenta and Umbilical Cord Samples: Relationship with Maternal Pregestational Body Mass Index and Offspring Metabolic Outcomes. Biomedicines 2024; 12:301. [PMID: 38397903 PMCID: PMC10886657 DOI: 10.3390/biomedicines12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
An epigenomic approach was used to study the impact of maternal pregestational body mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the offspring's metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical cord samples. The differentially methylated CpGs associated with maternal pregestational BMI were identified and the metabolic pathways and the potentially related diseases affected by their annotated genes were determined. Two top differentially methylated CpGs were studied in 90 additional samples and the relationship with the offspring's metabolic phenotype was determined. The results showed that maternal pregestational BMI is associated with the methylation of genes involved in endocrine and developmental pathways with potential effects on type 2 diabetes and obesity. The methylation and expression of HADHA and SLC2A8 genes in placenta and umbilical cord were related to several metabolic parameters in the offspring at 6 years (weight SDS, height SDS, BMI SDS, Δ BW-BMI SDS, FM SDS, waist, SBP, TG, HOMA-IR, perirenal fat; all p < 0.05). Our data suggest that epigenetic analysis in placenta and umbilical cord may be useful for identifying individual vulnerability to later metabolic diseases.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | | | | | - Maria Niubó-Pallàs
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium;
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children’s Hospital, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III (ISCIII), 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
4
|
Lin S, Tang J, Li X, Wu G, Lin YF, Li YF. Mendelian randomization provides evidence for a causal effect of serum insulin-like growth factor family concentration on risk of atrial fibrillation. World J Clin Cases 2023; 11:8475-8485. [PMID: 38188205 PMCID: PMC10768518 DOI: 10.12998/wjcc.v11.i36.8475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is one of the most common persistent arrhythmias among adult cardiovascular diseases. It is important to identify potential risk factors for AF. Members of the insulin-like growth factor (IGF) family exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases, and previous population-based studies indicate associations between IGF family members and AF. However, the causal effects of IGF family members in AF have not been evaluated. AIM In the current study two-sample Mendelian Randomization (MR) was used to assess genetic relationships between IGF family members and AF. METHODS MR was performed based on genome-wide association study (GWAS) datasets, and concentration levels of 14 IGF family members were retrieved. An initial MR analysis was conducted to identify single nucleotide polymorphisms potentially associated with IGF serum concentrations. A GWAS meta-analysis including 60620 AF cases and 970216 control participants of European ancestry was then conducted to identify AF causal effects. Two-sample MR packages were used to perform MR analysis in R. MR-Egger, weighted median (WM), and inverse variance weighted (IVW) methods were used. RESULTS In two-sample MR assessments there were lower levels of circulating IGF binding protein 3 in both WM [odds ratio (OR) 0.964, 95% confidence interval (CI) 0.940-0.960, P = 0.006] and IVW (OR 0.968, 95%CI: 0.947-0.987, P = 0.001) analyses. Higher serum levels of IGF2 receptor were associated with AF (OR 1.045, 95%CI: 1.016-1.076, P = 0.039). In reverse MR analysis conducted to investigate casual effects, elevated levels of circulating CYR61 were associated with AF (OR 1.060, 95%CI: 1.005-1.119, P = 0.031). CONCLUSION The results of the present study provide novel insights into the pathogenesis of AF, and the implications of serum IGF family member concentrations when assessing the risk of AF. The study generated evidence on the potential roles of developmental pathological effects in the pathogenesis of AF. Further observational and experimental studies are critically needed.
Collapse
Affiliation(s)
- Sha Lin
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Tang
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Gang Wu
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi-Fei Lin
- Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi-Fei Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
6
|
Gorzkiewicz M, Łoś-Rycharska E, Gawryjołek J, Gołębiewski M, Krogulska A, Grzybowski T. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between Polish infants with the food allergy and/or atopic dermatitis and without the disease. Front Immunol 2023; 14:1209190. [PMID: 37520545 PMCID: PMC10373304 DOI: 10.3389/fimmu.2023.1209190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives Epigenetic dynamics has been indicated to play a role in allergy development. The environmental stimuli have been shown to influence the methylation processes. This study investigated the differences in CpGs methylation rate of immune-attached genes between healthy and allergic infants. The research was aimed at finding evidence for the impact of environmental factors on methylation-based regulation of immunological processes in early childhood. Methods The analysis of methylation level of CpGs in the IL4, IL5, IL10, IFNG and FOXP3 genes was performed using high resolution melt real time PCR technology. DNA was isolated from whole blood of Polish healthy and allergic infants, with food allergy and/or atopic dermatitis, aged under six months. Results The significantly lower methylation level of FOXP3 among allergic infants compared to healthy ones was reported. Additional differences in methylation rates were found, when combining with environmental factors. In different studied groups, negative correlations between age and the IL10 and FOXP3 methylation were detected, and positive - in the case of IL4. Among infants with different allergy symptoms, the decrease in methylation level of IFNG, IL10, IL4 and FOXP3 associated with passive smoke exposure was observed. Complications during pregnancy were linked to different pattern of the IFNG, IL5, IL4 and IL10 methylation depending on allergy status. The IFNG and IL5 methylation rates were higher among exclusively breastfed infants with atopic dermatitis compared to the non-breastfed. A decrease in the IFNG methylation was noted among allergic patients fed exclusively with milk formula. In different study groups, a negative correlation between IFNG, IL5 methylation and maternal BMI or IL5 methylation and weight was noted. Some positive correlations between methylation rate of IL10 and child's weight were found. A higher methylation of IL4 was positively correlated with the number of family members with allergy. Conclusion The FOXP3 methylation in allergic infants was lower than in the healthy ones. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between the studied groups. The results offer insights into epigenetic regulation of immunological response in early childhood.
Collapse
Affiliation(s)
- Marta Gorzkiewicz
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Lee DY, Jeong JY, Lee SE, Lee JH, Moon JY, Jung SW, Lee SH, Kim YG. Discordant renal progression of Fabry disease in male monozygotic twins: a case report. Front Genet 2023; 14:1150822. [PMID: 37388940 PMCID: PMC10300636 DOI: 10.3389/fgene.2023.1150822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Fabry disease (FD) is a rare X-linked lysosomal storage disease caused by mutations in the GLA gene that encodes α-galactosidase A (α-GAL). Clinical phenotypes tend to vary in monozygotic female twins because mutations are located on the X-chromosome, whereas similar phenotypes are found in male monozygotic twins. Here we report the case of male monozygotic twins with FD presenting with distinguishable renal phenotypes. Case: A 49-year-old male patient who visited the hospital with proteinuria 14 years prior was readmitted for the same issue. His monozygotic twin brother had started hemodialysis 6 months prior due to renal failure of unknown origin. The patient's renal function was within the normal range, while his spot urine protein-to-creatinine ratio was 557 mg/g. Echocardiography revealed left ventricular hypertrophy (LVH). The findings of a renal biopsy were consistent with FD. Genetic testing identified a c.656T>C mutation in the GLA gene, and α-GAL activity was significantly decreased. Genetic screening of his family clarified that his mother, older sister, twin brother, and his daughter had the same genetic mutations. The patient received enzyme replacement therapy 34 times. Subsequently, migalastat was initiated that continues today. Renal function and proteinuria remain stable, and the LVH has mildly improved. Conclusion: This is the first case of male monozygotic twins expressing different progressions of FD. Our findings demonstrate the possibility that environmental or epigenetic factors may critically influence genotype-phenotype discordance.
Collapse
Affiliation(s)
- Do-Yun Lee
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun-Yeong Jeong
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Eun Lee
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hun Lee
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Todtenhaupt P, van Pel M, Roest AAW, Heijmans BT. Mesenchymal stromal cells as a tool to unravel the developmental origins of disease. Trends Endocrinol Metab 2022; 33:614-627. [PMID: 35902331 DOI: 10.1016/j.tem.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
Abstract
The intrauterine environment can induce alterations of the epigenome that have a lasting impact on disease risk. Current human studies in the field focus on a single epigenetic mark, DNA methylation, measured in blood. For in-depth mechanistic insight into the developmental origins of disease, it will be crucial to consider innovative tissue types. Mesenchymal stromal cells (MSCs) may serve as a novel tool to investigate the full epigenome beyond DNA methylation, to explore other omics levels, and to perform functional assays. Moreover, MSCs can be differentiated into multiple cell types and thereby mimic otherwise inaccessible cell types. A first wave of studies supports the potential of MSCs and illustrates how the innovative use of this cell type may be incorporated in birth cohorts.
Collapse
Affiliation(s)
- Pia Todtenhaupt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- NecstGen, Leiden, The Netherlands; Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
10
|
Saben JL, Sims CR, Pack L, Lan R, Børsheim E, Andres A. Infant intakes of human milk branched chain amino acids are negatively associated with infant growth and influenced by maternal body mass index. Pediatr Obes 2022; 17:e12876. [PMID: 34913264 PMCID: PMC9269030 DOI: 10.1111/ijpo.12876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs: isoleucine, leucine, and valine) and aromatic amino acids (AAAs: phenylalanine and tyrosine) are hypothesized to influence early-life obesity risk. OBJECTIVE To assess HM free amino acid (AA) concentrations and infant intakes of HM AAs from women with obesity (OB) compared to those with normal weight (NW) and determine the relationships between HM AA consumption and infant growth. METHODS HM samples were collected at 0.5 (n = 151), 2 (n = 129), and 6 (n = 93) months postpartum from mothers with NW (body mass index [BMI] = 18.5-24.9 kg/m2 ) and OB (BMI > 30 kg/m2 ). HM AAs were quantified via mass spectrometry. Infant HM intake, anthropometrics and body composition were assessed. Linear mixed-effects models (LMEM) examined the relationships between maternal BMI and HM AA intakes, and HM AA intake and infant growth over the first 6 months postpartum after adjusting for maternal and infant characteristics. RESULTS Maternal BMI was positively associated with infant intakes of isoleucine, leucine, and AAAs across timepoints. HM AA intakes were positively associated with weight-for-length z-score, fat mass index, and fat-free mass index in infants (p < 0.05). CONCLUSIONS Maternal BMI led to differences in HM AA composition, which was associated with infant body composition.
Collapse
Affiliation(s)
- Jessica L. Saben
- Arkansas Children’s Nutrition Center, Little Rock, AR,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lindsay Pack
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Renny Lan
- Arkansas Children’s Nutrition Center, Little Rock, AR,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
11
|
Yang L, Li C, Li X, Zhai M, An Q, Zhang Y, Zhao J, Weng X. Prevalence of Developmental Dyslexia in Primary School Children: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:brainsci12020240. [PMID: 35204003 PMCID: PMC8870220 DOI: 10.3390/brainsci12020240] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Developmental dyslexia (DD) is a specific learning disorder concerning reading acquisition that may has a lifelong negative impact on individuals. A reliable estimate of the prevalence of DD serves as the basis for diagnosis, intervention, and evidence-based health resource allocation and policy-making. Hence, the present meta-analysis aims to generate a reliable prevalence estimate of DD worldwide in primary school children and explore the potential variables related to that prevalence. Methods: Studies from the 1950s to June 2021 were collated using a combination of search terms related to DD and prevalence. Study quality was assessed using the STROBE guidelines according to the study design, with study heterogeneity assessed using the I2 statistic, and random-effects meta-analyses were conducted. Variations in the prevalence of DD in different subgroups were assessed via subgroup meta-analysis and meta-regression. Results: The pooled prevalence of DD was 7.10% (95% CI: 6.27–7.97%). The prevalence in boys was significantly higher than that in girls (boys: 9.22%, 95%CI, 8.07–10.44%; girls: 4.66%, 95% CI, 3.84–5.54%; p < 0.001), but no significant difference was found in the prevalence across different writing systems (alphabetic scripts: 7.26%, 95%CI, 5.94–8.71%; logographic scripts: 6.97%, 95%CI, 5.86–8.16%; p > 0.05) or across different orthographic depths (shallow: 7.13%, 95% CI, 5.23–9.30%; deep: 7.55%, 95% CI, 4.66–11.04%; p > 0.05). It is worth noting that most articles had small sample sizes with diverse operational definitions, making comparisons challenging. Conclusions: This study provides an estimation of worldwide DD prevalence in primary school children. The prevalence was higher in boys than in girls but was not significantly different across different writing systems.
Collapse
Affiliation(s)
- Liping Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiumei Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Manman Zhai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qingqing An
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - You Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Jing Zhao
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
- Correspondence: (J.Z.); (X.W.)
| | - Xuchu Weng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China; (L.Y.); (X.L.); (M.Z.); (Q.A.); (Y.Z.)
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Correspondence: (J.Z.); (X.W.)
| |
Collapse
|
12
|
Loke YJ, Muggli E, Saffery R, Ryan J, Lewis S, Elliott EJ, Halliday J, Craig JM. Sex- and tissue-specific effects of binge-level prenatal alcohol consumption on DNA methylation at birth. Epigenomics 2021; 13:1921-1938. [PMID: 34841896 DOI: 10.2217/epi-2021-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Binge-level prenatal alcohol exposure (PAE) causes developmental abnormalities, which may be mediated in part by epigenetic mechanisms. Despite this, few studies have characterised the association of binge PAE with DNA methylation in offspring. Methods: We investigated the association between binge PAE and genome-wide DNA methylation profiles in a sex-specific manner in neonatal buccal and placental samples. Results: We identified no differentially methylated CpGs or differentially methylated regions (DMRs) at false discovery rate <0.05. However, using a sum-of-ranks approach, we identified a DMR in each tissue of female offspring. The DMR identified in buccal samples is located near regions with previously-reported associations to fetal alcohol spectrum disorder (FASD) and binge PAE. Conclusion: Our findings warrant further replication and highlight a potential epigenetic link between binge PAE and FASD.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Joanne Ryan
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Biological Neuropsychiatry & Dementia Unit, School of Public Health, Monash University, Victoria, 3004, Australia
| | - Sharon Lewis
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Elizabeth J Elliott
- Specialty of Child & Adolescent Health, Faculty of Medicine & Health, University of Sydney, NSW, 2050, Australia.,The Australian Paediatric Surveillance Unit, Sydney Children's Hospital Network, NSW, 2045, Australia
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Jeffrey M Craig
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,The Institute of Mental & Physical Health & Clinical Translation, Deakin University, Victoria, 3220, Australia
| |
Collapse
|
13
|
High Maternal Serum Estradiol in First Trimester of Multiple Pregnancy Contributes to Small for Gestational Age via DNMT1-Mediated CDKN1C Upregulation. Reprod Sci 2021; 29:1368-1378. [PMID: 34580843 PMCID: PMC8907102 DOI: 10.1007/s43032-021-00735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/04/2021] [Indexed: 10/27/2022]
Abstract
High maternal serum estradiol (E2) levels in the first trimester of pregnancy are associated with a high incidence of low birth weight (LBW) and small for gestational age (SGA). This study aimed to investigate the effect of first-trimester high maternal serum E2 levels on fetal growth and the underlying mechanisms in multiple pregnancies. Maternal serum E2 levels of women at 8 weeks of gestation were measured. The expression levels of imprinted genes and DNMT1 were determined by RT-qPCR, and KvDMR1 methylation in embryo tissue, placenta, and newborn cord blood samples was examined by bisulfite sequencing PCR. The effect of E2 on CDKN1C expression was investigated in HTR8 cells. The incidence of SGA was significantly higher in multiple pregnancies reduced to singleton than that in primary singleton pregnancies (11.4% vs. 2.9%) (P < 0.01) and multiple pregnancies reduced to twins than primary twins (38.5% vs. 27.3%) (P < 0.01). The maternal serum E2 level at 8 weeks of gestation increased with the number of fetuses and was negatively correlated with offspring birth weight. CDKN1C and DNMT1 expression was significantly upregulated in embryo tissue, placenta, and cord blood from multiple pregnancies. Furthermore, there was a positive correlation between CDKN1C mRNA expression and KvDMR1 methylation levels. In HTR8 cells, DNMT1 mediated the estrogen-induced upregulation of CDKN1C, which might contribute to SGA. To minimize the risks of LBW and SGA, our findings suggest that abnormally high maternal serum E2 levels should be avoided during the first trimester of multiple pregnancies from assisted reproductive technology (ART).
Collapse
|
14
|
Richard D, Capellini TD. Shifting epigenetic contexts influence regulatory variation and disease risk. Aging (Albany NY) 2021; 13:15699-15749. [PMID: 34138751 PMCID: PMC8266365 DOI: 10.18632/aging.203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Epigenetic shifts are a hallmark of aging that impact transcriptional networks at regulatory level. These shifts may modify the effects of genetic regulatory variants during aging and contribute to disease pathomechanism. However, these shifts occur on the backdrop of epigenetic changes experienced throughout an individual's development into adulthood; thus, the phenotypic, and ultimately fitness, effects of regulatory variants subject to developmental- versus aging-related epigenetic shifts may differ considerably. Natural selection therefore may act differently on variants depending on their changing epigenetic context, which we propose as a novel lens through which to consider regulatory sequence evolution and phenotypic effects. Here, we define genomic regions subjected to altered chromatin accessibility as tissues transition from their fetal to adult forms, and subsequently from early to late adulthood. Based on these epigenomic datasets, we examine patterns of evolutionary constraint and potential functional impacts of sequence variation (e.g., genetic disease risk associations). We find that while the signals observed with developmental epigenetic changes are consistent with stronger fitness consequences (i.e., negative selection pressures), they tend to have weaker effects on genetic risk associations for aging-related diseases. Conversely, we see stronger effects of variants with increased local accessibility in adult tissues, strongest in young adult when compared to old. We propose a model for how epigenetic status of a region may influence the effects of evolutionary relevant sequence variation, and suggest that such a perspective on gene regulatory networks may elucidate our understanding of aging biology.
Collapse
Affiliation(s)
- Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
16
|
Olstad EW, Nordeng HME, Gervin K. Prenatal medication exposure and epigenetic outcomes: a systematic literature review and recommendations for prenatal pharmacoepigenetic studies. Epigenetics 2021; 17:357-380. [PMID: 33926354 PMCID: PMC8993058 DOI: 10.1080/15592294.2021.1903376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal circulation and may induce epigenetic modifications. Where such modifications occur and whether they disrupt normal foetal developme nt, are currently unanswered questions. This field of prenatal pharmacoepigenetics has received increasing attention, with several studies reporting associations between in utero medication exposure and offspring epigenetic outcomes. Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of this review were to (i) provide an overview of the literature on the association of prenatal exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommendations for future studies within prenatal pharmacoepigenetics. We performed systematic literature searches in five databases. The eligible studies assessed human prenatal exposure to psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, antiepileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most studies found significant differences in DNA methylation upon medication exposure, almost no differences were persistent across studies for similar medications and sequencing methods. The reviewed studies were challenging to compare due to poor transparency in reporting, and heterogeneous methodology, design, genome coverage, and statistical modelling. We propose 10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemiological and epigenetic perspectives. These recommendations may improve the quality, comparability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Zhou X, Han X, Lyu SC, Bunning B, Kost L, Chang I, Cao S, Sampath V, Nadeau KC. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight 2021; 6:143058. [PMID: 33571165 PMCID: PMC8026193 DOI: 10.1172/jci.insight.143058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation (DNAm) has been shown to play a role in mediating food allergy; however, the mechanism by which it does so is poorly understood. In this study, we used targeted next-generation bisulfite sequencing to evaluate DNAm levels in 125 targeted highly informative genomic regions containing 602 CpG sites on 70 immune-related genes to understand whether DNAm can differentiate peanut allergy (PA) versus nonallergy (NA). We found PA-associated DNAm signatures associated with 12 genes (7 potentially novel to food allergy, 3 associated with Th1/Th2, and 2 associated with innate immunity), as well as DNAm signature combinations with superior diagnostic potential compared with serum peanut–specific IgE for PA versus NA. Furthermore, we found that, following peanut protein stimulation, peripheral blood mononuclear cell (PBMCs) from PA participants showed increased production of cognate cytokines compared with NA participants. The varying responses between PA and NA participants may be associated with the interaction between the modification of DNAm and the interference of environment. Using Euclidean distance analysis, we found that the distances of methylation profile comprising 12 DNAm signatures between PA and NA pairs in monozygotic (MZ) twins were smaller than those in randomly paired genetically unrelated individuals, suggesting that PA-related DNAm signatures may be associated with genetic factors.
Collapse
|
18
|
Hearn J, Plenderleith F, Little TJ. DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 2021; 14:4. [PMID: 33407738 PMCID: PMC7789248 DOI: 10.1186/s13072-020-00379-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna. RESULTS Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that are highly correlated with chronological age. CONCLUSIONS Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age positions, which is exciting but requires confirmation.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fiona Plenderleith
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom J. Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Epigenetic Influences on Neurodevelopment at 11 Years of Age: Protocol for the Longitudinal Peri/Postnatal Epigenetic Twins Study at 11 Years of Age (PETS@11). Twin Res Hum Genet 2020; 22:446-453. [PMID: 32008589 DOI: 10.1017/thg.2019.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurodevelopment is sensitive to genetic and pre/postnatal environmental influences. These effects are likely mediated by epigenetic factors, yet current knowledge is limited. Longitudinal twin studies can delineate the link between genetic and environmental factors, epigenetic state at birth and neurodevelopment later in childhood. Building upon our study of the Peri/postnatal Epigenetic Twin Study (PETS) from gestation to 6 years of age, here we describe the PETS 11-year follow-up in which we will use neuroimaging and cognitive testing to examine the relationship between early-life environment, epigenetics and neurocognitive outcomes in mid-childhood. Using a within-pair twin model, the primary aims are to (1) identify early-life epigenetic correlates of neurocognitive outcomes; (2) determine the developmental stability of epigenetic effects and (3) identify modifiable environmental risk factors. Secondary aims are to identify factors influencing gut microbiota between 6 and 11 years of age to investigate links between gut microbiota and neurodevelopmental outcomes in mid-childhood. Approximately 210 twin pairs will undergo an assessment at 11 years of age. This includes a direct child cognitive assessment, multimodal magnetic resonance imaging, biological sampling, anthropometric measurements and a range of questionnaires on health and development, behavior, dietary habits and sleeping patterns. Data from complementary data sources, including the National Assessment Program - Literacy and Numeracy and the Australian Early Development Census, will also be sought. Following on from our previous focus on relationships between growth, cardiovascular health and oral health, this next phase of PETS will significantly advance our understanding of the environmental interactions that shape the developing brain.
Collapse
|
20
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
21
|
Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment. Int J Mol Sci 2020; 21:ijms21093142. [PMID: 32365612 PMCID: PMC7247668 DOI: 10.3390/ijms21093142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022] Open
Abstract
The role of twins in research is evolving as we move further into the post-genomic era. With the re-definition of what a gene is, it is becoming clear that biological family members who share a specific genetic variant may well not have a similar risk for future disease. This has somewhat invalidated the prior rationale for twin studies. Case co-twin study designs, however, are slowly emerging as the ideal tool to identify both environmentally induced epigenetic marks and epigenetic disease-associated processes. Here, we propose that twin lives are not as identical as commonly assumed and that the case co-twin study design can be used to investigate the effects of the adult social environment. We present the elements in the (social) environment that are likely to affect the epigenome and measures in which twins may diverge. Using data from the German TwinLife registry, we confirm divergence in both the events that occur and the salience for the individual start as early as age 11. Case co-twin studies allow for the exploitation of these divergences, permitting the investigation of the role of not only the adult social environment, but also the salience of an event or environment for the individual, in determining lifelong health trajectories. In cases like social adversity where it is clearly not possible to perform a randomised-controlled trial, we propose that the case co-twin study design is the most rigorous manner with which to investigate epigenetic mechanisms encoding environmental exposure. The role of the case co-twin design will continue to evolve, as we argue that it will permit causal inference from observational data.
Collapse
|
22
|
The tissue-specific aspect of genome-wide DNA methylation in newborn and placental tissues: implications for epigenetic epidemiologic studies. J Dev Orig Health Dis 2020; 12:113-123. [PMID: 32327008 DOI: 10.1017/s2040174420000136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epigenetic programming is essential for lineage differentiation, embryogenesis and placentation in early pregnancy. In epigenetic association studies, DNA methylation is often examined in DNA derived from white blood cells, although its validity to other tissues of interest remains questionable. Therefore, we investigated the tissue specificity of epigenome-wide DNA methylation in newborn and placental tissues. Umbilical cord white blood cells (UC-WBC, n = 25), umbilical cord blood mononuclear cells (UC-MNC, n = 10), human umbilical vein endothelial cells (HUVEC, n = 25) and placental tissue (n = 25) were obtained from 36 uncomplicated pregnancies. Genome-wide DNA methylation was measured by the Illumina HumanMethylation450K BeadChip. Using UC-WBC as a reference tissue, we identified 3595 HUVEC tissue-specific differentially methylated regions (tDMRs) and 11,938 placental tDMRs. Functional enrichment analysis showed that HUVEC and placental tDMRs were involved in embryogenesis, vascular development and regulation of gene expression. No tDMRs were identified in UC-MNC. In conclusion, the extensive amount of genome-wide HUVEC and placental tDMRs underlines the relevance of tissue-specific approaches in future epigenetic association studies, or the use of validated representative tissues for a certain disease of interest, if available. To this purpose, we herewith provide a relevant dataset of paired, tissue-specific, genome-wide methylation measurements in newborn tissues.
Collapse
|
23
|
Insulin Resistance in Pregnancy: Implications for Mother and Offspring. CONTEMPORARY ENDOCRINOLOGY 2020. [DOI: 10.1007/978-3-030-25057-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Alese OO, Mabandla MV. Transgenerational deep sequencing revealed hypermethylation of hippocampal mGluR1 gene with altered mRNA expression of mGluR5 and mGluR3 associated with behavioral changes in Sprague Dawley rats with history of prolonged febrile seizure. PLoS One 2019; 14:e0225034. [PMID: 31710636 PMCID: PMC6844483 DOI: 10.1371/journal.pone.0225034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/27/2019] [Indexed: 02/04/2023] Open
Abstract
The impact of febrile seizure has been shown to transcend immediate generation with the alteration of glutamatergic pathway being implicated. However, transgenerational effects of this neurological disorder particularly prolonged febrile seizure (PFS) on neurobehavioral study and methylation profile is unknown. We therefore hypothesized that transgenerational impact of prolonged febrile seizure is dependent on methylation of hippocampal mGluR1 gene. Prolonged febrile seizure was induced on post-natal day (PND) 14, by injecting lipopolysaccharide (LPS; 217μg/kg ip) and kainic acid (KA; 1.83 mg/kg ip). Sucrose preference test (SPT) and Forced swim test (FST) were carried out in the first generation (F0) of animals at PND37 and PND60. The F0 rats were decapitated at PND 14, 37 and 60 which corresponded to childhood, adolescent and adulthood respectively and their hippocampal tissue collected. The second generation (F1) rats were obtained by mating F0 generation at PND 60 across different groups, F1 rats were subjected to SPT and FST test on PND 37 only. Decapitation of F1rats and collection of hippocampal tissues were done on PND 14 and 37. Assessment of mGluR5 and mGluR3 mRNA was done with PCR while mGluR1 methylation profile was assessed with the Quantitative MassARRAY analysis. Results showed that PFS significantly leads to decreased sucrose consumption in the SPT and increased immobility time in the FST in both generations of rats. It also leads to significant decrease in mGluR5 mRNA expression with a resultant increased expression of mGluR3 mRNA expression and hypermethylation of mGluR1 gene across both generations of rats. This study suggested that PFS led to behavioral changes which could be transmitted on to the next generation in rats.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal
- DNA Methylation/genetics
- High-Throughput Nucleotide Sequencing
- Hippocampus/metabolism
- Immobilization
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Metabotropic Glutamate 5/genetics
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Seizures, Febrile/genetics
- Sucrose
- Swimming
Collapse
Affiliation(s)
- Oluwole Ojo Alese
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Musa V. Mabandla
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study. J Dev Orig Health Dis 2019; 11:392-402. [PMID: 31679538 DOI: 10.1017/s2040174419000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal supraphysiological estradiol (E2) environment during pregnancy leads to adverse perinatal outcomes. However, the influence of oocyte exposure to high E2 levels on perinatal outcomes remains unknown. Thus, a retrospective cohort study was conducted to explore the effect of high E2 level induced by controlled ovarian stimulation (COH) on further outcomes after frozen embryo transfer (FET). The study included all FET cycles (n = 10,581) between 2014 and 2017. All cycles were categorized into three groups according to the E2 level on the day of the human Chorionic Gonadotropin trigger. Odds ratios (ORs) and their confidence intervals (CIs) were calculated to evaluate the association between E2 level during COH and pregnancy outcomes and subsequent neonatal outcomes. From our findings, higher E2 level was associated with lower percentage of chemical pregnancy, clinical pregnancy, ongoing pregnancy, and live birth as well as increased frequency of early miscarriage. Preterm births were more common among singletons in women with higher E2 level during COH (aOR1 = 1.93, 95% CI: 1.22-3.06; aOR2 = 2.05, 95% CI: 1.33-3.06). Incidence of small for gestational age (SGA) was more common in both singletons (aOR1 = 2.01, 95% CI: 1.30-3.11; aOR2 = 2.51, 95% CI: 1.69-3.74) and multiples (aOR1 = 1.58, 95% CI: 1.03-2.45; aOR2 = 1.99, 95% CI: 1.05-3.84) among women with relatively higher E2 level. No association was found between high E2 level during COH and the percentage of macrosomia or large for gestational age. In summary, oocyte exposure to high E2 level during COH should be brought to our attention, since the pregnancy rate decreasing and the risk of preterm birth and SGA increasing following FET.
Collapse
|
26
|
Liu X, Craig ZR. Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary†. Biol Reprod 2019; 101:854-867. [PMID: 31318015 PMCID: PMC6930367 DOI: 10.1093/biolre/ioz122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Phthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7-10 μg/kg/day) and medications (1-233 μg/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels. CD-1 female mice (80 days old) were treated with tocopherol-stripped corn oil (vehicle control) or DBP dissolved in oil at environmentally relevant (10 and 100 μg/kg/day) or higher (1000 μg/kg/day) levels for 30 days to evaluate effects on DNA damage response (DDR) pathway genes and folliculogenesis. DBP exposure caused dose-dependent effects on folliculogenesis and gene expression. Specifically, animals exposed to the high dose of DBP had more atretic follicles in their ovaries, while in those treated with environmentally relevant doses, follicle numbers were no different from vehicle-treated controls. DBP exposure significantly reduced the expression of DDR genes including those involved in homologous recombination (Atm, Brca1, Mre11a, Rad50), mismatch repair (Msh3, Msh6), and nucleotide excision repair (Xpc, Pcna) in a dose-specific manner. Interestingly, staining for the DNA damage marker, γH2AX, was similar between treatments. DBP exposure did not result in differential DNA methylation in the Brca1 promoter but significantly reduced transcript levels for the maintenance DNA methyltransferase, Dnmt1, in the ovary. Collectively, these findings show that oral exposure to environmentally relevant levels of DBP for 30 days does not significantly impact folliculogenesis in adult mice but leads to aberrant ovarian expression of DDR genes.
Collapse
Affiliation(s)
- Xiaosong Liu
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Zelieann R Craig
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol 2019; 20:220. [PMID: 31651351 PMCID: PMC6813132 DOI: 10.1186/s13059-019-1813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Identifying genetic variants that are associated with methylation variation-an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping-is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.
Collapse
Affiliation(s)
- Yue Fan
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tauras P Vilgalys
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
| | - Shiquan Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC, 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Wang G, DiBari J, Bind E, Steffens AM, Mukherjee J, Azuine RE, Singh GK, Hong X, Ji Y, Ji H, Pearson C, Zuckerman BS, Cheng TL, Wang X. Association Between Maternal Exposure to Lead, Maternal Folate Status, and Intergenerational Risk of Childhood Overweight and Obesity. JAMA Netw Open 2019; 2:e1912343. [PMID: 31577354 PMCID: PMC6777254 DOI: 10.1001/jamanetworkopen.2019.12343] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPORTANCE The first pediatric lead screening typically occurs at 1-year well-child care visits. However, data on the extent of maternal lead exposure and its long-term consequences for child health are lacking. OBJECTIVE To investigate the associations between maternal red blood cell (RBC) lead levels and intergenerational risk of overweight or obesity (OWO) and whether adequate maternal folate status is associated with a reduction in OWO risk. DESIGN, SETTING, AND PARTICIPANTS Prospective birth cohort study. The analysis was conducted from July 14, 2018, to August 2, 2019, at Johns Hopkins Bloomberg School of Public Health. This study included 1442 mother-child pairs recruited at birth from October 27, 2002, to October 10, 2013, and followed up prospectively at Boston Medical Center. MAIN OUTCOMES AND MEASURES Child body mass index (BMI) z score, calculated according to US national reference data, and OWO, defined as BMI at or exceeding the 85th percentile for age and sex. Maternal RBC lead levels and plasma folate levels were measured in samples obtained 24 to 72 hours after delivery; child whole-blood lead level was obtained from the first pediatric lead screening. RESULTS The mean (SD) age of mothers and children was 28.6 (6.5) years and 8.1 (3.1) years, respectively; 50.1% of children were boys. The median maternal RBC lead level and plasma folate level were 2.5 (interquartile range [IQR], 1.7-3.8) μg/dL and 32.2 (IQR, 22.1-44.4) nmol/L, respectively. The median child whole-blood lead level and child BMI z score were 1.4 (IQR, 1.4-2.0) μg/dL and 0.78 (IQR, -0.08 to 1.71), respectively. Maternal RBC lead level was associated with child OWO risk in a dose-response fashion, with an odds ratio (OR) of 1.65 (95% CI, 1.18-2.32) for high maternal RBC lead level (≥5.0 μg/dL) compared with low maternal RBC lead level (<2.0 μg/dL). Child OWO was highest among children of OWO mothers with high RBC lead levels (adjusted OR, 4.24; 95% CI, 2.64-6.82) compared with children of non-OWO mothers with low RBC lead levels. Children of OWO mothers with high RBC lead levels had 41% lower OWO risk (OR, 0.59; 95% CI, 0.36-0.95; P = .03) if their mothers had adequate plasma folate levels (≥20.4 nmol/L) compared with their counterparts. CONCLUSIONS AND RELEVANCE In this sample of a US urban population, findings suggest that maternal elevated lead exposure was associated with increased risk of intergenerational OWO independent of postnatal blood lead levels. Adequate maternal folate status appeared to be associated with lower OWO risk. If confirmed by additional studies, these findings have implications for prenatal lead screening and management to minimize adverse health consequences on children.
Collapse
Affiliation(s)
- Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessica DiBari
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Eric Bind
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Andrew M. Steffens
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Jhindan Mukherjee
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Romuladus E. Azuine
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Gopal K. Singh
- Office of Health Equity, Health Resources and Services Administration, Rockville, Maryland
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barry S. Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Tina L. Cheng
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Mohandas N, Loke YJ, Hopkins S, Mackenzie L, Bennett C, Berkovic SF, Vadlamudi L, Craig JM. Evidence for type-specific DNA methylation patterns in epilepsy: a discordant monozygotic twin approach. Epigenomics 2019; 11:951-968. [DOI: 10.2217/epi-2018-0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Epilepsy is a common neurological disorder characterized by recurrent seizures. We performed epigenetic analyses between and within 15 monozygotic (MZ) twin pairs discordant for focal or generalized epilepsy. Methods: DNA methylation analysis was performed using Illumina Infinium MethylationEPIC arrays, in blood and buccal samples. Results: Differentially methylated regions between epilepsy types associated with PM20D1 and GFPT2 genes in both tissues. Within MZ discordant twin pairs, differentially methylated regions associated with OTX1 and ARID5B genes for generalized epilepsy and TTC39C and DLX5 genes for focal epilepsy. Conclusion: This is the first epigenome-wide association study, utilizing the discordant MZ co-twin model, to deepen our understanding of the neurobiology of epilepsy.
Collapse
Affiliation(s)
- Namitha Mohandas
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Flemington Road, Parkville, Victoria, Australia
| | - Yuk Jing Loke
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Stephanie Hopkins
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- School of Medicine & Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Lisa Mackenzie
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Carmen Bennett
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Victoria, Australia
| | - Lata Vadlamudi
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
- Royal Brisbane & Women's Hospital, Queensland, Australia
| | - Jeffrey M Craig
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Flemington Road, Parkville, Victoria, Australia
- Centre for Molecular & Medical Research, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
30
|
Bacterial Lipopolysaccharide Induced Alterations of Genome-Wide DNA Methylation and Promoter Methylation of Lactation-Related Genes in Bovine Mammary Epithelial Cells. Toxins (Basel) 2019; 11:toxins11050298. [PMID: 31137708 PMCID: PMC6563294 DOI: 10.3390/toxins11050298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) could result in poor lactation performance in dairy cows. High methylation of DNA is associated with gene repression. However, it is unclear whether LPS could suppress the expression of lactation-related genes by inducing DNA methylation. Therefore, the objective of this study was to investigate the impact of LPS on genome-wide DNA methylation, using methylated DNA immunoprecipitation with high-throughput sequencing (MeDIP-seq) and on the promoter methylation of lactation-related genes using MassArray analysis in bovine mammary epithelial cells. The bovine mammary epithelial cell line MAC-T cells were treated for 48 h with LPS at different doses of 0, 1, 10, 100, and 1000 endotoxin units (EU)/mL (1 EU = 0.1 ng). The results showed that the genomic methylation levels and the number of methylated genes in the genome as well as the promoter methylation levels of milk genes increased when the LPS dose was raised from 0 to 10 EU/mL, but decreased after further increasing the LPS dose. The milk gene mRNA expression levels of the 10 EU/mL LPS treatment were significantly lower than these of untreated cells. The results also showed that the number of hypermethylated genes was greater than that of hypomethylated genes in lipid and amino acid metabolic pathways following 1 and 10 EU/mL LPS treatments as compared with control. By contrast, in the immune response pathway the number of hypomethylated genes increased with increasing LPS doses. The results indicate LPS at lower doses induced hypermethylation of the genome and promoters of lactation-related genes, affecting milk gene mRNA expression. However, LPS at higher doses induced hypomethylation of genes involved in the immune response pathway probably in favor of immune responses.
Collapse
|
31
|
Barnes‐Davis ME, Cortezzo DE. Two cases of atypical twinning: Phenotypically discordant monozygotic and conjoined twins. Clin Case Rep 2019; 7:920-925. [PMID: 31110715 PMCID: PMC6509934 DOI: 10.1002/ccr3.2113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Atypical twinning highlights that complex mechanisms responsible for twinning are not fully understood and may give further insight into the mechanisms involved. To assume that phenotypic difference is the result of dizygotic twinning would be erroneous and could have significant implications in the care and counseling provided to these patients.
Collapse
Affiliation(s)
- Maria E. Barnes‐Davis
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhio
- Division of Neonatal and Pulmonary BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOhio
| | - DonnaMaria E. Cortezzo
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhio
- Division of Neonatal and Pulmonary BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOhio
- Department of AnesthesiologyUniversity of Cincinnati College of MedicineCincinnatiOhio
- Division of Pain and Palliative MedicineCincinnati Children’s Hospital Medical CenterCincinnatiOhio
| |
Collapse
|
32
|
Schmitz J, Güntürkün O, Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front Psychol 2019; 10:982. [PMID: 31133928 PMCID: PMC6524718 DOI: 10.3389/fpsyg.2019.00982] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
The brain is one of the most prominent examples for structural and functional differences between the left and right half of the body. For handedness and language lateralization, the most widely investigated behavioral phenotypes, only a small fraction of phenotypic variance has been explained by molecular genetic studies. Due to environmental factors presumably also playing a role in their ontogenesis and based on first molecular evidence, it has been suggested that functional hemispheric asymmetries are partly under epigenetic control. This review article aims to elucidate the molecular factors underlying hemispheric asymmetries and their association with inner organ asymmetries. While we previously suggested that epigenetic mechanisms might partly account for the missing heritability of handedness, this article extends this idea by suggesting possible alternatives for transgenerational transmission of epigenetic states that do not require germ line epigenetic transmission. This is in line with a multifactorial model of hemispheric asymmetries, integrating genetic, environmental, and epigenetic influencing factors in their ontogenesis.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
33
|
Lønning PE, Eikesdal HP, Løes IM, Knappskog S. Constitutional Mosaic Epimutations - a hidden cause of cancer? Cell Stress 2019; 3:118-135. [PMID: 31225507 PMCID: PMC6551830 DOI: 10.15698/cst2019.04.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter hypermethylation is a key mechanism to facilitate cancer progression in many malignancies. While promoter hypermethylation can occur at later stages of the carcinogenesis process, constitutional methylation of key tumor suppressors may be an initiating event whereby cancer is started. Constitutional BRCA1 methylation due to cis-acting germline genetic variants is associated with a high risk of breast and ovarian cancer. However, this seems to be a rare event, restricted to a very limited number of families. In contrast, mosaic constitutional BRCA1 methylation is detected in 4-7% of newborn females without germline BRCA1 mutations. While the cause of such methylation is poorly understood, mosaic normal tissue BRCA1 methylation is associated with a 2-3 fold increased risk of high-grade serous ovarian cancer (HGSOC). As such, BRCA1 methylation may be the cause of a significant number of ovarian cancers. Given the molecular similarities between HGSOC and basal-like breast cancer, the findings with respect to HGSOC suggest that constitutional BRCA1 methylation could be a risk factor for basal-like breast cancer as well. Similar to BRCA1, some specific germline variants in MLH1 and MSH2 are associated with promoter methylation and a high risk of colorectal cancers in rare hereditary cases of the disease. However, as many as 15% of all colorectal cancers are of the microsatellite instability (MSI) "high" subtype, in which commonly the tumors harbor MLH1 hypermethylation. Constitutional mosaic methylation of MLH1 in normal tissues has been detected but not formally evaluated as a potential risk factor for incidental colorectal cancers. However, the findings with respect to BRCA1 in breast and ovarian cancer raises the question whether mosaic MLH1 methylation is a risk factor for MSI positive colorectal cancer as well. As for MGMT, a promoter variant is associated with elevated methylation across a panel of solid cancers, and MGMT promoter methylation may contribute to an elevated cancer risk in several of these malignancies. We hypothesize that constitutional mosaic promoter methylation of crucial tumor suppressors may trigger certain types of cancer, similar to germline mutations inactivating the same particular genes. Such constitutional methylation events may be a spark to ignite cancer development, and if associated with a significant cancer risk, screening for such epigenetic alterations could be part of cancer prevention programs to reduce cancer mortality in the future.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans P. Eikesdal
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Inger M. Løes
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Sun J, Zhang J, Wang Y, Li Y, Zhang R. A Pilot Study of Aberrant CpG Island Hypermethylation of SPRED1 in Acute Myeloloid Leukemia. Int J Med Sci 2019; 16:324-330. [PMID: 30745814 PMCID: PMC6367533 DOI: 10.7150/ijms.27757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Epigenetic silencing of tumor suppressor genes plays important role in acute myeloid leukemia (AML). Recently, SPRED1, a negative regulator of the RAS MAPK pathway, is identified as a tumour suppressor downregulated in AML. However, little is known regarding its underlying dysregulation in AML. In this study, we investigated methylation status of SPRED1 promoters and their association with mRNA levels in AML. Methods: Methylation level were measured in four regions of SPRED1 (#1: 310 bp ~ 723 bp, #2: 810 bp ~ 1299 bp, #3: 1280 bp ~ 1742 bp and #4: 1715 bp ~ 2059 bp) in a total of 16 patients with de novonon-acute promyelocytic leukemia (non-APL) and three patients who got complete remission after induction treatment using the Sequenom MassARRAY platform. Quantitative real-time polymerase chain reaction (q-RT PCR) was used to analyze SPRED1 mRNA levels. Results: AML patients had a significantly higher average methylation level than controls at regions of #1_CpG_1 (p= 0.04) and #1_CpG_11 (p =0.002). The methylation values for #1_CpG_11 were negatively correlated with mRNA levels (r= -0.558, p=0.013) but there was no significant association between #1_CpG_1 methylation status and mRNA levels (r=-0.103, p=0.675) in AML patients. There was no significant difference in the methylation level when comparing with clinical biochemical parameters and treatment response (p>0.05). Mutations of epigenetic regulation genes such as DNMT3A, TET2 and IDH1/2 were most frequently observed in patients with higher methylation levels. Decreased methylation levels were revealed in three patients who got complete remission. Conclusions: Aberrant methylation statuses of the SPRED1 promoter regions are associated with the downregulation of gene transcription in AML. The methylation level is probably associated with the treatment response of AML. Mutations of epigenetic regulation genes might be involved in the epigenetic aberration of SPRED1.
Collapse
Affiliation(s)
- Jingwen Sun
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Yue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| |
Collapse
|
35
|
Ajami M, Sadeghian MH, Soleimani M, Keramati MR, Ajami M, Anbarlou A, Atashi A. Comparison of miRNA Profiles of Cord Blood Stem Cells in Identical and Fraternal Twins. CELL JOURNAL 2018; 21:78-85. [PMID: 30507092 PMCID: PMC6275421 DOI: 10.22074/cellj.2019.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Objective The role of epigenetic in regulating of the gene expression profile the embryo has been documented. MicroRNAs
(miRNAs) are one of these epigenetic mechanisms. Twins are valuable models in determining the relative contributions
of genetics and the environment. In this study, we compared differences in the expression levels of 44 miRNAs in
hematopoietic stem cells (HSCs) of identical twins to that of fraternal twins as a controls.
Materials and Methods In this experimental study, CD133+ HSCs were isolated from cord blood of identical and
fraternal twins via magnetic-activated cell sorting (MACS). Variation in of gene expression levels of 44 miRNAs were
evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
Results Significant differences in expression were observed in both fraternal and identical twins to varying degrees,
but variations alteration in expression of the miRNAs were higher in fraternal twins.
Conclusion Identical twins had a positive correlation in miRNA expression, while the correlation was not statistically
significant in fraternal twins. Altogether, more differences in miRNA expression level in fraternal twins can be attributed
to the both genetics and the intrauterine environment. The contribution of the intrauterine environment and genetics to
miRNAs expression in HSCs was estimated 8 and 92%, respectively. By comparing of miRNA expression in identical
and fraternal twins and identification of their target genes and biological pathways, it could be possible to estimate the
effects of genetics and the environment on a number of biological pathways.
Collapse
Affiliation(s)
- Monireh Ajami
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic Address:
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Mohammad Reza Keramati
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Ajami
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Anbarlou
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
36
|
Hollowood K, Melnyk S, Pavliv O, Evans T, Sides A, Schmidt RJ, Hertz-Picciotto I, Elms W, Guerrero E, Kruger U, Hahn J, James SJ. Maternal metabolic profile predicts high or low risk of an autism pregnancy outcome. RESEARCH IN AUTISM SPECTRUM DISORDERS 2018; 56:72-82. [PMID: 31086561 PMCID: PMC6510509 DOI: 10.1016/j.rasd.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Currently there is no test for pregnant mothers that can predict the probability of having a child that will be diagnosed with autism spectrum disorder (ASD). Recent estimates indicate that if a mother has previously had a child with ASD, the risk of having a second child with ASD is ~18.7% (High Risk) whereas the risk of ASD in the general population is ~1.7% (Low Risk). METHODS In this study, metabolites of the folate-dependent transmethylation and transsulfuration biochemical pathways of pregnant mothers were measured to determine whether or not the risk of having a child with autism could be predicted by her metabolic profile. Pregnant mothers who have had a child with autism before were separated into two groups based on the diagnosis of their child whether the child had autism (ASD) or not (TD). Then these mothers were compared to a group of control mothers who have not had a child with autism before. A total of 107 mothers were in the High Risk category and 25 mothers in the Low Risk category. The High Risk category was further separated into 29 mothers in the ASD group and 78 mothers in the TD group. RESULTS The metabolic results indicated that among High Risk mothers, it was not possible to predict an autism pregnancy outcome. However, the metabolic profile was able to predict with approximately 90% sensitivity and specificity whether a mother fell into the High Risk group (18.7% risk) or Low Risk group (1.7% risk). CONCLUSIONS Based upon these measurements it is not possible to determine during a pregnancy if a child will be diagnosed with ASD by age 3. However, differences in the folate-dependent transmethylation and transsulfuration metabolites are indicative of the risk level (High Risk of 18.7% vs. Low Risk of 1.7%) of the mother for having a child with ASD.
Collapse
Affiliation(s)
- Kathryn Hollowood
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Oleksandra Pavliv
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Teresa Evans
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Ashley Sides
- Translational Research Institute, University of Arkansas for Medical Sciences, 1301 W Markham St, Little Rock, AR, 72205, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, 1 Shields Ave, Davis, CA, 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, 1 Shields Ave, Davis, CA, 95616, USA
| | - William Elms
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, 1 Shields Ave, Davis, CA, 95616, USA
| | - Elizabeth Guerrero
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, 1 Shields Ave, Davis, CA, 95616, USA
| | - Uwe Kruger
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 8 St, Troy, NY, 12180, USA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, 4301 W Markham St, Little Rock, AR, 72205, USA
| |
Collapse
|
37
|
Genetic variants influence on the placenta regulatory landscape. PLoS Genet 2018; 14:e1007785. [PMID: 30452450 PMCID: PMC6277118 DOI: 10.1371/journal.pgen.1007785] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 12/03/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
From genomic association studies, quantitative trait loci analysis, and epigenomic mapping, it is evident that significant efforts are necessary to define genetic-epigenetic interactions and understand their role in disease susceptibility and progression. For this reason, an analysis of the effects of genetic variation on gene expression and DNA methylation in human placentas at high resolution and whole-genome coverage will have multiple mechanistic and practical implications. By producing and analyzing DNA sequence variation (n = 303), DNA methylation (n = 303) and mRNA expression data (n = 80) from placentas from healthy women, we investigate the regulatory landscape of the human placenta and offer analytical approaches to integrate different types of genomic data and address some potential limitations of current platforms. We distinguish two profiles of interaction between expression and DNA methylation, revealing linear or bimodal effects, reflecting differences in genomic context, transcription factor recruitment, and possibly cell subpopulations. These findings help to clarify the interactions of genetic, epigenetic, and transcriptional regulatory mechanisms in normal human placentas. They also provide strong evidence for genotype-driven modifications of transcription and DNA methylation in normal placentas. In addition to these mechanistic implications, the data and analytical methods presented here will improve the interpretability of genome-wide and epigenome-wide association studies for human traits and diseases that involve placental functions. The placenta is a critical organ playing multiple roles including oxygen and metabolite transfer from mother to fetus, hormone production, and vascular perfusion. With this study, we aimed to deliver a placenta-specific regulatory map based on a combination of publicly available and newly generated data. To complete this reference, we obtained genotype information (n = 303), DNA methylation (n = 303) and expression data (n = 80) for placentas from healthy women. Our analysis of methylation and expression quantitative trait loci (QTLs) and correlations between methylation and expression data were designed to identify fundamental associations between genome, transcriptome, and epigenome in this key fetal organ. The results provide high-resolution genetic and epigenetic maps specific to the placenta based on a representative ethnically diverse cohort. As interest and efforts are growing to better understand the etiology of placental disease and the impact of the environment on placental function these data will provide a reference and enhance future investigations.
Collapse
|
38
|
Watamura SE, Roth TL. Looking back and moving forward: Evaluating and advancing translation from animal models to human studies of early life stress and DNA methylation. Dev Psychobiol 2018; 61:323-340. [PMID: 30426484 DOI: 10.1002/dev.21796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Advances in epigenetic methodologies have deepened theoretical explanations of mechanisms linking early life stress (ELS) and disease outcomes and suggest promising targets for intervention. To date, however, human studies have not capitalized on the richness of diverse animal models to derive and systematically evaluate specific and testable hypotheses. To promote cross-species dialog and scientific advance, here we provide a classification scheme to systematically evaluate the match between characteristics of human and animal studies of ELS and DNA methylation. Three preclinical models were selected that are highly cited, and that differ in the nature and severity of the ELS manipulation as well as in the affected epigenetic loci (the licking and grooming, maternal separation, and caregiver maltreatment models). We evaluated the degree to which human studies matched these preclinical models with respect to the timing of ELS and of DNA methylation assessment, as well as the type of ELS, whether sex differences were explicitly examined, the tissue sampled, and the targeted loci. Results revealed <50% match (range of 8-83%) between preclinical models and human work on these variables. Immediate and longer-term suggestions to improve translational specificity are offered, with the goal of accelerating scientific advance.
Collapse
Affiliation(s)
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
39
|
Garg P, Joshi RS, Watson C, Sharp AJ. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome. PLoS Genet 2018; 14:e1007707. [PMID: 30273333 PMCID: PMC6181428 DOI: 10.1371/journal.pgen.1007707] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/11/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
While population studies have resulted in detailed maps of genetic variation in humans, to date there are few robust maps of epigenetic variation. We identified sites containing clusters of CpGs with high inter-individual epigenetic variation, termed Variably Methylated Regions (VMRs) in five purified cell types. We observed that VMRs occur preferentially at enhancers and 3' UTRs. While the majority of VMRs have high heritability, a subset of VMRs within the genome show highly correlated variation in trans, forming co-regulated networks that have low heritability, differ between cell types and are enriched for specific transcription factor binding sites and biological pathways of functional relevance to each tissue. For example, in T cells we defined a network of 95 co-regulated VMRs enriched for genes with roles in T-cell activation; in fibroblasts a network of 34 co-regulated VMRs comprising all four HOX gene clusters enriched for control of tissue growth; and in neurons a network of 18 VMRs enriched for roles in synaptic signaling. By culturing genetically-identical fibroblasts under varying environmental conditions, we experimentally demonstrated that some VMR networks are responsive to the environment, with methylation levels at these loci changing in a coordinated fashion in trans dependent on cellular growth. Intriguingly these environmentally-responsive VMRs showed a strong enrichment for imprinted loci (p<10-80), suggesting that these are particularly sensitive to environmental conditions. Our study provides a detailed map of common epigenetic variation in the human genome, showing that both genetic and environmental causes underlie this variation.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ricky S. Joshi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Corey Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
40
|
van Dongen J, Ehli EA, Jansen R, van Beijsterveldt CEM, Willemsen G, Hottenga JJ, Kallsen NA, Peyton SA, Breeze CE, Kluft C, Heijmans BT, Bartels M, Davies GE, Boomsma DI. Genome-wide analysis of DNA methylation in buccal cells: a study of monozygotic twins and mQTLs. Epigenetics Chromatin 2018; 11:54. [PMID: 30253792 PMCID: PMC6156977 DOI: 10.1186/s13072-018-0225-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA methylation arrays are widely used in epigenome-wide association studies and methylation quantitative trait locus (mQTL) studies. Here, we performed the first genome-wide analysis of monozygotic (MZ) twin correlations and mQTLs on data obtained with the Illumina MethylationEPIC BeadChip (EPIC array) and compared the performance of the EPIC array to the Illumina HumanMethylation450 BeadChip (HM450 array) for buccal-derived DNA. RESULTS Good-quality EPIC data were obtained for 102 buccal-derived DNA samples from 49 MZ twin pairs (mean age = 7.5 years, range = 1-10). Differences between MZ twins in the cellular content of buccal swabs were a major driver for differences in their DNA methylation profiles, highlighting the importance to adjust for cellular composition in DNA methylation studies of buccal-derived DNA. After adjusting for cellular composition, the genome-wide mean correlation (r) between MZ twins was 0.21 for the EPIC array, and cis mQTL analysis in 84 twins identified 1,296,323 significant associations (FDR 5%), encompassing 33,749 methylation sites and 616,029 genetic variants. MZ twin correlations were slightly larger (p < 2.2 × 10-16) for novel EPIC probes (N = 383,066, mean r = 0.22) compared to probes that are also present on HM450 (N = 406,822, mean r = 0.20). In line with this observation, a larger percentage of novel EPIC probes was associated with genetic variants (novel EPIC probes with significant mQTL 4.7%, HM450 probes with mQTL 3.9%, p < 2.2 × 10-16). Methylation sites with a large MZ correlation and sites associated with mQTLs were most strongly enriched in epithelial cell DNase I hypersensitive sites (DHSs), enhancers, and histone mark H3K4me3. CONCLUSIONS We conclude that the contribution of familial factors to individual differences in DNA methylation and the effect of mQTLs are larger for novel EPIC probes, especially those within regulatory elements connected to active regions specific to the investigated tissue.
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| | - Erik A. Ehli
- Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108 USA
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Oldenaller 1, 1081 HJ Amsterdam, The Netherlands
| | - Catharina E. M. van Beijsterveldt
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| | - Jouke J. Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| | - Noah A. Kallsen
- Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108 USA
| | - Shanna A. Peyton
- Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108 USA
| | - Charles E. Breeze
- Altius Institute for Biomedical Sciences, 2211 Elliott Ave, Seattle, WA 98121 USA
| | - Cornelis Kluft
- Good Biomarker Sciences, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Postal Zone S-05-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| | - Gareth E. Davies
- Avera Institute for Human Genetics, 3720 W. 69th Street, Sioux Falls, SD 57108 USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van Der Boechorststraat 1, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
41
|
Shi Y, Liu M, Long X, Chen D, Zheng H, Chen S. Effect of abnormal GpG methylation in the second trimester of pregnancy on adverse health risk of offspring. Exp Ther Med 2018; 16:2875-2880. [PMID: 30214509 PMCID: PMC6125837 DOI: 10.3892/etm.2018.6560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023] Open
Abstract
Effect of abnormal GpG methylation in amniotic fluid cells during the second trimester of pregnancy on adverse health risk of offspring was investigated. In total, 237 sets of amniotic fluid cells were collected from patients who received prenatal diagnosis in the Third Affiliated Hospital of Guangzhou Medical University (Guangzhou, China) from April 2010 to October 2011. Among them, 156 sets were from singleton and 81 sets were from twins. H19 gene was amplified by PCR, and the product was purified and pyrosequencing was used to detect the DNA methylation level of GapG. Follow-up records of the birth outcomes of pregnant women's offspring were collected. Positive rate of DNA amplification in 200 cases of amniotic fluid cells was 84.4% (200/237). Average age of singleton pregnancies was higher than that of twins (P<0.05), and no significant differences were found in gestational age and PCR amplification rate (P>0.05). There was no difference in the methylation level of GapG between singleton and twins (P>0.05), but the abnormal methylation rate of GapG1 in twin fetuses was significantly higher than that of singleton (20.3 vs. 3.6%, χ2=8.364, P=0.004). Offspring sex, singleton or twins, mode of delivery, time of pregnancy, and low birth weight showed no significant effect on GapG methylation level of H19 in the second trimester of pregnancy. No offspring deformities were found regardless of the increased or decreased degree of methylation (P>0.05). The number of fetuses born may cause abnormal GapG1 methylation, but no effect of GapG methylation on the adverse health risk of offspring was found.
Collapse
Affiliation(s)
- Yu Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher-Education Institutes, Guangzhou Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Mingxing Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher-Education Institutes, Guangzhou Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Xiaolin Long
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher-Education Institutes, Guangzhou Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher-Education Institutes, Guangzhou Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Haiyan Zheng
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher-Education Institutes, Guangzhou Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
42
|
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. ENVIRONMENT INTERNATIONAL 2018; 118:334-347. [PMID: 29935799 DOI: 10.1016/j.envint.2018.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.
Collapse
Affiliation(s)
- Emilie Abraham
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Lydiane Agier
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | | | | | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Marie-Aline Charles
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Barbara Heude
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Anne Forhan
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Johanna Lepeule
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France.
| |
Collapse
|
43
|
Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 2018; 142:765-772. [PMID: 30040975 PMCID: PMC6167012 DOI: 10.1016/j.jaci.2018.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerationational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions.
Collapse
Affiliation(s)
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
44
|
Strategies to reduce non-communicable diseases in the offspring: negative and positive in utero programming. J Dev Orig Health Dis 2018; 9:642-652. [PMID: 30111388 DOI: 10.1017/s2040174418000569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs) are a major problem as they are the leading cause of death and represent a substantial economic cost. The 'Developmental Origins of Health and Disease Hypothesis' proposes that adverse stimuli at different life stages can increase the predisposition to these diseases. In fact, adverse in utero programming is a major origin of these diseases due to the high malleability of embryonic development. This review provides a comprehensive analysis of the scientific literature on in utero programming and NCDs highlighting potential medical strategies to prevent these diseases based upon this programming. We fully address the concept and mechanisms involved in this programming (anatomical disruptions, epigenetic modifications and microbiota alterations). We also examine the negative role of in utero programming on the increased predisposition of NCDs in the offspring, which introduces the passive medical approach that consists of avoiding adverse stimuli including an unhealthy diet and environmental chemicals. Finally, we extensively discuss active medical approaches that target the causes of NCDs and have the potential to significantly and rapidly reduce the incidence of NCDs. These approaches can be classified as direct in utero programming modifications and personalized lifestyle pregnancy programs; they could potentially provide transgenerational NCDs protection. Active strategies against NCDs constitute a promising tool for the reduction in NCDs.
Collapse
|
45
|
Ismaylova E, Lévesque ML, Pomares FB, Szyf M, Nemoda Z, Fahim C, Vitaro F, Brendgen M, Dionne G, Boivin M, Tremblay RE, Booij L. Serotonin transporter promoter methylation in peripheral cells and neural responses to negative stimuli: A study of adolescent monozygotic twins. Transl Psychiatry 2018; 8:147. [PMID: 30089832 PMCID: PMC6082838 DOI: 10.1038/s41398-018-0195-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
Several studies have examined associations between peripheral DNA methylation patterns of the serotonin transporter gene (SLC6A4) promoter and symptoms of depression and anxiety. The SLC6A4 promoter methylation has also been associated with frontal-limbic brain responses to negative stimuli. However, it is unclear how much of this association is confounded by DNA sequence variations. We utilized a monozygotic-twin within-pair discordance design, to test whether DNA methylation at specific CpG sites in the SLC6A4 promoter of peripheral cells is associated with greater frontal-limbic brain responses to negative stimuli (sadness and fear), independently of DNA sequence effects. In total 48 pairs of healthy 15-year-old monozygotic twins from the Quebec Newborn Twin Study, followed regularly since birth, underwent functional magnetic resonance imaging while conducting an emotion-processing task. The SLC6A4 promoter methylation level was assessed in saliva samples using pyrosequencing. Relative to the co-twins with lower SLC6A4 promoter methylation levels, twins with higher peripheral SLC6A4 methylation levels showed greater orbitofrontal cortical (OFC) activity and left amygdala-anterior cingulate cortex (ACC) and left amygdala-right OFC connectivity in response to sadness as well as greater ACC-left amygdala and ACC-left insula connectivity in response to fearful stimuli. By utilising a monozygotic-twin design, we provided evidence that associations between peripheral SLC6A4 promoter methylation and frontal-limbic brain responses to negative stimuli are, in part, independent of DNA sequence variations. Although causality cannot be determined here, SLC6A4 promoter methylation may be one of the mechanisms underlying how environmental factors influence the serotonin system, potentially affecting emotional processing through frontal-limbic areas.
Collapse
Affiliation(s)
- Elmira Ismaylova
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0001 2292 3357grid.14848.31Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Melissa L. Lévesque
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0001 2292 3357grid.14848.31Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Florence B. Pomares
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0004 1936 8630grid.410319.eDepartment of Psychology, Concordia University, Montreal, Canada
| | - Moshe Szyf
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Zsofia Nemoda
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Cherine Fahim
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada
| | - Frank Vitaro
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0001 2292 3357grid.14848.31School of Psychoeducation, University of Montreal, Montreal, Canada
| | - Mara Brendgen
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0001 2181 0211grid.38678.32Department of Psychology, University of Quebec à Montreal, Montreal, Canada
| | - Ginette Dionne
- 0000 0004 1936 8390grid.23856.3aSchool of Psychology, University of Laval, Quebec, Canada
| | - Michel Boivin
- 0000 0004 1936 8390grid.23856.3aSchool of Psychology, University of Laval, Quebec, Canada ,0000 0001 1088 3909grid.77602.34Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| | - Richard E. Tremblay
- 0000 0001 2173 6322grid.411418.9CHU Sainte-Justine Research Centre, Montreal, Canada ,0000 0001 2292 3357grid.14848.31Department of Psychology, University of Montreal, Montreal, Canada ,0000 0001 0768 2743grid.7886.1School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Linda Booij
- CHU Sainte-Justine Research Centre, Montreal, Canada. .,Department of Psychiatry, University of Montreal, Montreal, Canada. .,Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
46
|
Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease. Twin Res Hum Genet 2018; 20:521-532. [PMID: 29192580 PMCID: PMC5729853 DOI: 10.1017/thg.2017.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.
Collapse
|
47
|
Sexton-Oates A, Dodgshun A, Hovestadt V, Jones DTW, Ashley DM, Sullivan M, MacGregor D, Saffery R. Methylation profiling of paediatric pilocytic astrocytoma reveals variants specifically associated with tumour location and predictive of recurrence. Mol Oncol 2018; 12:1219-1232. [PMID: 28388012 PMCID: PMC6068350 DOI: 10.1002/1878-0261.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Childhood pilocytic astrocytomas (PA) are low-grade tumours with an excellent prognosis. However, a minority, particularly those in surgically inaccessible locations, have poorer long-term outcome. At present, it is unclear whether anatomical location in isolation, or in combination with underlying biological variation, determines clinical behaviour. Here, we have tested the utility of DNA methylation profiling to inform tumour biology and to predict behaviour in paediatric PA. Genome-wide DNA methylation profiles were generated for 117 paediatric PAs. Using a combination of analyses, we identified DNA methylation variants specific to tumour location and predictive of behaviour. Receiver-operating characteristic analysis was used to test the predictive utility of clinical and/or DNA methylation features to classify tumour behaviour at diagnosis. Unsupervised analysis distinguished three methylation clusters associated with tumour location (cortical, midline and infratentorial). Differential methylation of 5404 sites identified enrichment of genes involved in 'embryonic nervous system development'. Specific hypermethylation of NEUROG1 and NR2E1 was identified as a feature of cortical tumours. A highly accurate method to classify tumours according to behaviour, which combined three clinical features (age, location and extent of resection) and methylation level at a single site, was identified. Our findings show location-specific epigenetic profiles for PAs, potentially reflecting their cell type of origin. This may account for differences in clinical behaviour according to location independent of histopathology. We also defined an accurate method to predict tumour behaviour at diagnosis. This warrants further testing in similar patient cohorts.
Collapse
Affiliation(s)
- Alexandra Sexton-Oates
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Andrew Dodgshun
- Children's Cancer Centre, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - David M Ashley
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Michael Sullivan
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Children's Cancer Centre, The Royal Children's Hospital, Parkville, Australia
| | - Duncan MacGregor
- Department of Anatomical Pathology, The Royal Children's Hospital, Parkville, Australia.,Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
48
|
Loke YJ, Muggli E, Nguyen L, Ryan J, Saffery R, Elliott EJ, Halliday J, Craig JM. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics 2018; 10:981-991. [PMID: 29956547 DOI: 10.2217/epi-2017-0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Epigenetic changes, in particular in the placenta, may mediate the effects of prenatal alcohol exposure (PAE) on children's health. We examined the relationship between PAE patterns, based on dose and timing, and placental global DNA methylation. METHODS Using linear regression analysis, we examined the association between different PAE categories and placental global DNA methylation (n = 187), using the proxy measure of Alu-interspersed repeats. RESULTS Following adjustment for important covariates, we found no evidence of an association between PAE and placental global DNA methylation overall. However, when stratifying by newborn sex, PAE throughout pregnancy was associated with higher placental global DNA methylation (1.5%; p = 0.01) of male newborns. CONCLUSION PAE may have sex-specific effects on placental global DNA methylation if alcohol is consumed throughout pregnancy.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Evelyne Muggli
- Public Health Genetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Linh Nguyen
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Joanne Ryan
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Elizabeth J Elliott
- Discipline of Child & Adolescent Health, School of Medicine and Health, University of Sydney, Sydney 2006, New South Wales, Australia.,Australian Paediatric Surveillance Unit, Sydney Childrens Hospitals Network, Westmead, Sydney, New South Wales, Australia
| | - Jane Halliday
- Public Health Genetics, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jeffrey M Craig
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, the Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
49
|
Marjonen H, Auvinen P, Kahila H, Tšuiko O, Kõks S, Tiirats A, Viltrop T, Tuuri T, Söderström-Anttila V, Suikkari AM, Salumets A, Tiitinen A, Kaminen-Ahola N. rs10732516 polymorphism at the IGF2/H19 locus associates with genotype-specific effects on placental DNA methylation and birth weight of newborns conceived by assisted reproductive technology. Clin Epigenetics 2018; 10:80. [PMID: 29946374 PMCID: PMC6006593 DOI: 10.1186/s13148-018-0511-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Assisted reproductive technology (ART) has been associated with low birth weight of fresh embryo transfer (FRESH) derived and increased birth weight of frozen embryo transfer (FET)-derived newborns. Owing to that, we focused on imprinted insulin-like growth factor 2 (IGF2)/H19 locus known to be important for normal growth. This locus is regulated by H19 imprinting control region (ICR) with seven binding sites for the methylation-sensitive zinc finger regulatory protein (CTCF). A polymorphism rs10732516 G/A in the sixth binding site for CTCF, associates with a genotype-specific trend to the DNA methylation. Due to this association, 62 couples with singleton pregnancies derived from FRESH (44 IVF/18 ICSI), 24 couples from FET (15 IVF/9 ICSI), and 157 couples with spontaneously conceived pregnancies as controls were recruited in Finland and Estonia for genotype-specific examination. DNA methylation levels at the H19 ICR, H19 DMR, and long interspersed nuclear elements in placental tissue were explored by MassARRAY EpiTYPER (n = 122). Allele-specific changes in the methylation level of H19 ICR in placental tissue (n = 26) and white blood cells (WBC, n = 8) were examined by bisulfite sequencing. Newborns' (n = 243) anthropometrics was analyzed by using international growth standards. Results A consistent trend of genotype-specific decreased methylation level was observed in paternal allele of rs10732516 paternal A/maternal G genotype, but not in paternal G/maternal A genotype, at H19 ICR in ART placentas. This hypomethylation was not detected in WBCs. Also genotype-specific differences in FRESH-derived newborns' birth weight and head circumference were observed (P = 0.04, P = 0.004, respectively): FRESH-derived newborns with G/G genotype were heavier (P = 0.04) and had larger head circumference (P = 0.002) compared to newborns with A/A genotype. Also, the placental weight and birth weight of controls, FRESH- and FET-derived newborns differed significantly in rs10732516 A/A genotype (P = 0.024, P = 0.006, respectively): the placentas and newborns of FET-derived pregnancies were heavier compared to FRESH-derived pregnancies (P = 0.02, P = 0.004, respectively). Conclusions The observed DNA methylation changes together with the phenotypic findings suggest that rs10732516 polymorphism associates with the effects of ART in a parent-of-origin manner. Therefore, this polymorphism should be considered when the effects of environmental factors on embryonic development are studied.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Pauliina Auvinen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Hanna Kahila
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olga Tšuiko
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Sulev Kõks
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Reproductive Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Airi Tiirats
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Paediatric ICU, Tartu University Hospital, Tartu, Estonia
| | - Triin Viltrop
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Viveca Söderström-Anttila
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The Family Federation of Finland, Fertility Clinic, Helsinki, Finland
| | | | - Andres Salumets
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Mohandas N, Bass-Stringer S, Maksimovic J, Crompton K, Loke YJ, Walstab J, Reid SM, Amor DJ, Reddihough D, Craig JM. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics 2018; 10:25. [PMID: 29484035 PMCID: PMC5824607 DOI: 10.1186/s13148-018-0457-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral palsy (CP) is a clinical description for a group of motor disorders that are heterogeneous with respect to causes, symptoms and severity. A diagnosis of CP cannot usually be made at birth and in some cases may be delayed until 2–3 years of age. This limits opportunities for early intervention that could otherwise improve long-term outcomes. CP has been recorded in monozygotic twins discordant for the disorder, indicating a potential role of non-genetic factors such as intrauterine infection, hypoxia-ischaemia, haemorrhage and thrombosis. The aim of this exploratory study was to utilise the discordant monozygotic twin model to understand and measure epigenetic changes associated with the development of CP. Methods We performed a genome-wide analysis of DNA methylation using the Illumina Infinium Human Methylation 450 BeadChip array with DNA from newborn blood spots of 15 monozygotic twin pairs who later became discordant for CP. Quality control and data preprocessing were undertaken using the minfi R package. Differential methylation analysis was performed using the remove unwanted variation (RUVm) method, taking twin pairing into account in order to identify CP-specific differentially methylated probes (DMPs), and bumphunter was performed to identify differentially methylated regions (DMRs). Results We identified 33 top-ranked DMPs based on a nominal p value cut-off of p < 1 × 10−4 and two DMRs (p < 1 × 10−3) associated with CP. The top-ranked probes related to 25 genes including HNRNPL, RASSF5, CD3D and KALRN involved in immune signalling pathways, in addition to TBC1D24, FBXO9 and VIPR2 previously linked to epileptic encephalopathy. Gene ontology and pathway analysis of top-ranked DMP-associated genes revealed enrichment of inflammatory signalling pathways, regulation of cytokine secretion and regulation of leukocyte-mediated immunity. We also identified two top-ranked DMRs including one on chromosome 6 within the promoter region of LTA gene encoding tumour necrosis factor-beta (TNF-β), an important regulator of inflammation and brain development. The second was within the transcription start site of the LIME1 gene, which plays a key role in inflammatory pathways such as MAPK signalling. CP-specific differential DNA methylation within one of our two top DMRs was validated using an independent platform, MassArray EpiTyper. Conclusions Ours is the first epigenome-wide association study of CP in disease-discordant monozygotic twin pairs and suggests a potential role for immune dysfunction in this condition. Electronic supplementary material The online version of this article (10.1186/s13148-018-0457-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namitha Mohandas
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia.,2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia
| | - Sebastian Bass-Stringer
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Jovana Maksimovic
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,Bioinformatics Group, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Kylie Crompton
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Yuk J Loke
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Janet Walstab
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia
| | - Susan M Reid
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - David J Amor
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Dinah Reddihough
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Jeffrey M Craig
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia.,2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,6Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria 3220 Australia
| |
Collapse
|