1
|
Turnquist BE, MacIver PH, Katzel LI, Waldstein SR. Interactive Relations of Body Mass Index, Cardiorespiratory Fitness, and Sex to Cognitive Function in Older Adults. Arch Clin Neuropsychol 2024; 39:787-799. [PMID: 38486431 PMCID: PMC11504700 DOI: 10.1093/arclin/acae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE The course of cognitive aging is influenced by multiple health factors. This cross-sectional study investigated the interactive relations between body mass index (BMI), maximum oxygen consumption (VO2max), and sex on neuropsychological outcomes in community-dwelling predominantly older adults. METHODS Participants were 164 healthy adults [M (SD) = 64.6 (12.5) years, 56% men, 87% white] who participated in an investigation of cardiovascular risk factors and brain health. Multivariable regression analysis, adjusted for age, education, ethnicity, smoking, alcohol consumption, and depression, examined the interactive relations of BMI, VO2max, and sex to multiple neuropsychological outcomes. RESULTS Significant BMI*VO2max*sex interactions for Grooved Pegboard dominant (p = .019) and nondominant (p = .005) hands revealed that men with lower VO2max (l/min) displayed worse performance with each hand as BMI increased (p's < .02). A significant BMI*sex interaction for Logical Memory-Delayed Recall (p = .036) (after adjustment for blood glucose) showed that men, but not women, with higher BMI demonstrated worse performance (p = .036). Lastly, significant main effects indicated that lower VO2max was related to poorer logical memory, and higher BMI was associated with poorer Trail Making B and Stroop interference scores (p's < .05). CONCLUSIONS Among men, higher cardiorespiratory fitness may protect against the negative impact of greater BMI on manual dexterity and motor speed, making VO2max a target for intervention. Higher BMI is further associated with poorer executive function and verbal memory (in men), and lower VO2max is associated with poorer verbal memory.
Collapse
Affiliation(s)
- B Eric Turnquist
- Department of Psychology, University of Maryland, Baltimore, MD, USA
- Department of Psychology, American University, Washington, DC, USA
| | - Peter H MacIver
- Department of Psychology, University of Maryland, Baltimore, MD, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore, MD, USA
- Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Sáez de Asteasu ML, Martínez-Velilla N, Ramírez-Vélez R, Zambom-Ferraresi F, Galbete A, Cadore EL, Izquierdo M. Biological sex as a tailoring variable for exercise prescription in hospitalized older adults. J Nutr Health Aging 2024; 28:100377. [PMID: 39341033 DOI: 10.1016/j.jnha.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Sex-based differences in the clinical presentation and outcomes are well-established in patients hospitalized for geriatric syndromes. We aimed to investigate sex differences in response to in-hospital exercise on function, strength, cognition, and quality of life in acute care admissions. METHODS 570 patients (mean age 87 years, 298 females [52.3%]) admitted to acute care for elderly units were randomized to multicomponent exercise emphasizing progressive resistance training or usual care. Functional assessments included Short Physical Performance Battery (SPPB), grip strength, Mini-Mental State Examination (MMSE), and health-related quality of life (EQ-VAS). RESULTS Exercising females showed more significant SPPB improvements than males (between-group difference 1.48 points, p = 0.027), exceeding the minimal clinically significant difference. While female participants significantly increased handgrip strength and male patients improved cognition after in-hospital exercise compared to the control group (all p < 0.001), no sex differences occurred. CONCLUSIONS Females demonstrate more excellent physical function improvements compared to male older patients. Findings highlight the importance of tailored exercise incorporating patient factors like biological sex in geriatric medicine. TRIAL REGISTRATION NCT04600453.
Collapse
Affiliation(s)
- Mikel L Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Nicolás Martínez-Velilla
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Geriatric Department, Hospital Universitario de Navarra (HUN), Pamplona, Navarra, Spain
| | - Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabricio Zambom-Ferraresi
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Galbete
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Wilhelm RA, Lacey MF, Masters SL, Breeden CJ, Mann E, MacDonald HV, Gable PA, White EJ, Stewart JL. Greater weekly physical activity linked to left resting frontal alpha asymmetry in women: A study on gender differences in highly active young adults. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 74:102679. [PMID: 38797225 DOI: 10.1016/j.psychsport.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Physical activity, beneficial for physical and psychological health, may facilitate affective mechanisms of positive emotion and approach-motivation. Greater resting frontal alpha asymmetry (FAA), an index of greater relative left than right frontal cortical activity, is a neural correlate of affective mechanisms possibly associated with active lifestyles. This study sought to amplify limited literature on the relationship between physical (in)activity, FAA, and gender differences. College students (n = 70) self-reported physical activity (Total PA) and sedentary activity (Total Sitting) via the International Physical Activity Questionnaire-Short Form (IPAQ-SF), followed by a resting electroencephalography session to record FAA. A Total PA × gender interaction (β = 0.462, t = 3.163, p = 0.002) identified a positive relationship between Total PA and FAA in women (β = 0.434, t = 2.221, p = 0.030) and a negative relationship for men (β = -0.338, t = -2.300, p = 0.025). Total Sitting was positively linked to FAA (β = 0.288, t = 2.228, p = 0.029; no gender effect). Results suggest affective mechanisms reflected by FAA (e.g., positive emotion, approach-motivation) are associated with physical activity for women, indicating a possible mechanism of the psychological benefits linked with physically active lifestyles. A positive relationship between sedentary behavior and greater left FAA may also reflect motivated mechanisms of behavior that aid in minimizing energy expenditure, particularly within the context of our highly active sample.
Collapse
Affiliation(s)
- Ricardo A Wilhelm
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA; Department of Psychology, University of Alabama, Tuscaloosa, AL, USA.
| | - Micayla F Lacey
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Behavioral & Social Sciences, Wilkes University, Wilkes-Barre, PA, USA.
| | - Stephanie L Masters
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology & Counseling, Hood College, Frederick, MD, USA
| | - Christopher J Breeden
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology, Wingate University, Wingate, NC, USA
| | - Eric Mann
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | | | - Philip A Gable
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Evan J White
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA; Oxley School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA; Oxley School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
4
|
Ni Y, Sullivan A, Szpiro AA, Peng J, Loftus CT, Hazlehurst MF, Sherris A, Wallace ER, Murphy LE, Nguyen RH, Swan SH, Sathyanarayana S, Barrett ES, Mason WA, Bush NR, Karr CJ, LeWinn KZ. Ambient Air Pollution Exposures and Child Executive Function: A US Multicohort Study. Epidemiology 2024; 35:676-688. [PMID: 38871635 PMCID: PMC11305919 DOI: 10.1097/ede.0000000000001754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND Executive function, which develops rapidly in childhood, enables problem-solving, focused attention, and planning. Animal models describe executive function decrements associated with ambient air pollution exposure, but epidemiologic studies are limited. METHODS We examined associations between early childhood air pollution exposure and school-aged executive function in 1235 children from three US pregnancy cohorts in the ECHO-PATHWAYS Consortium. We derived point-based residential exposures to ambient particulate matter ≤2.5 µm in aerodynamic diameter (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ) at ages 0-4 years from spatiotemporal models with a 2-week resolution. We assessed executive function across three domains, cognitive flexibility, working memory, and inhibitory control, using performance-based measures and calculated a composite score quantifying overall performance. We fitted linear regressions to assess air pollution and child executive function associations, adjusting for sociodemographic characteristics, maternal mental health, and health behaviors, and examined modification by child sex, maternal education, and neighborhood educational opportunity. RESULTS In the overall sample, we found hypothesized inverse associations in crude but not adjusted models. Modified associations between NO 2 exposure and working memory by neighborhood education opportunity were present ( Pinteraction = 0.05), with inverse associations more pronounced in the "high" and "very high" categories. Associations of interest did not differ by child sex or maternal education. CONCLUSION This work contributes to the evolving science regarding early-life environmental exposures and child development. There remains a need for continued exploration in future research endeavors, to elucidate the complex interplay between natural environment and social determinants influencing child neurodevelopment.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, California, USA
| | - Alexis Sullivan
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - James Peng
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Allison Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Erin R. Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - W. Alex Mason
- College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Dei Cas A, Micheli MM, Aldigeri R, Gardini S, Ferrari-Pellegrini F, Perini M, Messa G, Antonini M, Spigoni V, Cinquegrani G, Vazzana A, Moretti V, Caffarra P, Bonadonna RC. Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. J Endocrinol Invest 2024; 47:2339-2349. [PMID: 38565814 PMCID: PMC11368991 DOI: 10.1007/s40618-024-02320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE According to preclinical evidence, GLP-1 receptor may be an actionable target in neurodegenerative disorders, including Alzheimer's disease (AD). Previous clinical trials of GLP-1 receptor agonists were conducted in patients with early AD, yielding mixed results. The aim was to assess in a proof-of-concept study whether slow-release exenatide, a long-acting GLP-1 agonist, can benefit the cognitive performance of people with mild cognitive impairment (MCI). METHODS Thirty-two (16 females) patients were randomized to either slow-release exenatide (n = 17; 2 mg s.c. once a week) or no treatment (n = 15) for 32 weeks. The primary endpoint was the change in ADAS-Cog11 cognitive test score at 32 weeks vs baseline. Secondary endpoints herein reported included additional cognitive tests and plasma readouts of GLP-1 receptor engagement. Statistical analysis was conducted by intention to treat. RESULTS No significant between-group effects of exenatide on ADAS-Cog11 score (p = 0.17) were detected. A gender interaction with treatment was observed (p = 0.04), due to worsening of the ADAS-Cog11 score in women randomized to exenatide (p = 0.018), after correction for age, scholar level, dysglycemia, and ADAS-Cog score baseline value. Fasting plasma glucose (p = 0.02) and body weight (p = 0.03) decreased in patients randomized to exenatide. CONCLUSION In patients with MCI, a 32-week trial with slow-release exenatide had no beneficial effect on cognitive performance. TRIAL REGISTRATION NUMBER NCT03881371, registered on 21 July, 2016.
Collapse
Affiliation(s)
- A Dei Cas
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - M M Micheli
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R Aldigeri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Gardini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - F Ferrari-Pellegrini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - M Perini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Messa
- Center for Cognitive Disorders, AUSL Parma, Via Verona 36, Parma, Italy
| | - M Antonini
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Spigoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Cinquegrani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - A Vazzana
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Moretti
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - P Caffarra
- Department of Medicine and Surgery, Section of Neuroscience, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
6
|
Sakai O, Yokohata D, Hotta T. Boldness affects novel object recognition in a gecko species. Behav Processes 2024; 220:105072. [PMID: 38914379 DOI: 10.1016/j.beproc.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Individual animals exhibit considerable differences in cognitive characteristics associated with personality differences. The cognition-personality link was intensively investigated in the last decade though with mixed results. To grasp the general pattern, a common method should be applied to a wide range of animals. We tested novel object recognition (NOR) in the mourning gecko (Lepidodactylus lugubris) and investigated whether boldness, assessed in an anti-predator context, explained neophobia and how much attention animals pay to their surroundings. Boldness did not simply explain object neophobia but predicted attention to novel objects. Specifically, shy geckos showed shorter latency to approach the novel object than bold geckos only in the changed situation in which distinct types of objects were presented in two successive phases. However, no significant effect of boldness was detected in the unchanged situation in which the same object was presented twice. Our findings suggest that, in the mourning gecko, (1) boldness and object neophobia represent different aspects of personality traits and that (2) boldness underlies sensitivity to slight changes in the environment.
Collapse
Affiliation(s)
- Osamu Sakai
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto; Department of Environment Conservation, Tokyo University of Agriculture and Technology, Tokyo.
| | - Daichi Yokohata
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| | - Takashi Hotta
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| |
Collapse
|
7
|
Gall CM, Le AA, Lynch G. Contributions of site- and sex-specific LTPs to everyday memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230223. [PMID: 38853551 PMCID: PMC11343211 DOI: 10.1098/rstb.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/11/2024] Open
Abstract
Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA92697, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA92868, USA
| |
Collapse
|
8
|
Peterson S, Maheras A, Wu B, Chavira J, Keiflin R. Sex differences in discrimination behavior and orbitofrontal engagement during context-gated reward prediction. eLife 2024; 12:RP93509. [PMID: 39046898 PMCID: PMC11268887 DOI: 10.7554/elife.93509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Animals, including humans, rely on contextual information to interpret ambiguous stimuli. Impaired context processing is a hallmark of several neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, post-traumatic stress disorder, and addiction. While sex differences in the prevalence and manifestations of these disorders are well established, potential sex differences in context processing remain uncertain. Here, we examined sex differences in the contextual control over cue-evoked reward seeking and its neural correlates, in rats. Male and female rats were trained in a bidirectional occasion-setting preparation in which the validity of two auditory reward-predictive cues was informed by the presence, or absence, of a visual contextual feature (LIGHT: X+/DARK: X-/LIGHT: Y-/DARK: Y+). Females were significantly slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behavior was more robust in female rats; it showed less within-session variability (less influence of prior reward) and greater resistance to acute stress. This superior contextual control achieved by females was accompanied by an increased activation of the orbitofrontal cortex (OFC) compared to males. Critically, these behavioral and neural sex differences were specific to the contextual modulation process and not observed in simple, context-independent, reward prediction tasks. These results indicate a sex-biased trade-off between the speed of acquisition and the robustness of performance in the contextual modulation of cued reward seeking. The different distribution of sexes along the fast learning ↔ steady performance continuum might reflect different levels of engagement of the OFC, and might have implications for our understanding of sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Amanda Maheras
- Department of Molecular, Cellular & Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Brenda Wu
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jose Chavira
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Ronald Keiflin
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
9
|
Killanin AD, Ward TW, Embury CM, Calhoun VD, Wang Y, Stephen JM, Picci G, Heinrichs‐Graham E, Wilson TW. Effects of endogenous testosterone on oscillatory activity during verbal working memory in youth. Hum Brain Mapp 2024; 45:e26774. [PMID: 38949599 PMCID: PMC11215982 DOI: 10.1002/hbm.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Testosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies have investigated the effects of chronological age on the neural oscillations supporting verbal working memory, none have probed the impact of endogenous testosterone levels during this developmental period. Using a sample of 89 youth aged 6-14 years-old, we collected salivary testosterone samples and recorded magnetoencephalography during a modified Sternberg verbal working memory task. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting maps were subjected to whole-brain ANCOVAs examining the effects of testosterone and sex, controlling for age, during verbal working memory encoding and maintenance. Our primary results indicated robust testosterone-related effects in theta (4-7 Hz) and alpha (8-14 Hz) oscillatory activity, controlling for age. During encoding, females exhibited weaker theta oscillations than males in right cerebellar cortices and stronger alpha oscillations in left temporal cortices. During maintenance, youth with greater testosterone exhibited weaker alpha oscillations in right parahippocampal and cerebellar cortices, as well as regions across the left-lateralized language network. These results extend the existing literature on the development of verbal working memory processing by showing region and sex-specific effects of testosterone, and are the first results to link endogenous testosterone levels to the neural oscillatory activity serving verbal working memory, above and beyond the effects of chronological age.
Collapse
Affiliation(s)
- Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | | | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
10
|
Ni Y, Szpiro AA, Loftus CT, Workman T, Sullivan A, Wallace ER, Riederer AM, Day DB, Murphy LE, Nguyen RHN, Sathyanarayana S, Barrett ES, Zhao Q, Enquobahrie DA, Simpson C, Ahmad SI, Arizaga JA, Collett BR, Derefinko KJ, Kannan K, Bush NR, LeWinn KZ, Karr CJ. Prenatal exposure to polycyclic aromatic hydrocarbons and executive functions at school age: Results from a combined cohort study. Int J Hyg Environ Health 2024; 260:114407. [PMID: 38879913 DOI: 10.1016/j.ijheh.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Executive functions develop rapidly in childhood, enabling problem-solving, focused attention, and planning. Exposures to environmental toxicants in pregnancy may impair healthy executive function development in children. There is increasing concern regarding polycyclic aromatic hydrocarbons (PAHs) given their ability to transfer across the placenta and the fetal blood-brain barrier, yet evidence from epidemiological studies is limited. METHODS We examined associations between prenatal PAH exposure and executive functions in 814 children of non-smoking mothers from two U.S. cohorts in the ECHO-PATHWAYS Consortium. Seven mono-hydroxylated PAH metabolites were measured in mid-pregnancy urine and analyzed individually and as mixtures. Three executive function domains were measured at age 8-9: cognitive flexibility, working memory, and inhibitory control. A composite score quantifying overall performance was further calculated. We fitted linear regressions adjusted for socio-demographics, maternal health behaviors, and psychological measures, and examined modification by child sex and stressful life events in pregnancy. Bayesian kernel machine regression was performed to estimate the interactive and overall effects of the PAH mixture. RESULTS The results from primary analysis of linear regressions were generally null, and no modification by child sex or maternal stress was indicated. Mixture analyses suggested several pairwise interactions between individual PAH metabolites in varied directions on working memory, particularly interactions between 2/3/9-FLUO and other PAH metabolites, but no overall or individual effects were evident. CONCLUSION We conducted a novel exploration of PAH-executive functions association in a large, combined sample from two cohorts. Although findings were predominantly null, the study carries important implications for future research and contributes to evolving science regarding developmental origins of diseases.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alexis Sullivan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Erin R Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura E Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christopher Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Shaikh I Ahmad
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica A Arizaga
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Brent R Collett
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Karen J Derefinko
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Findley CA, McFadden S.A, Hill T, Peck MR, Quinn K, Hascup KN, Hascup ER. Sexual Dimorphism, Altered Hippocampal Glutamatergic Neurotransmission and Cognitive Impairment in APP Knock-In Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570100. [PMID: 38106074 PMCID: PMC10723272 DOI: 10.1101/2023.12.05.570100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background It is well established that glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies indicate that glutamate dynamics shift with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. Objective In this study, we characterized hippocampal glutamatergic signaling with age and disease progression in a knock-in mouse model of AD (APPNL-F/NL-F). Methods At 2-4 and 18+ months old, male and female APPNL/NL, APPNL-F/NL-F, and C57BL/6 mice underwent cognitive assessment using Morris water maze (MWM) and Novel Object Recognition (NOR). Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-selective microelectrode in anesthetized mice. Results Glutamate recordings support elevated stimulus-evoked glutamate release in the DG and CA3 of young APPNL-F/NL-F male mice that declined with age compared to age-matched control mice. Young female APPNL-F/NL-F mice exhibited increased glutamate clearance in the CA1 that slowed with age compared to age-matched control mice. Male and female APPNL-F/NL-F mice exhibited decreased CA1 basal glutamate levels, while males also showed depletion in the CA3. Cognitive assessment demonstrated impaired spatial cognition in aged male and female APPNL-F/NL-F mice, but only aged females displayed recognition memory deficits compared to age-matched control mice. Conclusions: These findings confirm a sex-dependent hyper-to-hypoactivation glutamatergic paradigm in APPNL-F/NL-F mice. Further, data illustrate a sexually dimorphic biological aging process resulting in a more severe cognitive phenotype for female APPNL-F/NL-F mice than their male counterparts. Research outcomes mirror that of human AD pathology and provide further evidence of divergent AD pathogenesis between sexes.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel .A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Tiarra. Hill
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
12
|
Ben Ayed I, Ammar A, Aouichaoui C, Mezghani N, Salem A, Naija S, Ben Amor S, Trabelsi K, Jahrami H, Trabelsi Y, El Massioui F. Does acute aerobic exercise enhance selective attention, working memory, and problem-solving abilities in Alzheimer's patients? A sex-based comparative study. Front Sports Act Living 2024; 6:1383119. [PMID: 38903391 PMCID: PMC11187274 DOI: 10.3389/fspor.2024.1383119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction The present study aimed to evaluate the effect of acute aerobic exercise on certain cognitive functions known to be affected by Alzheimer's disease (AD), with a particular emphasis on sex differences. Methods A total of 53 patients, with a mean age of 70.54 ± 0.88 years and moderate AD, voluntarily participated in the study. Participants were randomly assigned to two groups: the experimental group (EG), which participated in a 20-min moderate-intensity cycling session (60% of the individual maximum target heart rate recorded at the end of the 6-min walk test); and the control group (CG), which participated in a 20-min reading activity. Cognitive abilities were assessed before and after the physical exercise or reading session using the Stroop test for selective attention, the forward and backward digit span test for working memory, and the Tower of Hanoi task for problem-solving abilities. Results At baseline, both groups had comparable cognitive performance (p > 0.05 in all tests). Regardless of sex, aerobic acute exercise improved attention in the Stroop test (p < 0.001), enhanced memory performance in both forward (p < 0.001) and backward (p < 0.001) conditions, and reduced the time required to solve the problem in the Tower of Hanoi task (p < 0.001). No significant differences were observed in the number of movements. In contrast, the CG did not significantly improve after the reading session for any of the cognitive tasks (p > 0.05). Consequently, the EG recorded greater performance improvements than the CG in most cognitive tasks tested (p < 0.0001) after the intervention session. Discussion These findings demonstrate that, irrespective to sex, a single aerobic exercise session on an ergocycle can improve cognitive function in patients with moderate AD. The results suggest that acute aerobic exercise enhances cognitive function similarly in both female and male patients, indicating promising directions for inclusive therapeutic strategies.
Collapse
Affiliation(s)
- Ines Ben Ayed
- Research Laboratory, Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health”, LR19ES09, Faculty of Medicine of Sousse, Sousse University, Sousse, Tunisia
- Laboratory of Human and Artificial Cognition (EA 4004), Psychology UFR, University of Vincennes/Saint-Denis, Saint-Denis, France
- Research Laboratory, Education, Motricity, Sport and Health (EM2S), LR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Chirine Aouichaoui
- Research Laboratory, Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health”, LR19ES09, Faculty of Medicine of Sousse, Sousse University, Sousse, Tunisia
- High Institute of Sport and Physical Education of Ksar Saïd, University of Manouba, Cité Nasr, Tunisia
| | - Nourhen Mezghani
- Department of Sport Sciences, College of Education, Taif University, Taif, Saudi Arabia
| | - Atef Salem
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Salma Naija
- Neurology Department, University Hospital Sahloul Sousse, Sousse, Tunisia
| | - Sana Ben Amor
- Neurology Department, University Hospital Sahloul Sousse, Sousse, Tunisia
| | - Khaled Trabelsi
- Research Laboratory, Education, Motricity, Sport and Health (EM2S), LR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Haitham Jahrami
- College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Yassine Trabelsi
- Research Laboratory, Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health”, LR19ES09, Faculty of Medicine of Sousse, Sousse University, Sousse, Tunisia
| | - Farid El Massioui
- Laboratory of Human and Artificial Cognition (EA 4004), Psychology UFR, University of Vincennes/Saint-Denis, Saint-Denis, France
| |
Collapse
|
13
|
Persaud P, Belfry GR, Heath M. Menstrual cycle status does not impact exercise-based changes in cerebral blood flow or executive function benefits. J Sports Sci 2024; 42:1061-1071. [PMID: 39052669 DOI: 10.1080/02640414.2024.2382566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
A single bout of exercise enhances executive function (EF) and may relate to an increase in cerebral blood flow (CBF). A limitation in the current literature is that biologically female participants are underrepresented given some evidence that changes in hormone levels across the menstrual cycle impact physiological and psychological variables. Here, biologically female participants completed separate single bouts of moderate intensity exercise (80% of estimated lactate threshold) during the follicular (FOL) and luteal (LUT) phases of their menstrual cycle. In addition, biologically male participants completed a same duration/intensity exercise session. Middle cerebral artery velocity (MCAv) was used to estimate CBF and pre- and postexercise EF was assessed via the antisaccade task. Results showed that resting MCAv was larger in the LUT than FOL phase; however, the exercise-mediated increase in MCAv was equivalent between menstrual cycle phases, and between female and male participants. Antisaccade reaction times reliably decreased from pre- to postexercise and frequentist and non-frequentist statistics demonstrated that the magnitude of the decrease was equivalent across FOL and LUT phases, and between female and male participants. Thus, results evince that menstrual cycle status should not serve as a basis limiting biologically female participants' inclusion in research examining exercise and EF.
Collapse
Affiliation(s)
- Priyanka Persaud
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Glen R Belfry
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Joue G, Navarro-Schröder T, Achtzehn J, Moffat S, Hennies N, Fuß J, Döller C, Wolbers T, Sommer T. Effects of estrogen on spatial navigation and memory. Psychopharmacology (Berl) 2024; 241:1037-1063. [PMID: 38407638 PMCID: PMC11031496 DOI: 10.1007/s00213-024-06539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
RATIONALE Animal studies suggest that the so-called "female" hormone estrogen enhances spatial navigation and memory. This contradicts the observation that males generally out-perform females in spatial navigation and tasks involving spatial memory. A closer look at the vast number of studies actually reveals that performance differences are not so clear. OBJECTIVES To help clarify the unclear performance differences between men and women and the role of estrogen, we attempted to isolate organizational from activational effects of estrogen on spatial navigation and memory. METHODS In a double-blind, placebo-controlled study, we tested the effects of orally administered estradiol valerate (E2V) in healthy, young women in their low-hormone menstrual cycle phase, compared to healthy, young men. Participants performed several first-person, environmentally rich, 3-D computer games inspired by spatial navigation and memory paradigms in animal research. RESULTS We found navigation behavior suggesting that sex effects dominated any E2 effects with men performing better with allocentric strategies and women with egocentric strategies. Increased E2 levels did not lead to general improvements in spatial ability in either sex but to behavioral changes reflecting navigation flexibility. CONCLUSION Estrogen-driven differences in spatial cognition might be better characterized on a spectrum of navigation flexibility rather than by categorical performance measures or skills.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Tobias Navarro-Schröder
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Johannes Achtzehn
- Department of Neurology with Experimental Neurology (CVK), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Scott Moffat
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA, 30332, USA
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Fuß
- Institute of Forensic Psychiatry and Sex Research, University Duisburg-Essen, Hohlweg 26, 45147, Essen, Germany
| | - Christian Döller
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
15
|
Pletzer B, Bodenbach H, Hoehn M, Hajdari L, Hausinger T, Noachtar I, Beltz AM. Reproducible stability of verbal and spatial functions along the menstrual cycle. Neuropsychopharmacology 2024; 49:933-941. [PMID: 38267632 PMCID: PMC11039678 DOI: 10.1038/s41386-023-01789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Recent studies have reported brain changes in response to ovarian hormonal fluctuations along the menstrual cycle. However, it remains unclear, whether these brain changes are of an adaptive nature or whether they are linked to changes in behavior along the menstrual cycle, particularly with respect to cognitive performance. To address this knowledge gap, we report results from 3 well-powered behavioral studies with different task designs, leveraging the advantages of each design type. In all three studies we assessed whether verbal or spatial performance (i) differed between cycle phases, (ii) were related to estradiol and / or progesterone levels and (iii) were moderated by individual hormone sensitivity as estimated by premenstrual symptoms. Overall, results of all three studies point towards a null effect of menstrual cycle phase and - to a lesser extent - ovarian hormones on verbal and spatial performance and provided no evidence for a moderation of this effect by individual hormone sensitivity. We conclude that there is substantial consistency in verbal and spatial performance across the menstrual cycle, and that future studies of intra-individual variation are needed.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Hannah Bodenbach
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Marcel Hoehn
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Linda Hajdari
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Tobias Hausinger
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Isabel Noachtar
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Spets DS, Karanian JM, Slotnick SD. True and false memories for spatial location evoke more similar patterns of brain activity in males than females. Memory 2024:1-9. [PMID: 38527188 DOI: 10.1080/09658211.2024.2333505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
True and false memories recruit a number of shared brain regions; however, they are not completely overlapping. Extensive sex differences have been identified in the brain during true memories and, recently, we identified sex differences in the brain during false memories. In the current fMRI study, we sought to determine whether sex differences existed in the location and extent of overlap between true and false memories. True and false memories activated a number of shared brain regions. Compared to females, males produced a greater number of overlapping brain regions (8 versus 2 activations for males and females, respectively) including the prefrontal cortex, parietal cortex, and early/late visual processing cortices (including V1) in males and prefrontal and parietal cortices in females. Males had significantly higher similarity between true and false memory activation maps, revealed by our novel multi-voxel pattern correlation analysis. Moreover, higher similarity between true and false memory activation maps was associated with higher false memory rates. The current results suggest that true and false memories are more similar in males than females. The significant brain-behavior relationship also suggests that males may be more susceptible to false memory errors due to their highly similar true memory-false memory cortical representations.
Collapse
Affiliation(s)
- Dylan S Spets
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessica M Karanian
- Department of Psychological and Brain Sciences, Fairfield University, Fairfield, CT, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
17
|
Sigaran GJ, Lima KR, das Neves BHS, Dos Santos Soares M, Carriço MRS, Roehrs R, Mello-Carpes PB. Acute physical exercise enhances memory persistence in female rats. Brain Res 2024; 1827:148760. [PMID: 38211827 DOI: 10.1016/j.brainres.2024.148760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Memory is a complex cognitive process with distinct stages, such as acquisition, consolidation, and retrieval. The hippocampus plays a crucial role in memory consolidation and retrieval. Physical exercise (PE) has been shown to enhance memory and cognitive functions, but the available research is mainly developed with males. So, there is limited knowledge about acute PE's effects on females' memory. This study aimed to investigate the impact of acute PE on memory in female rats and explore potential sex differences in PE memory modulation. Forty-two female Wistar rats were subjected to a novel object recognition (NOR) task, with half of them undergoing a single session of 30 min of PE after the learning session (memory acquisition). Behavioral assessments showed that acute PE improved memory persistence in female rats, with increased discrimination of novel objects. Biochemical analysis revealed elevated noradrenaline levels in the hippocampus following acute PE and NOR training. Notably, the positive effects of acute PE on female rats' memory were similar to those previously observed in male rats. These findings suggest that acute PE can enhance memory in female rats and underscore the importance of considering sex differences in cognitive research. PE may offer a non-invasive strategy to promote cognitive health in both males and females.
Collapse
Affiliation(s)
- Gabriela Jaques Sigaran
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ben-Hur Souto das Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Marisele Dos Santos Soares
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Murilo Ricardo Sigal Carriço
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
18
|
Pergolizzi D, Flaherty KR, Saracino RM, Root JC, Schofield E, Cassidy C, Katheria V, Patel SK, Dale W, Nelson CJ. Cognitive effects of long-term androgen deprivation therapy in older men with prostate cancer. Psychooncology 2024; 33:e6336. [PMID: 38520472 PMCID: PMC11151215 DOI: 10.1002/pon.6336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Androgen deprivation therapy (ADT) is a common treatment for prostate cancer (PCa), with increasing numbers of men on ADT for longer. Limited evidence suggests ADT impacts cognition. This study addressed gaps in the literature by focusing on older men with PCa and assessing ADT usage longer than 1 year. METHODS This study of 133 men ≥65 years of age with PCa included two groups: (1) men on ADT for 1-3 years (ADT-exposed), and (2) a comparison group of men with PCa not on ADT (ADT-unexposed). Group comparisons on individual neuropsychological test scores are reported, as well as effect sizes (Cohen's d). RESULTS Half (n = 67) of the sample was ADT-exposed and half (n = 66) were unexposed. The average age was 72 years, most were White, and over 50% had at least secondary education. There were no statistically significant differences between groups by age, race, or education. Unadjusted analyses showed the ADT-exposed group, compared with the ADT-unexposed group, performed significantly lower in domains of verbal learning (d = 0.45-0.52, p = 0.01 to <0.01), verbal recall (d = 0.33-0.54, p = 0.06 to <0.01), and possible effects in visuospatial construction (d = 0.33, p = 0.08 to 0.06). When controlling for age and education, similar patterns emerged. The ADT exposed-group performed significantly lower in domains of verbal learning (d = 0.45-0.52, p = 0.06 to 0.03) and verbal recall (d = 0.33-0.54, p = 0.11 to 0.03), and possible effects in visuospatial construction d = 0.33, p = 0.18 to 0.13. CONCLUSIONS This study suggests long-term ADT exposure impacts verbal learning, verbal recall, and possibly visuospatial abilities in older men (≥65) with PCa. The potential cognitive effects of ADT should be discussed with older patients considering long-term use of ADT.
Collapse
Affiliation(s)
- Denise Pergolizzi
- School of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Josep Trueta, s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Kathleen R. Flaherty
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| | - Rebecca M. Saracino
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| | - James C. Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| | - Elizabeth Schofield
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| | - Caroline Cassidy
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| | - Vani Katheria
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Sunita K. Patel
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - William Dale
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Christian J. Nelson
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10017
| |
Collapse
|
19
|
Le AA, Palmer LC, Chavez J, Gall CM, Lynch G. Sex differences in the context dependency of episodic memory. Front Behav Neurosci 2024; 18:1349053. [PMID: 38516050 PMCID: PMC10956361 DOI: 10.3389/fnbeh.2024.1349053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Context contributes to multiple aspects of human episodic memory including segmentation and retrieval. The present studies tested if, in adult male and female mice, context influences the encoding of odors encountered in a single unsupervised sampling session of the type used for the routine acquisition of episodic memories. The three paradigms used differed in complexity (single vs. multiple odor cues) and period from sampling to testing. Results show that males consistently encode odors in a context-dependent manner: the mice discriminated novel from previously sampled cues when tested in the chamber of initial cue sampling but not in a distinct yet familiar chamber. This was independent of the interval between cue encounters or the latency from initial sampling to testing. In contrast, female mice acquired both single cues and the elements of multi-cue episodes, but recall of that information was dependent upon the surrounding context only when the cues were presented serially. These results extend the list of episodic memory features expressed by rodents and also introduce a striking and unexpected sex difference in context effects.
Collapse
Affiliation(s)
- Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Linda C. Palmer
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Jasmine Chavez
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Nigri M, Bramati G, Steiner AC, Wolfer DP. Appetitively motivated tasks in the IntelliCage reveal a higher motivational cost of spatial learning in male than female mice. Front Behav Neurosci 2024; 18:1270159. [PMID: 38487348 PMCID: PMC10938600 DOI: 10.3389/fnbeh.2024.1270159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
The IntelliCage (IC) permits the assessment of the behavior and learning abilities of mice in a social home cage context. To overcome water deprivation as an aversive driver of learning, we developed protocols in which spatial learning is motivated appetitively by the preference of mice for sweetened over plain water. While plain water is available at all times, only correct task responses give access to sweetened water rewards. Under these conditions, C57BL/6J mice successfully mastered a corner preference task with the reversal and also learned a more difficult time-place task with reversal. However, the rate of responding to sweetened water decreased strongly with increasing task difficulty, indicating that learning challenges and reduced success in obtaining rewards decreased the motivation of the animals to seek sweetened water. While C57BL/6J mice of both sexes showed similar initial taste preferences and learned similarly well in simple learning tasks, the rate of responding to sweetened water and performance dropped more rapidly in male than in female mice in response to increasing learning challenges. Taken together, our data indicate that male mice can have a disadvantage relative to females in mastering difficult, appetitively motivated learning tasks, likely due to sex differences in value-based decision-making.
Collapse
Affiliation(s)
- Martina Nigri
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Giulia Bramati
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Adrian C. Steiner
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Chen WJ, Rector-Houze AM, Guxens M, Iñiguez C, Swartz MD, Symanski E, Ibarluzea J, Valentin A, Lertxundi A, González-Safont L, Sunyer J, Whitworth KW. Susceptible windows of prenatal and postnatal fine particulate matter exposures and attention-deficit hyperactivity disorder symptoms in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168806. [PMID: 38016567 DOI: 10.1016/j.scitotenv.2023.168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Few prior studies have explored windows of susceptibility to fine particulate matter (PM2.5) in both the prenatal and postnatal periods and children's attention-deficit/hyperactivity disorder (ADHD) symptoms. We analyzed data from 1416 mother-child pairs from the Spanish INMA (INfancia y Medio Ambiente) Study (2003-2008). Around 5 years of age, teachers reported the number of ADHD symptoms (i.e., inattention, hyperactivity/impulsivity) using the ADHD Diagnostic and Statistical Manual of Mental Disorders. Around 7 years of age, parents completed the Conners' Parent Rating Scales, from which we evaluated the ADHD index, cognitive problems/inattention, hyperactivity, and oppositional subscales, reported as age- and sex-standardized T-scores. Daily residential PM2.5 exposures were estimated using a two-stage random forest model with temporal back-extrapolation and averaged over 1-week periods in the prenatal period and 4-week periods in the postnatal period. We applied distributed lag non-linear models within the Bayesian hierarchical model framework to identify susceptible windows of prenatal or postnatal exposure to PM2.5 (per 5-μg/m3) for ADHD symptoms. Models were adjusted for relevant covariates, and cumulative effects were reported by aggregating risk ratios (RRcum) or effect estimates (βcum) across adjacent susceptible windows. A similar susceptible period of exposure to PM2.5 (1.2-2.9 and 0.9-2.7 years of age, respectively) was identified for hyperactivity/impulsivity symptoms assessed ~5 years (RRcum = 2.72, 95% credible interval [CrI] = 1.98, 3.74) and increased hyperactivity subscale ~7 years (βcum = 3.70, 95% CrI = 2.36, 5.03). We observed a susceptibility period to PM2.5 on risk of hyperactivity/impulsivity symptoms ~5 years in gestational weeks 16-22 (RRcum = 1.36, 95% CrI = 1.22, 1.52). No associations between PM2.5 exposure and other ADHD symptoms were observed. We report consistent evidence of toddlerhood as a susceptible window of PM2.5 exposure for hyperactivity in young children. Although mid-pregnancy was identified as a susceptible period of exposure on hyperactivity symptoms in preschool-aged children, this association was not observed at the time children were school-aged.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Mònica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands
| | - Carmen Iñiguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Antonia Valentin
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Llúcia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain; Nursing and Chiropody Faculty of Valencia University, Valencia, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDA Receptor Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577478. [PMID: 38328108 PMCID: PMC10849651 DOI: 10.1101/2024.01.26.577478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Men generally outperform women on encoding spatial components of episodic memory whereas the reverse holds for semantic elements. Here we show that female mice outperform males on tests for non-spatial aspects of episodic memory ("what", "when"), suggesting that the human findings are influenced by neurobiological factors common to mammals. Analysis of hippocampal synaptic plasticity mechanisms and encoding revealed unprecedented, sex-specific contributions of non-classical metabotropic NMDA receptor (NMDAR) functions. While both sexes used non-ionic NMDAR signaling to trigger actin polymerization needed to consolidate long-term potentiation (LTP), NMDAR GluN2B subunit antagonism blocked these effects in males only and had the corresponding sex-specific effect on episodic memory. Conversely, blocking estrogen receptor alpha eliminated metabotropic stabilization of LTP and episodic memory in females only. The results show that sex differences in metabotropic signaling critical for enduring synaptic plasticity in hippocampus have significant consequences for encoding episodic memories.
Collapse
Affiliation(s)
- Aliza A. Le
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Julie C. Lauterborn
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Conor D. Cox
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Psychiatry and Human Behavior, University of California; Irvine, 92868, USA
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Neurobiology and Behavior, University of California; Irvine, 92697, USA
| |
Collapse
|
23
|
Sullivan AJ, Chung YS, Novotny S, Epperson CN, Kober H, Blumberg HP, Gross JJ, Ochsner KN, Pearlson G, Stevens MC. Estradiol effects on an emotional interference task in adolescents with current and remitted depression. Horm Behav 2024; 157:105450. [PMID: 37923628 PMCID: PMC10842169 DOI: 10.1016/j.yhbeh.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Attentional biases to emotional stimuli are thought to reflect vulnerability for mood disorder onset and maintenance. This study examined the association between the endogenous sex hormone estradiol and emotional attentional biases in adolescent females with either current or remitted depression. Three groups of participants (mean age ± SD) completed the Emotional Interrupt Task: 1) 20 adolescent females (15.1 ± 1.83 years) currently diagnosed with Major Depressive Disorder (MDD), 2) 16 adolescent females (16.4 ± 1.31 years) who had experienced at least one episode of MDD in their lifetime but currently met criteria for MDD in remission, and 3) 30 adolescent female (15.4 ± 1.83 years) healthy controls. Attentional interference (AI) scores were calculated as differences in target response reaction time between trials with emotional facial expressions versus neutral facial expressions. Estradiol levels were assayed by Salimetrics LLC using saliva samples collected within 30 min of waking on assessment days. Robust multiple regression with product terms evaluated estradiol's main effect on AI scores, as well as hypothesized estradiol × diagnostic group interactions. Although neither mean estradiol levels nor mean AI scores in the current-MDD and remitted-MDD groups differed from controls, the relationship between estradiol and overall AI score differed between control adolescents and the remitted-MDD group. Specifically, the remitted-MDD adolescents performed worse (i.e., showed greater attentional interference) when they had higher estradiol; no significant relationship existed in the current-MDD group. Because this finding was driven by angry and not happy stimuli, it appears higher estradiol levels were associated with greater susceptibility to the attention-capturing effects of negatively-valenced emotional content in girls at risk for MDD from prior history.
Collapse
Affiliation(s)
- Abigail J Sullivan
- Olin Neuropsychiatry Research Center, Hartford HealthCare, Hartford, CT 06106, United States of America.
| | - Yu Sun Chung
- Olin Neuropsychiatry Research Center, Hartford HealthCare, Hartford, CT 06106, United States of America
| | - Stephanie Novotny
- Olin Neuropsychiatry Research Center, Hartford HealthCare, Hartford, CT 06106, United States of America
| | - C Neill Epperson
- University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Hedy Kober
- Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - Hilary P Blumberg
- Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - James J Gross
- Stanford University, Stanford, CA 94305, United States of America
| | - Kevin N Ochsner
- Columbia University, New York, NY, 10027, United States of America
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford HealthCare, Hartford, CT 06106, United States of America; Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - Michael C Stevens
- Olin Neuropsychiatry Research Center, Hartford HealthCare, Hartford, CT 06106, United States of America; Yale University School of Medicine, New Haven, CT 06520, United States of America
| |
Collapse
|
24
|
Davignon LM, Brouillard A, Juster RP, Marin MF. The role of sex hormones, oral contraceptive use, and its parameters on visuospatial abilities, verbal fluency, and verbal memory. Horm Behav 2024; 157:105454. [PMID: 37981465 DOI: 10.1016/j.yhbeh.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Sex hormones can cross the blood-brain barrier and access brain regions underlying higher-order cognition. Containing synthetic sex hormones, oral contraceptives (OC) have been found to modulate visuospatial and verbal abilities, though inconsistencies have been found in the literature. Among possible explanations, certain OC use parameters (progestin androgenicity, synthetic hormone levels, duration of use) have not received consistent consideration. Thus, the objectives were to (1) examine group differences between men, combined OC users, and naturally cycling women (NC women; not using OC) in visuospatial abilities, verbal fluency, and verbal memory and (2) investigate the contribution of endogenous and exogenous sex hormones on these effects. We also aimed to (3) identify OC use parameters relevant to cognitive outcomes. In total, 70 combined OC users, 53 early follicular (EF) women, 43 pre-ovulatory (PO) women, and 47 men underwent cognitive tests. Performance was compared based on hormonal milieus (OC, EF, PO, men) and OC users' contraceptive androgenicity (anti, low, high). Correlations between performance, hormone levels and OC use duration were also conducted. OC use dampened the sex difference that typically favors men in 3D visuospatial abilities, whereas its duration of use positively predicted verbal fluency. Androgenicity and hormone levels did not predict performance in any task. These results highlight the importance of considering OC use duration. Results also did not support a role for androgenicity in cognition. Importantly, combined OC use (including prolonged use) does not impair visuospatial, verbal, and memory functions in a healthy young sample.
Collapse
Affiliation(s)
- Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Robert-Paul Juster
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada
| | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada.
| |
Collapse
|
25
|
Xu Y, Wang Y, Chen Y, Zhang Y, Tong L, He Y, Fang J, Li R, Zhang X, Jin L. The Relationship Between Adverse Childhood Experiences and Subjective Cognitive Decline Based on Sexual Orientation. Clin Gerontol 2023:1-9. [PMID: 37955228 DOI: 10.1080/07317115.2023.2282484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Research indicates adverse childhood experiences (ACEs) were associated with subjective cognitive decline (SCD), with higher ACEs reported by sexual minoritized individuals (i.e. lesbian, gay, and bisexual; LGB). This study aimed to explore the relationships between ACEs and SCD based on sexual orientation in middle-aged and older adults. METHODS The study included 76,592 participants from the 2019-2020 Behavioral Risk Factor Surveillance Survey (BRFSS). Multivariate logistic regressions analyzed ACEs status, score, and type associations with SCD. RESULTS 2.18% of the participants identified as sexual minoritized individuals. More sexual minoritized individuals reported SCD compared to heterosexual individuals (10.70% for heterosexuals; 17.27% for sexual minoritized individuals). Positive association between SCD and ACEs status (OR = 2.18, 95%CI: 1.09-4.40) was identified among sexual minoritized individuals. CONCLUSIONS The association between ACEs and SCD was strong in both heterosexual and sexual minoritized populations. Given the higher experience of ACEs among sexual minoritized adults, the subsequent frequency of SCD among these adults also may be higher. CLINICAL IMPLICATIONS Sexual minoritized older adults may have a history of numerous ACEs, which could contribute to a greater burden of SCD. Clinicians and other stakeholders may wish to consider relationships between ACEs and SCD based on sexual orientation.
Collapse
Affiliation(s)
- Yan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yanfang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yana Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Li Tong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yue He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jiaxin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Runhong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinyao Zhang
- Department of Social Medicine and Health Management, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Yang CC, Totzek JF, Lepage M, Lavigne KM. Sex differences in cognition and structural covariance-based morphometric connectivity: evidence from 28,000+ UK Biobank participants. Cereb Cortex 2023; 33:10341-10354. [PMID: 37557917 DOI: 10.1093/cercor/bhad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
There is robust evidence for sex differences in domain-specific cognition, where females typically show an advantage for verbal memory, whereas males tend to perform better in spatial memory. Sex differences in brain connectivity are well documented and may provide insight into these differences. In this study, we examined sex differences in cognition and structural covariance, as an index of morphometric connectivity, of a large healthy sample (n = 28,821) from the UK Biobank. Using T1-weighted magnetic resonance imaging scans and regional cortical thickness values, we applied jackknife bias estimation and graph theory to obtain subject-specific measures of structural covariance, hypothesizing that sex-related differences in brain network global efficiency, or overall covariance, would underlie cognitive differences. As predicted, females demonstrated better verbal memory and males showed a spatial memory advantage. Females also demonstrated faster processing speed, with no observed sex difference in executive functioning. Males showed higher global efficiency, as well as higher regional covariance (nodal strengths) in both hemispheres relative to females. Furthermore, higher global efficiency in males mediated sex differences in verbal memory and processing speed. Findings contribute to an improved understanding of how biological sex and differences in cognition are related to morphometric connectivity as derived from graph-theoretic methods.
Collapse
Affiliation(s)
- Crystal C Yang
- Department of Psychology, McGill University, Montréal, QC H4H 1R3, Canada
| | - Jana F Totzek
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6211 LK, Netherlands
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
| | - Martin Lepage
- Department of Psychology, McGill University, Montréal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
27
|
Brown A, Burles F, Iaria G, Einstein G, Moscovitch M. Sex and menstrual cycle influence human spatial navigation strategies and performance. Sci Rep 2023; 13:14953. [PMID: 37696837 PMCID: PMC10495464 DOI: 10.1038/s41598-023-41153-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Which facets of human spatial navigation do sex and menstrual cycle influence? To answer this question, a cross-sectional online study of reproductive age women and men was conducted in which participants were asked to demonstrate and self-report their spatial navigation skills and strategies. Participants self-reported their sex and current menstrual phase [early follicular (EF), late follicular/periovulatory (PO), and mid/late luteal (ML)], and completed a series of questionnaires and tasks measuring self-reported navigation strategy use, topographical memory, cognitive map formation, face recognition, and path integration. We found that sex influenced self-reported use of cognitive map- and scene-based strategies, face recognition, and path integration. Menstrual phase moderated the influence of sex: compared to men, women had better face recognition and worse path integration, but only during the PO phase; PO women were also better at path integration in the presence of a landmark compared to EF + ML women and men. These findings provide evidence that human spatial navigation varies with the menstrual cycle and suggest that sensitivity of the entorhinal cortex and longitudinal axis of the hippocampus to differential hormonal effects may account for this variation.
Collapse
Affiliation(s)
- Alana Brown
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Ford Burles
- Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Giuseppe Iaria
- Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gillian Einstein
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto, ON, M6A 2E1, Canada
- Linköping University, 581 83, Linköping, Sweden
| | - Morris Moscovitch
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto, ON, M6A 2E1, Canada
| |
Collapse
|
28
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
29
|
Pletzer B, Noachtar I. Emotion recognition and mood along the menstrual cycle. Horm Behav 2023; 154:105406. [PMID: 37478677 DOI: 10.1016/j.yhbeh.2023.105406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have demonstrated menstrual cycle dependent changes in the recognition of facial emotional expressions, specifically the expression of fear, anger, sadness or disgust. While some studies demonstrate an improvement of emotion recognition performance during the peri-ovulatory phase, when estradiol levels peak, other studies demonstrate a deterioration of emotion recognition performance during the mid-luteal phase, when progesterone levels peak. It has been hypothesized, that these changes in emotion recognition performance mirror mood changes along the menstrual cycle. In the present study, we investigate, whether changes in emotion recognition performance along the menstrual cycle are mediated by mood changes along the menstrual cycle. In a combined cross-sectional and longitudinal study design, two large samples of women completed an emotion recognition task, as well as several mood questionnaires during their menses, peri-ovulatory or mid-luteal cycle phase. 65 women completed the task thrice, once during each cycle phase, order counterbalanced. In order to control for potential learning effects, a sample of 153 women completed the task only once in one of the three cycle phases. In both samples, results demonstrated no significant changes in emotion recognition performance along the menstrual cycle, irrespective of the performance measure investigated (accuracy, reaction time, frequency of emotion classifications) and irrespective of the emotion displayed. Bayesian statistics provided very strong evidence for the null hypothesis, that emotion recognition does not change along the menstrual cycle. There was also no moderation of emotion recognition changes along the menstrual cycle by mood changes along the menstrual cycle. Mood changes along the menstrual cycle followed the expected pattern with highest positive affect and least premenstrual symptoms around ovulation and lowest positive affect, but strongest premenstrual symptoms during menses. Interestingly, premenstrual symptoms were negatively related to estradiol, suggesting a protective effect of estrogen during the luteal cycle phase against mood worsening during the premenstrual phase.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria.
| | - Isabel Noachtar
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria
| |
Collapse
|
30
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
31
|
Castro-Fonseca E, Morais V, da Silva CG, Wollner J, Freitas J, Mello-Neto AF, Oliveira LE, de Oliveira VC, Leite REP, Alho AT, Rodriguez RD, Ferretti-Rebustini REL, Suemoto CK, Jacob-Filho W, Nitrini R, Pasqualucci CA, Grinberg LT, Tovar-Moll F, Lent R. The influence of age and sex on the absolute cell numbers of the human brain cerebral cortex. Cereb Cortex 2023; 33:8654-8666. [PMID: 37106573 PMCID: PMC10321098 DOI: 10.1093/cercor/bhad148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The human cerebral cortex is one of the most evolved regions of the brain, responsible for most higher-order neural functions. Since nerve cells (together with synapses) are the processing units underlying cortical physiology and morphology, we studied how the human neocortex is composed regarding the number of cells as a function of sex and age. We used the isotropic fractionator for cell quantification of immunocytochemically labeled nuclei from the cerebral cortex donated by 43 cognitively healthy subjects aged 25-87 years old. In addition to previously reported sexual dimorphism in the medial temporal lobe, we found more neurons in the occipital lobe of men, higher neuronal density in women's frontal lobe, but no sex differences in the number and density of cells in the other lobes and the whole neocortex. On average, the neocortex has ~10.2 billion neurons, 34% in the frontal lobe and the remaining 66% uniformly distributed among the other 3 lobes. Along typical aging, there is a loss of non-neuronal cells in the frontal lobe and the preservation of the number of neurons in the cortex. Our study made possible to determine the different degrees of modulation that sex and age evoke on cortical cellularity.
Collapse
Affiliation(s)
- Emily Castro-Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Viviane Morais
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G da Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Wollner
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline Freitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur F Mello-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilson C de Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata E P Leite
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ana T Alho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Roberta D Rodriguez
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E L Ferretti-Rebustini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Medical Surgical Nursing, University of São Paulo School of Nursing, São Paulo, Brazil
| | - Claudia K Suemoto
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos A Pasqualucci
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T Grinberg
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- National Institute of Translational Neuroscience, Ministry of Science and Technology, São Paulo, Brazil
| |
Collapse
|
32
|
Zhang Q, Li M, Wang Z, Chen F. Sex differences in learning and performing the Go/NoGo tasks. Biol Sex Differ 2023; 14:25. [PMID: 37138307 PMCID: PMC10155458 DOI: 10.1186/s13293-023-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The quality of learning and post-learning performances is critical for daily life. The behavioral flexibility is equally important for adapting the changing circumstances. The learning process requires repeated practices, which enhances prompt and proper behavioral responses, in turn, which promotes habits formation as well. Despite the well-documented sex differences in learning and performances, contradictory results were reported. A possible cause might be a systematic analysis due to specific research interests, regardless of the continuity of natural acquisition process. Here, we investigate the potential sex differences in learning, performances and adjustments of habited behaviors with regular and reversal Go/NoGo tasks. METHODS Both male and female Sprague-Dawley rats were used in this study. All rats were trained for a regular rodent Go/NoGo task and a subset of rats were trained for a reversal rodent Go/NoGo task, both with strict elimination criteria. The behavioral performance data were stored in PC for off-line analysis. Multiple behavioral indices were analyzed for both passed and retired rats. RESULTS The ability of learning the regular the reversal Go/NoGo tasks was similar for both male and female rats, however, the female rats took longer time to master the task principles in later stages for both tasks. In the regular Go/NoGo task, the female rats spent more time on completing the trial in performance optimization phases, which implied female rats were more cautious than male rats. Along with the progression of training, both male and female rats developed Go-preference strategies to perform the regular Go/NoGo task, which induced failure to meet the setting success criteria. The retired male rats exhibited shorter RTs and MTs than the retired female rats after developing Go-preference. Moreover, the time needed to complete the Go trials was significantly prolonged for male rats in the reversal Go/NoGo task. CONCLUSIONS Overall, we conclude that distinctive strategies were employed in performing Go/NoGo tasks for both male and female rats. Male rats required less time to stabilize the performance in behavioral optimization phase. In addition, male rats were more accurate in estimating time elapsing. In contrast, female rats took more cautious considerations in performing the task, through which minimal influences were manifested in the reversal version of task.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiru Wang
- The Institute of Brain Functional Genomics, East China Normal University, Shanghai, China.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
34
|
Anthony J, Johnson W, Papathomas A, Breen K, Kinnafick F. Differences in body mass index trajectories of adolescent psychiatric inpatients by sex, age, diagnosis and medication: an exploratory longitudinal, mixed effects analysis. Child Adolesc Ment Health 2023; 28:318-326. [PMID: 35798687 PMCID: PMC10946920 DOI: 10.1111/camh.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adolescents in secure psychiatric care typically report high obesity rates. However, longitudinal research exploring the rate and extent of change is sparse. This study aimed to analyse sex differences in longitudinal body mass index (BMI) change for adolescents receiving treatment in a secure psychiatric hospital. METHODS The sample comprised 670 adolescents in secure psychiatric care. BMI trajectories from admission to 50 months of hospitalisation were produced using sex-stratified multilevel models. Systematic difference in mean BMI trajectories according to age at admission (14, 15, 16, or 17 years), medication (Olanzapine or Sodium Valproate), and primary diagnosis (Psychotic, non-Psychotic or Functional/behavioural disorders) were investigated. RESULTS Together, males and females experienced a mean BMI increase of 2.22 m/kg2 over the 50-month period. For females, BMI increased from 25.69 m/kg2 to 30.31 m/kg2 , and for males, reduced from 25.01 m/kg2 to 23.95 m/kg2 . From 30 to 50 months, a plateau was observed for females and a reduction in BMI observed for males. Psychotic disorders in males (β 3.87; CI 1.1-6.7) were associated with the greatest rate of BMI change. For medication, Olanzapine in females was associated with the greatest rate of change (β1.78; CI -.89-4.47). CONCLUSIONS This is the first longitudinal study exploring longitudinal BMI change for adolescent inpatients. Results highlight that individual differences in adolescent inpatients result in differing levels of risk to weight gain in secure care. Specifically, males with psychotic disorders and females taking Olanzapine present the greatest risk of weight gain. This has implications for the prioritisation of interventions for those most at risk of weight gain.
Collapse
Affiliation(s)
- Justine Anthony
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
- St Andrew's HealthcareNorthamptonUK
| | - William Johnson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Anthony Papathomas
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Kieran Breen
- Research CentreSt Andrew's HealthcareNorthamptonUK
| | - Florence‐Emilie Kinnafick
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
35
|
Tascón L, León I, Fernández R, Cimadevilla JM. Reversal Training Discloses Gender Differences in a Spatial Memory Task in Humans. Brain Sci 2023; 13:brainsci13050740. [PMID: 37239212 DOI: 10.3390/brainsci13050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few years, spatial memory has been studied using virtual-reality-based tasks. Reversal learning has been widely used in spatial orientation tasks for testing, among other things, new learning and flexibility. By means of a reversal-learning protocol, we assessed spatial memory in men and women. A total of sixty participants (half of them women) performed a task that included two phases: during the acquisition phase, participants were asked to find one or three rewarded positions in the virtual room across ten trials. During the reversal phase, the rewarded boxes were moved to a new position and maintained for four trials. The results showed that men and women differed in the reversal phase, with men outperforming women in high demanding conditions. Dissimilarities in several cognitive abilities between both genders are the base of these differences and are discussed.
Collapse
Affiliation(s)
- Laura Tascón
- Department of Psychology, University of Cordoba, C/San Alberto Magno, s/n, 14071 Cordoba, Spain
| | - Irene León
- Facultad de Educación, Universidad Internacional de La Rioja (UNIR), Av. de la Paz, 137, 26006 Logroño, Spain
| | - Rubén Fernández
- Faculty of Health Sciences, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
| | - José Manuel Cimadevilla
- Faculty of Psychology, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
- Health Research Center, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
| |
Collapse
|
36
|
Kljajevic V, Evensmoen HR, Sokołowski D, Pani J, Hansen TI, Håberg AK. Female advantage in verbal learning revisited: a HUNT study. Memory 2023:1-19. [PMID: 37114402 DOI: 10.1080/09658211.2023.2203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The argument for a female advantage in word list learning is often based on partial observations that focus on a single component of the task. Using a large sample (N = 4403) of individuals 13-97 years of age from the general population, we investigated whether this advantage is consistently reflected in learning, recall, and recognition and how other cognitive abilities differentially support word list learning. A robust female advantage was found in all subcomponents of the task. Semantic clustering mediated the effects of short-term and working memory on long-delayed recall and recognition, and serial clustering on short-delayed recall. These indirect effects were moderated by sex, with men benefiting more from reliance on each clustering strategy than women. Auditory attention span mediated the effect of pattern separation on true positives in word recognition, and this effect was stronger in men than in women. Men had better short-term and working memory scores, but lower auditory attention span and were more vulnerable to interference both in delayed recall and recognition. Thus, our data suggest that auditory attention span and interference control (inhibition), rather than short-term or working memory scores, semantic and/or serial clustering on their own, underlie better performance on word list learning in women.
Collapse
Affiliation(s)
- V Kljajevic
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - H R Evensmoen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - D Sokołowski
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - J Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - T I Hansen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
37
|
Schlintl C, Zorjan S, Schienle A. Olfactory imagery as a retrieval method for autobiographical memories. PSYCHOLOGICAL RESEARCH 2023; 87:862-871. [PMID: 35790564 PMCID: PMC10017607 DOI: 10.1007/s00426-022-01701-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The retrieval of autobiographical memories is influenced by several factors, such as sensory modality and the emotional salience of memory cues. This study aimed at investigating the interaction between sensory modalities (olfaction, vision) and emotional dimensions (valence, arousal) of imagery cues, on the frequency, quality, and age distribution of the autobiographical memories (AMs) elicited. METHOD A total of 296 females (aged between 18 and 35 years) received one out of eight brief instructions for olfactory or visual imagery. The participants were asked to create a mental image with either high arousal/positive valence, high arousal/negative valence, low arousal/positive valence, or low arousal/negative valence (e.g., 'imagine an unpleasant and arousing odor/scene'); no specific stimulus was mentioned in the instruction. RESULTS The approach used elicited imagery with autobiographical content in the majority of participants (78%). In terms of frequency, odor imagery, compared to visual imagery, turned out to be more effective at retrieving either unpleasant memories associated with experiences in adulthood, or pleasant childhood memories. In terms of quality, the imagery was rated as less vivid in the olfactory compared to the visual condition (irrespective of valence and arousal of the imagery instruction). Visual imagery was associated with the experience of more diverse emotions (happiness, sadness, anxiety, anger) than odor imagery, which was related primarily with disgust and happiness. CONCLUSION Our findings indicate that nonspecific imagery induction is a useful approach in accessing AM. IMPLICATION This approach presents promising clinical applications, such as in working with autobiographical memory narratives in psychotherapy.
Collapse
Affiliation(s)
- Carina Schlintl
- Clinical Psychology, University of Graz, BioTechMed, Universitätsplatz 2/III, 8010, Graz, Austria.
| | - Saša Zorjan
- Department of Psychology, Faculty of Arts, University of Maribor, Slomškov trg 15, 2000, Maribor, Slovenia
| | - Anne Schienle
- Clinical Psychology, University of Graz, BioTechMed, Universitätsplatz 2/III, 8010, Graz, Austria
| |
Collapse
|
38
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
39
|
Spets DS, Slotnick SD. Entorhinal Cortex Functional Connectivity during Item Long-Term Memory and the Role of Sex. Brain Sci 2023; 13:brainsci13030446. [PMID: 36979256 PMCID: PMC10046190 DOI: 10.3390/brainsci13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A growing body of literature shows there are sex differences in the patterns of brain activity during long-term memory. However, there is a paucity of evidence on sex differences in functional brain connectivity. We previously identified sex differences in the patterns of connections with the hippocampus, a medial temporal lobe (MTL) subregion, during spatial long-term memory. The perirhinal/entorhinal cortex, another MTL subregion, plays a critical role in item memory. In the current functional magnetic resonance imaging (fMRI) study, we investigated perirhinal/entorhinal functional connectivity and the role of sex during item memory. During the study phase, abstract shapes were presented to the left or right of fixation. During the test phase, abstract shapes were presented at fixation, and the participants classified each item as previously “old” or “new”. An entorhinal region of interest (ROI) was identified by contrasting item memory hits and misses. This ROI was connected to regions generally associated with visual memory, including the right inferior frontal gyrus (IFG) and visual-processing regions (the bilateral V1, bilateral cuneus, and left lingual gyrus). Males produced greater connectivity than females with the right IFG/insula and the right V1/bilateral cuneus. Broadly, these results contribute to a growing body of literature supporting sex differences in the brain.
Collapse
Affiliation(s)
- Dylan S. Spets
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott D. Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence:
| |
Collapse
|
40
|
Liampas I, Folia V, Ntanasi E, Yannakoulia M, Sakka P, Hadjigeorgiou G, Scarmeas N, Dardiotis E, Kosmidis MH. Longitudinal episodic memory trajectories in older adults with normal cognition. Clin Neuropsychol 2023; 37:304-321. [PMID: 35400289 DOI: 10.1080/13854046.2022.2059011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To determine the longitudinal trajectories and normative standards of episodic memory in older adults. METHODS Participants were drawn from the cognitively normal(CN) subgroup of the population-based HELIAD cohort, a fairly representative cohort of the older Greek population. Verbal and non-verbal memory were assessed using the Greek Verbal Learning Test and Medical College of Georgia-Complex Figure Test. Baseline and longitudinal associations of memory performance with age, sex and formal education were explored with linear regression analysis and generalized estimated equations. RESULTS A total of 1607 predominantly female (60%) individuals (73.82 ± 5.43 years), with a mean educational attainment of 8.17(±4.86) years were CN at baseline. Baseline analysis revealed a continuum of memory decline with aging and lower educational attainment. Women performed better in composite and verbal memory measures, while men performed better in non-verbal memory tasks. A subgroup of 761 participants with available assessments after 3.07(±0.82) years remained CN at follow-up. Composite memory scores yearly diminished by an additional 0.007 of a SD for each additional year of age at baseline. Regarding verbal learning, immediate free verbal recall, delayed free verbal recall and delayed cued verbal recall, an additional yearly decrease of 0.107, 0.043, 0.036 and 0.026 words were respectively recorded at follow-up, for each additional year of age at baseline. Women underwent steeper yearly decreases of 0.227 words in delayed cued verbal recall. No significant longitudinal associations emerged for immediate non-verbal memory, delayed non-verbal memory and immediate cued verbal recall. CONCLUSIONS In the present study, aging (but not educational attainment) was consistently associated with steeper verbal memory decline. Supplemental data for this article is available online at https://doi.org/10.1080/13854046.2022.2059011 .
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasiliki Folia
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Ntanasi
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.,1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, the Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Jensen A, Thériault K, Yilmaz E, Pon E, Davidson PSR. Mental rotation, episodic memory, and executive control: Possible effects of biological sex and oral contraceptive use. Neurobiol Learn Mem 2023; 198:107720. [PMID: 36621560 DOI: 10.1016/j.nlm.2023.107720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Oral contraceptives (OCs) are one of the most common forms of hormonal birth control. A small literature suggests that OC use may affect visuospatial ability, episodic memory, and executive control. However, previous studies have been criticized for small sample sizes and the use of different, single cognitive tests. We investigated the degree to which biological sex and OC use might affect individual mental rotation, episodic memory, and executive control in a large sample of healthy, young adults (N = 155, including 52 OC users, 53 naturally cycling females, and 50 males) tested individually over videoconference. To measure cognition, we used a set of neuropsychological tasks inspired by Glisky and colleagues' two-factor episodic memory and executive control battery, from which two composite scores (based on principal component analysis) were derived for each participant. Our pre-registered analysis revealed a clear female advantage in episodic memory, independent of OC use. In an exploratory analysis, gist memory was elevated in OC users. Interestingly, we found no significant sex-related differences nor effects of OC use on mental rotation or executive control. Duration of OC use was also not related to any of our cognitive measures. These results suggest that the use of combined, monophasic OCs does not lead to many significant changes in cognition in young adults, although young females overall may have better episodic memory than young males. Additional studies, including longitudinal designs and looking in more detail at the menstrual cycle and OC use history, will further clarify the effects of different types of OCs and their duration of use on different aspects of cognition.
Collapse
Affiliation(s)
- Adelaide Jensen
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada.
| | - Kim Thériault
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Ece Yilmaz
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Ethan Pon
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | | |
Collapse
|
42
|
Bertram T, Hoffmann Ayala D, Huber M, Brandl F, Starke G, Sorg C, Mulej Bratec S. Human threat circuits: Threats of pain, aggressive conspecific, and predator elicit distinct BOLD activations in the amygdala and hypothalamus. Front Psychiatry 2023; 13:1063238. [PMID: 36733415 PMCID: PMC9887727 DOI: 10.3389/fpsyt.2022.1063238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Threat processing, enabled by threat circuits, is supported by a remarkably conserved neural architecture across mammals. Threatening stimuli relevant for most species include the threat of being attacked by a predator or an aggressive conspecific and the threat of pain. Extensive studies in rodents have associated the threats of pain, predator attack and aggressive conspecific attack with distinct neural circuits in subregions of the amygdala, the hypothalamus and the periaqueductal gray. Bearing in mind the considerable conservation of both the anatomy of these regions and defensive behaviors across mammalian species, we hypothesized that distinct brain activity corresponding to the threats of pain, predator attack and aggressive conspecific attack would also exist in human subcortical brain regions. Methods Forty healthy female subjects underwent fMRI scanning during aversive classical conditioning. In close analogy to rodent studies, threat stimuli consisted of painful electric shocks, a short video clip of an attacking bear and a short video clip of an attacking man. Threat processing was conceptualized as the expectation of the aversive stimulus during the presentation of the conditioned stimulus. Results Our results demonstrate differential brain activations in the left and right amygdala as well as in the left hypothalamus for the threats of pain, predator attack and aggressive conspecific attack, for the first time showing distinct threat-related brain activity within the human subcortical brain. Specifically, the threat of pain showed an increase of activity in the left and right amygdala and the left hypothalamus compared to the threat of conspecific attack (pain > conspecific), and increased activity in the left amygdala compared to the threat of predator attack (pain > predator). Threat of conspecific attack revealed heightened activity in the right amygdala, both in comparison to threat of pain (conspecific > pain) and threat of predator attack (conspecific > predator). Finally, for the condition threat of predator attack we found increased activity in the bilateral amygdala and the hypothalamus when compared to threat of conspecific attack (predator > conspecific). No significant clusters were found for the contrast predator attack > pain. Conclusion Results suggest that threat type-specific circuits identified in rodents might be conserved in the human brain.
Collapse
Affiliation(s)
- Teresa Bertram
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hoffmann Ayala
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Huber
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Starke
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Satja Mulej Bratec
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
43
|
Findley CA, McFadden SA, Cox MF, Sime LN, Peck MR, Quinn K, Bartke A, Hascup KN, Hascup ER. Prodromal Glutamatergic Modulation with Riluzole Impacts Glucose Homeostasis and Spatial Cognition in Alzheimer's Disease Mice. J Alzheimers Dis 2023; 94:371-392. [PMID: 37248899 PMCID: PMC10357216 DOI: 10.3233/jad-221245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Prior research supports a strong link between Alzheimer's disease (AD) and metabolic dysfunction that involves a multi-directional interaction between glucose, glutamatergic homeostasis, and amyloid pathology. Elevated soluble amyloid-β (Aβ) is an early biomarker for AD-associated cognitive decline that contributes to concurrent glutamatergic and metabolic dyshomeostasis in humans and male transgenic AD mice. Yet, it remains unclear how primary time-sensitive targeting of hippocampal glutamatergic activity may impact glucose regulation in an amyloidogenic mouse model. Previous studies have illustrated increased glucose uptake and metabolism using a neuroprotective glutamate modulator (riluzole), supporting the link between glucose and glutamatergic homeostasis. OBJECTIVE We hypothesized that targeting early glutamatergic hyperexcitation through riluzole treatment could aid in attenuating co-occurring metabolic and amyloidogenic pathologies with the intent of ameliorating cognitive decline. METHODS We conducted an early intervention study in male and female transgenic (AβPP/PS1) and knock-in (APPNL - F/NL - F) AD mice to assess the on- and off-treatment effects of prodromal glutamatergic modulation (2-6 months of age) on glucose homeostasis and spatial cognition through riluzole treatment. RESULTS Results indicated a sex- and genotype-specific effect on glucose homeostasis and spatial cognition with riluzole intervention that evolved with disease progression and time since treatment. CONCLUSION These findings support the interconnected nature of glucose and glutamatergic homeostasis with amyloid pathology and petition for further investigation into the targeting of this relationship to improve cognitive performance.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - MaKayla F. Cox
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lindsey N. Sime
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
44
|
Hirnstein M, Stuebs J, Moè A, Hausmann M. Sex/Gender Differences in Verbal Fluency and Verbal-Episodic Memory: A Meta-Analysis. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:67-90. [PMID: 35867343 PMCID: PMC9896545 DOI: 10.1177/17456916221082116] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Women are thought to fare better in verbal abilities, especially in verbal-fluency and verbal-memory tasks. However, the last meta-analysis on sex/gender differences in verbal fluency dates from 1988. Although verbal memory has only recently been investigated meta-analytically, a comprehensive meta-analysis is lacking that focuses on verbal memory as it is typically assessed, for example, in neuropsychological settings. On the basis of 496 effect sizes and 355,173 participants, in the current meta-analysis, we found that women/girls outperformed men/boys in phonemic fluency (ds = 0.12-0.13) but not in semantic fluency (ds = 0.01-0.02), for which the sex/gender difference appeared to be category-dependent. Women/girls also outperformed men/boys in recall (d = 0.28) and recognition (ds = 0.12-0.17). Although effect sizes are small, the female advantage was relatively stable over the past 50 years and across lifetime. Published articles reported stronger female advantages than unpublished studies, and first authors reported better performance for members of their own sex/gender. We conclude that a small female advantage in phonemic fluency, recall, and recognition exists and is partly subject to publication bias. Considerable variance suggests further contributing factors, such as participants' language and country/region.
Collapse
Affiliation(s)
- Marco Hirnstein
- Department of Biological and Medical
Psychology, University of Bergen
| | - Josephine Stuebs
- Department of Biological and Medical
Psychology, University of Bergen
- Department of Neuropsychology and
Psychopharmacology, Maastricht University
- Institute of Clinical Medicine,
University of Oslo
| | - Angelica Moè
- Department of General Psychology,
University of Padua
| | | |
Collapse
|
45
|
Kling JM, Dowling NM, Bimonte-Nelson H, Gleason CE, Kantarci K, Stonnington CM, Harman SM, Naftolin F, Pal L, Cedars M, Manson JE, James TT, Brinton EA, Miller VM. Associations between pituitary-ovarian hormones and cognition in recently menopausal women independent of type of hormone therapy. Maturitas 2023; 167:113-122. [PMID: 36395695 PMCID: PMC10077876 DOI: 10.1016/j.maturitas.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To examine associations of pituitary-ovarian hormone levels with cognition before and after different formulations of hormone therapy (HT) or placebo independent of treatment group. METHODS Recently menopausal, healthy women were randomized to 0.45 mg/day oral conjugated equine estrogens (o-CEE, n = 109), 50 μg/day transdermal 17β (tE2, n = 107) or placebo pills and patches (n = 146); women on active treatment received oral 200 mg/day micronized progesterone for 12 days per month. Levels of estrone, 17β-estradiol, follicle stimulating hormone, luteinizing hormone, androstenedione, and testosterone were determined prior to and after 48 months of study participation. Neuropsychological testing was administered at baseline, and months 18, 36 and 48. Latent growth curve models controlling for education level, age, APOE allele status, waist circumference, and treatment examined the trajectories of each cognitive domain after accounting for the effect of hormone levels at baseline and months 18, 36 and 48. A linear multivariate mixed model examined the effect of changes in hormone levels on changes in trajectories of complex attention tasks with varying degrees of difficulty. RESULTS All women were adherent to treatment at month 48. Higher baseline estrone levels were associated with poorer global cognition, auditory attention and working memory, visual attention, and executive function, but not working memory. Higher levels of baseline 17β-E2 were associated with poorer cognitive performance, with marginal significance at baseline in speeded language and mental flexibility (p = 0.013). Other hormone levels were not associated with cognition. Controlling for all treatments, hormone levels at baseline and at month 48 did not have any significant correlation with cognitive trajectories over time. SUMMARY In healthy, recently menopausal women, baseline estrone levels were inversely associated with selected cognitive factors independent of two types of HT or placebo during 4 years of follow-up. Baseline levels of the other pituitary-ovarian hormones studied were not associated with baseline cognition, nor were changes in any hormones associated with changes in cognition during the study. The marginal association between estradiol levels and cognitive factors warrants further investigation. CLINICALTRIALS GOV NUMBERS NCT00154180, NCT00623311.
Collapse
Affiliation(s)
- Juliana M Kling
- Division of Women's Health Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA.
| | - N Maritza Dowling
- Department of Acute & Chronic Care, School of Nursing, Department of Epidemiology & Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Heather Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Carey E Gleason
- Division of Geriatrics, Department of Medicine, University of Wisconsin School of Medicine and Public Health and the Wisconsin Alzheimer's Disease Research Center, Madison VA GRECC, Madison, WI, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Lubna Pal
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Marcelle Cedars
- Department of Obstetrics and Gynecology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taryn T James
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Virginia M Miller
- Department of Surgery, Mayo Clinic, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| |
Collapse
|
46
|
Falck RS, Best JR, Barha CK, Davis JC, Liu-Ambrose T. Do the relationships of physical activity and total sleep time with cognitive function vary by age and biological sex? A cross-sectional analysis of the Canadian Longitudinal Study on Aging. Maturitas 2022; 166:41-49. [PMID: 36055010 DOI: 10.1016/j.maturitas.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Physical activity (PA) and total sleep time (TST) are each associated with cognition; however, whether these relationships vary by age and biological sex is unclear. We examined the relationships of PA or TST with cognition, and whether age and sex moderated these relationships, using baseline data from the Canadian Longitudinal Study on Aging (CLSA; 2010-2015). STUDY DESIGN A cross-sectional analysis of participants from the Comprehensive cohort of the CLSA with complete PA and sleep data (n = 20,307; age range 45-86 years). MAIN OUTCOME MEASURES PA and TST were measured using the Physical Activity Scale for the Elderly (PASE) and self-reported TST over the past month. Cognition was indexed using a three-factor structural equation model (i.e., memory, executive function, and verbal fluency). RESULTS Non-linear restricted cubic spline models indicated that PA and TST explained statistically significant (p < 0.01) but modest variance of each cognitive domain (<1 % of 23-24 % variance). Age and sex did not moderate associations of PA with any cognitive domain. However, age and sex moderated relationships of TST with cognition, whereby: 1) associations of TST with memory decreased with age for males and females; and 2) males and females had different age-associated relationships of TST with executive function and verbal fluency. CONCLUSIONS PA and TST modestly contribute to multiple domains of cognition across middle and older adulthood. Importantly, the association of PA with cognition does not appear to vary across middle or older adulthood, nor does it vary by biological sex; however, TST appears to have a complex relationship with multiple domains of cognition which is both age- and sex-dependent.
Collapse
Affiliation(s)
- Ryan S Falck
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - John R Best
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Gerontology Research Centre, Simon Fraser University, Vancouver, BC, Canada
| | - Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer C Davis
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada; Applied Health Economics Laboratory, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada; Social & Economic Change Laboratory, Faculty of Management, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
47
|
Yagi S, Lee A, Truter N, Galea LAM. Sex differences in contextual pattern separation, neurogenesis, and functional connectivity within the limbic system. Biol Sex Differ 2022; 13:42. [PMID: 35870952 PMCID: PMC9308289 DOI: 10.1186/s13293-022-00450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Females are more likely to present with anxiety disorders such as post-traumatic stress disorder (PTSD) compared to males, which are associated with disrupted hippocampal integrity. Sex differences in the structure and function of hippocampus exist. Here, we examined sex differences in contextual pattern separation, functional connectivity, and activation of new neurons during fear memory. Methods Two-month-old male and female Sprague-Dawley rats were injected with the DNA synthesis markers, iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU) 3 weeks and 4 weeks before perfusion, respectively. One week after CldU injection, the rats underwent a context discrimination task in which rats were placed in context A (shock) and context A’ (no shock) every day for 12 days. On the test day, rats were placed in the shock context (context A) to measure fear memory and expression of zif268, an immediate early gene across 16 different limbic and reward regions. Repeated-measures or factorial analysis of variance was conducted on our variables of interest. Pearson product-moment calculations and principal component analyses on zif268 expression across regions were also performed. Results We found that females, but not males, showed contextual discrimination during the last days of training. On the test day, both sexes displayed similar levels of freezing, indicating equivalent fear memory for context A. Despite similar fear memory, males showed more positive correlations of zif268 activation between the limbic regions and the striatum, whereas females showed more negative correlations among these regions. Females showed greater activation of the frontal cortex, dorsal CA1, and 3-week-old adult-born dentate granular cells compared to males. Conclusions These results highlight the importance of studying sex differences in fear memory and the contribution of adult neurogenesis to the neuronal network and may contribute to differences in susceptibility to fear-related disorders such as post-traumatic stress disorder. HighlightsFemale rats, but not male rats, show faster discrimination during a contextual pattern separation task. Three-week-old adult-born neurons are more active in response to fear memory in females compared to males. Females had greater neural activation compared to males in the frontal cortex and dorsal CA1 region of the hippocampus in response to fear memory. Males and females show distinct patterns in functional connectivity for fear memory across limbic regions. Males have many positive correlations between activated new neurons of different ages between the dorsal and ventral hippocampus, while females show more correlations between activated new neurons and other limbic regions.
Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00450-2.
Collapse
|
48
|
Coenjaerts M, Trimborn I, Adrovic B, Stoffel-Wagner B, Cahill L, Philipsen A, Hurlemann R, Scheele D. Exogenous estradiol and oxytocin modulate sex differences in hippocampal reactivity during the encoding of episodic memories. Neuroimage 2022; 264:119689. [PMID: 36349596 DOI: 10.1016/j.neuroimage.2022.119689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Considerable evidence supports sex differences in episodic memory. The hormones estradiol and oxytocin both affect episodic memory and may contribute to these sex differences, but possible underlying hormonal interactions have not been tested in a sample involving both sexes. To this end, we conducted a randomized, placebo-controlled, parallel-group functional magnetic resonance imaging (fMRI) study including healthy free-cycling women (n = 111) and men (n = 115). The fMRI session was conducted under four experimental conditions: 1. transdermal estradiol (2 mg) and intranasal oxytocin (24 IU), 2. transdermal placebo and intranasal oxytocin, 3. transdermal estradiol and intranasal placebo, 4. transdermal placebo and intranasal placebo. Participants were scanned during the encoding of positive, neutral, and negative scenes. Recognition memory was tested three days following the scanning sessions without additional treatments. Under placebo, women showed a significantly better recognition memory and increased hippocampal responses to subsequently remembered items independent of the emotional valence compared to men. The separate treatments with either hormone significantly diminished this mnemonic sex difference and reversed the hippocampal activation pattern. However, the combined treatments produced no significant effect. Collectively, the results suggest that both hormones play a crucial role in modulating sex differences in episodic memory. Furthermore, possible antagonistic interactions between estradiol and oxytocin could explain previously observed opposing hormonal effects in women and men.
Collapse
Affiliation(s)
- Marie Coenjaerts
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany.
| | - Isabelle Trimborn
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Berina Adrovic
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Birgit Stoffel-Wagner
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53105, Germany
| | - Larry Cahill
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg 26129, Germany
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum 44780, Germany.
| |
Collapse
|
49
|
Chang YL, Moscovitch M. Sex differences in item and associative memory among older adults with amnestic mild cognitive impairment. Neuropsychologia 2022; 176:108375. [PMID: 36179862 DOI: 10.1016/j.neuropsychologia.2022.108375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
In older adults without cognitive impairment, women have an advantage over men in verbal memory tests; however, whether women with amnestic mild cognitive impairment (aMCI) exhibit this advantage remains controversial. We evaluated sex-specific differences in older adults with and without aMCI in item and associative verbal memory by using an associative memory task with immediate and delayed recognition conditions. The associations between memory task performances and medial temporal morphometric measures were examined. The study included 49 individuals with aMCI and 55 healthy older adults (HOs). The results revealed that a female advantage in immediate item and delayed associative memory was evident in HOs, and the female advantage in associative memory persisted even after item memory performance was controlled. By contrast, the female advantage was absent in individuals with aMCI; such women had more associative false alarms than men with aMCI. Furthermore, decreases in item memory, associative memory, and cortical thickness in the perirhinal and entorhinal regions in individuals with aMCI versus their sex-matched controls were more prominent in women than in men. The relation between brain structure and associative memory function was evident only for women, indicating that women and men may have different cognitive and neural mechanisms for processing associative memory. These findings support the concept of cognitive reserve in women during normal aging. Accounting for sex differences in verbal memory performance is crucial to improve aMCI identification, particularly for women.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
50
|
Spets DS, Slotnick SD. Sex is predicted by spatial memory multivariate activation patterns. Learn Mem 2022; 29:297-301. [PMID: 36206398 PMCID: PMC9488029 DOI: 10.1101/lm.053608.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Whether sex differences exist in the brain at the macroscopic level, as measured with magnetic resonance imaging (MRI), is a topic of debate. The present spatial long-term memory functional MRI (fMRI) study predicted sex based on event-related patterns of brain activity. Within spatial memory regions of interest, patterns of activity associated with females and males were used to predict the sex of each member of left-out female-male pairs at above-chance accuracy. The current results provide evidence for sex differences in the brain processes underlying spatial long-term memory. This is the first time that sex has been predicted using event-related fMRI activation patterns. The present findings contribute to a growing body of evidence that there are functional and anatomic sex differences in the brain and, more broadly, question the widespread practice of collapsing across sex in the field of cognitive neuroscience.
Collapse
Affiliation(s)
- Dylan S Spets
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|