1
|
Chaudhary J, Gangwar H, Jaiswal V, Gupta PK. Identification and characterization of sulphotransferase (SOT) genes for tolerance against drought and heat in wheat and six related species. Mol Biol Rep 2024; 51:956. [PMID: 39230759 DOI: 10.1007/s11033-024-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Sulphotransferase (SOT) enzyme (encoded by a conserved family of SOT genes) is involved in sulphonation of a variety of compounds, through transfer of a sulphuryl moiety from 3'phosphoadenosine- 5'phosphosulphate (PAPS) to a variety of secondary metabolites. The PAPS itself is derived from 3'adenosine-5'phosphosulphate (APS) that is formed after uptake of sulphate ions from the soil. The process provides tolerance against abiotic stresses like drought and heat in plants. Therefore, a knowledge of SOT genes in any crop may help in designing molecular breeding methods for improvement of tolerance for drought and heat. METHODS Sequences of rice SOT genes and SOT domain (PF00685) of corresponding proteins were both used for identification of SOT genes in wheat and six related species (T. urartu, Ae. tauschii, T. turgidum, Z. mays, B. distachyon and Hordeum vulgare), although detailed analysis was conducted only in wheat. The wheat genes were mapped on individual chromosomes and also subjected to synteny and collinearity analysis. The proteins encoded by these genes were examined for the presence of a complete SOT domain using 'Conserved Domain Database' (CDD) search tool at NCBI. RESULTS In wheat, 107 TaSOT genes, ranging in length from 969 bp to 7636 bp, were identified and mapped onto individual chromosomes. SSRs (simple sequence repeats), microRNAs, long non-coding RNAs (lncRNAs) and their target sites were also identified in wheat SOT genes. SOT proteins were also studied in detail. An expression assay of TaSOT genes via wheat RNA-seq data suggested engagement of these genes in growth, development and responses to various hormones and biotic/abiotic stresses. CONCLUSIONS The results of the present study should help in further functional characterization of SOT genes in wheat and other related crops.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Himanshi Gangwar
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vandana Jaiswal
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
2
|
Liu Y, Zhang H, Zhao Z, Wang X, Kai Y, Huang D, Liu SQ, Lu Y. Germination Increases the Glucomoringin Content in Moringa Sprouts via Transforming Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11278-11291. [PMID: 38708781 DOI: 10.1021/acs.jafc.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 μmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 μmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 μmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.
Collapse
Affiliation(s)
- Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Haijuan Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Zhuoyang Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Xingwei Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
3
|
Hasenstein KH, John SP, Vandenbrink JP. Assessing Radish Health during Space Cultivation by Gene Transcription. PLANTS (BASEL, SWITZERLAND) 2023; 12:3458. [PMID: 37836197 PMCID: PMC10574649 DOI: 10.3390/plants12193458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
During the Advanced Plant Habitat experiment 2, radish plants were grown in two successive grow-outs on the International Space Station (ISS) for 27 days each. On days 10, 18, and 24, leaf punch (LP) samples were collected and frozen. At harvest, bulb tissue was sampled with oligo-dT functionalized Solid Phase Gene Extraction (SPGE) probes. The space samples were compared with samples from ground controls (GC) grown at the Kennedy Space Center (KSC) under the same conditions as on the ISS, with notably elevated CO2 (about 2500 ppm), and from lab plants grown under atmospheric CO2 but with light and temperature conditions similar to the KSC control. Genes corresponding to peroxidase (RPP), glucosinolate biosynthesis (GIS), protein binding (CBP), myrosinase (RMA), napin (RSN), and ubiquitin (UBQ) were measured by qPCR. LP from day 24 and bulb samples collected at harvest were compared with RNA-seq data from material that was harvested, frozen, and analyzed after return to Earth. The results showed stable transcription in LP samples in GC but decreasing values in ISS samples during both grow-outs, possibly indicative of stress. SPGE results were similar between GC and ISS samples. However, the RNA-seq analyses showed different transcription profiles than SPGE or LP results, possibly related to localized sampling. RNA-seq of leaf samples showed greater variety than LP data, possibly because of different sampling times. RSN and RPP showed the lowest transcription regardless of method. Temporal analyses showed relatively small changes during plant development in space and in ground controls. This is the first study that compares developmental changes in space-grown plants with ground controls based on a comparison between RNA-seq and qPCR analyses.
Collapse
Affiliation(s)
- Karl H. Hasenstein
- Biology Department, University of Louisiana Lafayette, Lafayette, LA 70504, USA;
| | - Susan P. John
- Biology Department, University of Louisiana Lafayette, Lafayette, LA 70504, USA;
| | - Joshua P. Vandenbrink
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA;
| |
Collapse
|
4
|
Guo Y, Gong C, Cao B, Di T, Xu X, Dong J, Zhao K, Gao K, Su N. Blue Light Enhances Health-Promoting Sulforaphane Accumulation in Broccoli ( Brassica oleracea var. italica) Sprouts through Inhibiting Salicylic Acid Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3151. [PMID: 37687397 PMCID: PMC10490093 DOI: 10.3390/plants12173151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
As a vegetable with high nutritional value, broccoli (Brassica oleracea var. italica) is rich in vitamins, antioxidants and anti-cancer compounds. Glucosinolates (GLs) are one of the important functional components widely found in cruciferous vegetables, and their hydrolysate sulforaphane (SFN) plays a key function in the anti-cancer process. Herein, we revealed that blue light significantly induced the SFN content in broccoli sprouts, and salicylic acid (SA) was involved in this process. We investigated the molecular mechanisms of SFN accumulation with blue light treatment in broccoli sprouts and the relationship between SFN and SA. The results showed that the SFN accumulation in broccoli sprouts was significantly increased under blue light illumination, and the expression of SFN synthesis-related genes was particularly up-regulated by SA under blue light. Moreover, blue light considerably decreased the SA content compared with white light, and this decrease was more suppressed by paclobutrazol (Pac, an inhibitor of SA synthesis). In addition, the transcript level of SFN synthesis-related genes and the activity of myrosinase (MYR) paralleled the trend of SFN accumulation under blue light treatment. Overall, we concluded that SA participates in the SFN accumulation in broccoli sprouts under blue light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (C.G.); (B.C.); (T.D.); (X.X.); (J.D.); (K.Z.); (K.G.)
| |
Collapse
|
5
|
Wang T, Zhang D, Yang B, Su N, Cui J. Salicylic Acid Regulates Indole-3-Carbinol Biosynthesis Under Blue Light in Broccoli Sprouts ( Brassica oleracea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:848454. [PMID: 35449891 PMCID: PMC9016176 DOI: 10.3389/fpls.2022.848454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Indole-3-carbinol (I3C), an important secondary metabolite with strong anti-cancer ability, is widely found in cruciferous plants. Light and phytohormones are one of the most important external and internal signals, respectively, that control the growth, development, and secondary metabolism of the plant life cycle. However, there are few studies about the influence of the blue light and salicylic acid (SA) on the regulation of I3C accumulation. In this study, a negative correlation was found between the content of I3C and SA in different species. Among this, broccoli and Arabidopsis thaliana were chosen for further studies. We observed that blue light treatment increased the accumulation of I3C, and exogenous SA treatment significantly inhibited the accumulation of I3C in broccoli sprouts. Based on the RNA sequence, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that blue light promoted the enrichment of differentially expressed genes (DEGs) in plant hormone signal transduction pathways. More specifically, downregulated expression of genes related to SA biosynthesis and upregulated expression of I3C genes related to metabolic pathway were observed under blue light. Taken together, these results suggested that SA negatively regulates blue light-induced I3C accumulation in broccoli sprouts.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Derui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Boming Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Kamal F, Shen S, Hu R, Zhang Q, Yin N, Ma Y, Jiang Y, Xu X, Li J, Lu K, Qu C. Metabolite Characteristics Analysis of Siliques and Effects of Lights on the Accumulation of Glucosinolates in Siliques of Rapeseed. FRONTIERS IN PLANT SCIENCE 2022; 13:817419. [PMID: 35251085 PMCID: PMC8888874 DOI: 10.3389/fpls.2022.817419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Glucosinolates (GSLs) are naturally occurring secondary metabolites found in the Brassicaceae family, which mainly synthesize in the siliques with a wide range of functions. In this study, we investigated the effects of lights on metabolites in siliques of rapeseed through ultra high-performance liquid chromatography (UPLC)-heated electrospray ionization (HESI)-tandem mass spectrometry (MS/MS). A total of 249 metabolites, including 29 phenolic acids, 38 flavonoids, 22 GSLs, 93 uncalculated and 67 unknown compounds, were identified in siliques of rapeseed. Meanwhile, 62 metabolites showed significant differences after shading treatment, which were mainly GSLs and unknown compounds. Interestingly, the amounts of 10 GSLs had high accumulation levels in siliques, while the expression levels of their corresponding biosynthetic genes (AOP, GSL-OH, IGMT, and ST5a) were obviously reduced after shading treatment. Further evidence showed that the amounts of GSLs were significantly reduced in seeds, in accordance with the expression profiles of transporter genes (BnaGTRs). Our findings indicated that lights could affect the accumulation and transportation of GSLs from siliques to seeds in rapeseed. Therefore, this study facilitates a better understanding of metabolic characteristics of siliques and provides insight into the importance of light for GSLs accumulation and transportation in siliques and seeds of rapeseed.
Collapse
Affiliation(s)
- Farah Kamal
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qianwei Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yifang Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yuxiang Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
7
|
Zhuang L, Huang G, Li X, Xiao J, Guo L. Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Res Int 2022; 154:111015. [DOI: 10.1016/j.foodres.2022.111015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
|
8
|
Zhang X, Bao J, Lu X, Tian P, Yang J, Wei Y, Li S, Ma S. Transcriptome analysis of melatonin regulating the transformation of glucoraphanin to sulforaphane in broccoli hairy roots. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:51-64. [PMID: 35221571 PMCID: PMC8847518 DOI: 10.1007/s12298-022-01143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 05/04/2023]
Abstract
Sulforaphane (SF) is one of the most effective natural products in preventing and fighting cancer, found in cruciferous plants. In this study, broccoli hairy roots grown for 20 d were used as the experimental material, and it was treated with 500 μmol/L melatonin (MT) for 0, 12 and 32 h to explore the effect of MT on the conversion of glucoraphanin (GRA) to SF. Results showed that the yields of GRA and SF were the largest under MT treatment for 12 h, which were 1.53 and 1.93-fold, respectively, compared to 0 h. However, Myrosinases activity was the highest under MT treatment for 32 h, which was 1.42-fold compared to that of the 0 h. The differential expression of key genes involved in GRA conversion to SF in broccoli hairy roots was identified transcriptome sequencing, and the path of the transformation from GRA to SF was simulated, which provided a theoretical basis for establishing an efficient transformation system from GRA to SF.
Collapse
Affiliation(s)
- Xiaoling Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Peng Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
9
|
Faraji S, Heidari P, Amouei H, Filiz E, Abdullah, Poczai P. Investigation and Computational Analysis of the Sulfotransferase (SOT) Gene Family in Potato ( Solanum tuberosum): Insights into Sulfur Adjustment for Proper Development and Stimuli Responses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2597. [PMID: 34961068 PMCID: PMC8707064 DOI: 10.3390/plants10122597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 07/20/2023]
Abstract
Various kinds of primary metabolisms in plants are modulated through sulfate metabolism, and sulfotransferases (SOTs), which are engaged in sulfur metabolism, catalyze sulfonation reactions. In this study, a genome-wide approach was utilized for the recognition and characterization of SOT family genes in the significant nutritional crop potato (Solanum tuberosum L.). Twenty-nine putative StSOT genes were identified in the potato genome and were mapped onto the nine S. tuberosum chromosomes. The protein motifs structure revealed two highly conserved 5'-phosphosulfate-binding (5' PSB) regions and a 3'-phosphate-binding (3' PB) motif that are essential for sulfotransferase activities. The protein-protein interaction networks also revealed an interesting interaction between SOTs and other proteins, such as PRTase, APS-kinase, protein phosphatase, and APRs, involved in sulfur compound biosynthesis and the regulation of flavonoid and brassinosteroid metabolic processes. This suggests the importance of sulfotransferases for proper potato growth and development and stress responses. Notably, homology modeling of StSOT proteins and docking analysis of their ligand-binding sites revealed the presence of proline, glycine, serine, and lysine in their active sites. An expression essay of StSOT genes via potato RNA-Seq data suggested engagement of these gene family members in plants' growth and extension and responses to various hormones and biotic or abiotic stimuli. Our predictions may be informative for the functional characterization of the SOT genes in potato and other nutritional crops.
Collapse
Affiliation(s)
- Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Hoorieh Amouei
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750 Duzce, Turkey;
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00065 Helsinki, Finland
| |
Collapse
|
10
|
Merinas-Amo T, Lozano-Baena MD, Obregón-Cano S, Alonso-Moraga Á, de Haro-Bailón A. Role of Glucosinolates in the Nutraceutical Potential of Selected Cultivars of Brassica rapa. Foods 2021; 10:2720. [PMID: 34829001 PMCID: PMC8617875 DOI: 10.3390/foods10112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Brassica rapa L. subsp. rapa (turnip greens), a traditionally consumed vegetable, is well-known due to its high content of glucosinolates, which are secondary metabolites with a positive biological activity for human health. Our hypothesis has been based on the relation between B. rapa glucosinolate content and its healthy properties, and our aim is to establish guidelines for safe B. rapa vegetable consumption. Three B. rapa cultivars (143N5, 143N7 and 163N7) have been characterized by HPLC analysis of purified extracts from leaf samples in order to determine their glucosinolate content and to relate this content to beneficial effects on DNA protection, lifespan extension and chemoprevention. In order to ascertain the heath properties in vitro and in vivo, toxicity activities were assayed in the Drosophila melanogaster and leukaemia cell models; genomic safety was also assessed in both models using genotoxicity, fragmentation and comet assay. The Drosophila model has also been used to study the antioxidative activity and the longevity induction. Our results showed a relationship between B. rapa glucosinolate content and its safety and benefices in its consumption. Gluconapin, the main B. rapa glucosinolate, was directly related with these wholesome effects. The relevant conclusion in the present research is focused on B. rapa cultivar 163N7 due to its high gluconapin content and low progoitrin content, which exert anti-cancer and DNA protection properties and could be recommended as being safe and healthy for human consumption.
Collapse
Affiliation(s)
- Tania Merinas-Amo
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - María-Dolores Lozano-Baena
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Sara Obregón-Cano
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Antonio de Haro-Bailón
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| |
Collapse
|
11
|
Lu Y, Dong W, Yang T, Luo Y, Chen P. Preharvest UVB Application Increases Glucosinolate Contents and Enhances Postharvest Quality of Broccoli Microgreens. Molecules 2021; 26:molecules26113247. [PMID: 34071404 PMCID: PMC8197856 DOI: 10.3390/molecules26113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Broccoli microgreens have shown potential health benefits due to their high glucosinolate (GL) levels. Previously, we observed that postharvest UVB treatment did not have much effect on increasing GLs in broccoli microgreens. In this study, we investigated the influence of preharvest UVB irradiation on GL levels in broccoli microgreens. UHPLC-ESI/ITMS analysis showed that preharvest UVB treatments with UVB 0.09 and 0.27 Wh/m2 significantly increased the glucoraphanin (GLR), glucoerucin (GLE), and total aliphatic GL levels by 13.7 and 16.9%, respectively, in broccoli microgreens when measured on harvest day. The nutritional qualities of UVB-treated microgreens were stable during 21-day storage, with only small changes in their GL levels. Broccoli microgreens treated before harvest with UVB 0.27 Wh/m2 and 10 mM CaCl2 spray maintained their overall quality, and had the lowest tissue electrolyte leakage and off-odor values during the storage. Furthermore, preharvest UVB 0.27 Wh/m2 treatment significantly increased GL biosynthesis genes when evaluated before harvest, and reduced the expression level of myrosinase, a gene responsible for GL breakdown during postharvest storage. Overall, preharvest UVB treatment, together with calcium chloride spray, can increase and maintain health-beneficial compound levels such as GLs and prolong the postharvest quality of broccoli microgreens.
Collapse
Affiliation(s)
- Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210095, China;
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
| | - Wen Dong
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
| | - Tianbao Yang
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
- Correspondence:
| | - Yaguang Luo
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
- Beltsville Agricultural Research Center, Environmental Microbial & Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Pei Chen
- Beltsville Human Nutrition Research Center, Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| |
Collapse
|
12
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
15
|
Zhuang L, Xu K, Zhu Y, Wang F, Xiao J, Guo L. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO 4 stress. Food Chem 2020; 334:127520. [PMID: 32693332 DOI: 10.1016/j.foodchem.2020.127520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
CaCl2, Ca2+ chelator (EGTA) and Ca2+ channel blocker (verapamil) were used to investigate mechanism of glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. CaCl2 treatment promoted sprout growth, reduced MDA (malonaldehyde) content and electrolyte leakage in sprouts under ZnSO4 stress. The highest MDA content and electrolyte leakage were obtained in ZnSO4 plus verapamil-treated sprouts. In addition, ZnSO4 plus CaCl2 treatment significantly enhanced glucoraphanin content and sulforaphane formation, while an opposite result was observed after ZnSO4 plus EGTA treatment; which were further supported by expression of glucoraphanin biosynthetic and hydrolytic genes as well as myrosinase (MYR) and epithiospecifier protein (ESP) activities. These results indicated that exogenous and endogenous calcium promoted glucoraphanin biosynthesis and the conversion rate of glucoraphanin into sulforaphane. Verapamil treatment also stimulated glucoraphanin biosynthesis, but exerted an adverse influence on sulforaphane formation from the hydrolysis of glucoraphanin because of much higher ESP expression and ESP activity than ZnSO4 treatment.
Collapse
Affiliation(s)
- Li Zhuang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Kexin Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Fengwu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Yang Y, Hu Y, Yue Y, Pu Y, Yin X, Duan Y, Huang A, Yang Y, Yang Y. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1064-1071. [PMID: 31713870 DOI: 10.1002/jsfa.10111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Glucosinolates (GSLs) are secondary metabolites, mainly existing in Brassica vegetables. Their breakdown products have health benefits and contribute to the distinctive taste of these vegetables. Because of their high value, there is a lot of interest in developing breeding strategies to increase the content of beneficial GSLs in Brassica species. GSLs are synthesized from certain amino acids and their biological roles depend largely on the structure of their side chains. Flavin-containing monooxygenase (FMOGS-OX ) genes are involved in the synthesis of these side chains. To better understand GSL biosynthesis, we sequenced the transcriptomes of turnip (Brassica rapa var. rapa) tubers at four developmental stages (S1-S4) and determined their GSL content. RESULTS The total GSL content was high at the early stage (S1) of tuber development and increased up to S3, then decreased at S4. We detected 61 differentially expressed genes, including five FMOGS-OX genes, that were related for GSL biosynthesis among the four developmental stages. Most of these genes were highly expressed at stages S1 to S3, but their expression was much lower at S4. We estimated the effect of the five FMOGS-OX genes on GSL content by overexpressing them in turnip hairy roots and found that the amount of aliphatic GSLs increased significantly in the transgenic plants. CONCLUSION The transcriptome data and characterization of genes involved in GSL biosynthesis, particularly the FMOGS-OX genes, will be valuable for improving the yield of beneficial GSLs in turnip and other Brassica crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Yang
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Hu
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yanan Pu
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin Yin
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwen Duan
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aixia Huang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yunqiang Yang
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Plant Germplasm & Genom Ctr, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
17
|
Nugroho ABD, Han N, Pervitasari AN, Kim DH, Kim J. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. PLANT MOLECULAR BIOLOGY 2020; 102:171-184. [PMID: 31792713 DOI: 10.1007/s11103-019-00939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Thus study found the temporal and spatial relationship between production of aliphatic glucosinolate compounds and the expression profile of glucosinolate-related genes during growth and development in radish, Chinese cabbage, and their intergeneric hybrid baemoochae plants. Glucosinolates (GSLs) are one of major bioactive compounds in Brassicaceae plants. GSLs play a role in defense against microbes as well as chemo-preventative activity against cancer, which draw attentions from plant scientists. We investigated the temporal relationship between production of aliphatic Glucosinolate (GSLs) compounds and the expression profile of GSL related genes during growth and development in radish, Chinese cabbage, and their intergeneric hybrid, baemoochae. Over the complete life cycle, Glucoraphasatin (GRH) and glucoraphanin (GRE) predominated in radish, whereas gluconapin (GNP), glucobrassicanapin (GBN), and glucoraphanin (GRA) abounded in Chinese cabbage. Baemoochae contained intermediate levels of all GSLs studied, indicating inheritance from both radish and Chinese cabbage. Expression patterns of BCAT4, CYP79F1, CYP83A1, UGT74B1, GRS1, FMOgs-ox1, and AOP2 genes showed a correlation to their corresponding encoded proteins in radish, Chinese cabbage, and baemoochae. Interestingly, there is a sharp change in gene expression pattern involved in side chain modification, particularly GRS1, FMOgs-ox1, and AOP2, among these plants during the vegetative and reproductive stage. For instance, the GRS1 was strongly expressed during leaf development, while both of FMOgs-ox1 and AOP2 was manifested high in floral tissues. Furthermore, expression of GRS1 gene which is responsible for GRH production was predominantly expressed in leaf tissues of radish and baemoochae, whereas it was only slightly detected in Chinese cabbage root tissue, explaining why radish has an abundance of GRH compared to other Brassica plants. Altogether, our comprehensive and comparative data proved that aliphatic GSLs biosynthesis is dynamically and precisely regulated in a tissue- and development-dependent manner in Brassicaceae family members.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Narae Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
18
|
Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chem 2019; 307:125562. [PMID: 31648174 DOI: 10.1016/j.foodchem.2019.125562] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
Abstract
The effect of postharvest melatonin treatment on sulforaphane production of fresh-cut broccoli at 4℃ during storage was investigated in this study. Florets treated with 100 μM melatonin exhibited higher contents of total glucosinolates and sulforaphane. Glucoraphanin content was significantly increased after melatonin treatment, and which was explained by gene analysis. Expressions of glucoraphanin biosynthesis genes including Elong, CYP83A1, MYB28, UGT74B1 and FMOGS-OX1 were up-regulated while AOP2 was obviously decreased by melatonin treatment, leading to a higher glucoraphanin accumulation. In addition, application of melatonin enhanced the myrosinase activity and the expression level of MYO, benefiting the formation of sulforaphane. This study demonstrates that melatonin treatment positively affected the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli.
Collapse
|
19
|
Zuluaga DL, Graham NS, Klinder A, van Ommen Kloeke AEE, Marcotrigiano AR, Wagstaff C, Verkerk R, Sonnante G, Aarts MGM. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. PLANT MOLECULAR BIOLOGY 2019; 101:65-79. [PMID: 31190320 PMCID: PMC6695347 DOI: 10.1007/s11103-019-00890-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/05/2019] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Overexpression of BoMYB29 gene up-regulates the aliphatic glucosinolate pathway in Brassica oleracea plants increasing the production of the anti-cancer metabolite glucoraphanin, and the toxic and pungent sinigrin. Isothiocyanates, the bio-active hydrolysis products of glucosinolates, naturally produced by several Brassicaceae species, play an important role in human health and agriculture. This study aims at correlating the content of aliphatic glucosinolates to the expression of genes involved in their synthesis in Brassica oleracea, and perform functional analysis of BoMYB29 gene. To this purpose, three genotypes were used: a sprouting broccoli, a cabbage, and a wild genotype (Winspit), a high glucosinolate containing accession. Winspit showed the highest transcript level of BoMYB28, BoMYB29 and BoAOP2 genes, and BoAOP2 expression was positively correlated with that of the two MYB genes. Further analyses of the aliphatic glucosinolates also showed a positive correlation between the expression of BoAOP2 and the production of sinigrin and gluconapin in Winspit. The Winspit BoMYB29 CDS was cloned and overexpressed in Winspit and in the DH AG1012 line. Overexpressing Winspit plants produced higher quantities of alkenyl glucosinolates, such as sinigrin. Conversely, the DH AG1012 transformants showed a higher production of methylsulphinylalkyl glucosinolates, including glucoraphanin, and, despite an up-regulation of the aliphatic glucosinolate genes, no increase in alkenyl glucosinolates. The latter may be explained by the absence of a functional AOP2 gene in DH AG1012. Nevertheless, an extract of DH AG1012 lines overexpressing BoMYB29 provided a chemoprotective effect on human colon cells. This work exemplifies how the genetic diversity of B. oleracea may be used by breeders to select for higher expression of transcription factors for glucosinolate biosynthesis to improve its natural, health-promoting properties.
Collapse
Affiliation(s)
- Diana L. Zuluaga
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Neil S. Graham
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD Leicestershire UK
| | - Annett Klinder
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - A. E. Elaine van Ommen Kloeke
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - Ruud Verkerk
- Food Quality and Design, Wageningen University, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
20
|
Jin L, Ouyang N, Huang Y, Liu C, Ruan Y. Genome-wide analysis of sulfotransferase genes and their responses to abiotic stresses in Chinese cabbage (Brassica rapa L.). PLoS One 2019; 14:e0221422. [PMID: 31425555 PMCID: PMC6699706 DOI: 10.1371/journal.pone.0221422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Sulfotransferases (SOTs; EC 2.8.2.-), which are widespread from prokaryotes to eukaryotes, constitute a multi-protein family that plays crucial roles in plant growth, development and stress adaptation. However, this family has not been systemically investigated in Brassica rapa. Here, a genome-wide systemic analysis of SOT genes in B. rapa subsp. pekinensis, a globally cultivated vegetable, were conducted. We identified 56 SOT genes from the whole B. rapa genome using Arabidopsis SOT sequences as queries and classified them into nine groups, rather than the eight groups of previous research. 56 B. rapa SOT genes (BraSOTs) were distributed on all 10 chromosomes except for chromosome 5. Of these, 27 BraSOTs were distributed in seven clusters on five chromosomes (ChrA01, ChrA02, Chr03, ChrA07, and Chr09). Among the BraSOT proteins, 48 had only one SOT_1 domain and 6 had two, while 2 had one SOT_3 domain. Additionally, 47 BraSOT proteins contained only known SOT domains. The remaining nine proteins, five in group-VIII and two in group-IX, contained additional transmembrane domains. Specific motif regions I and IV for 3′-phosphoadenosine 5′-phosphosulfate binding were found in 41 BraSOT proteins. Introns were present in only 18 BraSOT genes, and all seven BraSOT genes in groups VIII and IX had more than three introns. To identify crucial SOTs mediating the response to abiotic stress in B. rapa, expression changes in 56 BraSOT genes were determined by quantitative RT-PCR after drought, salinity, and ABA treatments, and some BraSOT genes were associated with NaCl, drought and ABA stress, e.g. Bra017370, Bra009300, Bra027880.
Collapse
Affiliation(s)
- Lu Jin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Ning Ouyang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
| | - Chunlin Liu
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, China
- * E-mail:
| |
Collapse
|
21
|
Bonnema G, Lee JG, Shuhang W, Lagarrigue D, Bucher J, Wehrens R, de Vos R, Beekwilder J. Glucosinolate variability between turnip organs during development. PLoS One 2019; 14:e0217862. [PMID: 31170222 PMCID: PMC6553741 DOI: 10.1371/journal.pone.0217862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Turnip (Brassica rapa spp. rapa) is an important vegetable species, with a unique physiology. Several plant parts, including both the turnip tubers and leaves, are important for human consumption. During the development of turnip plants, the leaves function as metabolic source tissues, while the tuber first functions as a sink, while later the tuber turns into a source for development of flowers and seeds. In the present study, chemical changes were determined for two genotypes with different genetic background, and included seedling, young leaves, mature leaves, tuber surface, tuber core, stalk, flower and seed tissues, at seven different time points during plant development. As a basis for understanding changes in glucosinolates during plant development, the profile of glucosinolates was analysed using liquid chromatography (LC) coupled to mass spectrometry (MS). This analysis was complemented by a gene expression analysis, focussed on GLS biosynthesis, which could explain part of the observed variation, pointing to important roles of specific gene orthologues for defining the chemical differences. Substantial differences in glucosinolate profiles were observed between above-ground tissues and turnip tuber, reflecting the differences in physiological role. In addition, differences between the two genotypes and between tissues that were harvested early or late during the plant lifecycle. The importance of the observed differences in glucosinolate profile for the ecophysiology of the turnip and for breeding turnips with optimal chemical profiles is discussed.
Collapse
Affiliation(s)
- Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jun Gu Lee
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Korea
| | - Wang Shuhang
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - David Lagarrigue
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Ron Wehrens
- Wageningen Plant Research, Wageningen, The Netherlands
| | - Ric de Vos
- Wageningen Plant Research, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Abstract
Although flavor is an essential element for consumer acceptance of food, breeding programs have focused primarily on yield, leading to significant declines in flavor for many vegetables. The deterioration of flavor quality has concerned breeders; however, the complexity of this trait has hindered efforts to improve or even maintain it. Recently, the integration of flavor-associated metabolic profiling with other omics methodologies derived from big data has become a prominent trend in this research field. Here, we provide an overview of known metabolites contributing to flavor in the major vegetables as well as genetic analyses of the relevant metabolic pathways based on different approaches, especially multi-omics. We present examples demonstrating how omics analyses can help us to understand the accomplishments of historical flavor breeding practices and implement further improvements. The integration of genetics, cultivation, and postharvest practices with genome-scale data analyses will create enormous potential for further flavor quality improvements.
Collapse
Affiliation(s)
- Guangtao Zhu
- The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbo Gou
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Harry Klee
- Horticultural Sciences Department, Plant Innovation Center, University of Florida, Gainesville, Florida 32611, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
23
|
Beszterda M, Nogala‐Kałucka M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (
Brassica napus
L.). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monika Beszterda
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| | - Małgorzata Nogala‐Kałucka
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| |
Collapse
|
24
|
Transcriptome Analysis of Diurnal Gene Expression in Chinese Cabbage. Genes (Basel) 2019; 10:genes10020130. [PMID: 30754711 PMCID: PMC6409912 DOI: 10.3390/genes10020130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Plants have developed timing mechanisms that enable them to maintain synchrony with daily environmental events. These timing mechanisms, i.e., circadian clocks, include transcriptional/translational feedback loops that drive 24 h transcriptional rhythms, which underlie oscillations in protein abundance, thus mediating circadian rhythms of behavior, physiology, and metabolism. Circadian clock genes have been investigated in the diploid model plant Arabidopsis thaliana. Crop plants with polyploid genomes—such as Brassica species—have multiple copies of some clock-related genes. Over the last decade, numerous studies have been aimed at identifying and understanding the function of paralogous genes with conserved sequences, or those that diverged during evolution. Brassica rapa’s triplicate genomes retain sequence-level collinearity with Arabidopsis. In this study, we used RNA sequencing (RNAseq) to profile the diurnal transcriptome of Brassica rapa seedlings. We identified candidate paralogs of circadian clock-related genes and assessed their expression levels. These genes and their related traits that modulate the diurnal rhythm of gene expression contribute to the adaptation of crop cultivars. Our findings will contribute to the mechanistic study of circadian clock regulation inherent in polyploidy genome crops, which differ from those of model plants, and thus will be useful for future breeding studies using clock genes.
Collapse
|
25
|
Li L, Song S, Nirasawa S, Hung YC, Jiang Z, Liu H. Slightly Acidic Electrolyzed Water Treatment Enhances the Main Bioactive Phytochemicals Content in Broccoli Sprouts via Changing Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:606-614. [PMID: 30576129 DOI: 10.1021/acs.jafc.8b04958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Changes in the content of bioactive phytochemicals in the broccoli sprouts subjected to different slightly acidic electrolyzed water (SAEW) treatments were investigated in the present study. The highest sulforaphane amount in broccoli sprouts treated with SAEW with an available chlorine concentration (ACC) of 50 mg/L was 11.49 mg/g in dry weight (DW), which increased by 61.2% compared to the control. SAEW treatment enhanced the sulforaphane content mainly by increasing the glucoraphanin (GRA) concentration due to the promotion of methionine metabolism and increased myrosinase activities. In addition, the relative anthocyanin contents of light-germinated broccoli under SAEW 50 treatment were 2.03 times that of broccoli sprouts with tap water treatment, and these contents were associated with an increase in phenylalanine ammonia lyase (PAL) activities and phenylalanine participation in biosynthesis. In summary, SAEW promotes metabolism to induce the accumulation of bioactive compounds in broccoli sprouts.
Collapse
Affiliation(s)
- Lizhen Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Shuhui Song
- Beijing Vegetable Research Center , National Engineering Research Center for Vegetables , Beijing 100045 , China
| | - Satoru Nirasawa
- Biological Resources and Postharvest Division , Japan International Research Center for Agricultural Science , Ibaraki 305-8686 , Japan
| | - Yen-Con Hung
- Department of Food Science and Technology , University of Georgia , Griffin , Georgia 30223 , United States
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Haijie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
26
|
Kim DG, Shim JY, Ko MJ, Chung SO, Chowdhury M, Lee WH. Statistical modeling for estimating glucosinolate content in Chinese cabbage by growth conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3580-3587. [PMID: 29315681 DOI: 10.1002/jsfa.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Glucosinolate in Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr) has potential benefits for human health, and its content is affected by growth conditions. In this study, we used a statistical model to identify the relationship between glucosinolate content and growth conditions, and to predict glucosinolate content in Chinese cabbage. RESULT Multiple regression analysis was employed to develop the model's growth condition parameters of growing period, temperature, humidity and glucosinolate content measured in Chinese cabbage grown in a plant factory. The developed model was represented by a second-order multi-polynomial equation with two independent parameters: growth duration and temperature (adjusted R2 = 0.81), and accurately predicted glucosinolate content after 14 days of seeding. CONCLUSION To our knowledge, this study presents the first statistical model for evaluating glucosinolate content, suggesting a useful methodology for designing glucosinolate-related experiments, and optimizing glucosinolate content in Chinese cabbage cultivation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Do-Gyun Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| | - Joon-Yong Shim
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| | - Myung-Jun Ko
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| | - Sun-Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| | - Milon Chowdhury
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| | - Wang-Hee Lee
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Korea
| |
Collapse
|
27
|
Klopsch R, Witzel K, Artemyeva A, Ruppel S, Hanschen FS. Genotypic Variation of Glucosinolates and Their Breakdown Products in Leaves of Brassica rapa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5481-5490. [PMID: 29746112 DOI: 10.1021/acs.jafc.8b01038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An in-depth glucosinolate (GLS) profiling was performed on a core collection of 91 Brassica rapa accessions, representing diverse morphotypes of heterogeneous geographical origin, to better understand the natural variation in GLS accumulation and GLS breakdown product formation. Leaves of the 91 B. rapa accessions were analyzed for their GLS composition by UHPLC-DAD and the corresponding breakdown products by GC-MS. Fifteen different GLSs were identified, and aliphatic GLSs prevailed regarding diversity and concentration. Twenty-three GLS breakdown products were identified, among them nine isothiocyanates, ten nitriles, and four epithionitriles. Epithionitriles were the prevailing breakdown products due to the high abundance of alkenyl GLSs. The large scale data set allowed the identification of correlations in abundance of specific GLSs or of GLS breakdown products. Discriminant function analysis identified subspecies with high levels of similarity in the acquired metabolite profiles. In general, the five main subspecies grouped significantly in terms of their GLS profiles.
Collapse
Affiliation(s)
- Rebecca Klopsch
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Anna Artemyeva
- N.I.Vavilov Institute of Plant Genetic Resources, Bolshaya Morskaya Street 42-44 , 190000 St. Petersburg , Russia
- Agrophysical Research Institute, Grazhdanskiy prospect 14 , 195220 St. Petersburg , Russia
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| |
Collapse
|
28
|
Yu Q, Hao G, Zhou J, Wang J, Evivie ER, Li J. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica). Biochem Biophys Res Commun 2018; 501:598-604. [DOI: 10.1016/j.bbrc.2018.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/08/2023]
|
29
|
Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts. Food Res Int 2018; 105:102-109. [PMID: 29433193 DOI: 10.1016/j.foodres.2017.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
Abstract
The producers of broccoli sprouts have become increasingly interested in improving their sulforaphane content. This study has evaluated the effects of slightly acidic electrolyzed water (SAEW) with different available chlorine concentrations (ACC) on broccoli sprouts: their content of some bioactive compounds such as glucosinolates, their morphology, and their total bacterial counts. The results have shown that SAEW might affect the content of sulforaphane by influencing the content of glucosinolates and the activity of myrosinase. SAEW inhibited the growth of broccoli sprouts: their fresh weight decreased as the available chlorine concentration (ACC) of the SAEW increased, but the different solutions did not affect their dry weight. The number of microorganisms on the broccoli sprout decreased by 1.71logCFU/g after using the SAEW with ACC value of 50mg/L treatment compared with tap water treatment. Overall, although SAEW adversely affected the morphology of broccoli sprouts, with a suitable ACC it can be a useful tool for enhancing the amount of secondary metabolites and reducing the microbial counts on broccoli sprouts intended for fresh consumption as a functional food.
Collapse
|
30
|
Raiola A, Errico A, Petruk G, Monti DM, Barone A, Rigano MM. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules 2017; 23:E15. [PMID: 29295478 PMCID: PMC5943923 DOI: 10.3390/molecules23010015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
The beneficial role of the Mediterranean diet in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, is well-recognized. In this context, Brassicaceae are considered important vegetables due to several evidences of their health promoting effects that are associated to bioactive compounds present in the edible parts of the plants. In this review, the mechanisms of action and the factors regulating the levels of the bioactive compounds in Brassicaceae have been discussed. In addition, the impact of industrial and domestic processing on the amount of these compounds have been considered, in order to identify the best conditions that are able to preserve the functional properties of the Brassicaceae products before consumption. Finally, the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification have been analyzed.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Angela Errico
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80055 Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80055 Naples, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| |
Collapse
|
31
|
Seo MS, Jin M, Sohn SH, Kim JS. Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio 2017; 7:1646-1659. [PMID: 29123974 PMCID: PMC5666390 DOI: 10.1002/2211-5463.12231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/18/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023] Open
Abstract
Brassica rapa is a polyploid species with phenotypically diverse cultivated subspecies. Glucosinolates (GSLs) are secondary metabolites that contribute to anticarcinogenic activity and plant defense in Brassicaceae. Previously, complete coding sequences of 13 BrMYB transcription factors (TFs) related to GSL biosynthesis were identified in the B. rapa genome. In the present study, we investigated GSL content and expression levels of these BrMYBTFs in 38 accessions belonging to eight subspecies of B. rapa. Twelve identified GSLs were detected and were classified into three chemical groups based on patterns of GSL content and expression profiles of the BrMYBTFs. GSL content and BrMYBTF expression levels differed among genotypes, including B. rapa subspecies pekinensis, chinensis and rapa. BrMYB28.3, BrMYB51.1 and BrMYB122.2 positively regulated GSL content in 38 accessions. Furthermore, expression levels of BrMYB28s and BrMYB34.3 increased under most abiotic and biotic stress treatments. The three BrMYB51 paralogs also showed drastically increased expression levels after infection with Pectobacterium carotovorum. The results of the present study improve our understanding of the functional diversity of these 13 BrMYBTFs during the evolution of polyploid B. rapa.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Mina Jin
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Seong-Han Sohn
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Jung Sun Kim
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| |
Collapse
|
32
|
Seo MS, Kim JS. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 2017; 22:molecules22091549. [PMID: 28906468 PMCID: PMC6151624 DOI: 10.3390/molecules22091549] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Glucosinolates (GSLs) are widely known secondary metabolites that have anticarcinogenic and antioxidative activities in humans and defense roles in plants of the Brassicaceae family. Some R2R3-type MYB (myeloblastosis) transcription factors (TFs) control GSL biosynthesis in Arabidopsis. However, studies on the MYB TFs involved in GSL biosynthesis in Brassica species are limited because of the complexity of the genome, which includes an increased number of paralog genes as a result of genome duplication. The recent completion of the genome sequencing of the Brassica species permits the identification of MYB TFs involved in GSL biosynthesis by comparative genome analysis with A. thaliana. In this review, we describe various findings on the regulation of GSL biosynthesis in Brassicaceae. Furthermore, we identify 63 orthologous copies corresponding to five MYB TFs from Arabidopsis, except MYB76 in Brassica species. Fifty-five MYB TFs from the Brassica species possess a conserved amino acid sequence in their R2R3 MYB DNA-binding domain, and share close evolutionary relationships. Our analysis will provide useful information on the 55 MYB TFs involved in the regulation of GSL biosynthesis in Brassica species, which have a polyploid genome.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
33
|
Kim J, Jun KM, Kim JS, Chae S, Pahk YM, Lee TH, Sohn SI, Lee SI, Lim MH, Kim CK, Hur Y, Nahm BH, Kim YK. RapaNet: A Web Tool for the Co-Expression Analysis of Brassica rapa Genes. Evol Bioinform Online 2017; 13:1176934317715421. [PMID: 28680265 PMCID: PMC5484627 DOI: 10.1177/1176934317715421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Accumulated microarray data are used for assessing gene function by providing statistical values for co-expressed genes; however, only a limited number of Web tools are available for analyzing the co-expression of genes of Brassica rapa. We have developed a Web tool called RapaNet (http://bioinfo.mju.ac.kr/arraynet/brassica300k/query/), which is based on a data set of 143 B rapa microarrays compiled from various organs and at different developmental stages during exposure to biotic or abiotic stress. RapaNet visualizes correlated gene expression information via correlational networks and phylogenetic trees using Pearson correlation coefficient (r). In addition, RapaNet provides hierarchical clustering diagrams, scatterplots of log ratio intensities, related pathway maps, and cis-element lists of promoter regions. To ascertain the functionality of RapaNet, the correlated genes encoding ribosomal protein (L7Ae), photosystem II protein D1 (psbA), and cytochrome P450 monooxygenase in glucosinolate biosynthesis (CYP79F1) were retrieved from RapaNet and compared with their Arabidopsis homologues. An analysis of the co-expressed genes revealed their shared and unique features.
Collapse
Affiliation(s)
- Jiye Kim
- Insilicogen, Inc., Suwon-si, Republic of Korea
| | - Kyong Mi Jun
- GreenGene Biotech Inc., Yongin, Republic of Korea
| | - Joung Sug Kim
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Songhwa Chae
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | | | - Tae-Ho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Myung-Ho Lim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Chang-Kug Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yoonkang Hur
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Baek Hie Nahm
- GreenGene Biotech Inc., Yongin, Republic of Korea.,Division of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Yeon-Ki Kim
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
34
|
|
35
|
Wu S, Lei J, Chen G, Chen H, Cao B, Chen C. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues. FRONTIERS IN PLANT SCIENCE 2017; 8:92. [PMID: 28228764 PMCID: PMC5296335 DOI: 10.3389/fpls.2017.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues.
Collapse
Affiliation(s)
- Shuanghua Wu
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jianjun Lei
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Guoju Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hancai Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Bihao Cao
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Bihao Cao
| | - Changming Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Changming Chen
| |
Collapse
|
36
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liu F, Yang H, Wang L, Yu B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth Biol 2016; 5:1557-1565. [PMID: 27389525 DOI: 10.1021/acssynbio.6b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine β-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.
Collapse
Affiliation(s)
- Feixia Liu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Yang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Wang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Katsarou D, Omirou M, Liadaki K, Tsikou D, Delis C, Garagounis C, Krokida A, Zambounis A, Papadopoulou KK. Glucosinolate biosynthesis in Eruca sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:452-466. [PMID: 27816826 DOI: 10.1016/j.plaphy.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.
Collapse
Affiliation(s)
- Dimitra Katsarou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Michalis Omirou
- Agricultural Research Institute, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus
| | - Kalliopi Liadaki
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Daniela Tsikou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Costas Delis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | | - Afrodite Krokida
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Antonis Zambounis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | |
Collapse
|
39
|
Li D, Heiling S, Baldwin IT, Gaquerel E. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci U S A 2016; 113:E7610-E7618. [PMID: 27821729 PMCID: PMC5127351 DOI: 10.1073/pnas.1610218113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Guo L, Yang R, Gu Z. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4329-4336. [PMID: 26786856 DOI: 10.1002/jsfa.7629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. RESULTS The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. CONCLUSION JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liping Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Zhang X, Liu T, Duan M, Song J, Li X. De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways. FRONTIERS IN PLANT SCIENCE 2016; 7:259. [PMID: 26973695 PMCID: PMC4777875 DOI: 10.3389/fpls.2016.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/17/2016] [Indexed: 05/26/2023]
Abstract
Sinapis alba is an important condiment crop and can also be used as a phytoremediation plant. Though it has important economic and agronomic values, sequence data, and the genetic tools are still rare in this plant. In the present study, a de novo transcriptome based on the transcriptions of leaves, stems, and roots was assembled for S. alba for the first time. The transcriptome contains 47,972 unigenes with a mean length of 1185 nt and an N50 of 1672 nt. Among these unigenes, 46,535 (97%) unigenes were annotated by at least one of the following databases: NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO), and Clusters of Orthologous Groups of proteins (COGs). The tissue expression pattern profiles revealed that 3489, 1361, and 8482 unigenes were predominantly expressed in the leaves, stems, and roots of S. alba, respectively. Genes predominantly expressed in the leaf were enriched in photosynthesis- and carbon fixation-related pathways. Genes predominantly expressed in the stem were enriched in not only pathways related to sugar, ether lipid, and amino acid metabolisms but also plant hormone signal transduction and circadian rhythm pathways, while the root-dominant genes were enriched in pathways related to lignin and cellulose syntheses, involved in plant-pathogen interactions, and potentially responsible for heavy metal chelating, and detoxification. Based on this transcriptome, 14,727 simple sequence repeats (SSRs) were identified, and 12,830 pairs of primers were developed for 2522 SSR-containing unigenes. Additionally, the glucosinolate (GSL) and phytochelatin metabolic pathways, which give the characteristic flavor and the heavy metal tolerance of this plant, were intensively analyzed. The genes of aliphatic GSLs pathway were predominantly expressed in roots. The absence of aliphatic GSLs in leaf tissues was due to the shutdown of BCAT4, MAM1, and CYP79F1 expressions. Glutathione was extensively converted into phytochelatin in roots, but it was actively converted to the oxidized form in leaves, indicating the different mechanisms in the two tissues. This transcriptome will not only benefit basic research and molecular breeding of S. alba but also be useful for the molecular-assisted transfer of beneficial traits to other crops.
Collapse
|
42
|
Seo MS, Jin M, Chun JH, Kim SJ, Park BS, Shon SH, Kim JS. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. PLANT MOLECULAR BIOLOGY 2016; 90:503-16. [PMID: 26820138 PMCID: PMC4766241 DOI: 10.1007/s11103-016-0437-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/09/2016] [Indexed: 05/09/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites that have anticarcinogenic activity and play defense roles in plants of the Brassicaceae family. MYB28 is known as a transcription factor that regulates aliphatic GSL biosynthesis in Arabidopsis thaliana. Brassicaceae plants have three orthologous copies of AtMYB28 derived from recent genome triplication. These BrMYB28 genes have a high level of sequence homology, with 81-87% similarities in the coding DNA sequence compared to Arabidopsis. Overexpression of three paralogous BrMYB28 genes in transgenic Chinese cabbage increased the total GSL content in all T1 generation plants and in two inbred lines of homozygous T2 plants. The highest total GSL contents were detected in homozygous T2 lines overexpressing BrMYB28.1, which showed an approximate fivefold increase compared to that of nontransgenic plants. The homozygous T2 lines with overexpressed BrMYB28.1 also showed an increased content of aliphatic, indolic, and aromatic GSLs compared to that of nontransgenic plants. Furthermore, all of the three BrMYB28 genes were identified as negative regulators of BrAOP2 and positive regulators of BrGSL-OH in the homozygous T2 lines. These data indicate the regulatory mechanism of GSL biosynthesis in B. rapa is unlike that in A. thaliana. Our results will provide useful information for elucidating the regulatory mechanism of GSL biosynthesis in polyploid plants.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Mina Jin
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Jin-Hyuk Chun
- Department of Biological Environment and Chemistry, College of Agriculture and Life Science, Chungnam National University, Yuseong-gu, Daejeon, Korea.
| | - Sun-Ju Kim
- Department of Biological Environment and Chemistry, College of Agriculture and Life Science, Chungnam National University, Yuseong-gu, Daejeon, Korea.
| | - Beom-Seok Park
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Seong-Han Shon
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| |
Collapse
|
43
|
Cao X, Liao Y, Rong S, Hu C, Zhang X, Chen R, Xu Z, Gao X, Li L, Zhu J. Identification and characterization of a novel abiotic stress responsive sulphotransferase gene (OsSOT9) from rice. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2015.1136237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Marroun S, Montaut S, Marquès S, Lafite P, Coadou G, Rollin P, Jousset G, Schuler M, Tatibouët A, Oulyadi H, Daniellou R. UGT74B1 from Arabidopsis thaliana as a versatile biocatalyst for the synthesis of desulfoglycosinolates. Org Biomol Chem 2016; 14:6252-61. [DOI: 10.1039/c6ob01003b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A glucosyltransferase is able to catalyze the formation of the thioglycosidic bond and lead to desulfoglycosinolates.
Collapse
Affiliation(s)
- Sami Marroun
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | - Sabine Montaut
- Department of Chemistry and Biochemistry
- Biomolecular Sciences Programme
- Laurentian University
- Sudbury
- Canada
| | | | | | - Gaël Coadou
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | | | | | | | | | - Hassan Oulyadi
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | | |
Collapse
|
45
|
Körber N, Bus A, Li J, Parkin IAP, Wittkop B, Snowdon RJ, Stich B. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:386. [PMID: 27066036 PMCID: PMC4814720 DOI: 10.3389/fpls.2016.00386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.
Collapse
Affiliation(s)
- Niklas Körber
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Plant Breeding and Biotechnology, Institute of Crop Science and Resource Conservation, University of BonnBonn, Germany
- *Correspondence: Niklas Körber
| | - Anja Bus
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Plant Breeding and Biotechnology, Institute of Crop Science and Resource Conservation, University of BonnBonn, Germany
| | - Jinquan Li
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Benjamin Wittkop
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Benjamin Stich
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Benjamin Stich
| |
Collapse
|
46
|
Cacho NI, Kliebenstein DJ, Strauss SY. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. THE NEW PHYTOLOGIST 2015; 208:915-27. [PMID: 26192213 DOI: 10.1111/nph.13561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 05/12/2023]
Abstract
We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California. One Shields Avenue, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
47
|
Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0140491. [PMID: 26465156 PMCID: PMC4605783 DOI: 10.1371/journal.pone.0140491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/25/2015] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.
Collapse
|
48
|
Moon J, Jeong MJ, Lee SI, Lee JG, Hwang H, Yu J, Kim YR, Park SW, Kim JA. Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa. ACTA ACUST UNITED AC 2015. [DOI: 10.5010/jpb.2015.42.3.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junghyun Moon
- Functional Biomaterial Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| | - Mi Jeong Jeong
- Functional Biomaterial Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| | - Soo In Lee
- Functional Biomaterial Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| | - Jun Gu Lee
- Department of Horticulture, Chonbuk National University, Jeonju 561-756, Korea
| | - Hyunseung Hwang
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea
| | - Jaewoong Yu
- Department of Molecular Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yong-Rok Kim
- Department of Chemistry, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120 749, Republic of Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Jin A Kim
- Functional Biomaterial Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| |
Collapse
|
49
|
Augustine R, Bisht NC. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. PHYTOCHEMISTRY 2015; 117:43-50. [PMID: 26057228 DOI: 10.1016/j.phytochem.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 05/28/2023]
Abstract
Glucosinolates are nitrogen and sulfur containing secondary metabolites found mainly in the Brassicaceae. They function as plant defense compounds against a broad spectrum of pathogens and pests. Since these molecules form part of the plant defense mechanism, glucosinolate biosynthesis may be modulated by environmental signals leading to activation of a biological stress response. In the current study, we have mimicked such conditions by exogenously applying biotic elicitors such as methyl jasmonate, salicylic acid, glucose and mechanical injury in Brassica juncea seedling over a time course experiment. We found that total glucosinolates over-accumulated under these stress conditions with maximum accumulation observed 24h post treatment. Indole glucosinolates like 1-methoxy-indol-3-ylmethyl and its precursor indol-3-methyl glucosinolates showed a more significant induction compared to aliphatic glucosinolates thereby suggesting a prominent role of indole glucosinolates during plant defense response in B. juncea seedlings. In contrast, the higher amounts of aliphatic glucosinolates were less regulated by the tested biotic elicitors in B. juncea. Expression profiling of multiple homologs of key transcriptional regulators of glucosinolate biosynthesis further showed that a complex interplay of these regulators exists in polyploid B. juncea where they exert co-ordinated and overlapping effects toward altering glucosinolate accumulation. This study has a significant role toward understanding and augmenting plant defense mechanisms in B. juncea, a globally important oilseed crop of genus Brassica.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
50
|
Guo L, Yang R, Zhou Y, Gu Z. Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2522-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|