1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Haas S, Bravo F, Ionescu TM, Gonzalez-Menendez I, Quintanilla-Martinez L, Dunkel G, Kuebler L, Hahn A, Lanzenberger R, Weigelin B, Reischl G, Pichler BJ, Herfert K. Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway. SCIENCE ADVANCES 2024; 10:eadn2776. [PMID: 39454014 PMCID: PMC11506239 DOI: 10.1126/sciadv.adn2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
The dopaminergic system is a central component of the brain's neurobiological framework, governing motor control and reward responses and playing an essential role in various brain disorders. Within this complex network, the nigrostriatal pathway represents a critical circuit for dopamine neurotransmission from the substantia nigra to the striatum. However, stand-alone functional magnetic resonance imaging is unable to study the intricate interplay between brain activation and its molecular underpinnings. In our study, the use of a functional [fluorine-18]2-fluor-2-deoxy-d-glucose positron emission tomography approach, simultaneously with blood oxygen level-dependent functional magnetic resonance imaging, provided an important insight that demonstrates an active suppression of the nigrostriatal activity during optogenetic stimulation. This result increases our understanding of the molecular mechanisms of brain function and provides an important perspective on how dopamine influences hemodynamic responses in the brain.
Collapse
Affiliation(s)
- Sabrina Haas
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tudor M. Ionescu
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gina Dunkel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Bernd J. Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Phillips CD, Hodge AT, Myers CC, Leventhal DK, Burgess CR. Striatal Dopamine Contributions to Skilled Motor Learning. J Neurosci 2024; 44:e0240242024. [PMID: 38806248 PMCID: PMC11211718 DOI: 10.1523/jneurosci.0240-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander T Hodge
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Courtney C Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel K Leventhal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Parkinson's Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Wen K, Shi Z, Yu P, Mo L, Sullere S, Yang V, Westneat N, Beeler JA, McGehee DS, Doiron B, Zhuang X. Opposing Motor Memories in the Direct and Indirect Pathways of the Basal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582159. [PMID: 38463990 PMCID: PMC10925233 DOI: 10.1101/2024.02.26.582159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Loss of dopamine neurons causes motor deterioration in Parkinson's disease patients. We have previously reported that in addition to acute motor impairment, the impaired motor behavior is encoded into long-term memory in an experience-dependent and task-specific manner, a phenomenon we refer to as aberrant inhibitory motor learning. Although normal motor learning and aberrant inhibitory learning oppose each other and this is manifested in apparent motor performance, in the present study, we found that normal motor memory acquired prior to aberrant inhibitory learning remains preserved in the brain, suggesting the existence of independent storage. To investigate the neuronal circuits underlying these two opposing memories, we took advantage of the RNA-binding protein YTHDF1, an m 6 A RNA methylation reader involved in the regulation of protein synthesis and learning/memory. Conditional deletion of Ythdf1 in either D1 or D2 receptor-expressing neurons revealed that normal motor memory is stored in the D1 (direct) pathway of the basal ganglia, while inhibitory memory is stored in the D2 (indirect) pathway. Furthermore, fiber photometry recordings of GCaMP signals from striatal D1 (dSPN) and D2 (iSPN) receptor-expressing neurons support the preservation of normal memory in the direct pathway after aberrant inhibitory learning, with activities of dSPN predictive of motor performance. Finally, a computational model based on activities of motor cortical neurons, dSPN and iSPN neurons, and their interactions through the basal ganglia loops supports the above observations. These findings have important implications for novel approaches in treating Parkinson's disease by reactivating preserved normal memory, and in treating hyperkinetic movement disorders such as chorea or tics by erasing aberrant motor memories.
Collapse
|
5
|
Phillips CD, Myers CC, Leventhal DK, Burgess CR. Striatal dopamine contributions to skilled motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579240. [PMID: 38370850 PMCID: PMC10871330 DOI: 10.1101/2024.02.06.579240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Coordinated multi-joint limb and digit movements - "manual dexterity" - underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's Disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that cortico-striatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release as mice learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In dorsolateral striatum, dopamine dynamics are faster than in dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.
Collapse
Affiliation(s)
- Chris D. Phillips
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA, 75080
| | - Courtney C. Myers
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Daniel K. Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
- Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, USA, 48109
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA, 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
6
|
Viswan NA, Bhalla US. Understanding molecular signaling cascades in neural disease using multi-resolution models. Curr Opin Neurobiol 2023; 83:102808. [PMID: 37972535 DOI: 10.1016/j.conb.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
If the genome defines the program for the operations of a cell, signaling networks execute it. These cascades of chemical, cell-biological, structural, and trafficking events span milliseconds (e.g., synaptic release) to potentially a lifetime (e.g., stabilization of dendritic spines). In principle almost every aspect of neuronal function, particularly at the synapse, depends on signaling. Thus dysfunction of these cascades, whether through mutations, local dysregulation, or infection, leads to disease. The sheer complexity of these pathways is matched by the range of diseases and the diversity of their phenotypes. In this review, we discuss how to build computational models, how these models are essential to tackle this complexity, and the benefits of using families of models at different levels of detail to understand signaling in health and disease.
Collapse
Affiliation(s)
- Nisha Ann Viswan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India. https://twitter.com/nishanna
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
7
|
Rudibaugh TT, Stuppy SR, Keung AJ. Reactive Oxygen Species Mediate Transcriptional Responses to Dopamine and Cocaine in Human Cerebral Organoids. Int J Mol Sci 2023; 24:16474. [PMID: 38003664 PMCID: PMC10671319 DOI: 10.3390/ijms242216474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine signaling in the adult ventral forebrain regulates behavior, stress response, and memory formation and in neurodevelopment regulates neural differentiation and cell migration. Excessive dopamine levels, including those due to cocaine use in utero and in adults, could lead to long-term adverse consequences. The mechanisms underlying both homeostatic and pathological changes remain unclear, in part due to the diverse cellular responses elicited by dopamine and the reliance on animal models that exhibit species-specific differences in dopamine signaling. In this study, we use the human-derived ventral forebrain organoid model of Xiang-Tanaka and characterize their response to cocaine or dopamine. We explore dosing regimens of dopamine or cocaine to simulate acute or chronic exposure. We then use calcium imaging, cAMP imaging, and bulk RNA-sequencing to measure responses to cocaine or dopamine exposure. We observe an upregulation of inflammatory pathways in addition to indicators of oxidative stress following exposure. Using inhibitors of reactive oxygen species (ROS), we then show ROS to be necessary for multiple transcriptional responses of cocaine exposure. These results highlight novel response pathways and validate the potential of cerebral organoids as in vitro human models for studying complex biological processes in the brain.
Collapse
Affiliation(s)
| | | | - Albert J. Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; (T.T.R.); (S.R.S.)
| |
Collapse
|
8
|
Rudibaugh TT, Keung AJ. Reactive Oxygen Species Mediate Transcriptional Responses to Dopamine and Cocaine in Human Cerebral Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544782. [PMID: 37398046 PMCID: PMC10312668 DOI: 10.1101/2023.06.13.544782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dopamine signaling in the adult ventral forebrain regulates behavior, stress response, and memory formation and in neurodevelopment regulates neural differentiation and cell migration. Excessive dopamine levels including due to cocaine use both in utero and in adults could lead to long-term adverse consequences. The mechanisms underlying both homeostatic and pathological changes remain unclear, partly due to the diverse cellular responses elicited by dopamine and the reliance on animal models that exhibit species-specific differences in dopamine signaling. To address these limitations, 3-D cerebral organoids have emerged as human-derived models, recapitulating salient features of human cell signaling and neurodevelopment. Organoids have demonstrated responsiveness to external stimuli, including substances of abuse, making them valuable investigative models. In this study we utilize the Xiang-Tanaka ventral forebrain organoid model and characterize their response to acute and chronic dopamine or cocaine exposure. The findings revealed a robust immune response, novel response pathways, and a potential critical role for reactive oxygen species (ROS) in the developing ventral forebrain. These results highlight the potential of cerebral organoids as in vitro human models for studying complex biological processes in the brain.
Collapse
Affiliation(s)
- Thomas T. Rudibaugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606
| | - Albert J. Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
9
|
Zhong M, Wang Y, Lin G, Liao FF, Zhou FM. Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines. Neurobiol Dis 2023; 181:106096. [PMID: 37001611 PMCID: PMC10864017 DOI: 10.1016/j.nbd.2023.106096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| | - Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Geng Lin
- Teaching Center for Basic Medical Experiments, China Medical University, Shenyang 110122, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
10
|
Moreira-Júnior RE, Guimarães MADF, Etcheverria da Silva M, Maioli TU, Faria AMC, Brunialti-Godard AL. Animal model for high consumption and preference of ethanol and its interplay with high sugar and butter diet, behavior, and neuroimmune system. Front Nutr 2023; 10:1141655. [PMID: 37063320 PMCID: PMC10097969 DOI: 10.3389/fnut.2023.1141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1β, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1β) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.
Collapse
Affiliation(s)
- Renato Elias Moreira-Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Etcheverria da Silva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
12
|
Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, Wu Z, Etchenique R, Li Y, Poskanzer KE. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep 2022; 40:111426. [PMID: 36170823 PMCID: PMC9555850 DOI: 10.1016/j.celrep.2022.111426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk. Pittolo et al. demonstrate that the neuromodulator dopamine targets astrocytes, a type of brain cell, via receptors specific to another neuromodulator—norepinephrine. This study provides groundwork on how dopamine affects non-neuronal brain cells and suggests that crosstalk between neuromodulatory pathways occurs in vivo, with possible clinical implications.
Collapse
Affiliation(s)
- Silvia Pittolo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Drew D Willoughby
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
13
|
Guntnur RT, Muzzio N, Gomez A, Macias S, Galindo A, Ponce A, Romero G. On-Demand Chemomagnetic Modulation of Striatal Neurons Facilitated by Hybrid Magnetic Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2204732. [PMID: 36339020 PMCID: PMC9635318 DOI: 10.1002/adfm.202204732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Minimally invasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Here, we describe a wireless chemomagnetic neuromodulation platform for the on-demand control of primary striatal neurons that relies on nanoscale heating events. Iron oxide magnetic nanoparticles (MNPs) are functionally coated with thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes loaded with dopamine. Dopamine loaded MNPs-POEGMA are co-cultured with primary striatal neurons. When alternating magnetinec fields (AMF) are applied, MNPs undergo hysteresis power loss and dissipate heat. The local heat produced by MNPs initiates a thermodynamic phase transition on POEGMA brushes resulting in polymer collapse and dopamine release. AMF-triggered dopamine release enhances the response of dopamine ion channels expressed on the cell membranes enhancing the activity of ~50% of striatal neurons subjected to the treatment. Chemomagnetic actuation on dopamine receptors is confirmed by blocking D1 and D2 receptors. The reversible thermodynamic phase transition of POEGMA brushes allow the on-demand release of dopamine in multiple microdoses. AMF-triggered dopamine release from MNPs-POEGMA causes no cell cytotoxicity nor promotes cell ROS production. This research represents a fundamental step forward for the chemomagnetic control of neural activity using hybrid magnetic nanomaterials with tailored physical properties.
Collapse
Affiliation(s)
- Rohini Thevi Guntnur
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Sean Macias
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Arturo Galindo
- Department of Physics and Astronomy, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Arturo Ponce
- Department of Physics and Astronomy, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| |
Collapse
|
14
|
Codol O, Gribble PL, Gurney KN. Differential Dopamine Receptor-Dependent Sensitivity Improves the Switch Between Hard and Soft Selection in a Model of the Basal Ganglia. Neural Comput 2022; 34:1588-1615. [PMID: 35671472 DOI: 10.1162/neco_a_01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
The problem of selecting one action from a set of different possible actions, simply referred to as the problem of action selection, is a ubiquitous challenge in the animal world. For vertebrates, the basal ganglia (BG) are widely thought to implement the core computation to solve this problem, as its anatomy and physiology are well suited to this end. However, the BG still display physiological features whose role in achieving efficient action selection remains unclear. In particular, it is known that the two types of dopaminergic receptors (D1 and D2) present in the BG give rise to mechanistically different responses. The overall effect will be a difference in sensitivity to dopamine, which may have ramifications for action selection. However, which receptor type leads to a stronger response is unclear due to the complexity of the intracellular mechanisms involved. In this study, we use an existing, high-level computational model of the BG, which assumes that dopamine contributes to action selection by enabling a switch between different selection regimes, to predict which of D1 or D2 has the greater sensitivity. Thus, we ask, Assuming dopamine enables a switch between action selection regimes in the BG, what functional sensitivity values would result in improved action selection computation? To do this, we quantitatively assessed the model's capacity to perform action selection as we parametrically manipulated the sensitivity weights of D1 and D2. We show that differential (rather than equal) D1 and D2 sensitivity to dopaminergic input improves the switch between selection regimes during the action selection computation in our model. Specifically, greater D2 sensitivity compared to D1 led to these improvements.
Collapse
Affiliation(s)
- Olivier Codol
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul L Gribble
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada.,Haskins Laboratories, New Haven, CT 06511, U.S.A.
| | - Kevin N Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, U.K.
| |
Collapse
|
15
|
van Keulen SC, Martin J, Colizzi F, Frezza E, Trpevski D, Diaz NC, Vidossich P, Rothlisberger U, Hellgren Kotaleski J, Wade RC, Carloni P. Multiscale molecular simulations to investigate adenylyl cyclase‐based signaling in the brain. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siri C. van Keulen
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Science for Life, Faculty of Science – Chemistry Utrecht University Utrecht The Netherlands
| | - Juliette Martin
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry University of Lyon Lyon France
| | - Francesco Colizzi
- Molecular Ocean Laboratory, Department of Marine Biology and Oceanography Institute of Marine Sciences, ICM‐CSIC Barcelona Spain
| | - Elisa Frezza
- Université Paris Cité, CiTCoM, CNRS Paris France
| | - Daniel Trpevski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm
| | - Nuria Cirauqui Diaz
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry University of Lyon Lyon France
| | - Pietro Vidossich
- Molecular Modeling and Drug Discovery Lab Istituto Italiano di Tecnologia Genoa Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm
- Department of Neuroscience Karolinska Institute Stockholm
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ‐ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Paolo Carloni
- Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5) “Computational biomedicine” Forschungszentrum Jülich Jülich Germany
- INM‐11 JARA‐Institute: Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
16
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
17
|
Kim H, Nam MH, Jeong S, Lee H, Oh SJ, Kim J, Choi N, Seong J. Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog Neurobiol 2022; 213:102266. [DOI: 10.1016/j.pneurobio.2022.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
|
18
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
19
|
Jones-Tabah J, Martin RD, Chen JJ, Tanny JC, Clarke PBS, Hébert TE. A role for BET proteins in regulating basal, dopamine-induced and cAMP/PKA-dependent transcription in rat striatal neurons. Cell Signal 2021; 91:110226. [PMID: 34974082 DOI: 10.1016/j.cellsig.2021.110226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
The activity of striatal medium-spiny projection neurons is regulated by D1 and D2 dopamine receptors. The D1 receptor (D1R) is a Gαs/olf-coupled GPCR which activates a cAMP/PKA/DARPP-32 signalling cascade that increases excitability and facilitates plasticity, partly through the regulation of transcription. Upon activation via D1R, PKA can translocate to the nucleus to regulate transcription through the phosphorylation of various targets. One candidate effector of PKA-dependent transcriptional regulation is the BET protein Brd4. It is known that when Brd4 is activated by phosphorylation, it binds more readily to acetylated histones at promoters and enhancers; moreover, in non-neuronal cells, PKA signalling has been shown to increase recruitment of Brd4 to chromatin. However, it is unknown whether BET proteins, or Brd4 specifically, are involved in transcriptional activation by cAMP/PKA in neurons. Here, we demonstrate that in adult rats, inhibition of BET proteins with the bromodomain inhibitor JQ1 suppressed the expression of ~25% of D1R-upregulated genes, while also increasing the expression of a subset of immediate-early genes. We further found that cAMP/PKA signalling promotes Brd4 recruitment to dopamine-induced genes in striatal neurons, and that knockdown of Brd4 attenuates D1R-induced gene expression. Finally, we report that JQ1 treatment downregulated expression of many GPCRs and also impaired ERK1/2 signalling in striatal neurons. Our findings identify the BET protein family, and Brd4 in particular, as novel regulators of basal and D1R-dependent transcription in rat striatal neurons, and delineate complex bi-directional effects of bromodomain inhibitors on neuronal transcription.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jennifer J Chen
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
20
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
21
|
Jones-Tabah J, Martin RD, Tanny JC, Clarke PBS, Hébert TE. High-Content Single-Cell Förster Resonance Energy Transfer Imaging of Cultured Striatal Neurons Reveals Novel Cross-Talk in the Regulation of Nuclear Signaling by Protein Kinase A and Extracellular Signal-Regulated Kinase 1/2. Mol Pharmacol 2021; 100:526-539. [PMID: 34503973 DOI: 10.1124/molpharm.121.000290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Genetically encoded biosensors can be used to track signaling events in living cells by measuring changes in fluorescence emitted by one or more fluorescent proteins. Here, we describe the use of genetically encoded biosensors based on Förster resonance energy transfer (FRET), combined with high-content microscopy, to image dynamic signaling events simultaneously in thousands of neurons in response to drug treatments. We first applied this approach to examine intercellular variation in signaling responses among cultured striatal neurons stimulated with multiple drugs. Using high-content FRET imaging and immunofluorescence, we identified neuronal subpopulations with unique responses to pharmacological manipulation and used nuclear morphology to identify medium spiny neurons within these heterogeneous striatal cultures. Focusing on protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the cytoplasm and nucleus, we noted pronounced intercellular differences among putative medium spiny neurons, in both the magnitude and kinetics of signaling responses to drug application. Importantly, a conventional "bulk" analysis that pooled all cells in culture yielded a different rank order of drug potency than that revealed by single-cell analysis. Using a single-cell analytical approach, we dissected the relative contributions of PKA and ERK1/2 signaling in striatal neurons and unexpectedly identified a novel role for ERK1/2 in promoting nuclear activation of PKA in striatal neurons. This finding adds a new dimension of signaling crosstalk between PKA and ERK1/2 with relevance to dopamine D1 receptor signaling in striatal neurons. In conclusion, high-content single-cell imaging can complement and extend traditional population-level analyses and provides a novel vantage point from which to study cellular signaling. SIGNIFICANCE STATEMENT: High-content imaging revealed substantial intercellular variation in the magnitude and pattern of intracellular signaling events driven by receptor stimulation. Since individual neurons within the same population can respond differently to a given agonist, interpreting measures of intracellular signaling derived from the averaged response of entire neuronal populations may not always reflect what happened at the single-cell level. This study uses this approach to identify a new form of cross-talk between PKA and ERK1/2 signaling in the nucleus of striatal neurons.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
22
|
Urakubo H, Yagishita S, Kasai H, Kubota Y, Ishii S. The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. PLoS Comput Biol 2021; 17:e1009364. [PMID: 34591840 PMCID: PMC8483376 DOI: 10.1371/journal.pcbi.1009364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Yoshiyuki Kubota
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
23
|
Schmalz JT, Kumar G. A computational model of dopaminergic modulation of hippocampal Schaffer collateral-CA1 long-term plasticity. J Comput Neurosci 2021; 50:51-90. [PMID: 34431067 DOI: 10.1007/s10827-021-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Dopamine plays a critical role in modulating the long-term synaptic plasticity of the hippocampal Schaffer collateral-CA1 pyramidal neuron synapses (SC-CA1), a widely accepted cellular model of learning and memory. Limited results from hippocampal slice experiments over the last four decades have shown that the timing of the activation of dopamine D1/D5 receptors relative to a high/low-frequency stimulation (HFS/LFS) in SC-CA1 synapses regulates the modulation of HFS/LFS-induced long-term potentiation/depression (LTP/LTD) in these synapses. However, the existing literature lacks a complete picture of how various concentrations of D1/D5 agonists and the relative timing between the activation of D1/D5 receptors and LTP/LTD induction by HFS/LFS, affect the spatiotemporal modulation of SC-CA1 synaptic dynamics. In this paper, we have developed a computational model, a first of its kind, to make quantitative predictions of the temporal dose-dependent modulation of the HFS/LFS induced LTP/LTD in SC-CA1 synapses by various D1/D5 agonists. Our model combines the biochemical effects with the electrical effects at the electrophysiological level. We have estimated the model parameters from the published electrophysiological data, available from diverse hippocampal CA1 slice experiments, in a Bayesian framework. Our modeling results demonstrate the capability of our model in making quantitative predictions of the available experimental results under diverse HFS/LFS protocols. The predictions from our model show a strong nonlinear dependency of the modulated LTP/LTD by D1/D5 agonists on the relative timing between the activated D1/D5 receptors and the HFS/LFS protocol and the applied concentration of D1/D5 agonists.
Collapse
|
24
|
Mota É, Bompierre S, Betolngar D, Castro LRV, Vincent P. Pivotal role of phosphodiesterase 10A in the integration of dopamine signals in mice striatal D1 and D2 medium-sized spiny neurones. Br J Pharmacol 2021; 178:4873-4890. [PMID: 34399440 DOI: 10.1111/bph.15664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine in the striatum plays a crucial role in reward processes and action selection. Dopamine signals are transduced by D1 and D2 dopamine receptors which trigger mirror effects through the cAMP/PKA signalling cascade in D1 and D2 medium-sized spiny neurones (MSNs). Phosphodiesterases (PDEs), which determine the profile of cAMP signals, are highly expressed in MSNs, but their respective roles in dopamine signal integration remain poorly understood. EXPERIMENTAL APPROACH We used genetically-encoded FRET biosensors to monitor at the single cell level the functional contribution of PDE2A, PDE4 and PDE10A in the changes of the cAMP/PKA response to transient and continuous dopamine in mouse striatal brain slices. KEY RESULTS We found that PDE2A, PDE4 and PDE10A operate on the moderate to high cAMP levels elicited by D1 or A2A receptor stimulation. In contrast, only PDE10A is able to reduce cAMP down to baseline in both type of neurones, leading to the dephosphorylation of PKA substrates. CONCLUSION AND IMPLICATIONS In both MSN types, PDE10A inhibition blunts the responsiveness to dopamine, whereas PDE2A or PDE4 inhibition reinforces dopamine action.
Collapse
Affiliation(s)
- Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France.,Now at Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Ségolène Bompierre
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Dahdjim Betolngar
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| |
Collapse
|
25
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
26
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 2021; 22:345-358. [PMID: 33837376 PMCID: PMC8220193 DOI: 10.1038/s41583-021-00455-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pragya Goel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021; 12:2617. [PMID: 33976169 PMCID: PMC8113549 DOI: 10.1038/s41467-021-22918-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Disruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devin P Merullo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marissa Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. Int J Mol Sci 2021; 22:4565. [PMID: 33925434 PMCID: PMC8123833 DOI: 10.3390/ijms22094565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The investigation of synaptic functions remains one of the most fascinating challenges in the field of neuroscience and a large number of experimental methods have been tuned to dissect the mechanisms taking part in the neurotransmission process. Furthermore, the understanding of the insights of neurological disorders originating from alterations in neurotransmission often requires the development of (i) animal models of pathologies, (ii) invasive tools and (iii) targeted pharmacological approaches. In the last decades, additional tools to explore neurological diseases have been provided to the scientific community. A wide range of computational models in fact have been developed to explore the alterations of the mechanisms involved in neurotransmission following the emergence of neurological pathologies. Here, we review some of the advancements in the development of computational methods employed to investigate neuronal circuits with a particular focus on the application to the most diffuse neurological disorders.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
30
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
31
|
Shumilov AV, Gotovtsev PM. Modeling the activity of the dopamine signaling pathway by combination of analog electrical circuit and mathematical approaches. Heliyon 2021; 7:e05879. [PMID: 33553717 PMCID: PMC7855338 DOI: 10.1016/j.heliyon.2020.e05879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/22/2019] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
This paper demonstrates the application of the system biology principles on the example of the dopamine signaling pathway in neurons. Presented model is based on two approaches - cytomorphic electronic circuits and mathematical modeling. Transcription and phosphorylation of DARPP-32 was modeled by analog circuit, based on well-known approaches presented in [1]. It was shown that application of circuit helps to receive signal oscillations that close to described ones in real biological systems. This combination on the one hand gives possibility to simplify calculations, on another to show this signaling pathway dynamics. The expected effect of changes in the functioning of calcium channels is considered, and the mathematical model of the interaction of system components is proposed. The average frequency of calcium current oscillations due to the presence of dopamine was 30 Hz in presented model, that is consistent with the literature, where the frequency of such oscillations is up to several tens of Hz. All presented results shows good correlation with known data, which already published today.
Collapse
Affiliation(s)
- A V Shumilov
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Russia.,Skolkovo Institute of Science and Technology, Informational Science and Technology, Russia
| | - P M Gotovtsev
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
32
|
Li H, Feng Y, Chen Z, Jiang X, Zhou Z, Yuan J, Li F, Zhang Y, Huang X, Fan S, Wu X, Huang C. Pepper component 7-ethoxy-4-methylcoumarin, a novel dopamine D2 receptor agonist, ameliorates experimental Parkinson's disease in mice and Caenorhabditis elegans. Pharmacol Res 2021; 163:105220. [PMID: 33007422 DOI: 10.1016/j.phrs.2020.105220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease resulting from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) and subsequent deficit of dopamine in the striatum. PD is inversely associated with consumption of peppers; however, the constituent and the underlying mechanism remain unclear. This study aimed to investigate the effects of 7-ethoxy-4-methylcoumarin (EMC), a pepper constituent, on PD-like disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice and 6-hydroxydopamine (6-OHDA)-exposed C. elegans. In this study, EMC was identified as an agonist of dopamine D2 receptor (DRD2) and increased the expression of P-CREB and BDNF in SH-SY5Y cells. In MPTP-treated PD mice, EMC was shown to apparently ameliorate the motor and gait disorders, and restore the depressed TH expression in SNpc and striatum. Meanwhile, it recovered the locomotor deficit caused by 6-OHDA in wild type N2 and CAT-2-transgenic UA57 of C. elegans, and relieved the degeneration of DAergic neurons resulting from 6-OHDA or with ageing. Moreover, EMC inhibited α-synuclein accumulation in C. elegans strain NL5901 overexpressing human α-synuclein gene. Taken together, EMC was identified as a novel DRD2 agonist and improved experimental PD in mice and C. elegans. These findings suggest that EMC may be beneficial to PD patients, further supporting that the consumption of peppers may have favorable effect on PD progression.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaru Feng
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
33
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
34
|
Rusheen AE, Gee TA, Jang DP, Blaha CD, Bennet KE, Lee KH, Heien ML, Oh Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. Trends Analyt Chem 2020; 132:116049. [PMID: 33597790 PMCID: PMC7885180 DOI: 10.1016/j.trac.2020.116049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, United States
| | - Taylor A. Gee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Dong P. Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Michael L. Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| |
Collapse
|
35
|
Negrelli B, Pochapski JA, Villas-Boas CA, Jessen LF, Teixeira MAL, Da Cunha C. Evidence that haloperidol impairs learning and motivation scores in a probabilistic task by reducing the reward expectation. Behav Brain Res 2020; 395:112858. [PMID: 32810468 DOI: 10.1016/j.bbr.2020.112858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 01/05/2023]
Abstract
Activation of midbrain dopamine neurons in response to positive prediction errors and reward predictive cues is proposed to "energize" reward seeking behaviors and approach responses to places where the reward is expected. In the present study, we tested the effect of the D2-dopamine receptor antagonist haloperidol on response latencies to enter two arms of a Y-maze with different reward probabilities. Adult male Wistar rats were trained to explore the Y-maze with sucrose pellets placed 30% of times at the end of one arm and 70% of times at the opposite arm. Therefore, the reward expectation was different among arms, and was updated in the trials when the reward was omitted. After training, rats received 0.05, 0.10, 0.15 mg/kg haloperidol, or saline 30 min before the test session. In the last, but not in the first trials, haloperidol caused a dose-dependent increase in arm choice latency and response latency. Saline, but not haloperidol, treated rats presented significantly longer response latencies for the 30% compared to the 70% reward probability arm. Haloperidol also caused a dose-dependent decrease in the number of entries in the 70% reward probability arm, increased the number of non-responses, and caused a dose-dependent increase in the number of re-entries in the 30% reward probability arm after non-rewarded trials. Control experiments suggested that haloperidol did not cause motor impairment or satiation, but rather impaired learning and motivation scores by reducing the reward expectation.
Collapse
Affiliation(s)
- Bernadete Negrelli
- Universidade Federal do Paraná (UFPR) - Departamento de Farmacologia, 81531- 980, Curitiba, Brazil
| | - José Augusto Pochapski
- Universidade Federal do Paraná (UFPR) - Departamento de Farmacologia, 81531- 980, Curitiba, Brazil
| | | | - Letícia Ferreira Jessen
- Universidade Federal do Paraná (UFPR) - Departamento de Farmacologia, 81531- 980, Curitiba, Brazil
| | | | - Claudio Da Cunha
- Universidade Federal do Paraná (UFPR) - Departamento de Farmacologia, 81531- 980, Curitiba, Brazil.
| |
Collapse
|
36
|
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat Chem Biol 2020; 17:39-46. [PMID: 32989297 DOI: 10.1038/s41589-020-00660-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.
Collapse
|
37
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Jones-Tabah J, Mohammad H, Hadj-Youssef S, Kim LEH, Martin RD, Benaliouad F, Tanny JC, Clarke PBS, Hébert TE. Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci Rep 2020; 10:14426. [PMID: 32879346 PMCID: PMC7468292 DOI: 10.1038/s41598-020-71121-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
As with many G protein-coupled receptors (GPCRs), the signalling pathways regulated by the dopamine D1 receptor (D1R) are dynamic, cell type-specific, and can change in the face of disease or drug exposures. In striatal neurons, the D1R activates cAMP/protein kinase A (PKA) signalling. However, in Parkinson's disease (PD), alterations in this pathway lead to functional upregulation of extracellular regulated kinases 1/2 (ERK1/2), contributing to L-DOPA-induced dyskinesia (LID). In order to detect D1R activation in vivo and to study the progressive dysregulation of D1R signalling in PD and LID, we developed ratiometric fiber-photometry with Förster resonance energy transfer (FRET) biosensors and optically detected PKA and ERK1/2 signalling in freely moving rats. We show that in Parkinsonian animals, D1R signalling through PKA and ERK1/2 is sensitized, but that following chronic treatment with L-DOPA, these pathways become partially desensitized while concurrently D1R activation leads to greater induction of dyskinesia.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Hanan Mohammad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Shadi Hadj-Youssef
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Lucy E H Kim
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Faïza Benaliouad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
39
|
Stoufflet J, Chaulet M, Doulazmi M, Fouquet C, Dubacq C, Métin C, Schneider-Maunoury S, Trembleau A, Vincent P, Caillé I. Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration. SCIENCE ADVANCES 2020; 6:6/36/eaba3992. [PMID: 32917588 PMCID: PMC7467704 DOI: 10.1126/sciadv.aba3992] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
The primary cilium (PC) is a small centrosome-assembled organelle, protruding from the surface of most eukaryotic cells. It plays a key role in cell migration, but the underlying mechanisms are unknown. Here, we show that the PC regulates neuronal migration via cyclic adenosine 3'-5' monosphosphate (cAMP) production activating centrosomal protein kinase A (PKA). Biosensor live imaging revealed a periodic cAMP hotspot at the centrosome of embryonic, postnatal, and adult migrating neurons. Genetic ablation of the PC, or knockdown of ciliary adenylate cyclase 3, caused hotspot disappearance and migratory defects, with defective centrosome dynamics and altered nucleokinesis. Delocalization of PKA from the centrosome phenocopied the migratory defects. Our results show that the PC and centrosome form a single cAMP signaling unit dynamically regulating migration, further highlighting the centrosome as a signaling hub.
Collapse
Affiliation(s)
- Julie Stoufflet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France
| | - Maxime Chaulet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France
| | - Coralie Fouquet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Caroline Dubacq
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Christine Métin
- Inserm UMR-S839, Institut du Fer à Moulin, Sorbonne Université, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm ERL U1156, Institut Biologie Paris Seine (IBPS), Developmental Biology Laboratory (LBD), F-75005 Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France.
| | - Isabelle Caillé
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France.
- Université de Paris, Paris, France
| |
Collapse
|
40
|
Urakubo H, Yagishita S, Kasai H, Ishii S. Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity. PLoS Comput Biol 2020; 16:e1008078. [PMID: 32701987 PMCID: PMC7402527 DOI: 10.1371/journal.pcbi.1008078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/04/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca2+ signal) stimulated AC1 with a delay, and the Ca2+-stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
41
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
42
|
Porcu A, Vaughan M, Nilsson A, Arimoto N, Lamia K, Welsh DK. Vulnerability to helpless behavior is regulated by the circadian clock component CRYPTOCHROME in the mouse nucleus accumbens. Proc Natl Acad Sci U S A 2020; 117:13771-13782. [PMID: 32487727 PMCID: PMC7306774 DOI: 10.1073/pnas.2000258117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleus accumbens (NAc), a central component of the midbrain dopamine reward circuit, exhibits disturbed circadian rhythms in the postmortem brains of depressed patients. We hypothesized that normal mood regulation requires proper circadian timing in the NAc, and that mood disorders are associated with dysfunctions of the NAc cellular circadian clock. In mice exhibiting stress-induced depression-like behavior (helplessness), we found altered circadian clock function and high nighttime expression of the core circadian clock component CRYPTOCHROME (CRY) in the NAc. In the NAc of helpless mice, we found that higher expression of CRY is associated with decreased activation of dopamine 1 receptor-expressing medium spiny neurons (D1R-MSNs). Furthermore, D1R-MSN-specific CRY-knockdown in the NAc reduced susceptibility to stress-induced helplessness and increased NAc neuronal activation at night. Finally, we show that CRY inhibits D1R-induced G protein activation, likely by interacting with the Gs protein. Altered circadian rhythms and CRY expression were also observed in human fibroblasts from major depressive disorder patients. Our data reveal a causal role for CRY in regulating the midbrain dopamine reward system, and provide a mechanistic link between the NAc circadian clock and vulnerability to depression.
Collapse
Affiliation(s)
- Alessandra Porcu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161;
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Megan Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - Anna Nilsson
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Natsuko Arimoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Katja Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - David K Welsh
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
43
|
van Swieten MMH, Bogacz R. Modeling the effects of motivation on choice and learning in the basal ganglia. PLoS Comput Biol 2020; 16:e1007465. [PMID: 32453725 PMCID: PMC7274475 DOI: 10.1371/journal.pcbi.1007465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/05/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
Decision making relies on adequately evaluating the consequences of actions on the basis of past experience and the current physiological state. A key role in this process is played by the basal ganglia, where neural activity and plasticity are modulated by dopaminergic input from the midbrain. Internal physiological factors, such as hunger, scale signals encoded by dopaminergic neurons and thus they alter the motivation for taking actions and learning. However, to our knowledge, no formal mathematical formulation exists for how a physiological state affects learning and action selection in the basal ganglia. We developed a framework for modelling the effect of motivation on choice and learning. The framework defines the motivation to obtain a particular resource as the difference between the desired and the current level of this resource, and proposes how the utility of reinforcements depends on the motivation. To account for dopaminergic activity previously recorded in different physiological states, the paper argues that the prediction error encoded in the dopaminergic activity needs to be redefined as the difference between utility and expected utility, which depends on both the objective reinforcement and the motivation. We also demonstrate a possible mechanism by which the evaluation and learning of utility of actions can be implemented in the basal ganglia network. The presented theory brings together models of learning in the basal ganglia with the incentive salience theory in a single simple framework, and it provides a mechanistic insight into how decision processes and learning in the basal ganglia are modulated by the motivation. Moreover, this theory is also consistent with data on neural underpinnings of overeating and obesity, and makes further experimental predictions.
Collapse
Affiliation(s)
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Dopamine modulates individual differences in avoidance behavior: A pharmacological, immunohistochemical, neurochemical and volumetric investigation. Neurobiol Stress 2020; 12:100219. [PMID: 32435668 PMCID: PMC7231994 DOI: 10.1016/j.ynstr.2020.100219] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities. Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the mechanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological manipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1 antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist (SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1 agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala (basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor agonists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area (VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in the execution of avoidance behavior. The role of dopamine in individual differences in avoidance behavior. Dopamine modulates avoidance behavior. Dopaminergic evidence of individual difference in avoidance behavior. Good and poor avoiders distinction based on dopaminergic signature. Dopaminergic signature of avoidance performers: poor versus good avoiders.
Collapse
|
45
|
Hunger L, Kumar A, Schmidt R. Abundance Compensates Kinetics: Similar Effect of Dopamine Signals on D1 and D2 Receptor Populations. J Neurosci 2020; 40:2868-2881. [PMID: 32071139 PMCID: PMC7117896 DOI: 10.1523/jneurosci.1951-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/03/2019] [Accepted: 12/29/2019] [Indexed: 11/21/2022] Open
Abstract
The neuromodulator dopamine plays a key role in motivation, reward-related learning, and normal motor function. The different affinity of striatal D1 and D2 dopamine receptor types has been argued to constrain the D1 and D2 signaling pathways to phasic and tonic dopamine signals, respectively. However, this view assumes that dopamine receptor kinetics are instantaneous so that the time courses of changes in dopamine concentration and changes in receptor occupation are basically identical. Here we developed a neurochemical model of dopamine receptor binding taking into account the different kinetics and abundance of D1 and D2 receptors in the striatum. Testing a large range of behaviorally-relevant dopamine signals, we found that the D1 and D2 dopamine receptor populations responded very similarly to tonic and phasic dopamine signals. Furthermore, because of slow unbinding rates, both receptor populations integrated dopamine signals over a timescale of minutes. Our model provides a description of how physiological dopamine signals translate into changes in dopamine receptor occupation in the striatum, and explains why dopamine ramps are an effective signal to occupy dopamine receptors. Overall, our model points to the importance of taking into account receptor kinetics for functional considerations of dopamine signaling.SIGNIFICANCE STATEMENT Current models of basal ganglia function are often based on a distinction of two types of dopamine receptors, D1 and D2, with low and high affinity, respectively. Thereby, phasic dopamine signals are believed to mostly affect striatal neurons with D1 receptors, and tonic dopamine signals are believed to mostly affect striatal neurons with D2 receptors. This view does not take into account the rates for the binding and unbinding of dopamine to D1 and D2 receptors. By incorporating these kinetics into a computational model we show that D1 and D2 receptors both respond to phasic and tonic dopamine signals. This has implications for the processing of reward-related and motivational signals in the basal ganglia.
Collapse
Affiliation(s)
- Lars Hunger
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, United Kingdom, and
| | - Arvind Kumar
- Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Robert Schmidt
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, United Kingdom, and
| |
Collapse
|
46
|
Targeting the cholinergic system in Parkinson's disease. Acta Pharmacol Sin 2020; 41:453-463. [PMID: 32132659 PMCID: PMC7468250 DOI: 10.1038/s41401-020-0380-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
47
|
Babenko VN, Galyamina AG, Rogozin IB, Smagin DA, Kudryavtseva NN. Dopamine response gene pathways in dorsal striatum MSNs from a gene expression viewpoint: cAMP-mediated gene networks. BMC Neurosci 2020; 21:12. [PMID: 32216748 PMCID: PMC7099774 DOI: 10.1186/s12868-020-00560-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | - Igor B Rogozin
- National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
48
|
Perk CG, Wickens JR, Hyland BI. Responses of putative medium spiny neurons and fast‐spiking interneurons to reward‐related sensory signals in Wistar and genetically hypertensive rats. Eur J Neurosci 2020; 53:2165-2177. [DOI: 10.1111/ejn.14710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher G. Perk
- Department of Physiology School of Biomedical Science and Brain Health Research Centre University of Otago Dunedin New Zealand
- Department of Anatomy School of Biomedical Science and Brain Health Research Centre University of Otago Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence Dunedin New Zealand
| | - Jeffery R. Wickens
- Okinawa Institute for Science and Technology Graduate University Okinawa New Zealand
| | - Brian I. Hyland
- Department of Physiology School of Biomedical Science and Brain Health Research Centre University of Otago Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence Dunedin New Zealand
| |
Collapse
|
49
|
Bruce NJ, Narzi D, Trpevski D, van Keulen SC, Nair AG, Röthlisberger U, Wade RC, Carloni P, Hellgren Kotaleski J. Regulation of adenylyl cyclase 5 in striatal neurons confers the ability to detect coincident neuromodulatory signals. PLoS Comput Biol 2019; 15:e1007382. [PMID: 31665146 PMCID: PMC6821081 DOI: 10.1371/journal.pcbi.1007382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/05/2019] [Indexed: 02/04/2023] Open
Abstract
Long-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time. However, the mechanism for this is currently unclear, and seems to lie in their diverse regulation patterns. Despite attempts to isolate the ternary complex, it is not known if Gαolf and Gαi can bind to AC5 simultaneously, nor what activity the complex would have. Using protein structure-based molecular dynamics simulations, we show that this complex is stable and inactive. These simulations, along with Brownian dynamics simulations to estimate protein association rates constants, constrain a kinetic model that shows that the presence of this ternary inactive complex is crucial for AC5's ability to detect coincident signals, producing a synergistic increase in cAMP. These results reveal some of the prerequisites for corticostriatal synaptic plasticity, and explain recent experimental data on cAMP concentrations following receptor activation. Moreover, they provide insights into the regulatory mechanisms that control signal processing by different AC isoforms.
Collapse
Affiliation(s)
- Neil J. Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Heidelberg, Germany
| | - Daniele Narzi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Trpevski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Siri C. van Keulen
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Anu G. Nair
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ursula Röthlisberger
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Paolo Carloni
- Department of Physics and Department of Neurobiology, RWTH Aachen University,Aachen, Germany
- Institute for Neuroscience and Medicine (INM)-11, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Jülich, Jülich, Germany
- Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich, Germany
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
50
|
Rodrigues S, Ferreira TL. Muscimol injection into the substantia nigra but not globus pallidus affects prepulse inhibition and startle reflex. Neuropharmacology 2019; 162:107796. [PMID: 31563465 DOI: 10.1016/j.neuropharm.2019.107796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Behavioral arrest is an essential feature of an animal's survival. Acoustic startle reflex (ASR) is an involuntary whole-body contraction of the skeletal musculature to an unexpected auditory stimulus. This strong reaction can be decreased by prepulse inhibition (PPI) phenomenon; which, for example, is important in reducing distraction during the processing of sensory input. Several brainstem regions are involved in the PPI and startle reflex, but a previous study from our laboratory showed that the main input structure of Basal Ganglia (BG) - the striatum - modulates PPI. The pallidum and nigra are connected with striatum and these brainstem structures. Here, we investigated the role of these striatum outputs in the brain regions on startle amplitude, PPI regulation, and exploratory behavior in Wistar rats. The temporary bilateral inhibition of the globus pallidus (GP) by muscimol lead to motor impairment, without disturbing startle amplitude or PPI. Similarly, inhibition of the entopeduncular nucleus (EPN) specifically disrupted the exploratory behavior. On the other hand, the substantia nigra reticulata (SNr) inhibition interfered in all measured behaviors: decreased the PPI percentage, increased ASR and impaired the locomotor activity. The nigra is a key BG output structure which projects to the thalamus and brainstem. These findings extend our previous study showing that the striatum neurons expressing D1 receptors involvement in PPI occurs via the direct pathway to SNr, but not to the pallidum which more likely occurs by its connection with the caudal pontine nucleus, superior colliculus and/or pedunculopontine nucleus pivotal structures for startle reflex modulation.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | | |
Collapse
|