1
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
2
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Li H, Zhang Y, Zheng Y, Li X, Li Z, Man C, Zhang Y, Jiang Y. Structural characterization of the exopolysaccharide produced by Bacillus amyloliquefaciens JM033 and evaluation of its ability to regulate immunity and intestinal flora. Int J Biol Macromol 2025; 306:141052. [PMID: 39986497 DOI: 10.1016/j.ijbiomac.2025.141052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The probiotic strain Bacillus amyloliquefaciens JM033 (B. amyloliquefaciens JM033), isolated from the traditional Chinese fermented food Sufu (also known as Fu-ru or fermented bean curd), is distinguished by its high production of exopolysaccharides (EPS). The EPS (BAP-1) produced by this strain was purified and its structure analyzed. BAP-1 is a novel hybrid fructan with a molecular weight of 17.6 kDa. It is composed of →6)-β-D-Fruf-(2 → and →1,6)-β-D-Fruf-(2→, which form the backbone, with a branched chain of β-D-Fruf-(2 → attached at the 1-position of residue B. In vivo studies on mice indicated that BAP-1 improves immunity in immunosuppressed mice by enhancing humoral immunity (P < 0.01), monocyte-macrophage phagocytosis (P < 0.01), and NK cell killing activity (P < 0.05). Additionally, BAP-1 was found to improve the composition of the intestinal microbiota and stimulate the production of short-chain fatty acids. Notably, BAP-1 exhibited a significant effect on the proliferation of Akkermansia. Therefore, BAP-1 shows promise as a prebiotic and may contribute to the development of new immunomodulatory agents.
Collapse
Affiliation(s)
- Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yubo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xuejian Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zimu Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Zhang J, Hou L, Lei S, Li Y, Xu G. The causal relationship of cigarette smoking to metabolic disease risk and the possible mediating role of gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117522. [PMID: 39709709 DOI: 10.1016/j.ecoenv.2024.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cigarette smoking is a leading cause of preventable death worldwide, with its associated diseases and conditions. Emerging evidence suggests that cigarette smoking contributes to a range of pathological metabolic injuries, including diabetes and nonalcoholic fatty liver disease (NAFLD). The impact of gut microbiota on metabolic health and diseases has been observed, but the causality remains uncertain. OBJECTIVE To confirm the causal relationship between cigarette smoking and metabolic diseases, and to investigate the possible mediating effect of gut microbiota on these connections. METHODS The relationships among cigarette smoking, metabolic diseases, and the gut microbiome were analyzed by Univariate Mendelian randomization (UVMR). Furthermore, to mitigate the impact of confounding factors, adjusted models were conducted via the multivariate Mendelian randomization (MVMR) method, aiming to improve the accuracy of prediction. Ultimately, the study evaluated the effect of the intermediary factor, gut microbiome, on the relationship between cigarette smoke and metabolic diseases. RESULTS The phenomenon that a causal relationship between cigarette smoke (249752 individuals) and gut microbiota (7738 individuals), diabetes (406831 individuals), NAFLD (377998 individuals), hypercholesterolaemia (463010 individuals), and obesity (463010 individuals) was observed using UVMR. In the MVMR model, the genetic connection between cigarette smoking, gut microbiota, and type 2 diabetes remained significant. Of note, paraprevotella_clara served an important mediating role in the type 2 diabetes associated with cigarette smoke. CONCLUSION This work offered genetic evidence linking cigarette smoke to metabolic diseases, suggesting that the gut microbiota, particularly paraprevotella_clara, might be a crucial mediator in the development of type 2 diabetes caused by cigarette smoke. Our future studies should consider conducting other ethnic groups MR analyses, particularly with larger sample sizes. Still, more in vivo and in vitro work should be carried out to validate the precise effect and molecular mechanisms of the gut microbiome.
Collapse
Affiliation(s)
- Jingda Zhang
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Hou
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Shanxiang Lei
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guogang Xu
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Padilha MDM, Melo FTDV, Laurentino RV, da Silva ANMR, Feitosa RNM. Dysregulation in the microbiota by HBV and HCV infection induces an altered cytokine profile in the pathobiome of infection. Braz J Infect Dis 2025; 29:104468. [PMID: 39608222 PMCID: PMC11636304 DOI: 10.1016/j.bjid.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
Viral hepatitis is a public health problem, about 1 million people die due to complications of this viral disease, the etiological agents responsible for inducing cirrhosis and cellular hepatocarcinoma are HBV and HCV, both hepatotropic viruses that cause asymptomatic infection in most cases. The regulation of the microbiota performs many physiological functions, which can induce normal intestinal function and produce essential nutrients for the human body. Metabolites derived from gut microbiota or direct regulation of host immunity and metabolism have been reported to profoundly affect tumorigenesis in liver disease. If the microbiota is unbalanced, both exogenous and symbiotic microorganisms can affect a pathological process. It is well understood that the microbiota plays a role in viral diseases and infections, specifically the hepatic portal pathway has been linked to the gut-liver axis. In HBV and HCV infections, the altered bacterial representatives undergo a state of dysbiosis, with subsequent establishment of the pathobiome with overexpression of taxons such as Bacteroides, Clostridium, Lactobacillus, Enterobacter, and Enterococcus. This dysregulated microbiome induces a microenvironment conducive to the development of hepatic complications in patients with acute and chronic HBV and HCV infection, with subsequent dysregulation of cytokines IFN-α/β, TNF-α, IL-1β, TGF-β, IL-6 and IL-10, which alter the dysfunction and damage of the hepatic portal system. In view of the above, this review aimed to correlate the pathophysiological mechanisms in HBV and HCV infection, the dysregulation of the microbiome in patients infected with HBV and HCV, the most altered cytokines in the microbiome, and the most altered bacterial representatives in the pathobiome of infection.
Collapse
Affiliation(s)
- Marcos Daniel Mendes Padilha
- Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas, Laboratório de Virologia, Belém, PA, Brazil.
| | | | - Rogério Valois Laurentino
- Universidade Federal do Pará (UFPA), Instituto de Ciências da Saúde, Health Sciences, Belém, PA, Brazil
| | | | | |
Collapse
|
6
|
Zaramella A, Arcidiacono D, Duci M, Benna C, Pucciarelli S, Fantin A, Rosato A, De Re V, Cannizzaro R, Fassan M, Realdon S. Predictive Value of a Gastric Microbiota Dysbiosis Test for Stratifying Cancer Risk in Atrophic Gastritis Patients. Nutrients 2024; 17:142. [PMID: 39796578 PMCID: PMC11722812 DOI: 10.3390/nu17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with Helicobacter pylori (Hp) infection, passing through intestinal metaplasia and dysplasia steps. Since Hp eradication does not exclude GC development, further investigations are needed. New data suggest the possible role of unexplored gastric microbiota beyond Hp in the progression from AG to GC. Aimed to develop a score that could be used in clinical practice to stratify GC progression risk, here was investigate gastric microbiota in AG Hp-negative patients with or without high-grade dysplasia (HGD) or GC. METHODS Consecutive patients undergoing upper endoscopy within an endoscopic follow-up for AG were considered. The antrum and corpus biopsies were used to assess the microbiota composition along the disease progression by sequencing the 16S ribosomal RNA gene. Statistical differences between HGD/GC and AG patients were included in a multivariate analysis. RESULTS HGD/GC patients had a higher percentage of Bacillus in the antrum and a low abundance of Rhizobiales, Weeksellaceae and Veillonella in the corpus. These data were used to calculate a multiparametric score (Resident Gastric Microbiota Dysbiosis Test, RGM-DT) to predict the risk of progression toward HGD/GC. The performance of RGM-DT in discriminating patients with HGD/GC showed a specificity of 88.9%. CONCLUSIONS The microbiome-based risk prediction model for GC could clarify the role of gastric microbiota as a cancer risk biomarker to be used in clinical practice. The proposed test might be used to personalize follow-up program thanks to a better cancer risk stratification.
Collapse
Affiliation(s)
- Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Miriam Duci
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Pediatric Surgery Unit, Division of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- UOC Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Via Gabelli 61, 35121 Padua, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
7
|
Li Z, Gu M, Zaparte A, Fu X, Mahen K, Mrdjen M, Li XS, Yang Z, Ma J, Thoudam T, Chandler K, Hesler M, Heathers L, Gorse K, Van TT, Wong D, Gibson AM, Wang Z, Taylor CM, Quijada P, Makarewich CA, Hazen SL, Liangpunsakul S, Brown JM, Lefer DJ, Welsh DA, Sharp TE. Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease. Nat Commun 2024; 15:10788. [PMID: 39738016 PMCID: PMC11685538 DOI: 10.1038/s41467-024-55084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- International Flavors and Fragrances Health and Bioscience, Shanghai, China
| | - Aline Zaparte
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Mahen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Marko Mrdjen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Themis Thoudam
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maggie Hesler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Heathers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thanh Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Wong
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher M Taylor
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pearl Quijada
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Heart and Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Thomas E Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Heart Institute, Morsani College of Medicine, USF Health, University South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Laptev GY, Turina DG, Morozov VY, Yildirim EA, Gorfunkel EP, Ilina LA, Filippova VA, Brazhnik EA, Novikova NI, Melikidi VK, Sokolova KA, Ponomareva ES, Zaikin VA, Dubrovin AV, Surai PF, Griffin DK, Romanov MN. Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat. Animals (Basel) 2024; 14:3544. [PMID: 39682509 DOI: 10.3390/ani14233544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/10/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Studies have shown the presence of residual amounts of the herbicide glyphosate in poultry feed, which leads to its bioaccumulation in the body. Recently, it has been established that exposure to low levels of glyphosate over a long period may have serious negative effects on poultry health. Moreover, combined exposure to several toxicants can potentially lead to additive and/or synergistic effects. The purpose of this study was to analyze changes in meat productivity and the expression dynamics of key genes (IGF1, IGF2, MYOG, MYOZ2, SLC2A1, SLC2A2, MSTN, MUC2, OCLN, CLDN1, TLR2, TLR4, CAT, SOD1, PRDX6, and HMOX1) in the cecum of broilers as affected by glyphosate, antibiotics and a coccidiostat (anticoccidial drug). Day-old Ross 308 broiler chickens (n = 260) were divided into four groups, including a control group (CONT) fed the basic diet (BD), and three experimental groups: GLY (BD + glyphosate), GLY+ANT (BD + glyphosate and antibiotics enrofloxacin and colistin methanesulfonate), and GLY+CS (BD + glyphosate and the coccidiostat ammonium maduramycin). Samples were collected at control 7, 14, and 40 days of rearing, 50 mg each from three birds from each group. The mean body weight in each group was determined after the individual weighing of the entire flock. At 7 days of age, an upregulating effect on the expression of the immune-related TLR2 gene was detected in Groups GLY+ANT and GLY+CS compared to Group CONT (p = 0.044 and p = 0.042, respectively) and Group GLY (p = 0.049 and p = 0.044, respectively). At 40 days of age, this gene expression, conversely, decreased in Groups GLY+ANT and GLY+CS compared to Group CONT (p = 0.041 and p = 0.038, respectively). Glyphosate (Group GLY) upregulated the mRNA level of genes associated with productivity (IGF1, IGF2, and MSTN) at 7 days of age by 3.7 times (p = 0.041, p = 0.036 and p = 0.039, respectively) and, conversely, decreased it at a later age (14 and 40 days) compared to Group CONT (p = 0.024, p = 0.049 and p = 0.047, respectively, at 14 days, and p = 0.037 and p = 0.036 and p = 0.035, respectively, at 40 days of age). Thus, we identified detrimental changes in the expression of key broiler genes as influenced by glyphosate, as well as its combinations with antibiotics and a coccidiostat, which may have negative consequences for the poultry industry.
Collapse
Affiliation(s)
| | | | - Vitali Y Morozov
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg 196601, Russia
| | - Elena A Yildirim
- BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg 196601, Russia
| | | | - Larisa A Ilina
- BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg 196601, Russia
| | - Valentina A Filippova
- BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg 196601, Russia
| | | | | | | | | | | | | | - Andrei V Dubrovin
- Faculty of Biotechnologies, Information Technologies, Mechanics and Optics (ITMO) University, St. Petersburg 197101, Russia
| | - Peter F Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NZ, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Michael N Romanov
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg 196601, Russia
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NZ, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk 142132, Russia
| |
Collapse
|
9
|
Protasiewicz-Timofticiuc DC, Bădescu D, Moța M, Ștefan AG, Mitrea A, Clenciu D, Efrem IC, Roșu MM, Vladu BE, Gheonea TC, Moța E, Vladu IM. Back to Roots: Dysbiosis, Obesity, Metabolic Syndrome, Type 2 Diabetes Mellitus, and Obstructive Sleep Apnea-Is There an Objective Connection? A Narrative Review. Nutrients 2024; 16:4057. [PMID: 39683451 DOI: 10.3390/nu16234057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, it has become clear that the gut is more than just a digestive organ; it also functions as an immune organ with regulatory capabilities and acts as a "second brain" that influences brain function due to the presence and regulatory roles of the gut microbiota (GM). The GM is a crucial component of its host and significantly impacts human health. Dysbiosis, or microbial imbalance, has been closely linked to various diseases, including gastrointestinal, neurological, psychiatric, and metabolic disorders. The aim of this narrative review is to highlight the roles of the GM in maintaining metabolic health. Sleep is a vital biological necessity, with living organisms having evolved an internal sleep-wake rhythm that aligns with a roughly 24 h light/dark cycle, and this is known as the circadian rhythm. This cycle is essential for tissue repair, restoration, and overall optimal body functioning. Sleep irregularities have become more prevalent in modern society, with fast-paced lifestyles often disrupting normal sleep patterns. Urban living factors, such as fast food consumption, shift work, exposure to artificial light and nighttime noise, medications, and social activities, can adversely affect circadian rhythms, with dysbiosis being one of the many factors incriminated in the etiology of sleep disorders.
Collapse
Affiliation(s)
| | - Diana Bădescu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Zhang Q, Song J, Wu H, Wang L, Zhuo G, Li H, He S, Pan Y, Liu G. Intratumoral microbiota associates with systemic immune inflammation state in nasopharyngeal carcinoma. Int Immunopharmacol 2024; 141:112984. [PMID: 39173404 DOI: 10.1016/j.intimp.2024.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The nasopharynx serves as a crucial niche for the microbiome of the upper respiratory tract. However, the association between the intratumoral microbiota and host systemic inflammation and immune status in nasopharyngeal carcinoma (NPC) remain uncertain. METHODS We performed 5R 16S rDNA sequencing on NPC tissue samples, followed by diversity analysis, LEfSe differential analysis, and KEGG functional prediction. The analyses were based on indices such as AISI, SIRI, PAR, PLR, and NAR. Correlation analyses between microbes and these indices were performed to identify microbes associated with inflammation and immune status. Additionally, regression analysis based on tumor TNM stage was performed to identify key microbes linked to tumor progression. The head and neck squamous cell carcinoma (HNSC) transcriptome and the paired HNSC microbiome data from TCGA were utilized to validate the analyses. RESULTS The Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most enriched phyla in NPC tissues. Microbes within these phyla demonstrated high sensitivity to changes in host systemic inflammation and immune status. Proteobacteria and Firmicutes showed significant differences between inflammation groups. Actinobacteria varied specifically with platelet-related inflammatory indices, and Bacteroidetes genera exhibited significant differences between NAR groups. Corynebacterium and Brevundimonas significantly impacted the T stage of tumors, with a high load of Corynebacterium within tumors associated with a better prognosis CONCLUSION: Our analysis indicates that Proteobacteria play a crucial role in the inflammatory state of NPC, while Bacteroidetes are more sensitive to the tumor immune status.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiangqin Song
- Department of Laboratory Medicine, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Huiqing Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Huashun Li
- Department of Pathology, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Siyu He
- Department of Laboratory Medicine, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
11
|
Yao Q, Tan W, Bai F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front Immunol 2024; 15:1475528. [PMID: 39559369 PMCID: PMC11570262 DOI: 10.3389/fimmu.2024.1475528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and highly heterogeneous chronic autoimmune disease characterized by multi-organ and tissue fibrosis, often accompanied by a poor prognosis and high mortality rates. The primary pathogenic mechanisms of SSc are considered to involve tissue fibrosis, autoimmune dysfunction, and microvascular abnormalities. Recent studies have shed light on the gut microbiota (GM) and metabolites in SSc patients, revealing their association with gastrointestinal symptoms and disease phenotypes. However, further elucidation is needed on the specific mechanisms underlying the interactions between GM, metabolites, and the immune system and their roles in the pathogenesis of SSc. This review outlines the characteristics of GM and metabolites in SSc patients, exploring their interrelationships and analyzing their correlations with the clinical phenotypes of SSc. The findings indicate that while the α-diversity of GM in SSc patients resembles that of healthy individuals, notable differences exist in the β-diversity and the abundance of specific bacterial genera, which are closely linked to gastrointestinal symptoms. Moreover, alterations in the levels of amino acids and lipid metabolites in SSc patients are prominently observed and significantly associated with clinical phenotypes. Furthermore, this review delves into the potential immunopathological mechanisms of GM and metabolites in SSc, emphasizing the critical role of interactions between GM, metabolites, and the immune system in comprehending the immunopathological processes of SSc. These insights may offer new scientific evidence for the development of future treatment strategies.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Yang J, Jeon HJ, Park S, Park J, Jang S, Shin B, Bang K, Hawkes HJK, Park S, Kim S, Hwang KY. Structural Insights and Catalytic Mechanism of 3-Hydroxybutyryl-CoA Dehydrogenase from Faecalibacterium Prausnitzii A2-165. Int J Mol Sci 2024; 25:10711. [PMID: 39409040 PMCID: PMC11476959 DOI: 10.3390/ijms251910711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by a T-helper cell type 2 (Th2) inflammatory response leading to skin damage with erythema and edema. Comparative fecal sample analysis has uncovered a strong correlation between AD and Faecalibacterium prausnitzii strain A2-165, specifically associated with butyrate production. Therefore, understanding the functional mechanisms of crucial enzymes in the butyrate pathway, such as 3-hydroxybutyryl-CoA dehydrogenase of A2-165 (A2HBD), is imperative. Here, we have successfully elucidated the three-dimensional structure of A2HBD in complex with acetoacetyl-CoA and NAD+ at a resolution of 2.2Å using the PAL-11C beamline (third generation). Additionally, X-ray data of A2HBD in complex with acetoacetyl-CoA at a resolution of 1.9 Å were collected at PAL-XFEL (fourth generation) utilizing Serial Femtosecond Crystallography (SFX). The monomeric structure of A2HBD consists of two domains, N-terminal and C-terminal, with cofactor binding occurring at the N-terminal domain, while the C-terminal domain facilitates dimerization. Our findings elucidate the binding mode of NAD+ to A2HBD. Upon acetoacetyl-CoA binding, the crystal structure revealed a significant conformational change in the Clamp-roof domain (root-mean-square deviation of 2.202 Å). Notably, residue R143 plays a critical role in capturing the adenine phosphate ring, underlining its significance in substrate recognition and catalytic activity. The binding mode of acetoacetyl-CoA was also clarified, indicating its lower stability compared to NAD+. Furthermore, the conformational change of hydrophobic residues near the catalytic cavity upon substrate binding resulted in cavity shrinkage from an open to closed conformation. This study confirms the conformational changes of catalytic triads involved in the catalytic reaction and presents a proposed mechanism for substrate reduction based on structural observations.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hyung Jin Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonha Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Junga Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonhye Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Byeongmin Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Kyuhyeon Bang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea;
| | - Sungha Park
- Department of Bioengineering, Incheon JEI University, Incheon 21987, Republic of Korea;
| | - Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Zha X, Elsabagh M, Zheng Y, Zhang B, Wang H, Bai Y, Zhao J, Wang M, Zhang H. Impact of Bisphenol A exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy. Reprod Toxicol 2024; 129:108677. [PMID: 39067774 DOI: 10.1016/j.reprotox.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Pregnancy is extremely vulnerable to external environmental influences. Bisphenol A, an endocrine-disrupting chemical, poses a significant environmental hazard to individuals of all ages and stages, particularly during pregnancy. The placenta is a temporary organ facilitating the connection between the mother and fetus. While it can detoxify certain exogenous substances, it is also vulnerable to the impacts of endocrine disruptors. Likewise, the intestinal flora is highly sensitive to exogenous stresses and environmental pollutants. The regulation of gut microbiota plays a crucial role in ensuring the health of both the mother and the fetus. The gut-placental axis connects the gut, gut microbes, placenta, and fetus. Exploring possible effects on placental function and fetal development involves analyzing changes in gut microbiota composition. Given that bisphenol A may cross the intestine and affect intestinal function, gut microorganisms, and their metabolites, as well as its potential impact on the placenta, resulting in impaired placental function and fetal development, this study aims to establish a link between bisphenol A exposure, intestinal microorganisms, placental function, and fetal development. This paper seeks to analyze the effects of maternal exposure to bisphenol A during pregnancy on the balance of the maternal gut microbiota, placental function, and fetal development, considering the key role of the gut-placental axis. Additionally, this paper proposes potential directions for future research emphasizing the importance of mitigating the adverse outcomes of bisphenol A exposure during pregnancy in both human and animal studies.
Collapse
Affiliation(s)
- Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde ¨Omer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yila Bai
- Xilin Gol League Animal Husbandry Xilinhot 026000, PR China
| | - Jingwen Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China.
| |
Collapse
|
14
|
Józefczuk P, Biliński J, Minkowska A, Łaguna P. Gut microbiome in children undergoing hematopoietic stem cell transplantation. Best Pract Res Clin Gastroenterol 2024; 72:101955. [PMID: 39645282 DOI: 10.1016/j.bpg.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children as a treatment for various cancers, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or other diseases, e.g. severe congenital immunodeficiency, metabolic disorders, hence the patient population is quite diverse. There is an increasing interest on the role of the microbiome in peri-transplant period. In this review, concepts of HSCT with the focus on the importance of microbiome composition, its changes during treatment and possible microbiota oriented interventions will be discussed. This paper analyzes data in pediatric population, but in view of interesting results and absence of analogous data for pediatric patients, it also looks at studies performed on adult population and pre-clinical trials on animals discussing possible translation to children.
Collapse
Affiliation(s)
- Paweł Józefczuk
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland.
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland; Human Biome Institute, Gdansk, Warsaw, Poland
| | - Aleksandra Minkowska
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| |
Collapse
|
15
|
Cheraghpour M, Fatemi N, Shadnoush M, Talebi G, Tierling S, Bermúdez-Humarán LG. Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer. Med Oncol 2024; 41:231. [PMID: 39162936 DOI: 10.1007/s12032-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, develops mainly due to the accumulation of genetic and epigenetic changes over many years. Substantial evidence suggests that gut microbiota plays a significant role in the initiation, progression, and control of CRC, depending on the balance between beneficial and pathogenic microorganisms. Nonetheless, gut microbiota composition by regulating the host immune response may either promote or inhibit CRC. Thus, modification of gut microbiota potentially impacts clinical outcomes of immunotherapy. Previous studies have indicated that therapeutic strategies such as probiotics, prebiotics, and postbiotics enhance the intestinal immune system and improve the efficacy of immunotherapeutic agents, potentially serving as a complementary strategy in cancer immunotherapy. This review discusses the role of the gut microbiota in the onset and development of CRC in relation to the immune response. Additionally, we focus on the effect of strategies manipulating gut microbiome on the immune response and efficacy of immunotherapy against CRC. We demonstrate that manipulation of gut microbiome can enhance immune response and outcomes of immunotherapy through downregulating Treg cells and other immunosuppressive cells while improving the function of T cells within the tumor; however, further research, especially clinical trials, are needed to evaluate its efficacy in cancer treatment.
Collapse
Affiliation(s)
- Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Talebi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Luis G Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
16
|
Xie F, Zhou M, Li X, Li S, Ren M, Wang C. Macrogenomic and Metabolomic Analyses Reveal Mechanisms of Gut Microbiota and Microbial Metabolites in Diarrhea of Weaned Piglets. Animals (Basel) 2024; 14:2327. [PMID: 39199861 PMCID: PMC11350701 DOI: 10.3390/ani14162327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have shown a correlation between piglet diarrhea and the gut microbiota. However, the precise mechanism by which intestinal microorganisms and their metabolites influence diarrhea in weaned piglets remains unclear. This study explored differences in the gut microbiota and associated metabolites between healthy and diarrheic-weaned piglets using macrogenomic and metabolomic analyses. The histomorphological results showed that diarrheic piglets had shorter jejunal and ileal villi, some of which were shed, compared to healthy piglets. Substantial differences in gut microbial diversity and metabolites were also observed, with Bacteroidaceae bacterium and Caudoviricetes being the main differential organisms that were strongly correlated with host status. Microbial functions, mainly the metabolism of carbohydrates, glycans, lipids, and amino acids, as well as related enzyme activities, were substantially different. The major differential metabolites were carnosine, pantothenic acid (vitamin B5), pyridoxal, methylimidazoleacetic acid, indole-3-acetaldehyde, and 5-hydroxyindoleacetic acid. These metabolites were enriched in beta-alanine, histidine, tryptophan, and vitamin B6 metabolism, and in the pantothenate and CoA biosynthesis pathways. Combined macrogenomic and metabolomic analyses revealed that carnosine, vitamin B5, and pyridoxal were negatively correlated with Caudoviricetes; methylimidazoleacetic acid, indole-3-acetaldehyde, and 5-hydroxyindoleacetic acid were positively correlated with Caudoviricetes. Whereas carnosine and vitamin B5 were positively correlated with Bacteroidaceae bacterium, 5-hydroxyindoleacetic acid was negatively correlated. The decreased abundance of Bacteroidaceae bacterium and the increased abundance of Caudoviricetes and related metabolites likely contribute to post-weaning diarrhea in piglets. Therefore, the abundance of Bacteroidaceae bacterium and Caudoviricetes can likely serve as potential markers for identifying and preventing diarrhea in post-weaning piglets.
Collapse
Affiliation(s)
- Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| |
Collapse
|
17
|
Ma YZ, Zhang YS, Cao JX, Chen HC, Su XM, Li B, Kang YT, Gao LP, Jing YH. Aberration of social behavior and gut microbiota induced by cross-fostering implicating the gut-brain axis. Brain Behav Immun 2024; 120:499-512. [PMID: 38944162 DOI: 10.1016/j.bbi.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Bing Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Ting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
18
|
Zhang N, Ye S, Wang X, Wang K, Zhong F, Yao F, Liu J, Huang B, Xu F, Wang X. Hepatic Symbiotic Bacterium L. reuteri FLRE5K1 Inhibits the Development and Progression of Hepatocellular Carcinoma via Activating the IFN-γ/CXCL10/CXCR3 Pathway. Probiotics Antimicrob Proteins 2024; 16:1158-1171. [PMID: 37289406 DOI: 10.1007/s12602-023-10098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Symbiotic bacteria participate in the formation of the structure and function of the tissues and organs in which they live, and play an essential role in maintaining the balance between health and disease. Lactobacillus reuteri FLRE5K1 was isolated from the liver of healthy mice and proved to be a probiotic with anti-melanoma activity in previous studies. The relationship between hepatic symbiotic probiotics and hepatocellular carcinoma (HCC) has not been reported yet. In the present study, L. reuteri FLRE5K1 was initially confirmed to successfully enter the liver after being administered by gavage, and the efficacy of probiotic feeding on HCC and its potential mechanism of inhibiting tumor progression were investigated by an orthotopic liver cancer model established. The results showed that L. reuteri FLRE5K1 significantly reduced the tumor formation rate and inhibited tumor growth in mice. From the perspective of mechanism, activation of the IFN-γ/CXCL10/CXCR3 pathway, as well as its positive feedback on the secretion of IFN-γ, induced the polarization of Th0 cell to Th1 cells and inhibited the differentiation of Tregs, which played a key role in the inhibitory effect of L. reuteri FLRE5K1 on the development and progression of HCC.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Shuiwen Ye
- Department of Blood Transfusion, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Xinlu Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Kang Wang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Feng Xu
- Jiangxi-Oai Joint Research Institute, Nanchang University, Nanchang, 330047, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
19
|
Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci 2024; 25:7379. [PMID: 39000498 PMCID: PMC11242198 DOI: 10.3390/ijms25137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Yang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
20
|
Sun H, Chen F, Zheng W, Huang Y, Peng H, Hao H, Wang KJ. Impact of captivity and natural habitats on gut microbiome in Epinephelus akaara across seasons. BMC Microbiol 2024; 24:239. [PMID: 38961321 PMCID: PMC11221007 DOI: 10.1186/s12866-024-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yixin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Ma Q, Wen X, Xu G. The causal association of specific gut microbiota on the risk of membranous nephropathy: a Mendelian randomization study. Int Urol Nephrol 2024; 56:2021-2030. [PMID: 38180581 DOI: 10.1007/s11255-023-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Gut microbiota transplantation has been reported to improve the renal function of membranous nephropathy (MN). However, whether there is a causal effect of gut microbiota on MN remained unclear. METHODS We performed two-sample Mendelian randomization (MR) analysis. The inverse variance weighted (IVW) method was used as the main approach to evaluate the causal relationship between gut microbiota and MN. Additional methods including MR-Egger regression, weighted median, and MR-weighted mode were also conducted. Cochrane's Q test, MR-Egger regression, and MR-PRESSO were employed to detect heterogeneity and pleiotropy, respectively. RESULTS A total of 196 gut microbiota were examined. After IVW and sensitivity analysis, eight gut bacteria taxa were observed causal effects on the risk of MN. Specifically, Genus. Oscillibacter was a protective factor (OR: 0.57; 95% CI 0.328-0.979; P = 0.042), while Class. Melainabacteria (OR: 1.51; 95% CI 1.004-2.277; P = 0.048), Genus. Butyricicoccus (OR: 2.16; 95% CI 1.005-4.621; P = 0.048), Genus. Catenibacterium (OR: 1.49; 95% CI 1.043-2.134; P = 0.028), Genus.Ruminiclostridium5 (OR: 1.74; 95% CI 1.053-2.862; P = 0.030), Genus. Ruminococcaceae UCG-003 (OR: 1.73; 95% CI 1.110-2.692; P = 0.015), Order. Bacillales (OR: 1.52; 95% CI 1.135-2.025; P = 0.0048) and Order. Gastranaerophilales (OR: 1.45; 95% CI 1.010-2.085; P = 0.044) were risk factors. Heterogeneity was not significant for most single-nucleotide polymorphisms, and no statistical difference in pleiotropy. CONCLUSIONS This study first indicated the causal association between specific gut microbiota and MN, which would be of great significance to guide clinical prevention and treatment in MN.
Collapse
Affiliation(s)
- Qiqi Ma
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiaoli Wen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
22
|
Lozada‐Martinez ID, Lozada‐Martinez LM, Anaya J. Gut microbiota in centenarians: A potential metabolic and aging regulator in the study of extreme longevity. Aging Med (Milton) 2024; 7:406-413. [PMID: 38975304 PMCID: PMC11222757 DOI: 10.1002/agm2.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Centenarians, those aged 100 years or older, are considered the most successful biological aging model in humans. This population is commonly characterized by a low prevalence of chronic diseases, with favorable maintenance of functionality and independence, thus determining a health phenotype of successful aging. There are many factors usually associated with extreme longevity: genetics, lifestyles, diet, among others. However, it is most likely a multifactorial condition where protective factors contribute individually to some extent. The gut microbiota (GM) has emerged as a potential factor associated with the establishment of a favorable health phenotype that allows for extreme longevity, as seen in centenarians. To understand the possible impact generated by the GM, its changes, and the probable causes for successful aging, the aim of this review was to synthesize evidence on the role of the GM as a potential protective factor for achieving extreme longevity, using its relationship with centenarians.
Collapse
Affiliation(s)
- Ivan David Lozada‐Martinez
- Health Research and Innovation Center at Coosalud EPSCartagenaColombia
- Universidad de la CostaBarranquillaColombia
| | | | - Juan‐Manuel Anaya
- Health Research and Innovation Center at Coosalud EPSCartagenaColombia
- Universidad de la CostaBarranquillaColombia
| |
Collapse
|
23
|
Zhao M, Wen X, Liu R, Xu K. Microbial dysbiosis in systemic lupus erythematosus: a scientometric study. Front Microbiol 2024; 15:1319654. [PMID: 38863759 PMCID: PMC11166128 DOI: 10.3389/fmicb.2024.1319654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoting Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
24
|
Li J, Yang Z, Yuan W, Bao Z, Li MD. Heme Metabolism Mediates the Effects of Smoking on Gut Microbiome. Nicotine Tob Res 2024; 26:742-751. [PMID: 37875417 DOI: 10.1093/ntr/ntad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION The number of smokers worldwide increased greatly during the past decades and reached 1.14 billion in 2019, becoming a leading risk factor for human health. Tobacco smoking has wide effects on human genetics, epigenetics, transcriptome, and gut microbiome. Although many studies have revealed effects of smoking on host transcriptome, research on the relationship between smoking, host gene expression, and the gut microbiome is limited. AIMS AND METHODS We first explored transcriptome and metagenome profile differences between smokers and nonsmokers. To evaluate the relationship between host gene expression and gut microbiome, we then applied bidirectional mediation analysis to infer causal relationships between smoking, gene expression, and gut microbes. RESULTS Metagenome and transcriptome analyses revealed 71 differential species and 324 differential expressed genes between smokers and nonsmokers. With smoking as an exposure variable, we identified 272 significant causal relationships between gene expression and gut microbes, among which there were 247 genes that mediate the effect of smoking on gut microbes. Pathway-based enrichment analysis showed that these genes were significantly enriched in heme metabolic pathway, which mainly mediated the changes of Bacteroides finegoldii and Lachnospiraceae bacterium 9_1_43BFAA. Additionally, by performing metabolome data analysis in the Integrated Human Microbiome Project (iHMP) database, we verified the correlation between the intermediate products of the heme metabolism pathway (porphobilinogen, bilirubin, and biliverdin) and gut microbiome. CONCLUSIONS By investigating the bidirectional interaction between smoking-related host gene expression and gut microbes, this study provided evidence for the mediation of smoking on gut microbes through co-involvement or interaction of heme metabolism. IMPLICATIONS By comparing the metagenome and transcriptome sequencing profiles between 34 smokers and 33 age- and gender-matched nonsmokers, we are the first to reveal causal relationships among tobacco smoking, host gene expression, and gut microbes. These findings offer insight into how smoking affects gut microbes through host gene expression and metabolism, which highlights the importance of heme metabolism in modulating the effects of smoking on gut microbiome.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Jirillo E, Topi S, Charitos IA, Santacroce L, Gaxhja E, Colella M. Gut Microbiota and Immune System in Necrotizing Enterocolitis and Related Sepsis. GASTROINTESTINAL DISORDERS 2024; 6:431-445. [DOI: 10.3390/gidisord6020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
A severe condition of sepsis can be a complication of necrotizing enterocolitis (NEC), which can occur in premature infants and becomes a medical challenge in the neonatal intensive care unit (NICU). It is a multifactorial intestinal disease (can affect both the small and large intestine) that can lead to ischemia of the intestinal tissues that evolves into acute organ necrosis. One of these factors is that different types of nutrition can influence the onset or the progression of the disease. Cow-milk-based infant formulas have been shown to cause it in premature infants more frequently than human milk. Recently, nutrition has been shown to be beneficial after surgery. Several issues still under study, such as the pathogenesis and the insufficient and often difficult therapeutic approach, as well as the lack of a common and effective prevention strategy, make this disease an enigma in daily clinical practice. Recent studies outlined the emerging role of the host immune system and resident gut microbiota, showing their close connection in NEC pathophysiology. In its initial stages, broad-spectrum antibiotics, bowel rest, and breastfeeding are currently used, as well as probiotics to help the development of the intestinal microbiota and its eubiosis. This paper aims to present the current knowledge and potential fields of research in NEC pathophysiology and therapeutic assessment.
Collapse
Affiliation(s)
- Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
26
|
Jan HM, Wu SC, Stowell CJ, Vallecillo-Zúniga ML, Paul A, Patel KR, Muthusamy S, Lin HY, Ayona D, Jajosky RP, Varadkar SP, Nakahara H, Chan R, Bhave D, Lane WJ, Yeung MY, Hollenhorst MA, Rakoff-Nahoum S, Cummings RD, Arthur CM, Stowell SR. Galectin-4 Antimicrobial Activity Primarily Occurs Through its C-Terminal Domain. Mol Cell Proteomics 2024; 23:100747. [PMID: 38490531 PMCID: PMC11097083 DOI: 10.1016/j.mcpro.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasikala Muthusamy
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsien-Ya Lin
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samata P Varadkar
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Chan
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Devika Bhave
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Y Yeung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Hollenhorst
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
27
|
Perera J, Delrosso CA, Nerviani A, Pitzalis C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024; 13:743. [PMID: 38727279 PMCID: PMC11083059 DOI: 10.3390/cells13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.
Collapse
Affiliation(s)
- James Perera
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiara Aurora Delrosso
- Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Biomedical Sciences, Humanitas University & IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
28
|
Ye J, Ma J, Rozi P, Kong L, Zhou J, Luo Y, Yang H. The polysaccharides from seeds of Glycyrrhiza uralensis ameliorate metabolic disorders and restructure gut microbiota in type 2 diabetic mice. Int J Biol Macromol 2024; 264:130622. [PMID: 38447833 DOI: 10.1016/j.ijbiomac.2024.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Parhat Rozi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Lingming Kong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
29
|
Zhang L, Tang X, Fan C, Ren S, Cheng Q, Zhou H, Liu K, Jia S, Zhang Y. Dysbiosis of Gut Microbiome Aggravated Male Infertility in Captivity of Plateau Pika. Biomolecules 2024; 14:403. [PMID: 38672421 PMCID: PMC11047922 DOI: 10.3390/biom14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Shi’en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| |
Collapse
|
30
|
Jo H, Han G, Kim EB, Kong C, Kim BG. Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:340-352. [PMID: 38628684 PMCID: PMC11016748 DOI: 10.5187/jast.2023.e96] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 04/19/2024]
Abstract
This study measured the potential changes of the microbiota in the gastrointestinal tract and energy and nutrient digestibility by supplemental bacteriophages in pigs. Twelve castrated male pigs (initial mean body weight = 29.5 ± 2.3 kg) were surgically cannulated using T-cannula. The animals were housed individually in pens equipped with a feeder and a nipple waterer. The pigs were allotted to 1 of 3 experimental diets in a quadruplicated 3 × 2 Latin square design with 3 experimental diets, 2 periods, and 12 pigs resulting in 8 replicates per diet. The 3 diets were a control mainly based on corn and soybean meal with no antibiotics or bacteriophages, a diet containing 0.1% antibiotics, and a diet containing 0.2% bacteriophages. On day 5 of the experimental period, feces were collected and on days 6 and 7, ileal digesta were collected. Genomic DNA for bacteria were extracted from the ileal digesta and feces and the V4 region of the 16S rRNA gene was amplified. The ileal and fecal digestibility of energy, dry matter, organic matter, crude protein, and fiber was unaffected by dietary antibiotics or bacteriophages. At the phylum level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Firmicutes (p = 0.059) and a lower proportion of Bacteroidetes (p = 0.099) in the ileal digesta samples compared with the control group with no difference between the antibiotic and bacteriophage groups. At the genus level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Lactobacillus (p = 0.062) and a lower proportion of Bacteroides (p = 0.074) and Streptococcus (p = 0.088) in the ileal digesta compared with the control group with no difference between the antibiotic and bacteriophage groups. In the feces, supplemental antibiotics or bacteriophages reduced the proportion of Bifidobacterium compared with the control group (p = 0.029) with no difference between the antibiotic and bacteriophage groups. Overall, supplemental antibiotics and bacteriophages showed positive effect on the microbiota of in the ileal digesta without largely affecting energy or nutrient digestibility, with no differences between the antibiotic and bacteriophage groups in growing pigs.
Collapse
Affiliation(s)
- Hyunwoong Jo
- Monogastric Animal Feed Research
Institute, Konkuk University, Seoul 05029, Korea
| | - Geongoo Han
- Molecular Microbiology and Immunology,
Brown University, Providence 02912, Rhode Island, USA
| | - Eun Bae Kim
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Changsu Kong
- Department of Animal Science, Kyungpook
National University, Sangju 37224, Korea
| | - Beob Gyun Kim
- Monogastric Animal Feed Research
Institute, Konkuk University, Seoul 05029, Korea
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
31
|
Shen Y, Yu X, Wang Q, Yao X, Lu D, Zhou D, Wang X. Association between primary Sjögren's syndrome and gut microbiota disruption: a systematic review and meta-analysis. Clin Rheumatol 2024; 43:603-619. [PMID: 37682372 DOI: 10.1007/s10067-023-06754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Evidence of gut microbiota disruption for numerous autoimmune diseases has accumulated. Recently, the relationship between the microbiota and primary Sjögren's disease has been increasingly investigated but has yet to be systematically elucidated. Therefore, a meta-analysis of publications dealing on topic was conducted. Case-control studies comparing primary Sjögren's syndrome patients and healthy controls (HCs) were systematically searched in nine databases from inception to March 1, 2023. The primary result quantitatively evaluated in this meta-analysis was the α-diversity. The secondary results qualitatively extracted and analyzed were the β-diversity and relative abundance. In total, 22 case-control studies covering 915 pSS patients and 2103 HCs were examined. The quantitative analysis revealed a slight reduction in α-diversity in pSS patients compared to HCs, with a lower Shannon-Wiener index (SMD = - 0.46, (- 0.68, - 0.25), p < 0.0001, I2 = 71%), Chao1 richness estimator (SMD = - 0.59, (- 0.86, - 0.32), p < 0.0001, I2 = 81%), and ACE index (SMD = - 0.92, (- 1.64, - 0.19), p = 0.01, I2 = 86%). However, the Simpson index (SMD = 0.01, (- 0.43, 0.46) p = 0.95, I2 = 86%) was similar in the two groups. The β-diversity significantly differed between pSS patients and HCs. Variations in the abundance of specific microbes and their metabolites and potential functions contribute to the pSS pathogenesis. Notably, the abundance of the phylum Firmicutes decreased, while that of Proteobacteria increased. SCFA-producing microbes including Ruminococcaceae, Lachnospiraceae, Faecalibacterium, Butyricicoccus, and Eubacterium hallii were depleted. In addition to diversity, the abundances of some specific microbes were related to clinical parameters. According to this systematic review and meta-analysis, gut microbiota dysbiosis, including reduced diversity, was associated with proinflammatory bacterium enrichment and anti-inflammatory bacterium depletion in pSS patients. Further research on the relationship between the gut microbiota and pSS is warranted.
Collapse
Affiliation(s)
- Yue Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Wang
- School of Basic Medical Sciences, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Yao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dingqi Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Donghai Zhou
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
32
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Ottesen A, Kocurek B, Deaver C, Chiesa O, Cohen R, Reed E, Commichaux S, Mammel M, McDermott P, Strain E, Myers M. Fecal microbiomes of laboratory beagles receiving antiparasitic formulations in an experimental setting. Microbiol Resour Announc 2024; 13:e0086023. [PMID: 38018965 DOI: 10.1128/mra.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
Here, we describe the fecal microbiome of laboratory beagles in a non-invasive experiment designed to contrast in vivo versus in vitro bioequivalence in response to antiparasitic drug administration. The experiment provided a unique opportunity to evaluate metagenomic profiles of canine feces before and after anti-parasitic drug exposure.
Collapse
Affiliation(s)
- Andrea Ottesen
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Brandon Kocurek
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Christine Deaver
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Oscar Chiesa
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Rachael Cohen
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , College Park, Maryland, USA
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Mark Mammel
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Patrick McDermott
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| | - Errol Strain
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , College Park, Maryland, USA
| | - Michael Myers
- Center for Veterinary Medicine, United States Food and Drug Administration , Laurel, Maryland, USA
| |
Collapse
|
34
|
Pazdro-Zastawny K, Krajewska J, Kolator M, Basiak-Rasała A, Górna S, Zatoński T. Dietary habits, physical activity, and self-reported rhinosinusitis in children and adolescents. Front Public Health 2024; 11:1290307. [PMID: 38259761 PMCID: PMC10800831 DOI: 10.3389/fpubh.2023.1290307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Pediatric paranasal rhinosinusitis is one of the more common pediatric diseases of the upper respiratory tract and it entails significant morbidity. Most commonly, it is caused by a viral infection of the nasal mucosa, which spreads through the natural passages within the cavities of the paranasal sinuses, leading to inflammation of the mucosa that lines the nasal cavity and paranasal sinuses. Methods The objective of this cohort study was to assess whether there is a correlation between pediatric rhinosinusitis, physical activity, and selected dietary habits among pupils aged 6 to 16 years from elementary schools in Wrocław, Poland. This study - as part of the pro-health program "Let us Get the Kids Moving" - is also aimed at establishing factors that potentially predispose children to developing RS. The survey study was conducted on a group of 2,458 children and adolescents from elementary schools in Wrocław. The age of the examined children ranged from 6 to 17 years (mean = 10.8 years; standard deviation = 2.7). Results Rhinosinusitis was more common in the children aged 13-17 years than in those aged 6-9 years (6.4% vs. 1.5%; p < 0.001) or 10-12 years (6.4 vs. 2.6%; p < 0.001). The study revealed a significant positive correlation between rhinosinusitis development and several variables: age > 11 years, attending swimming classes fewer than 1-2 times a week, using a computer, consuming milk, salty snacks, and carbonated sweet drinks, consuming fruit fewer than 1-2 times a week, not attending physical education classes, eating fewer than 4 meals, and not eating breakfast at home (p < 0.05). Conclusion It is of great importance to establish preventive measures against recurrent upper respiratory tract infections that may predispose children to rhinosinusitis. Introducing healthier, traditional dietary habits and regular physical activity in children and adolescents may result in normal and adequate immune response and proper functioning of the inflammatory control system.
Collapse
Affiliation(s)
| | - Joanna Krajewska
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Kolator
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | | | - Sara Górna
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznań, Poland
| | - Tomasz Zatoński
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
- Biegaj Dla Zdrowia Foundation, Wrocław, Poland
| |
Collapse
|
35
|
Kolesnyk PO, Paliy IH, Sydorchuk LP, Hoda ZP, Ivanchenko NO, Lych OS, Huley NR, Matsyura OI, Slyuzar ZL, Gerasymov SV. The role of nutritional support with probiotics in outpatients with symptomatic acute respiratory tract infections: a multicenter, randomized, double-blind, placebo-controlled dietary study. BMC Nutr 2024; 10:4. [PMID: 38178223 PMCID: PMC10768308 DOI: 10.1186/s40795-023-00816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND A number of laboratory data and clinical studies have shown that probiotic bacteria may be beneficial in respiratory viral diseases. We investigated the role of probiotics in coronavirus disease-19 (COVID -19), post-disease symptoms, and humoral immune responses to viral antigens. METHODS This was a randomized, double-blind, placebo-controlled, prospective, multicenter study. We included symptomatic patients aged 18-65 years without risk of severe disease, and positive antigen/PCR test for SARS-CoV-2. Patients received (Bifidobacterium (B.) lactis BI040, B. longum BL020, Lactobacillus (L) rhamnosus LR110, L. casei LC130, L. acidophilus LA120, 5 billion CFU total) or placebo 1 capsule a day for 28 days and recorded symptoms. Three months later patients completed Post-COVID-19 Questionnaire (PCQ-19). On days 0-5 and 28-35, blood was sampled for IgG to nucleocapsid protein (NCP) and receptor binding domain (RBD)/spike 1 (S1) protein. The primary outcome measure was a patient global symptom score on day 10 of observation. The difference between groups was assessed using the Mann-Whitney U test. RESULTS Seventy-three patients were assessed for clinical endpoints and 44 patients were evaluated for antibody production. At day 10, the median global symptom score (interquartile range) was lower in the probiotic group (0.0 (0.0-2.0) vs. 2.0 (1.0-5.0), P < 0.05). The probiotic group had a shorter duration of fatigue and anxiety after COVID -19 (P < 0.05) and a greater change in IgG concentration on RBD/S1 (225.9 vs. 105.6 binding antibody units/mL, P < 0.05). CONCLUSIONS Use of probiotics alleviates acute and post-disease symptoms, and improves humoral immune response to viral antigens. TRIAL REGISTRATION Registered at clinicaltrials.gov as NCT04907877, June 1, 2021.
Collapse
Affiliation(s)
- Pavlo O Kolesnyk
- Family Medicine and Outpatient Care Department, Uzhgorod National University, Uzhgorod, Ukraine
| | - Iryna H Paliy
- Department of Internal and Family Medicine, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Larysa P Sydorchuk
- Family Medicine Department, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Zoriana P Hoda
- Lviv State Center for Disease Control and Prevention of Ministry of Health of Ukraine, Lviv, Ukraine
| | - Nataliya O Ivanchenko
- Lviv State Center for Disease Control and Prevention of Ministry of Health of Ukraine, Lviv, Ukraine
| | - Oksana S Lych
- Lviv State Center for Disease Control and Prevention of Ministry of Health of Ukraine, Lviv, Ukraine
| | - Natalia R Huley
- Lviv Municipal Non-Profit Enterprise Third City Clinical Hospital, Lviv, Ukraine
| | | | | | - Sergiy V Gerasymov
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
- MedianaStatistics, CRO, Mykhaila Horynia Str. 15-A, Lviv, 79012, Ukraine.
| |
Collapse
|
36
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
37
|
Moriki D, Koumpagioti D, Francino MP, Rufián-Henares JÁ, Kalogiannis M, Priftis KN, Douros K. How Different Are the Influences of Mediterranean and Japanese Diets on the Gut Microbiome? Endocr Metab Immune Disord Drug Targets 2024; 24:1733-1745. [PMID: 38243975 DOI: 10.2174/0118715303261069231124092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 01/22/2024]
Abstract
The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.
Collapse
Affiliation(s)
- Dafni Moriki
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Pilar Francino
- Department of Genomics and Health, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Michalis Kalogiannis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas N Priftis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
38
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Boodhoo N, Shojadoost B, Alizadeh M, Astill J, Behboudi S, Sharif S. Effect of treatment with Lactococcus lactis NZ9000 on intestinal microbiota and mucosal immune responses against Clostridium perfringens in broiler chickens. Front Microbiol 2023; 14:1257819. [PMID: 38164397 PMCID: PMC10757962 DOI: 10.3389/fmicb.2023.1257819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in intestinal microbiota can modulate the developing avian intestinal immune system and, subsequently, may impact on resistance to enteric pathogens. The aim was to demonstrate that early life exposure to Lactococcus lactis, could affect either susceptibility or resistance of broilers to necrotic enteritis (NE). L. lactis NZ9000 (rL. lactis) pre-treatment at 1, 7, 14 and 21 days of age (DOA) led to a significant decrease in NE lesion scores in Clostridium perfringens infected chickens. C. perfringens Infection was associated with spatial and temporal decreases in mononuclear phagocytes and CD4+ αβ T cells. However, rL. Lactis pre-treatment and subsequent C. perfringens infection led to a significant increase in mononuclear phagocytes, CD8α + γδ T, αβ T cells (CD4+ and CD8α+) and B cells (IgM+, IgA+ and IgY+), as well as IL-12p40, IFN-γ and CD40. Differential expression of interleukin (IL)-6, IL-8, IL-10, IL-13, IL-18, IL-22, and transforming growth factor (TGF)-β were observed in L. lactis treated chickens when compared to C. perfringens infected chickens. Microbiota analysis in C. perfringens infected chickens demonstrated an increase in abundance of Bacillota, Bacteroidota, Pseudomonadota and Actinomycetota. These findings suggests that modulation of the chicken intestinal immune system by L. lactis confers partial protection 30 against NE.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
40
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
41
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Prakash A, Agashe D, Khan I. Alteration of diet microbiota limits the experimentally evolved immune priming response in flour beetles, but not pathogen resistance. J Evol Biol 2023; 36:1745-1752. [PMID: 37658647 DOI: 10.1111/jeb.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 09/03/2023]
Abstract
Host-associated microbiota play a fundamental role in the training and induction of different forms of immunity, including inducible as well as constitutive components. However, direct experiments analysing the relative importance of microbiota on diverse forms of evolved immune functions are missing. We addressed this gap by using experimentally evolved lines of Tribolium castaneum that either produced inducible immune memory-like responses (immune priming) or constitutively expressed basal resistance (without priming), as divergent counterstrategies against Bacillus thuringiensis infection. We altered the microbial communities present in the diet (i.e. wheat flour) of these evolved lines using UV irradiation and estimated the impact on the beetle's ability to mount a priming response versus basal resistance. Populations that had evolved immune priming lost the ability to mount a priming response upon alteration of diet microbiota. Microbiota manipulation also caused a drastic reduction in their reproductive output and post-infection longevity. In contrast, in pathogen-resistant beetles, microbiota manipulation did not affect post-infection survival or reproduction. The divergent evolution of immune responses across beetle lines was thus associated with divergent reliance on the microbiome. Whether the latter is a direct outcome of differential pathogen exposure during selection or reflects evolved immune functions remains unclear. We hope that our results will motivate further experiments to understand the mechanistic basis of these complex evolutionary associations between microbiota, host immune strategies and fitness outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, Karnataka, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, Karnataka, India
| | - Imroze Khan
- Ashoka University, Rajiv Gandhi Education City, Sonepat, Rai, Haryana, India
| |
Collapse
|
43
|
Nie S, Wang A, Chen X, Gong Y, Yuan Y. Microbial-Related Metabolites May Be Involved in Eight Major Biological Processes and Represent Potential Diagnostic Markers in Gastric Cancer. Cancers (Basel) 2023; 15:5271. [PMID: 37958446 PMCID: PMC10649575 DOI: 10.3390/cancers15215271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolites associated with microbes regulate human immunity, inhibit bacterial colonization, and promote pathogenicity. Integrating microbe and metabolome research in GC provides a direction for understanding the microbe-associated pathophysiological process of metabolic changes and disease occurrence. The present study included 30 GC patients with 30 cancerous tissues and paired non-cancerous tissues (NCs) as controls. LC-MS/MS metabolomics and 16S rRNA sequencing were performed to obtain the metabolic and microbial characteristics. Integrated analysis of the microbes and metabolomes was conducted to explore the coexistence relationship between the microbial and metabolic characteristics of GC and to identify microbial-related metabolite diagnostic markers. The metabolic analysis showed that the overall metabolite distribution differed between the GC tissues and the NC tissues: 25 metabolites were enriched in the NC tissues and 42 metabolites were enriched in the GC tissues. The α and β microbial diversities were higher in the GC tissues than in the NC tissues, with 11 differential phyla and 52 differential genera. In the correlation and coexistence integrated analysis, 66 differential metabolites were correlated and coexisted, with specific differential microbes. The microbes in the GC tissue likely regulated eight metabolic pathways. In the efficacy evaluation of the microbial-related differential metabolites in the diagnosis of GC, 12 differential metabolites (area under the curve [AUC] >0.9) exerted relatively high diagnostic efficiency, and the combined diagnostic efficacy of 5 to 6 microbial-related differential metabolites was higher than the diagnostic efficacy of a single feature. Therefore, microbial diversity and metabolite distribution differed between the GC tissues and the NC tissues. Microbial-related metabolites may be involved in eight major metabolism-based biological processes in GC and represent potential diagnostic markers.
Collapse
Affiliation(s)
- Siru Nie
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaohui Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Erdman SE. Brain trust. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100212. [PMID: 38108028 PMCID: PMC10724819 DOI: 10.1016/j.cpnec.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
This narrative describes a personal journey that led to the discovery of a profound connection between microbial symbionts and oxytocin. Pivotal oxytocin discoveries began to emerge in 2011 while this researcher's multidisciplinary team explored gut microbial priming of the immune system and perinatal health. Inspired by oxytocin's role in early life events of milk release, neural connections, and social bonding, the team hypothesized a symbiotic relationship between microbes and oxytocin. Scientific experiments demonstrated that specific milk-borne microbes boosted oxytocin levels through a vagus nerve-mediated gut-brain pathway, affecting immune functions and wound healing capacity in the host animal. The exploration then expanded to microbial impacts on reproductive fitness, body weight, and even mental health. Overarching hypotheses envisioned a nurturing symbiosis promoting survival and societal advancement. Ultimately, this oxytocin-mediated partnership between microbes and mammals is portrayed as a harmonious legacy of neurological stability, empathy, and universal wisdom, transcending generations. The author's personal journey underscores the beauty and inspiration found in her scientific exploration.
Collapse
Affiliation(s)
- Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Jo H, Kim BG. Effects of dietary fiber in gestating sow diets - A review. Anim Biosci 2023; 36:1619-1631. [PMID: 37641826 PMCID: PMC10623041 DOI: 10.5713/ab.23.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
The objective of this review was to provide an overview of the effects of dietary fiber (DF) on reproductive performance in gestating sows. Dietary fibers have been suggested to modulate microbiota in the intestine and the immune system of gestating sows and to improve gut health. Thus, DF may help alleviate the adverse effects of the stressful production cycle of gestating sows. These benefits may subsequently result in improved reproductive performance of sows. Previous studies have reported changes in microbiota by providing gestating sows with DF, and the responses of microbiota varied depending on the source of DF. The responses by providing DF to gestating sows were inconsistent for antioxidative capacity, hormonal response, and inflammatory response among the studies. The effects of DF on reproductive performance were also inconsistent among the previous studies. Potential reasons contributing to these inconsistent results would include variability in reproductive performance data, insufficient replication, influence of other nutrients contained in the DF diets, characteristics of DF, and experimental periods. The present meta-analysis suggests that increasing the total DF concentration by 10 percentage units (e.g., 12% to 22% as-fed basis) in gestating sow diets compared to the control group improves the litter born alive by 0.49 pigs per litter. However, based on the present review, questions remain regarding the benefits of fibers in gestating sow diets. Further research is warranted to clarify the mode of action of fibers and the association with subsequent reproductive performance in gestating sows.
Collapse
Affiliation(s)
- Hyunwoong Jo
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
46
|
Marasco G, Visaggi P, Vassallo M, Fiocca M, Cremon C, Barbaro MR, De Bortoli N, Bellini M, Stanghellini V, Savarino EV, Barbara G. Current and Novel Therapies for Eosinophilic Gastrointestinal Diseases. Int J Mol Sci 2023; 24:15165. [PMID: 37894846 PMCID: PMC10607071 DOI: 10.3390/ijms242015165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Eosinophilic gastrointestinal diseases (EGIDs) are an emerging group of pathological entities characterized by an eosinophil-predominant infiltration of different tracts of the gut in the absence of secondary causes of eosinophilia. According to the specific tract of the gut involved, EGIDs can be classified into eosinophilic esophagitis (EoE), eosinophilic gastritis (EoG), eosinophilic enteritis (EoN), and eosinophilic colitis (EoC). The epidemiology of EGIDs is evolving rapidly. EoE, once considered a rare disease, now has an incidence and prevalence of 7.7 new cases per 100,000 inhabitants per years and 34.4 cases per 100,000 inhabitants per year, respectively. Fewer data are available regarding non-EoE EGIDs, whose prevalence are estimated to range between 2.1 and 17.6 in 100,000 individuals, depending on age, sex, and ethnicity. Diagnosis requires the presence of suggestive symptoms, endoscopic biopsies showing abnormal values of eosinophils infiltrating the gut, and exclusion of secondary causes of eosinophilia. EoE typically presents with dysphagia and episodes of food bolus impactions, while EoG, EoN, and EoC may all present with abdominal pain and diarrhea, with or without other non-specific symptoms. In addition, although different EGIDs are currently classified as different entities, there may be overlap between different diseases in the same patient. Despite EGIDs being relatively novel pathological entities, the research on possible treatments is rapidly growing. In this regard, several randomized controlled trials are currently ongoing to investigate novel molecules, including ad-hoc steroid formulations, immunosuppressants, and mostly monoclonal antibodies that target the specific molecular mediators of EGIDs. This narrative review provides an up-to-date overview of available and investigational drugs for different EGIDs.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento 36, 56126 Pisa, Italy; (P.V.); (N.D.B.); (M.B.)
| | - Mariagiulia Vassallo
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Miriam Fiocca
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Nicola De Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento 36, 56126 Pisa, Italy; (P.V.); (N.D.B.); (M.B.)
| | - Massimo Bellini
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento 36, 56126 Pisa, Italy; (P.V.); (N.D.B.); (M.B.)
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Edoardo Vincenzo Savarino
- Gastroenterology Unit, Azienda Ospedale Università of Padua, Via Giustiniani 2, 35128 Padua, Italy;
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128 Padua, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.M.); (M.V.); (M.F.); (C.C.); (M.R.B.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
47
|
Koneru S, Thiruvadi V, Ramesh M. Gut microbiome and its clinical implications: exploring the key players in human health. Curr Opin Infect Dis 2023; 36:353-359. [PMID: 37593952 DOI: 10.1097/qco.0000000000000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The human gut harbors a diverse community of microorganisms known as the gut microbiota. Extensive research in recent years has shed light on the profound influence of the gut microbiome on human health and disease. This review aims to explore the role of the gut microbiome in various clinical conditions and highlight the emerging therapeutic potential of targeting the gut microbiota for disease management. RECENT FINDINGS Knowledge of the influence of gut microbiota on human physiology led to the development of various therapeutic possibilities such as fecal microbiota transplant (FMT), phage therapy, prebiotics, and probiotics. Recently, the U.S. FDA approved two FMT products for the treatment of recurrent Clostridioides difficile infection with ongoing research for the treatment of various disease conditions. SUMMARY Advancement in the knowledge of the association between gut microbiota and various disease processes has paved the way for novel therapeutics.
Collapse
Affiliation(s)
- Sindhuja Koneru
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | |
Collapse
|
48
|
Yin Z, Liu B, Feng S, He Y, Tang C, Chen P, Wang X, Wang K. A Large Genetic Causal Analysis of the Gut Microbiota and Urological Cancers: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4086. [PMID: 37764869 PMCID: PMC10537765 DOI: 10.3390/nu15184086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. METHODS In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. RESULTS Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. CONCLUSIONS Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Z.Y.); (S.F.); (Y.H.); (C.T.); (P.C.)
| |
Collapse
|
49
|
Fenneman AC, Rampanelli E, van der Spek AH, Fliers E, Nieuwdorp M. Protocol for a double-blinded randomised controlled trial to assess the effect of faecal microbiota transplantations on thyroid reserve in patients with subclinical autoimmune hypothyroidism in the Netherlands: the IMITHOT trial. BMJ Open 2023; 13:e073971. [PMID: 37709342 PMCID: PMC10503357 DOI: 10.1136/bmjopen-2023-073971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is a common endocrine autoimmune disease affecting roughly 5% of the general population and involves life-long treatment with levothyroxine, as no curative treatment yet exists. Over the past decade, the crosstalk between gut microbiota and the host immune system has been well-recognised, identifying the gut microbiome as an important factor in host health and disease, including susceptibility to autoimmune diseases. Previous observational studies yielded a link between disruption of the gut microbiome composition and HT. This is the first study that investigates the potential of restoring a disrupted gut microbiome with faecal microbiota transplantations (FMTs) to halt disease progression and dampen autoimmunity. METHODS AND ANALYSIS The IMITHOT trial is a randomised, double-blinded, placebo-controlled study evaluating either autologous or allogenic FMTs in medication-naïve patients with subclinical autoimmune hypothyroidism. In total, 34 patients will be enrolled to receive either three allogenic or autologous FMTs. FMT will be made of fresh stool and directly administered into the duodenum. Patients will be evaluated at baseline before the first FMT is administered and at 6, 12 and 24 months post-intervention to assess efficacy and adverse events. The primary outcome measure will be the net incremental increase (incremental area under the curve) on thyrotropin-stimulated free thyroxine and free triiodothyronine release at 6 and 12 months compared with baseline. Results will be disseminated via peer-reviewed journals and international conferences. The recruitment of the first patient and donor occurred on 18 December 2019. ETHICS AND DISSEMINATION Ethics approval was obtained from the hospital Ethics Committee (Medical Ethics Committee) at Amsterdam University Medical Center. The trial's outcomes offer high-quality evidence that aids in unveiling distinct patterns within the gut microbiota potentially associated with improved thyroid function. Consequently, this may open avenues for the future clinical applications of microbial-targeted therapy in individuals at risk of developing overt HT. TRIAL REGISTRATION NUMBER NL7931.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), AmsterdamUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), AmsterdamUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), AmsterdamUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Wang L, Zhu J, Xie P, Gong D. Pigeon during the Breeding Cycle: Behaviors, Composition and Formation of Crop Milk, and Physiological Adaptation. Life (Basel) 2023; 13:1866. [PMID: 37763270 PMCID: PMC10533064 DOI: 10.3390/life13091866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.
Collapse
Affiliation(s)
- Liuxiong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
| |
Collapse
|