1
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Sekiguchi T, Yoshida K, Wakabayashi KI, Hisabori T. Proton gradient across the chloroplast thylakoid membrane governs the redox regulatory function of ATP synthase. J Biol Chem 2024; 300:107659. [PMID: 39128728 PMCID: PMC11406350 DOI: 10.1016/j.jbc.2024.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Chloroplast ATP synthase (CFoCF1) synthesizes ATP by using a proton electrochemical gradient across the thylakoid membrane, termed ΔμH+, as an energy source. This gradient is necessary not only for ATP synthesis but also for reductive activation of CFoCF1 by thioredoxin, using reducing equivalents produced by the photosynthetic electron transport chain. ΔμH+ comprises two thermodynamic components: pH differences across the membrane (ΔpH) and the transmembrane electrical potential (ΔΨ). In chloroplasts, the ratio of these two components in ΔμH+ is crucial for efficient solar energy utilization. However, the specific contribution of each component to the reductive activation of CFoCF1 remains unclear. In this study, an in vitro assay system for evaluating thioredoxin-mediated CFoCF1 reduction is established, allowing manipulation of ΔμH+ components in isolated thylakoid membranes using specific chemicals. Our biochemical analyses revealed that ΔpH formation is essential for thioredoxin-mediated CFoCF1 reduction on the thylakoid membrane, whereas ΔΨ formation is nonessential.
Collapse
Affiliation(s)
- Takatoshi Sekiguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
3
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
4
|
Wang X, Chen Z, Sui N. Sensitivity and responses of chloroplasts to salt stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1374086. [PMID: 38693929 PMCID: PMC11061501 DOI: 10.3389/fpls.2024.1374086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Chloroplast, the site for photosynthesis and various biochemical reactions, is subject to many environmental stresses including salt stress, which affects chloroplast structure, photosynthetic processes, osmotic balance, ROS homeostasis, and so on. The maintenance of normal chloroplast function is essential for the survival of plants. Plants have developed different mechanisms to cope with salt-induced toxicity on chloroplasts to ensure the normal function of chloroplasts. The salt tolerance mechanism is complex and varies with plant species, so many aspects of these mechanisms are not entirely clear yet. In this review, we explore the effect of salinity on chloroplast structure and function, and discuss the adaptive mechanisms by which chloroplasts respond to salt stress. Understanding the sensitivity and responses of chloroplasts to salt stress will help us understand the important role of chloroplasts in plant salt stress adaptation and lay the foundation for enhancing plant salt tolerance.
Collapse
Affiliation(s)
| | | | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
6
|
Che Y, Fan D, Teng Z, Yao T, Wang Z, Zhang H, Sun G, Zhang H, Chow WS. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13981. [PMID: 37616008 DOI: 10.1111/ppl.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 07/15/2023] [Indexed: 08/25/2023]
Abstract
Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.
Collapse
Affiliation(s)
- Yanhui Che
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Dayong Fan
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Zhiyuan Teng
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tongtong Yao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zihan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
7
|
Kumar S, Karmacharya M, Cho YK. Bridging the Gap between Nonliving Matter and Cellular Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202962. [PMID: 35988151 DOI: 10.1002/smll.202202962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
8
|
Zhu Y, Li D, Fan J, Zhang H, Eichhorn MP, Wang X, Yun T. A reinterpretation of the gap fraction of tree crowns from the perspectives of computer graphics and porous media theory. FRONTIERS IN PLANT SCIENCE 2023; 14:1109443. [PMID: 36814756 PMCID: PMC9939530 DOI: 10.3389/fpls.2023.1109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The gap fraction (GF) of vegetative canopies is an important property related to the contained bulk of reproductive elements and woody facets within the tree crown volume. This work was developed from the perspectives of porous media theory and computer graphics techniques, considering the vegetative elements in the canopy as a solid matrix and treating the gaps between them as pores to guide volume-based GFvol calculations. Woody components and individual leaves were extracted from terrestrial laser scanning data. The concept of equivalent leaf thickness describing the degrees of leaf curling and drooping was proposed to construct hexagonal prisms properly enclosing the scanned points of each leaf, and cylinder models were adopted to fit each branch segment, enabling the calculation of the equivalent leaf and branch volumes within the crown. Finally, the volume-based GFvol of the tree crown following the definition of the void fraction in porous media theory was calculated as one minus the ratio of the total plant leaf and branch volume to the canopy volume. This approach was tested on five tree species and a forest plot with variable canopy architecture, yielding an estimated maximum volume-based GFvol of 0.985 for a small crepe myrtle and a minimal volume-based GFvol of 0.953 for a sakura tree. The 3D morphology of each compositional element in the tree canopy was geometrically defined and the canopy was considered a porous structure to conduct GFvol calculations based on multidisciplinary theory.
Collapse
Affiliation(s)
- Yunfeng Zhu
- School of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Dongni Li
- School of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Jiangchuan Fan
- National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Huaiqing Zhang
- Research Institute of Forestry Resource Information Techniques, Chinese Academy of Forestry, Beijing, China
| | - Markus P. Eichhorn
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xiangjun Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ting Yun
- School of Information Science and Technology, Nanjing Forestry University, Nanjing, China
- Forestry College, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Lyu H, Lazár D. Effect of ion fluxes on regulating the light-induced transthylakoid electric potential difference. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:60-69. [PMID: 36379178 DOI: 10.1016/j.plaphy.2022.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The light-induced transthylakoid membrane potential (ΔΨ) can not only drive the ATP synthesis through the ATP-synthase in chloroplasts but serve as an essential modifier in the acclimation of photosynthesis to fluctuating light conditions. It has been manifested that during photosynthesis, the light-induced ΔΨ is responsive to multiple factors among which the ion channels/transporters (e.g., V-K+, VCCN1, and KEA3) are key to adjust the ion distribution on the two sides of the thylakoid membrane and hence shape the kinetics of ΔΨ. However, an in-depth mechanistic understanding of ion fluxes on adjusting the transthylakoid electric potentials is still unclear. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing ion fluxes in vivo and also hacking the evolution of parameters in a highly intertwined photosynthetic network. In this work, a computer model was applied to investigate the roles of ion fluxes on adjusting transthylakoid electric potentials upon a temporal cycle of a period of high illumination followed by a dark-adapted phase. The computing data revealed that, firstly, upon illumination, the dissipation of the steady-ΔΨ by ∼10 mV is contributed from the V-K+-driven K+ flux whilst ∼8 mV of the steady-ΔΨ is dissipated by the VCCN1-pumped Cl- flux, but there were no appreciable KEA3-evoked variations on ΔΨ; secondly, on transition from high light to darkness, V-K+ and KEA3 are serving as major contributors whereas VCCN1 taking a counterbalancing part in shaping a standard trace of ECS (electrochromic shift), which commonly shows a sharp fall to a minimum before returning to the baseline in darkness. Besides, the functional consequences on components of ΔΨ adjusted by every particular ion channel/transporter were also explored. By employing the model, we bring evidence that particular thylakoid-harbored proteins, namely V-K+, VCCN1, and KEA3, function by distinct mechanisms in the dynamic adjustment of electric potential, which might be mainly importnat under fluctuating light conditions.
Collapse
Affiliation(s)
- Hui Lyu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China.
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Dabravolski SA, Isayenkov SV. Recent updates on the physiology and evolution of plant TPK/KCO channels. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:17-28. [PMID: 36220140 DOI: 10.1071/fp22117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plant vacuoles are the main cellular reservoirs to store K+ . The vacuolar K+ channels play a pivotal role in K+ exchange between cytosol and vacuolar sap. Among vacuolar K+ transporters, the Two Pore Potassium Channels (TPKs) are highly selective K+ channels present in most or all plant vacuoles and could be involved in various plant stress responses and developmental processes. Although the majority of TPK members have a vacuolar specialisation, some TPKs display different membrane localisation including the plasma membrane, tonoplast of protein storage vacuoles and probably chloroplast membranes. The functional properties as well as physiological roles of TPKs remains largely unexplored. In this review, we have collected recent data about the physiology, structure, functionality and evolution of TPK/KCO3 channels. We also critically evaluate the latest findings on the biological role, physiological functions, and regulation of TPK/KCO3 channels in relation to their structure and phylogenetic position. The possible role of TPK/KCO3 channels in plant tolerance to various abiotic stresses is summarised, and the future priority directions for TPK/KCO3 studies are addressed.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China; and Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
11
|
Khan MN, Singh VP, Corpas FJ, Rodríguez Rosales MP. Closing gaps and opening new avenues for potassium research in plant biology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:141-142. [PMID: 36240600 DOI: 10.1016/j.plaphy.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Professor Albareda 1, E-18008, Granada, Spain
| | - María Pilar Rodríguez Rosales
- Departamento de Bioquímica, Biología Celulary Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
12
|
Li L, Sun M, Hu Z, Nie X, Xiao T, Liu Z. Cation-Selective Oxide Semiconductor Mesoporous Membranes for Biomimetic Ion Rectification and Light-Powered Ion Pumping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202910. [PMID: 35931463 DOI: 10.1002/smll.202202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Artificial membranes precisely imitating the biological functions of ion channels and ion pumps have attracted significant attention to explore nanofluidic energy conversion. Herein, inspired by the cyclic ion transport for the photosynthesis in purple bacteria, a bilayer inorganic membrane (TiO2 /AAO) composed of oxide semiconductor (TiO2 ) mesopores on anodic alumina (AAO) macropores is we developed. This inorganic membrane achieves the functions of ion channels and ion pumps, including the ion rectification and light-powered ion pumping. The asymmetric charge distribution across the bilayer membrane contributes to the cationic selectivity and ion rectification characteristics. The electrons induced by ultraviolet irradiation introduce a built-in electric field across TiO2 /AAO membrane, which pumps the active ion transport from a low to a high concentration. This work integrates the functions of biological ion channels and ion pumps within an artificial membrane for the first time, which paves the way to explore multifunctional membranes analogous to its biological counterpart.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
13
|
Nie X, Hu Z, Xiao T, Li L, Jin J, Liu K, Liu Z. Light-Powered Ion Pumping in a Cation-Selective Conducting Polymer Membrane. Angew Chem Int Ed Engl 2022; 61:e202201138. [PMID: 35133687 DOI: 10.1002/anie.202201138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The simulation of the ion pumping against a proton gradient energized by light in photosynthesis is of significant importance for the energy conversion in a non-biological environment. Herein, we report light-powered ion pumping in a polystyrene sulfonate anion (PSS) doped polypyrrole (PPy) conducting polymer membrane (PSS-PPy) with a symmetric geometry. This PSS-PPy conducting polymer membrane exhibits a cationic selectivity and a light-responsive surface-charge-governed ion transport attributed to the negatively charged PSS groups. An asymmetric visible irradiation on one side of the PSS-PPy membrane induces a built-in electric field across the membrane due to the intrinsic photoelectronic property of PPy, which drives the cationic transport against the concentration gradient, demonstrating an ion-pumping effect. This work is a prototype that uses a geometry-symmetric conducting polymer membrane as a light-powered artificial ion pump for active ion transport, which exhibits potential applications in nanofluidic energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiao Jin
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Kesong Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
Nie X, Hu Z, Xiao T, Li L, Jin J, Liu K, Liu Z. Light‐Powered Ion Pumping in a Cation‐Selective Conducting Polymer Membrane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics Northwestern University Evanston IL 60208 USA
| | - Tianliang Xiao
- School of Energy and Power Engineering Beihang University Beijing 100191 P. R. China
| | - Li Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Jiao Jin
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Kesong Liu
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhaoyue Liu
- School of Chemistry Beihang University Beijing 100191 P. R. China
| |
Collapse
|
15
|
Liu C, Liao W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:110-121. [PMID: 35123248 DOI: 10.1016/j.plaphy.2022.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion (K+) has been regarded as an essential signaling in plant growth and development. K+ transporters and channels at transcription and protein levels have been made great progress. K+ can enhance plant abiotic stress resistance. Meanwhile, it is now clear that calcium (Ca2+), reactive oxygen species (ROS), and reactive nitrogen species (RNS) act as signaling molecules in plants. They regulate plant growth and development and mediate K+ transport. However, the interaction of K+ with these signaling molecules remains unclear. K+ may crosstalk with Ca2+ and ROS/RNS in abiotic stress responses in plants. Also, there are interactions among K+, Ca2+, and ROS/RNS signaling pathways in plant growth, development, and abiotic stress responses. They regulate ion homeostasis, antioxidant system, and stress resistance-related gene expression in plants. Future work needs to focus on the deeper understanding of molecular mechanism of crosstalk among K+, Ca2+, and ROS/RNS under abiotic stress.
Collapse
Affiliation(s)
- Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
16
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
17
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
18
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Wilson S, Johnson MP, Ruban AV. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. PLANT PHYSIOLOGY 2021; 187:263-275. [PMID: 34618143 PMCID: PMC8418402 DOI: 10.1093/plphys/kiab270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 05/08/2023]
Abstract
The proton motive force (pmf) across the thylakoid membrane couples photosynthetic electron transport and ATP synthesis. In recent years, the electrochromic carotenoid and chlorophyll absorption band shift (ECS), peaking ∼515 nm, has become a widely used probe to measure pmf in leaves. However, the use of this technique to calculate the parsing of the pmf between the proton gradient (ΔpH) and electric potential (Δψ) components remains controversial. Interpretation of the ECS signal is complicated by overlapping absorption changes associated with violaxanthin de-epoxidation to zeaxanthin (ΔA505) and energy-dependent nonphotochemical quenching (qE; ΔA535). In this study, we used Arabidopsis (Arabidopsis thaliana) plants with altered xanthophyll cycle activity and photosystem II subunit S (PsbS) content to disentangle these overlapping contributions. In plants where overlap among ΔA505, ΔA535, and ECS is diminished, such as npq4 (lacking ΔA535) and npq1npq4 (also lacking ΔA505), the parsing method implies the Δψ contribution is virtually absent and pmf is solely composed of ΔpH. Conversely, in plants where ΔA535 and ECS overlap is enhanced, such as L17 (a PsbS overexpressor) and npq1 (where ΔA535 is blue-shifted to 525 nm) the parsing method implies a dominant contribution of Δψ to the total pmf. These results demonstrate the vast majority of the pmf attributed by the ECS parsing method to Δψ is caused by ΔA505 and ΔA535 overlap, confirming pmf is dominated by ΔpH following the first 60 s of continuous illumination under both low and high light conditions. Further implications of these findings for the regulation of photosynthesis are discussed.
Collapse
Affiliation(s)
- Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
20
|
Li M, Svoboda V, Davis G, Kramer D, Kunz HH, Kirchhoff H. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. NATURE PLANTS 2021; 7:979-988. [PMID: 34140667 DOI: 10.1038/s41477-021-00947-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2021] [Indexed: 05/06/2023]
Abstract
In photosynthetic thylakoid membranes the proton motive force (pmf) not only drives ATP synthesis, in addition it is central to controlling and regulating energy conversion. As a consequence, dynamic fine-tuning of the two pmf components, electrical (Δψ) and chemical (ΔpH), is an essential element for adjusting photosynthetic light reactions to changing environmental conditions. Good evidence exists that the Δψ/ΔpH partitioning is controlled by thylakoid potassium and chloride ion transporters and channels. However, a detailed mechanistic understanding of how these thylakoid ion transporter/channels control pmf partitioning is lacking. Here, we combined functional measurements on potassium and chloride ion transporter and channel loss-of-function mutants with extended mathematical simulations of photosynthetic light reactions in thylakoid membranes to obtain detailed kinetic insights into the complex interrelationship between membrane energization and ion fluxes across thylakoid membranes. The data reveal that potassium and chloride fluxes in the thylakoid lumen determined by the K+/H+ antiporter KEA3 and the voltage-gated Cl- channel VCCN1/Best1 have distinct kinetic responses that lead to characteristic and light-intensity-dependent Δψ/ΔpH oscillations. These oscillations fine-tune photoprotective mechanisms and electron transport which are particularly important during the first minutes of illumination and under fluctuating light conditions. By employing the predictive power of the model, we unravelled the functional consequences of changes in KEA3 and VCCN1 abundance and regulatory/enzymatic parameters on membrane energization and photoprotection.
Collapse
Affiliation(s)
- Meng Li
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Vaclav Svoboda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Geoffry Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - David Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
21
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Zou W, Liu K, Gao X, Yu C, Wang X, Shi J, Chao Y, Yu Q, Zhou G, Ge L. Diurnal variation of transitory starch metabolism is regulated by plastid proteins WXR1/WXR3 in Arabidopsis young seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3074-3090. [PMID: 33571997 DOI: 10.1093/jxb/erab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Transitory starch is the portion of starch that is synthesized during the day in the chloroplast and usually used for plant growth overnight. Here, we report altered metabolism of transitory starch in the wxr1/wxr3 (weak auxin response 1/3) mutants of Arabidopsis. WXR1/WXR3 were previously reported to regulate root growth of young seedlings and affect the auxin response mediated by auxin polar transport in Arabidopsis. In this study the wxr1/wxr3 mutants accumulated transitory starch in cotyledon, young leaf, and hypocotyl at the end of night. WXR1/WXR3 expression showed diurnal variation. Grafting experiments indicated that the WXRs in root were necessary for proper starch metabolism and plant growth. We also found that photosynthesis was inhibited and the transcription level of DIN1/DIN6 (Dark-Inducible 1/6) was reduced in wxr1/wxr3. The mutants also showed a defect in the ionic equilibrium of Na+ and K+, consistent with our bioinformatics data that genes related to ionic equilibrium were misregulated in wxr1. Loss of function of WXR1 also resulted in abnormal trafficking of membrane lipids and proteins. This study reveals that the plastid proteins WXR1/WXR3 play important roles in promoting transitory starch degradation for plant growth over night, possibly through regulating ionic equilibrium in the root.
Collapse
Affiliation(s)
- Wenjiao Zou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Kui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xueping Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Changjiang Yu
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junjie Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanru Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Gongke Zhou
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
23
|
Nestrerenko EO, Krasnoperova OE, Isayenkov SV. Potassium Transport Systems and Their Role in Stress Response, Plant Growth, and Development. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Uehara C, Takeda K, Ibuki T, Furuta T, Hoshi N, Tanudjaja E, Uozumi N. Analysis of Arabidopsis TPK2 and KCO3 reveals structural properties required for K + channel function. Channels (Austin) 2020; 14:336-346. [PMID: 33016199 PMCID: PMC7757853 DOI: 10.1080/19336950.2020.1825894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arabidopsis thaliana contains five tandem-pore domain potassium channels, TPK1-TPK5 and the related one-pore domain potassium channel, KCO3. Although KCO3 is unlikely to be an active channel, it still has a physiological role in plant cells. TPK2 is most similar to KCO3 and both are localized to the tonoplast. However, their function remains poorly understood. Here, taking advantage of the similarities between TPK2 and KCO3, we evaluated Ca2+ binding to the EF hands in TPK2, and the elements of KCO3 required for K+ channel activity. Presence of both EF-hand motifs in TPK2 resulted in Ca2+ binding, but EF1 or EF2 alone failed to interact with Ca2+. The EF hands were not required for K+ transport activity. EF1 contains two cysteines separated by two amino acids. Replacement of both cysteines with serines in TPK2 increased Ca2+ binding. We generated a two-pore domain chimeric K+ channel by replacing the missing pore region in KCO3 with a pore domain of TPK2. Alternatively, we generated two versions of simple one-pore domain K+ channels by removal of an extra region from KCO3. The chimera and one of the simple one-pore variants were functional channels. This strongly suggests that KCO3 is not a pseudogene and KCO3 retains components required for the formation of a functional K+ channel and oligomerization. Our results contribute to our understanding of the structural properties required for K+ channel activity.
Collapse
Affiliation(s)
- Chihiro Uehara
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Sendai, Japan
| | - Kota Takeda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Sendai, Japan.,Bioscience and Biotechnology Center, Nagoya University , Nagoya, Japan
| | - Tatsuki Ibuki
- Bioscience and Biotechnology Center, Nagoya University , Nagoya, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology , Yokohama, Japan
| | - Naomi Hoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Sendai, Japan
| | - Ellen Tanudjaja
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Sendai, Japan
| |
Collapse
|
25
|
Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J 2020; 476:2725-2741. [PMID: 31654058 PMCID: PMC6792033 DOI: 10.1042/bcj20190134] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
In nature, light availability for photosynthesis can undergo massive changes on a very short timescale. Photosynthesis in such dynamic light environments requires that plants can respond swiftly. Expanding our knowledge of the rapid responses that underlie dynamic photosynthesis is an important endeavor: it provides insights into nature's design of a highly dynamic energy conversion system and hereby can open up new strategies for improving photosynthesis in the field. The present review focuses on three processes that have previously been identified as promising engineering targets for enhancing crop yield by accelerating dynamic photosynthesis, all three of them involving or being linked to processes in the chloroplast, i.e. relaxation of non-photochemical quenching, Calvin–Benson–Bassham cycle enzyme activation/deactivation and dynamics of stomatal conductance. We dissect these three processes on the functional and molecular level to reveal gaps in our understanding and critically discuss current strategies to improve photosynthesis in the field.
Collapse
|
26
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
27
|
Bolte S, Marcon E, Jaunario M, Moyet L, Paternostre M, Kuntz M, Krieger-Liszkay A. Dynamics of the localization of the plastid terminal oxidase inside the chloroplast. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2661-2669. [PMID: 32060533 DOI: 10.1093/jxb/eraa074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The plastid terminal oxidase (PTOX) is a plastohydroquinone:oxygen oxidoreductase that shares structural similarities with alternative oxidases (AOXs). Multiple roles have been attributed to PTOX, such as involvement in carotene desaturation, a safety valve function, participation in the processes of chlororespiration, and setting the redox poise for cyclic electron transport. PTOX activity has been previously shown to depend on its localization at the thylakoid membrane. Here we investigate the dynamics of PTOX localization dependent on the proton motive force. Infiltrating illuminated leaves with uncouplers led to a partial dissociation of PTOX from the thylakoid membrane. In vitro reconstitution experiments showed that the attachment of purified recombinant maltose-binding protein (MBP)-OsPTOX to liposomes and isolated thylakoid membranes was strongest at slightly alkaline pH values in the presence of lower millimolar concentrations of KCl or MgCl2. In Arabidopsis thaliana overexpressing green fluorescent protein (GFP)-PTOX, confocal microscopy images showed that PTOX formed distinct spots in chloroplasts of dark-adapted or uncoupler-treated leaves, while the protein was more equally distributed in a network-like structure in the light. We propose a dynamic PTOX association with the thylakoid membrane depending on the presence of a proton motive force.
Collapse
Affiliation(s)
- Susanne Bolte
- Sorbonne Université, CNRS-FRE 3631 - Institut de Biologie Paris Seine, Imaging Core Facility, Paris, France
| | - Elodie Marcon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Mélanie Jaunario
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Lucas Moyet
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, INRA, CEA, Grenoble cedex, France
| | - Maité Paternostre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Marcel Kuntz
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, INRA, CEA, Grenoble cedex, France
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| |
Collapse
|
28
|
Photosynthetic Response Mechanism of Soil Salinity-Induced Cross-Tolerance to Subsequent Drought Stress in Tomato Plants. PLANTS 2020; 9:plants9030363. [PMID: 32187994 PMCID: PMC7154942 DOI: 10.3390/plants9030363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Soil salinization and water shortage cause ion imbalance and hyperosmoticity in plant cells, adversely impairing photosynthesis efficiency. How soil salinity-induced photosynthetic acclimation influences the cross-tolerance to drought conditions represents a promising research topic. This study was to reveal the photosynthetic mechanism of soil salinity-induced resistance to the subsequent drought stress in tomato leaves through comprehensive photosynthesis-related spectroscopy analysis. We conducted soil salinity pretreatment and subsequent drought stress experiments, including irrigation with 100 mL water, 100 mL 100 mM NaCl solution (NaCl100), 50 mL water, and 50 mL 100 mM NaCl solution (NaCl50) for five days, followed by five-day drought stress. The results showed that soil salinity treatment by NaCl decreased the rate of photosynthetic gas exchange but enhanced CO2 assimilation, along with photosystem II [PS(II)] and photosystem I [PS(I)] activity and photochemical efficiency in tomato plants compared with water pretreatment after subsequent drought stress. NaCl100 and NaCl50 had the capacity to maintain non-photochemical quenching (NPQ) of chlorophyll fluorescence and the cyclic electron (CEF) flow around PSI in tomato leaves after being subjected to subsequent drought stress, thus avoiding the decrease of photosynthetic efficiency under drought conditions. NaCl100 and NaCl50 pretreatment induced a higher proton motive force (pmf) and also alleviated the damage to the thylakoid membrane and adenosine triphosphate (ATP) synthase of tomato leaves caused by subsequent drought stress. Overall, soil salinity treatment could enhance drought resistance in tomato plants by inducing NPQ, maintaining CEF and pmf that tradeoff between photoprotection and photochemistry reactions. This study also provides a photosynthetic perspective for salt and drought cross-tolerance.
Collapse
|
29
|
Pohland AC, Schneider D. Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biol Chem 2020; 400:1289-1301. [PMID: 30913030 DOI: 10.1515/hsz-2018-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a 'classical' bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the 'typical' bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| |
Collapse
|
30
|
Babla M, Cai S, Chen G, Tissue DT, Cazzonelli CI, Chen ZH. Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Front Genet 2019; 10:956. [PMID: 31681411 PMCID: PMC6797626 DOI: 10.3389/fgene.2019.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
Collapse
Affiliation(s)
- Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
31
|
Zulfugarov IS, Wu G, Tovuu A, Lee CH. Effect of oxygen on the non-photochemical quenching of vascular plants and potential oxygen deficiency in the stroma of PsbS-knock-out rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:1-6. [PMID: 31300135 DOI: 10.1016/j.plantsci.2019.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 06/10/2023]
Abstract
The excessive and harmful light energy absorbed by the photosystem (PS) II of higher plants is dissipated as heat through a protective mechanism termed non-photochemical quenching (NPQ) of chlorophyll fluorescence. PsbS-knock-out (KO) mutants lack the trans-thylakoid proton gradient (ΔpH)-dependent part of NPQ. To elucidate the molecular mechanism of NPQ, we investigated its dependency on oxygen. The development of NPQ in wild-type (WT) rice under low-oxygen (LO) conditions was reduced to more than 50% of its original value. However, under high-oxygen (HO) conditions, the NPQ of both WT and PsbS-KO mutants recovered. Moreover, WT and PsbS-KO mutant leaves infiltrated with the ΔpH dissipating uncoupler nigericin showed increased NPQ values under HO conditions. The experiments using intact chloroplasts and protoplasts of Arabidopsis thaliana supported that the LO effects observed in rice leaves were not due to carbon dioxide deficiency. There was a noticeable 90% reduction in the half-time of P700 oxidation rate in LO-treated leaves compared with that of WT control leaves, but the HO treatment did not significantly change the half-time of P700 oxidation rate. Overall, the results obtained here indicate that the stroma of the PsbS-KO plants could be potentially under O2 deficiency. Because the functions of PsbS in rice leaves are likely to be similar to those in other higher plants, our findings offer novel insights into the role of oxygen in the development of NPQ.
Collapse
Affiliation(s)
- Ismayil S Zulfugarov
- Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku AZ 1073, Azerbaijan; Department of Biology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Republic of Sakha (Yakutia), Russian Federation
| | - Guangxi Wu
- Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Altanzaya Tovuu
- Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Choon-Hwan Lee
- Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Paggio A, Checchetto V, Campo A, Menabò R, Di Marco G, Di Lisa F, Szabo I, Rizzuto R, De Stefani D. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 2019; 572:609-613. [PMID: 31435016 PMCID: PMC6726485 DOI: 10.1038/s41586-019-1498-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/25/2019] [Indexed: 11/09/2022]
Abstract
Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.
Collapse
Affiliation(s)
- Angela Paggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Antonio Campo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Giulia Di Marco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019; 64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Eva Kotabová
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Barbora Šedivá
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eliška Kuthanová Trsková
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.,Student of Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
34
|
Tsujii M, Kera K, Hamamoto S, Kuromori T, Shikanai T, Uozumi N. Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. Sci Rep 2019; 9:10040. [PMID: 31296940 PMCID: PMC6624313 DOI: 10.1038/s41598-019-46463-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Arabidopsis thaliana contains the putative K+ efflux transporters KEA1-KEA6, similar to KefB and KefC of Escherichia coli. KEA1-KEA3 are involved in the regulation of photosynthetic electron transport and chloroplast development. KEA4-KEA6 mediate pH regulation of the endomembrane network during salinity stress. However, the ion transport activities of KEA1-KEA6 have not been directly characterized. In this study, we used an E. coli expression system to examine KEA activity. KEA1-KEA3 and KEA5 showed bi-directional K+ transport activity, whereas KEA4 and KEA6 functioned as a K+ uptake system. The thylakoid membrane-localized Na+/H+ antiporter NhaS3 from the model cyanobacterium Synechocystis is the closest homolog of KEA3. Changing the putative Na+/H+ selective site of KEA3 (Gln-Asp) to that of NhaS3 (Asp-Asp) did not alter the ion selectivity without loss of K+ transport activity. The first residue in the conserved motif was not a determinant for K+ or Na+ selectivity. Deletion of the possible nucleotide-binding KTN domain from KEA3 lowered K+ transport activity, indicating that the KTN domain was important for this function. The KEA3-G422R mutation discovered in the Arabidopsis dpgr mutant increased K+ transport activity, consistent with the mutant phenotype. These results indicate that Arabidopsis KEA1-KEA6 act as K+ transport systems, and support the interpretation that KEA3 promotes dissipation of ΔpH in the thylakoid membrane.
Collapse
Affiliation(s)
- Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan.
| |
Collapse
|
35
|
K + and Cl - channels/transporters independently fine-tune photosynthesis in plants. Sci Rep 2019; 9:8639. [PMID: 31201341 PMCID: PMC6570773 DOI: 10.1038/s41598-019-44972-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
In variable light environments, plants adjust light use in photosynthetic electron transport and photoprotective dissipation in the thylakoid membrane. In this respect, roles of the K+/H+ antiporter KEA3, the Cl- channel/transporter CLCe and the voltage-dependent Cl- channel VCCN1 have been unraveled in Arabidopsis thaliana. Here we report that they independently adjust photosynthesis on the basis of analyses using single and higher order loss-of-function mutants. In short experiments of photosynthetic response on transition from dark to low light, we reveal a sequential functioning of VCCN1 and CLCe in the activation of photoprotection and of KEA3 in its downregulation to a low steady state while adjusting the electron transport. On transition from low to high light, VCCN1 accelerates the activation of photoprotection, whereas KEA3 slows it down on transition from high to low light. Based on parallel electrochromic band shift measurements, the mechanism behind is that VCCN1 builds up a pH gradient across the thylakoid membrane, whereas KEA3 dissipates this gradient, which affects photoprotection. CLCe regulates photosynthesis by a pH-independent mechanism likely involving Cl- homeostasis. Nevertheless, all genotypes grow well in alternating high and low light. Taken together, the three studied ion channels/transporters function independently in adjusting photosynthesis to the light environment.
Collapse
|
36
|
Teardo E, Carraretto L, Moscatiello R, Cortese E, Vicario M, Festa M, Maso L, De Bortoli S, Calì T, Vothknecht UC, Formentin E, Cendron L, Navazio L, Szabo I. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. NATURE PLANTS 2019; 5:581-588. [PMID: 31182842 DOI: 10.1038/s41477-019-0434-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Vicario
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lorenzo Maso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|
37
|
Trinh MDL, Sato R, Masuda S. Genetic characterization of a flap1 null mutation in Arabidopsis npq4 and pgr5 plants suggests that the regulatory role of FLAP1 involves the control of proton homeostasis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2019; 139:413-424. [PMID: 30390180 DOI: 10.1007/s11120-018-0575-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Precise control of the proton concentration gradient across thylakoid membranes (ΔpH) is essential for photosynthesis and its regulation because the gradient contributes to the generation of the proton motive force used for ATP synthesis and also for the fast and reversible induction of non-photochemical quenching (NPQ) to avoid photoinhibition and photodamage. However, the regulatory mechanism(s) controlling ΔpH in response to fluctuating light has not been fully elucidated. We previously described a new NPQ-regulatory chloroplastic protein, Fluctuating-Light-Acclimation Protein1 (FLAP1), which is important for plant growth and modulation of ΔpH under fluctuating light conditions. For this report, we further characterized FLAP1 activity by individually crossing an Arabidopsis flap1 mutant with npq4 and pgr5 plants; npq4 is defective in PsbS-dependent NPQ, and pgr5 is defective in induction of steady-state proton motive force (pmf) and energy-dependent quenching (qE). Both npq4 and npq4 flap1 exhibited similar NPQ kinetics and other photosynthetic parameters under constant or fluctuating actinic light. Conversely, pgr5 flap1 had recovered NPQ, photosystem II quantum yield and growth under fluctuating light, each of which was impaired in pgr5. Together with other data, we propose that FLAP1 activity controls proton homeostasis under steady-state photosynthesis to manipulate luminal acidification levels appropriately to balance photoprotection and photochemical processes.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ryoichi Sato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
38
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
39
|
Checchetto V, Szabò I. Electrophysiological Characterization of Calcium-Permeable Channels Using Planar Lipid Bilayer. Methods Mol Biol 2019; 1925:65-73. [PMID: 30674017 DOI: 10.1007/978-1-4939-9018-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous researchers tried to identify the key players of calcium signaling in mitochondria using molecular and cell biology techniques for more than five decades. However, only an integrated approach involving also electrophysiological techniques has finally allowed to define the components of the protein complex responsible for the uptake of this ion into mitochondria.Here we describe the protocol used for the electrophysiological characterization of the mitochondrial calcium uniporter (MCU) complex: the following outline indicates step-by-step the setup of planar lipid bilayer experiments.
Collapse
Affiliation(s)
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
40
|
Frank J, Happeck R, Meier B, Hoang MTT, Stribny J, Hause G, Ding H, Morsomme P, Baginsky S, Peiter E. Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. THE NEW PHYTOLOGIST 2019; 221:866-880. [PMID: 30169890 DOI: 10.1111/nph.15407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
The photosynthetic machinery of plants must be regulated to maximize the efficiency of light reactions and CO2 fixation. Changes in free Ca2+ in the stroma of chloroplasts have been observed at the transition between light and darkness, and also in response to stress stimuli. Such Ca2+ dynamics have been proposed to regulate photosynthetic capacity. However, the molecular mechanisms of Ca2+ fluxes in the chloroplasts have been unknown. By employing a Ca2+ reporter-based approach, we identified two chloroplast-localized Ca2+ transporters in Arabidopsis thaliana, BICAT1 and BICAT2, that determine the amplitude of the darkness-induced Ca2+ signal in the chloroplast stroma. BICAT2 mediated Ca2+ uptake across the chloroplast envelope, and its knockout mutation strongly dampened the dark-induced [Ca2+ ]stroma signal. Conversely, this Ca2+ transient was increased in knockout mutants of BICAT1, which transports Ca2+ into the thylakoid lumen. Knockout mutation of BICAT2 caused severe defects in chloroplast morphology, pigmentation and photosynthetic light reactions, rendering bicat2 mutants barely viable under autotrophic growth conditions, while bicat1 mutants were less affected. These results show that BICAT transporters play a role in chloroplast Ca2+ homeostasis. They are also involved in the regulation of photosynthesis and plant productivity. Further work will be required to reveal whether the effect on photosynthesis is a direct result of their role as Ca2+ transporters.
Collapse
Affiliation(s)
- Julia Frank
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Ricardo Happeck
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Minh Thi Thanh Hoang
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Haidong Ding
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Sacha Baginsky
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| |
Collapse
|
41
|
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Angela Re
- Center for Sustainable Future Technologies-CSFT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| |
Collapse
|
42
|
Global spectroscopic analysis to study the regulation of the photosynthetic proton motive force: A critical reappraisal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:676-683. [DOI: 10.1016/j.bbabio.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 01/11/2023]
|
43
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
44
|
Cardona T, Shao S, Nixon PJ. Enhancing photosynthesis in plants: the light reactions. Essays Biochem 2018; 62:85-94. [PMID: 29563222 PMCID: PMC5897789 DOI: 10.1042/ebc20170015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board. It is envisioned that the crops of the future will be extensively genetically modified to tailor them to specific natural or artificial environmental conditions.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Shengxi Shao
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
45
|
Davis GA, Rutherford AW, Kramer DM. Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δ ψ and ΔpH. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0381. [PMID: 28808100 DOI: 10.1098/rstb.2016.0381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 11/12/2022] Open
Abstract
There is considerable interest in improving plant productivity by altering the dynamic responses of photosynthesis in tune with natural conditions. This is exemplified by the 'energy-dependent' form of non-photochemical quenching (qE), the formation and decay of which can be considerably slower than natural light fluctuations, limiting photochemical yield. In addition, we recently reported that rapidly fluctuating light can produce field recombination-induced photodamage (FRIP), where large spikes in electric field across the thylakoid membrane (Δψ) induce photosystem II recombination reactions that produce damaging singlet oxygen (1O2). Both qE and FRIP are directly linked to the thylakoid proton motive force (pmf), and in particular, the slow kinetics of partitioning pmf into its ΔpH and Δψ components. Using a series of computational simulations, we explored the possibility of 'hacking' pmf partitioning as a target for improving photosynthesis. Under a range of illumination conditions, increasing the rate of counter-ion fluxes across the thylakoid membrane should lead to more rapid dissipation of Δψ and formation of ΔpH. This would result in increased rates for the formation and decay of qE while resulting in a more rapid decline in the amplitudes of Δψ-spikes and decreasing 1O2 production. These results suggest that ion fluxes may be a viable target for plant breeding or engineering. However, these changes also induce transient, but substantial mismatches in the ATP : NADPH output ratio as well as in the osmotic balance between the lumen and stroma, either of which may explain why evolution has not already accelerated thylakoid ion fluxes. Overall, though the model is simplified, it recapitulates many of the responses seen in vivo, while spotlighting critical aspects of the complex interactions between pmf components and photosynthetic processes. By making the programme available, we hope to enable the community of photosynthesis researchers to further explore and test specific hypotheses.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Geoffry A Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.,Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | | | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
47
|
Zhao C, Haigh AM, Holford P, Chen ZH. Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance. Int J Mol Sci 2018; 19:E963. [PMID: 29570668 PMCID: PMC5979362 DOI: 10.3390/ijms19040963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
Worldwide, drought affects crop yields; therefore, understanding plants' strategies to adapt to drought is critical. Chloroplasts are key regulators of plant responses, and signals from chloroplasts also regulate nuclear gene expression during drought. However, the interactions between chloroplast-initiated retrograde signals and ion channels under stress are still not clear. In this review, we summarise the retrograde signals that participate in regulating plant stress tolerance. We compare chloroplastic transporters that modulate retrograde signalling through retrograde biosynthesis or as critical components in retrograde signalling. We also discuss the roles of important plasma membrane and tonoplast ion transporters that are involved in regulating stomatal movement. We propose how retrograde signals interact with ion transporters under stress.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Anthony M Haigh
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
48
|
Ruiz-Lau N, Sáez Á, Lanza M, Benito B. Genomic and Transcriptomic Compilation of Chloroplast Ionic Transporters of Physcomitrella patens. Study of NHAD Transporters in Na+ and K+ Homeostasis. PLANT & CELL PHYSIOLOGY 2017; 58:2166-2178. [PMID: 29036645 DOI: 10.1093/pcp/pcx150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
K+ is widely used by plant cells, whereas Na+ can easily reach toxic levels during plant growth, which typically occurs in saline environments; however, the effects and functions in the chloroplast have been only roughly estimated. Traditionally, the occurrence of ionic fluxes across the chloroplast envelope or the thylakoid membranes has been mostly deduced from physiological measurements or from knowledge of chloroplast metabolism. However, many of the proteins involved in these fluxes have not yet been characterized. Based on genomic and RNA sequencing (RNA-seq) analyses, we present a comprehensive compilation of genes encoding putative ion transporters and channels expressed in the chloroplasts of the moss Physcomitrella patens, with a special emphasis on those related to Na+ and K+ fluxes. Based on the functional characterization of nhad mutants, we also discuss the putative role of NHAD transporters in Na+ homeostasis and osmoregulation of this organelle and the putative contribution of chloroplasts to salt tolerance in this moss. We demonstrate that NaCl does not affect the chloroplast functionality in Physcomitrella despite significantly modifying expression of ionic transporters and cellular morphology, specifically the chloroplast ultrastructure, revealing a high starch accumulation. Additionally, NHAD transporters apparently do not play any essential roles in salt tolerance.
Collapse
Affiliation(s)
- Nancy Ruiz-Lau
- CONACYT-Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Terán 29050, Tuxtla Gutiérrez, Chis, México
| | - Ángela Sáez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
49
|
Kawashima R, Sato R, Harada K, Masuda S. Relative contributions of PGR5- and NDH-dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts. PLANTA 2017; 246:1045-1050. [PMID: 28828567 DOI: 10.1007/s00425-017-2761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 05/11/2023]
Abstract
Respective contributions of PGR5- and NDH-dependent cyclic electron flows around photosystem I for generating the proton gradient across the thylakoid membrane are ~30 and ~5%. The proton concentration gradient across the thylakoid membrane (ΔpH) produced by photosynthetic electron transport is the driving force of ATP synthesis and non-photochemical quenching. Two types of electron transfer contribute to ΔpH formation: linear electron flow (LEF) and cyclic electron flow (CEF, divided into PGR5- and NDH-dependent pathways). However, the respective contributions of LEF and CEF to ΔpH formation are largely unknown. We employed fluorescence quenching analysis with the pH indicator 9-aminoacridine to directly monitor ΔpH formation in isolated chloroplasts of Arabidopsis mutants lacking PGR5- and/or NDH-dependent CEF. The results indicate that ΔpH formation is mostly due to LEF, with the contributions of PGR5- and NDH-dependent CEF estimated as only ~30 and ~5%, respectively.
Collapse
Affiliation(s)
- Rinya Kawashima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryoichi Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Kyohei Harada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
- Earth-life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
50
|
Sato R, Kono M, Harada K, Ohta H, Takaichi S, Masuda S. FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, Conserved in Oxygenic Phototrophs, Regulates H+ Homeostasis and Non-Photochemical Quenching in Chloroplasts. PLANT & CELL PHYSIOLOGY 2017; 58:1622-1630. [PMID: 29016945 DOI: 10.1093/pcp/pcx110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/31/2017] [Indexed: 05/21/2023]
Abstract
Plants have mechanisms allowing them to acclimate to intense light conditions, which involves the dissipation of excess light energy. These mechanisms allow plants to perform photosynthesis efficiently and, therefore, must be accurately and precisely controlled. However, how plants dissipate excess light energy has yet to be fully elucidated. Herein we report the identification of a gene, which we named Fluctuating-Light-Acclimation Protein1 (FLAP1), that is conserved in oxygenic phototrophs. We show that Arabidopsis FLAP1 is associated with chloroplast thylakoid and envelope membranes and that the flap1 mutant shows delayed non-photochemical quenching (NPQ) relaxation during induction of photosynthesis at moderate light intensity. Under fluctuating light conditions, NPQ levels in the flap1 mutant were higher than those in the wild type during the high light period, and the mutant exhibited a pale-green phenotype. These findings suggest that FLAP1 is involved in NPQ control, which is important for an acclimation response to fluctuating light.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyohei Harada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | | | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|