1
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
2
|
Ramzan MH, Shah M, Ramzan F. Neurokinin B Administration Induces Dose Dependent Proliferation of Seminal Vesicles in Adult Rats. Curr Protein Pept Sci 2024; 25:339-352. [PMID: 38243941 DOI: 10.2174/0113892037264538231128072614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Neurokinin B; an endogenous decapeptide, mediates its reproductive physiological actions through gonadotropin releasing hormone. Despite the potential role of Neurokinin B on seminal vesicles, its effects on seminal vesicles in adult male mammals remain elusive. We aimed to investigate the potentials of variable doses of Neurokinin B, its agonist and antagonist on histomorphology and expression of NK3R on seminal vesicles, and secretory activity of seminal vesicles in adult male rats. METHODS Adult male Sprague Dawley rats (n=10 in each group) were administered intraperitoneally with Neurokinin B in three variable doses: 1 μg, 1 ηg and 10 ρg while, Senktide (Neurokinin B agonist) and SB222200 (Neurokinin B antagonist) in 1 μg doses consecutively for 12 days. After 12 days of peptide treatment, half of the animals (n=05) in each group were sacrificed while remaining half (n=05) were kept for another 12 days without any treatment to investigate treatment reversal. Seminal vesicles were dissected and excised tissue was processed for light microscopy, immunohistochemistry and estimation of seminal fructose levels. RESULTS Treatment with Neurokinin B and Senktide significantly increased while SB222200 slightly decrease the seminal vesicles weight, epithelial height and seminal fructose levels as compared to control. Light microscopy revealed increased epithelial height and epithelial folding as compared to control in all Neurokinin B and Senktide treated groups while decreased in SB222200. Effects of various doses of Neurokinin B, Senktide and SB222200 on seminal vesicles weight, epithelial height, seminal fructose levels and histomorphology were reversed when rats were maintained without treatments. Immuno-expression of Neurokinin B shows no change in treatment and reversal groups. CONCLUSION Continuous administration of Neurokinin B and Senktide effect positively while SB222200 have detrimental effects on cellular morphology, epithelial height and seminal fructose levels in seminal vesicles. Effects of peptide treatments depicted a reversal towards control group when rats were kept without any treatment.
Collapse
Affiliation(s)
- Muhammad Haris Ramzan
- Department of Physiology, Khyber Medical University Institute of Medical Sciences (KMU-IMS), Kohat 26000, Pakistan
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar25100, Pakistan
| | - Mohsin Shah
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Faiqah Ramzan
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences (FVAS), Gomal University, Dera Ismail Khan, 29050, Pakistan
| |
Collapse
|
3
|
Functional evaluation of a novel kisspeptin analogue on the reproduction of female goldfish. Sci Rep 2022; 12:21944. [PMID: 36536005 PMCID: PMC9763426 DOI: 10.1038/s41598-022-25950-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin (kp) is a key regulator of reproduction, which stimulates sexual maturation and gametogenesis in mammals, amphibians, and teleosts. In the present study, to enhance the biological activity of kp10, a novel analog (referred to as M-kp10) was designed based on the endogenous goldfish variant, in which phenylalanine 6 was substituted by tryptophan and the N-terminus was acetylated. Compared with the native kp-10 and salmon gonadotropin-releasing hormone (GnRH3), the effect of M-kp10 on sexual hormones and reproductive indices as well as the expression of kiss1, cyp19a1, and kiss1ra genes in goldfish (Carassius auratus) was investigated. In practice, peptides were synthesized based on the standard Fmoc-solid-phase peptide synthesis and purified by employing RP-HPLC, followed by approving their structure using ESI-MS. The results showed that M-kp10 increased significantly 17,20β-DHP, LH, FSH and E2 as well as fecundity, hatching and fertilization percentages than the other peptides. Histological studies revealed that M-kp10 led to the faster growth of ovarian follicles compared to the kp-10 and GnRH3. The genes of cyp19a1, kiss1ra, and kiss1 were remarkably more expressed after treatment with M-kp10. In conclusion, the results indicated the superiority of M-kp10 over kp-10 in inducing sexual maturation and accelerating the percentage of fecundity, suggesting that M-kp10 could be a promising candidate for application in the artificial breeding of fish.
Collapse
|
4
|
Dolcetti FJC, Falomir-Lockhart E, Acuña F, Herrera ML, Cervellini S, Barbeito CG, Grassi D, Arevalo MA, Bellini MJ. IGF1 gene therapy in middle-aged female rats delays reproductive senescence through its effects on hypothalamic GnRH and kisspeptin neurons. Aging (Albany NY) 2022; 14:8615-8632. [DOI: 10.18632/aging.204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Franco Juan Cruz Dolcetti
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Eugenia Falomir-Lockhart
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Macarena Lorena Herrera
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, UNC-CONICET, Córdoba, Argentina
| | - Sofia Cervellini
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, España
| | - Maria-Angeles Arevalo
- Instituto Cajal, CSIC, Madrid, España
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, España
| | - María José Bellini
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
5
|
Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, Kalemba KM, Shah A, Rustgi VK, Wang H, Bech PR, Abbara A, Izzi-Engbeaya C, Manousou P, Guo JY, Guo GL, Radovick S, Dhillo WS, Wondisford FE, Babwah AV, Bhattacharya M. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132:145889. [PMID: 35349482 PMCID: PMC9106350 DOI: 10.1172/jci145889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, and
| | | | - Shivani Rao
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | - Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vinod K. Rustgi
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Paul R. Bech
- Section of Endocrinology and Investigative Medicine and
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine and
| | | | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jessie Y. Guo
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, and
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Xie Q, Kang Y, Zhang C, Xie Y, Wang C, Liu J, Yu C, Zhao H, Huang D. The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Front Endocrinol (Lausanne) 2022; 13:925206. [PMID: 35837314 PMCID: PMC9273750 DOI: 10.3389/fendo.2022.925206] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The discovery of kisspeptin as a critical central regulatory factor of GnRH release has given people a novel understanding of the neuroendocrine regulation in human reproduction. Kisspeptin activates the signaling pathway by binding to its receptor kisspeptin receptor (KISS1R) to promote GnRH secretion, thereby regulating the hypothalamic-pituitary-gonadal axis (HPG) axis. Recent studies have shown that kisspeptin neurons located in arcuate nucleus (ARC) co-express neurokinin B (NKB) and dynorphin (Dyn). Such neurons are called KNDy neurons. KNDy neurons participate in the positive and negative feedback of estrogen to GnRH secretion. In addition, kisspeptin is a key factor in the initiation of puberty, and also regulates the processes of female follicle development, oocyte maturation, and ovulation through the HPG axis. In male reproduction, kisspeptin also plays an important role, getting involved in the regulation of Leydig cells, spermatogenesis, sperm functions and reproductive behaviors. Mutations in the KISS1 gene or disorders of the kisspeptin/KISS1R system may lead to clinical symptoms such as idiopathic hypogonadotropic hypogonadism (iHH), central precocious puberty (CPP) and female infertility. Understanding the influence of kisspeptin on the reproductive axis and related mechanisms will help the future application of kisspeptin in disease diagnosis and treatment. In this review, we critically appraise the role of kisspeptin in the HPG axis, including its signaling pathways, negative and positive feedback mechanisms, and its control on female and male reproduction.
Collapse
Affiliation(s)
- Qinying Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Butruille L, Batailler M, Cateau ML, Sharif A, Leysen V, Prévot V, Vaudin P, Pillon D, Migaud M. Selective Depletion of Adult GFAP-Expressing Tanycytes Leads to Hypogonadotropic Hypogonadism in Males. Front Endocrinol (Lausanne) 2022; 13:869019. [PMID: 35370973 PMCID: PMC8966543 DOI: 10.3389/fendo.2022.869019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
In adult mammals, neural stem cells are localized in three neurogenic regions, the subventricular zone of the lateral ventricle (SVZ), the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the hypothalamus. In the SVZ and the SGZ, neural stem/progenitor cells (NSPCs) express the glial fibrillary acidic protein (GFAP) and selective depletion of these NSPCs drastically decreases cell proliferation in vitro and in vivo. In the hypothalamus, GFAP is expressed by α-tanycytes, which are specialized radial glia-like cells in the wall of the third ventricle also recognized as NSPCs. To explore the role of these hypothalamic GFAP-positive tanycytes, we used transgenic mice expressing herpes simplex virus thymidine kinase (HSV-Tk) under the control of the mouse Gfap promoter and a 4-week intracerebroventricular infusion of the antiviral agent ganciclovir (GCV) which kills dividing cells expressing Tk. While GCV significantly reduced the number and growth of hypothalamus-derived neurospheres from adult transgenic mice in vitro, it causes hypogonadotropic hypogonadism in vivo. The selective death of dividing tanycytes expressing GFAP indeed results in a marked decrease in testosterone levels and testicular weight, as well as vacuolization of the seminiferous tubules and loss of spermatogenesis. Additionally, GCV-treated GFAP-Tk mice show impaired sexual behavior, but no alteration in food intake or body weight. Our results also show that the selective depletion of GFAP-expressing tanycytes leads to a sharp decrease in the number of gonadotropin-releasing hormone (GnRH)-immunoreactive neurons and a blunted LH secretion. Overall, our data show that GFAP-expressing tanycytes play a central role in the regulation of male reproductive function.
Collapse
Affiliation(s)
| | | | | | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Valérie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Pascal Vaudin
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Delphine Pillon
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Martine Migaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- *Correspondence: Martine Migaud,
| |
Collapse
|
8
|
Fatima I, Qureshi IZ. Intraperitoneal kisspeptin-10 administration ameliorates sodium arsenite-induced reproductive toxicity in adult male mice. Andrologia 2021; 54:e14347. [PMID: 34897760 DOI: 10.1111/and.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
The current study investigated the protective ameliorative effect of intraperitoneally administered kisspeptin-10 (50 nmol/day) against reproductive toxicity in adult male mice challenged with 35 days of exposure to sodium arsenite in drinking water. Mice were divided into tap water control, sodium arsenite-alone (4 ppm and 10 ppm), kisspeptin-alone (intermittent and continuous) and combined (sodium arsenite +kisspeptin-10 intermittent and continuous) treatment groups. Results revealed protective effect of both intermittent and continuous kisspeptin doses on reproductive organs against sodium arsenite-induced toxicity. This was indicated by an increase (p < 0.001) in the activity of antioxidant enzymes and a decrease (p < 0.001) in the levels of oxidative stress biomarkers. Concomitant significant increase was noticeable in the relative organ weight (p < 0.01), and serum testosterone and seminal fructose (p < 0.001), and a significant improvement in sperm parameters was also observed. A significant downregulation of lactate dehydrogenase concentration demonstrated further the protective effect of kisspeptin against tissue damage. Histologically, both treatment regimens of kisspeptin combined with sodium arsenite exposure prevented massive germ cell loss and tissue damage, a condition prominent in sodium arsenite-alone-treated mice. The study demonstrates for the first time kisspeptin's potential to mitigate the biochemical and histotoxic effects of arsenic on male reproductive system.
Collapse
Affiliation(s)
- Iffat Fatima
- Department of Zoology (Animal Sciences), Quaid-i-Azam University, Islamabad, Pakistan
| | - Irfan Zia Qureshi
- Department of Zoology (Animal Sciences), Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
9
|
Terse PS, Peggins J, Seminara SB. Safety Evaluation of KP-10 (Metastin 45-54) Following once Daily Intravenous Administration for 14 Days in Dog. Int J Toxicol 2021; 40:337-343. [PMID: 34126799 DOI: 10.1177/10915818211023459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kisspeptin-10 (previously referred as metastin 45-54), an active fragment of the endogenous full-length kisspeptin-145, is a potential therapeutic agent for reproductive disorders such as infertility, amenorrhea, and pubertal delay. A safety evaluation of KP-10 was conducted in dogs at the doses of 30, 100, and 1,000 μg/kg, given once daily intravenously for 14 days with a 14-day recovery period. There were no overt signs of drug-related toxicity observed in clinical signs, body weights, food consumption, clinical pathology, histopathology, urinalysis, electrocardiogram, or respiratory rate. Due to very rapid clearance of the peptide, luteinizing hormone (LH) levels were measured as a surrogate marker to demonstrate KP-10 exposure. The LH response reached a maximum concentration at 5 minutes post-dose and remained relatively unchanged for at least 30 minutes after dosing with no gender effect. LH concentrations on Day 1 were generally greater than on day 14. Vaginal cytology results indicated all dogs were in anestrous throughout the dosing period. There were also no KP-10-related findings observed in recovery animals on Day 29. In conclusion, KP-10 demonstrated favorable safety profile in dog where 1,000 μg/kg dose was considered as a no-observed-adverse-effect level dose when administered IV once daily for 14 days.
Collapse
Affiliation(s)
- Pramod S Terse
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
10
|
Izzi-Engbeaya C, Dhillo WS. Emerging roles for kisspeptin in metabolism. J Physiol 2021; 600:1079-1088. [PMID: 33977536 DOI: 10.1113/jp281712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Kisspeptin, a neuropeptide hormone, has been firmly established as a key regulator of the hypothalamic-pituitary-gonadal axis and mammalian reproductive behaviour. In recent years, a growing body of evidence has emerged suggesting a role for kisspeptin in regulating metabolic processes. This data suggest that kisspeptin exerts its metabolic effects indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, pancreas and brown adipose tissue. Kisspeptin receptor knockout studies indicate that kisspeptin may play sexually dimorphic roles in the physiological regulation of energy expenditure, food intake and body weight. Some, but not all, in vitro work demonstrates positive effects on glucose-stimulated insulin secretion, which is more marked at higher kisspeptin concentrations. Acute and chronic in vivo rodent, non-human primate and human studies reveal enhancement of glucose-stimulated insulin secretion in response to pharmacological doses of kisspeptin. Although significant progress has been made in elucidating the metabolic effects of kisspeptin, further mechanistic work and translational studies are required to address unanswered questions and establish the metabolic effects of kisspeptin in diverse human populations (including women, people with obesity and people with diabetes).
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Section of Endocrinology & Investigative Medicine, Imperial College London, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Imperial College London, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Chronic kisspeptin delays puberty and reduces feed intake and body weight in female rats. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
Yang L, Demetriou L, Wall MB, Mills EG, Wing VC, Thurston L, Schaufelberger CN, Owen BM, Abbara A, Rabiner EA, Comninos AN, Dhillo WS. The Effects of Kisspeptin on Brain Response to Food Images and Psychometric Parameters of Appetite in Healthy Men. J Clin Endocrinol Metab 2021; 106:e1837-e1848. [PMID: 33075807 PMCID: PMC7993584 DOI: 10.1210/clinem/dgaa746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. OBJECTIVE This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. DESIGN A double-blinded, randomized, placebo-controlled, crossover study was conducted. PARTICIPANTS Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). INTERVENTION Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. MAIN OUTCOME MEASURES Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. RESULTS Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. CONCLUSIONS This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.
Collapse
Affiliation(s)
- Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | | | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Victoria C Wing
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Layla Thurston
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
13
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
14
|
Meccariello R, Fasano S, Pierantoni R. Kisspeptins, new local modulators of male reproduction: A comparative overview. Gen Comp Endocrinol 2020; 299:113618. [PMID: 32950583 DOI: 10.1016/j.ygcen.2020.113618] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022]
Abstract
Spermatogenesis is a complex process that leads to the production of male gametes within the testis through the coordination of mitotic, meiotic and differentiation events, under a deep control of endocrine, paracrine and autocrine modulators along the Hypothalamus-pituitary-gonad (HPG) axis. The kisspeptin system plays a fundamental role along the HPG axis as it is the main positive modulator upstream of the hypothalamic neurons that secrete the Gonadotropin Releasing Hormone (GnRH), the decapeptide that supports pituitary gonadotropins and the production of gonadal sex steroid. Currently, kisspeptins and their receptor, KISS1R, have a recognized activity in the central control of puberty onset, sex maturation, reproduction and sex-steroid feedback mechanisms in both animal models and human. However, kisspeptin signaling has been widely reported in peripheral tissues, particularly in the testis of mammalian and non-mammalian vertebrates, with functions related to Leydig cells physiology and steroid biosynthesis, spermatogenesis progression and spermatozoa functions, but its mandatory role within the testis is still a matter of discussion. This review provides a summary of the main intratesticular effects of kisspeptin in vertebrates, via a comparative approach. Particular emphasis was devoted to data from the anuran amphibian Pelophylax esculentus, the first animal model in which the direct intratesticular activity of kisspeptin was reported.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| |
Collapse
|
15
|
Park JW, Kim JH, Kwon JY. Effects of Kiss2 on the Expression of Gonadotropin Genes in the Pituitary of Nile Tilapia ( Oreochromis niloticus). Dev Reprod 2020; 24:149-158. [PMID: 33110946 PMCID: PMC7576967 DOI: 10.12717/dr.2020.24.3.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Kisspeptin, expressed mainly in the hypothalamus, stimulates gonadotropin-releasing hormone neurons to facilitate reproduction. In some model animals, the kisspeptin is also expressed in the pituitary. Recently, a pathway has been suggested in which kisspeptin acts directly on the pituitary to secretion of gonadotropin in mammals. In the present study, pituitaries of the Nile tilapia (Oreochromis niloticus) were cultured at different concentrations of kisspeptin-10 (Kp-10, FNYNPLSLRF) for 3 hours to observe the effect of kisspeptin on the expression of follicle-stimulating hormone β subunit (fshβ) gene and luteinizing hormone β subunit (lhβ) gene. Pituitary tissues were cultured with 0.1 μM of Kp-10, luteinizing hormone releasing hormone (LHRH), or LHRH+Kp-10 for 3, 6, 12, and 24 hours to investigate changes in the expression of fshβ and lhβ mRNA. Pituitaries cultured with high concentration of Kp-10 more than 0.1 μM for 3 hours exhibited a significant increase of fshβ mRNA expression, but not lhβ mRNA. The expression of both fshβ and lhβ mRNA increased after 6 hours in 0.1 μM of Kp-10 medium in comparison with that in the control medium. Tissues cultured in the LHRH medium however exhibited increased expression of both genes not only at 6 but also 12 hours. There were no significant differences of fshβ and lhβ gene expression in tissues cultured with LHRH+KP-10 medium compared with the control. These results suggested that although kisspeptin plays an important role in fshβ and lhβ expression in the pituitary of Nile tilapia, its action is far more complicated than expected.
Collapse
Affiliation(s)
- Jin Woo Park
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63610, Korea
| | - Jung-Hyun Kim
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63610, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
16
|
Kisspeptin has an independent and direct effect on the pituitary gland in the mare. Theriogenology 2020; 157:199-209. [PMID: 32814247 DOI: 10.1016/j.theriogenology.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/27/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
To more clearly understand the equine gonadotrope response to kisspeptin and gonadotropin releasing hormone (GnRH), peripheral LH and FSH were quantified in diestrous mares after treatment with either equine kisspeptide (eKp-10, 0.5 mg iv), GnRH (25 μg iv), or a combination thereof every 4 h for 3 days. The following observations were made: 1) a diminished LH and FSH response to eKp-10 and GnRH was observed by Day 3, but was not different by treatment, 2) a decrease in basal LH concentration was observed from Day 1 to Day 3 for the eKp-10, but not the GnRH treated mares, 3) there was no change in basal FSH with either treatment. Additionally, pre-treatment with GnRH antagonist (antide 1.0 mg iv) eliminated any measurable change in LH after eKp-10 (1.0 mg iv) treatment. Both GnRH and kisspeptin are Gαq/11 coupled receptors, therefore quantifying the rise in intracellular calcium following treatment with cognate ligand allows simultaneous assessment of receptor activation. Direct stimulation of equine primary pituitary cells with GnRH and/or eKp-10 demonstrates three distinct populations of pituitary cells: one population responded to both eKp-10 and GnRH, a second, independent population, responded to only eKp-10, and a third population responded only to GnRH. These populations were confirmed using co-immunofluorescence of hemipituitaries from mares in diestrus. Although the rise in peripheral LH concentration elicited by eKp-10 is dependent on GnRH, this work suggests that kisspeptin also has a specific and direct effect on the equine gonadotrope, independent of GnRH.
Collapse
|
17
|
Kisspeptin-52 partially rescues the activity of the hypothalamus-pituitary-gonadal axis in underweight male rats dosed with an anti-obesity compound. Toxicol Appl Pharmacol 2020; 404:115152. [PMID: 32726590 DOI: 10.1016/j.taap.2020.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022]
Abstract
Energy metabolism and reproduction are closely linked and reciprocally regulated. The detrimental effect of underweight on reproduction complicates the safety evaluation of anti-obesity drugs, making it challenging to distinguish pathological changes mediated through the intended drug-induced weight loss from direct drug effects on reproductive organs. Four-weeks dosing of normal weight Sprague Dawley rats with a glucagon-like peptide 1 (GLP-1)/glucagon receptor co-agonist induced a robust weight loss, accompanied by histological findings in prostate, seminal vesicles, mammary glands, uterus/cervix and vagina. Characterization of the hypothalamus-pituitary-gonadal (HPG) axis in male rats revealed reduced hypothalamic Kiss1 mRNA levels and decreased serum luteinizing hormone (LH) and testosterone concentrations following co-agonist dosing. These alterations resemble hypogonadotropic hypogonadism typically seen in adverse energy deprived conditions, like chronic food restriction. Concomitant daily administration of kisspeptin-52 from day 21 to the end of the four-week co-agonist dosing period evoked LH and testosterone responses without normalizing histological findings. This incomplete rescue by kisspeptin-52 may be due to the rather short kisspeptin-52 treatment period combined with a desensitization observed on testosterone responses. Concomitant leptin treatment from day 21 did not reverse co-agonist induced changes in HPG axis activity. Furthermore, a single co-agonist injection in male rats slightly elevated LH levels but left testosterone unperturbed, thereby excluding a direct acute inhibitory effect on the HPG axis. Our data suggest that the reproductive phenotype after repeated co-agonist administration was driven by the intended weight loss, however, we cannot exclude a direct organ related effect in chronically treated rats.
Collapse
|
18
|
Kogame A, Ishikawa K, DeJongh J, Tagawa Y, Matsui H, Moriya Y, Kondo T, Asahi S. Pharmacokinetic and pharmacodynamic modeling of the metastin/kisspeptin analog, TAK-448, for its anti-tumor efficacy in a rat xenograft model. Biopharm Drug Dispos 2020; 41:283-294. [PMID: 32562504 DOI: 10.1002/bdd.2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
TAK-448 is the investigational metastin/kisspeptin analog, which is known to have an anti-tumor effect through suppression of androgen hormones (luteinizing hormone and testosterone) levels. This study developed pharmacokinetic-pharmacodynamic (PK/PD) models of TAK-448 and leuprorelin acetate (TAP-144) in a rat vertebral-cancer of the prostate (VCaP) androgen-sensitive prostate cancer xenograft model to quantitatively assess and compare the anti-tumor effects of both drugs. A potential contribution of the hormone-independent direct effects of TAK-448 to the tumor growth inhibition was also investigated in the in vivo rat xenograft model, because our in vitro experiments revealed that TAK-448 may also directly suppress VCaP cellular proliferation. The PK/PD model successfully described the time course of tumor growth inhibition after drug treatment as well as the development of resistance to the inhibition of androgen hormones, following drug treatment or castration. The EC50 of the hormone-dependent inhibitory effect of TAK-448 was much lower than that of TAP-144, and TAK-448 also has a faster onset of anti-tumor effect than TAP-144, demonstrating that TAK-448 has a stronger overall anti-tumor effect than TAP-144. In addition, model inference, by incorporating a hormone-independent inhibition pathway of TAK-448 into the PK-PD model, suggested that such a direct inhibition pathway for TAK-448 cannot be excluded, as also indicated by in vitro studies, but its EC50 would be approximately three orders of magnitude higher than that of the hormone-dependent pathway. This study helps to understand the potential and mechanism of TAK-448 as a prostate cancer treatment.
Collapse
Affiliation(s)
- Akifumi Kogame
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kaori Ishikawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Joost DeJongh
- Leiden Experts on Advanced Pharmacokinetics & Pharmacodynamics, Leiden, the Netherlands
| | - Yoshihiko Tagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hisanori Matsui
- XVGen Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yuu Moriya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Takahiro Kondo
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoru Asahi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
19
|
Nikitina IL, Yukhlina YN, Vasilieva EY, Nagornaya II, Grineva EN, Kelmanson IA. Plasma kisspeptin levels in boys with hypogonadotropic delayed puberty. MINERVA ENDOCRINOL 2020; 45:79-88. [PMID: 31994363 DOI: 10.23736/s0391-1977.20.03101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In hypogonadotropic forms of delayed puberty (DP), hypophyseal follicle-stimulating (FSH) and luteinizing (LH) hormones, normally released with GnRH stimulation, are detected low. Since kisspeptin (KP) is a strong stimulant of GnRH neurons, it is considered to have a role in DP etiology. It may be hypothesized that abnormal plasma levels of KP are indicative of DP. The study aimed at evaluation and comparison of plasma KP levels in boys of pre-pubertal age, with normal puberty and diagnosed primary hypogonadotropic forms of DP. METHODS The study comprised 22 boys with verified hypogonadotropic DP (age 14-17 years), 25 boys with normal puberty (age 14-17 years), and 28 pre-pubertal boys (age 6-9 years). Triprorelin stimulation test was performed in DP patients. Plasma KP values were compared between three groups. RESULTS Statistically significant difference was found for the overall distribution of the plasma KP values across different groups (Kruskal-Wallis H=21.95, P<0.001). The highest values were found in the DP group (median: 45.0 pg/mL). Median values in the pre-pubertal boys and in the normal pubertal adolescents were equal to 13.8 pg/mL. No statistically significant difference was found for plasma KP levels in the DP boys who had either positive or negative response to Triptorelin stimulation test. Plasma KP level exceeding 16.9 pg/mL was a reliable predictor of hypoganadotropic DP (sensitivity 72.7%, specificity 92.0%). CONCLUSIONS Plasma KP levels are elevated in hypogonadotropic DP cases and may serve as a useful diagnostic tool in evaluating boys with DP.
Collapse
Affiliation(s)
- Irina L Nikitina
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - Yulia N Yukhlina
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - Elena Y Vasilieva
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - Irena I Nagornaya
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - Elena N Grineva
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - Igor A Kelmanson
- The V.A. Almazov National Medical Research Center, St. Petersburg, Russia -
| |
Collapse
|
20
|
Tachykinins and Kisspeptins in the Regulation of Human Male Fertility. J Clin Med 2019; 9:jcm9010113. [PMID: 31906206 PMCID: PMC7019842 DOI: 10.3390/jcm9010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Infertility is a global disease affecting one out of six couples of reproductive age in the world, with a male factor involved in half the cases. There is still much to know about the regulation of human male fertility and thus we decided to focus on two peptide families that seem to play a key role in this function: tachykinins and kisspeptins. With this aim, we conducted an exhaustive review in order to describe the role of tachykinins and kisspeptins in human fertility and their possible implications in infertility etiopathogenesis. Many advances have been made to elucidate the roles of these two families in infertility, and multiple animal species have been studied, including humans. All of this knowledge could lead to new advances in male infertility diagnosis and treatment, but further research is needed to clarify all the implications of tachykinins and kisspeptins in fertility.
Collapse
|
21
|
Abou Khalil NS, Mahmoud GB. Reproductive, antioxidant and metabolic responses of Ossimi rams to kisspeptin. Theriogenology 2019; 142:414-420. [PMID: 31711707 DOI: 10.1016/j.theriogenology.2019.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the potential reproductive, antioxidant and metabolic effects of kisspeptin-10 (KP-10) on Ossimi rams. Twelve Ossimi rams (1.5-2 years old) were divided randomly into two groups (six per group). The first one served as a control group, while the second one served as a treated group. Rams of the treated group were injected once weekly with KP-10 (5 μg/kg body weight) for one month. There were no significant differences in all measured parameters between rams of control group at pre-treatment period and those at post-treatment period. However, most examined parameters in the same rams in the treated group were affected by injection of KP-10 when comparing pre-treatment values in treated group with its post-treatment values. At the pre-treatment period, there were no significant differences between the treated and control groups regarding semen pH, mass motility, sperm concentration/mL, live and dead spermatozoa, total sperm abnormality, testosterone and oxidative stress and metabolic parameters. However, all semen characteristics were significantly improved in the treated group compared with the control group at the post-treatment period and in the treated group at the post-treatment period compared with that at the pre-treatment period. In addition, scrotal circumference, ejaculate volume and total sperm concentration/ejaculate showed higher significant improvements when comparing the treated group with the control one at the post-treatment period than when comparing the two groups at the pre-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. Serum testosterone, total antioxidant capacity, lipid peroxides, nitric oxide, total protein, albumin, glucose and high density lipoprotein-cholesterol levels significantly increased when comparing the treated group with the control one at the post-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. In conclusion, KP-10 led to potential improvement in the reproductive efficacy and metabolic capacity of Ossimi ram.
Collapse
Affiliation(s)
- Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Gamal B Mahmoud
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
22
|
Feng T, Bai JH, Xu XL, Liu Y. Kisspeptin and its Effect on Mammalian Spermatogensis. Curr Drug Metab 2019; 20:9-14. [PMID: 29380696 DOI: 10.2174/1389200219666180129112406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Kisspeptin and its receptor, GPR54, are regarded as key regulators of and catalysts for male puberty onset, and also fundamental gatekeepers of spermatogenesis in mammals. Consequently, the loss function of kisspeptin or GPR54 leads to a symptom of Hypogonadotropic Hypogonadism (HH) in human and HH accompanied by lower gonadotrophic hormone levels, smaller testes, impaired spermatogenesis and abnormal sexual maturation in mice. Besides its well-recognized functions in hypothalamus before and during puberty, accumulating data strongly support kisspeptin production in testis, and participation in somatic and germ cell development and sperm functions as well. This review aims to summarize recent findings regarding kisspeptin activity in the testes and sperm function. METHODS We undertook a keyword search of peer-reviewed research literature including data from in vivo and in vitro studies in humans and genetically modified animal models to identify the roles of kisspeptins in male reproduction. RESULTS A plethora of studies detail the role of kisspeptins and GPR54 in mammalian spermatogenesis in vivo and in vitro. This review identified recent findings regarding the kisspeptin system in male gonads, and regulation of kisspeptin in testicular physiology and male reproductive defects and disorders. CONCLUSION The findings of this review confirm the importance role of kisspeptins in male fertility. Understanding their biphasic roles in testis may help to consider kisspeptins as potential pharmacological targets for treating human infertility.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jia H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiao L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
23
|
Sahin Z, Kelestimur H. RF9: May it be a new therapeutic option for hypogonadotropic hypogonadism? Med Hypotheses 2019; 128:54-57. [PMID: 31203909 DOI: 10.1016/j.mehy.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Hypogonadotropic hypogonadism (secondary hypogonadism), congenital or acquired, is a form of hypogonadism that is due to problems with either the hypothalamus or pituitary gland affecting gonadotropin levels. Pulsatile secretion of gonadotropin-releasing hormone (GnRH) by hypothalamus is a primer step to initiate the release of pituitary gonadotropins. Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are accepted as two major players in the activation and inhibition of GnRH regarding the neuroendocrine functioning of the hypothalamic pituitary gonadal axis. Kisspeptin is known as the most potent activator of GnRH. Regarding the inhibition of GnRH, RF-amide-related peptide-3 (RFRP-3) is accepted as the mammalian orthologue of GnIH in avian species. RF9 (1-adamantane carbonyl-Arg-Phe-NH2) is an antagonist of RFRP-3/GnIH receptor (neuropeptide FF receptor 1 (NPFFR1; also termed as GPR147). In recent years, several studies have indicated that RF9 activates GnRH neurons and gonadotropins in a kisspeptin receptor (Kiss1r, formerly known as GPR54) dependent manner. These results suggest that RF9 may have a bimodal function as both an RFRP-3 antagonist and a kisspeptin agonist or it may be a kiss1r agonist rather than an RFRP-3/GnIH receptor antagonist. These interactions are possible because Kisspeptin and GnIH are members of the RF-amide family, and both possibilities are not far from explaining the potent gonadotropin stimulating effects of RF9. Therefore, we hypothesize that RF9 may be a new therapeutic option for the hypogonadotropic hypogonadism due to its potent GnRH stimulating effects. A constant or repeated administration of RF9 provides a sustained increase in plasma gonadotrophin levels. However, applications in the same way with GnRH analogues and kisspeptin may result in desensitization of the gonadotropic axis. The reasons reported above contribute to our hypothesis that RF9 may be a good option in the GnRH stimulating as a kisspeptin agonist. We suggest that further studies are needed to elucidate the potential effects of RF9 in the treatment of the hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Zafer Sahin
- Department of Physiology, Karadeniz Technical University, Trabzon, Turkey.
| | | |
Collapse
|
24
|
Arisha AH, Moustafa A. Potential inhibitory effect of swimming exercise on the Kisspeptin-GnRH signaling pathway in male rats. Theriogenology 2019; 133:87-96. [PMID: 31075715 DOI: 10.1016/j.theriogenology.2019.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 01/17/2023]
Abstract
Aerobic exercises are considered as an effective method of improving several undesirable health outcomes; however, their implications in the male reproductive axis have remained controversial. The present study evaluated the impact of physical exercise on the male reproductive system in rats and investigated the potential central and peripheral mechanisms involved in it. Twenty male Sprague-Dawley rats were randomly divided into control and exercise groups, with 10 rats per group. The rats were subjected to a swimming exercise for 60 min/day for five days a week and the protocol was followed for six constitutive weeks. We found that the swimming exercise significantly decreased the testicular weight and the testicular somatic index. Furthermore, there was a marked reduction in several sperm characteristics, including sperm count, motility, morphology, and viability in the exercised rats. The serum levels of reproductive hormones, i.e., testosterone (T), luteinizing hormone (LH), and follicle stimulating hormone (FSH) were significantly decreased. A histological examination of testes and epididymis revealed defective spermatogenesis. Molecular analysis revealed the downregulation of the expression of mRNAs of the hypothalamic kisspeptin (Kiss1), Kiss1 receptor (Kiss1r), gonadotropin-releasing hormone (GnRH1), GnRH1 receptor (GnRHr), and testicular Kiss1r along with an upregulation in the gene expression of GnRHr in the pituitary. We also observed a significant reduction in the activity and the expression of mRNAs of testicular superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and a marked elevation in the levelsof malondialdehyde (MDA). These findings implied that chronic swimming exercise suppressed the Kisspeptin-GnRH signaling pathway, consequently reducing the production of male reproductive hormones. A simultaneous increase in the oxidative stress could contribute to exercise-induced inhibition of male reproductive functions. To conclude, an appropriate training program is important to maximize the benefits and minimize the side effects of physical exercises on the male reproductive system.
Collapse
Affiliation(s)
- Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
25
|
Kisspeptin Protein in Seminal Plasma Is Positively Associated with Semen Quality: Results from the MARHCS Study in Chongqing, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5129263. [PMID: 30729125 PMCID: PMC6343164 DOI: 10.1155/2019/5129263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Objectives To study the associations between kisspeptin levels in seminal plasma and blood plasma and semen quality. Materials and Methods We conducted a male reproductive health survey in June 2014. A total of 666 volunteers were recruited from colleges in Chongqing, China. All volunteers completed a questionnaire including information on domestic characteristics and some potential confounders. We tested the kisspeptin levels in both blood and seminal plasma. Total seminal kisspeptin was calculated as the concentration of kisspeptin in seminal plasma multiplied by semen volume. Semen samples were tested according to the 2010 World Health Organization's (WHO) guidelines. Spearman correlation and multivariate linear regression were used to explore the association between kisspeptin concentrations in seminal plasma and blood plasma and semen quality. Potential confounders that were adjusted for included age, abstinence time, body mass index (BMI), grade, and smoking. Results The median of kisspeptin levels in seminal plasma was 60,000 times higher than kisspeptin in blood plasma (28.0 × 106 pg/ml versus 448.9 pg/ml). Each interquartile range (IQR) of kisspeptin in seminal plasma was associated with a 4.6% (95% confidence interval [CI]: 1.6%–7.6%) increase in sperm concentration. Each IQR of total kisspeptin was associated with a 7.7% (95% CI: 4.4%–11.0%) increase in total sperm number and a 7.8% (95% CI: 4.0%–11.7%) increase in total motile sperm count. Kisspeptin levels were further classified into quartiles and Q1 was set as the reference level. Subjects in the high total kisspeptin group had 57.5% (95% CI: 33.2%–86.2%) higher total sperm number than the reference group. Conclusion The positive association between kisspeptin levels in seminal plasma and semen quality supported an important role for the KISS1/GPR54 system in male reproductive health. Kisspeptin may be a potential marker of male reproductive health and an alternative strategy for treating infertility.
Collapse
|
26
|
Izzi‐Engbeaya C, Comninos AN, Clarke SA, Jomard A, Yang L, Jones S, Abbara A, Narayanaswamy S, Eng PC, Papadopoulou D, Prague JK, Bech P, Godsland IF, Bassett P, Sands C, Camuzeaux S, Gomez‐Romero M, Pearce JTM, Lewis MR, Holmes E, Nicholson JK, Tan T, Ratnasabapathy R, Hu M, Carrat G, Piemonti L, Bugliani M, Marchetti P, Johnson PR, Hughes SJ, James Shapiro AM, Rutter GA, Dhillo WS. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab 2018; 20:2800-2810. [PMID: 29974637 PMCID: PMC6282711 DOI: 10.1111/dom.13460] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. MATERIALS AND METHODS In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m-2 ), we compared the effects of 1 nmol kg-1 h-1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human β-cell line (EndoC-βH1 cells). RESULTS Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. CONCLUSIONS Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions.
Collapse
Affiliation(s)
- Chioma Izzi‐Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Department of EndocrinologyImperial College Healthcare NHS TrustLondonUK
| | - Sophie A. Clarke
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Anne Jomard
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Sophie Jones
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Shakunthala Narayanaswamy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Deborah Papadopoulou
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Julia K. Prague
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ian F. Godsland
- Section of Metabolic Medicine, Department of Medicine, Imperial College LondonSt Mary's HospitalLondonUK
| | | | - Caroline Sands
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Stephane Camuzeaux
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Maria Gomez‐Romero
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Jake T. M. Pearce
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Matthew R. Lewis
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Elaine Holmes
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Jeremy K. Nicholson
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Risheka Ratnasabapathy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Gaelle Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Lorenzo Piemonti
- Diabetes Research Institute (SR‐DRI), IRCCS San Raffaele Scientific InstituteMilanItaly
- Faculty of MedicineVita‐Salute San Raffaele UniversityMilanItaly
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell LaboratoryUniversity of PisaPisaItaly
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell LaboratoryUniversity of PisaPisaItaly
| | - Paul R. Johnson
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Oxford Centre for Diabetes, Endocrinology, and MetabolismUniversity of OxfordOxfordUK
- National Institute of Health Research Oxford Biomedical Research Centre, Churchill HospitalOxfordUK
| | - Stephen J. Hughes
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Oxford Centre for Diabetes, Endocrinology, and MetabolismUniversity of OxfordOxfordUK
- National Institute of Health Research Oxford Biomedical Research Centre, Churchill HospitalOxfordUK
| | - A. M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant ProgramUniversity of AlbertaEdmontonCanada
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| |
Collapse
|
27
|
Evaluation of pharmacokinetics/pharmacodynamics and efficacy of one-month depots of TAK-448 and TAK-683, investigational kisspeptin analogs, in male rats and an androgen-dependent prostate cancer model. Eur J Pharmacol 2018; 822:138-146. [PMID: 29355559 DOI: 10.1016/j.ejphar.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
TAK-448 and TAK-683 are kisspeptin agonist analogs with improved in vivo stability and activity. Previous studies showed that continuous subcutaneous administration of TAK-448 or TAK-683 caused rapid and profound reductions in plasma testosterone levels in various species, including male healthy volunteers, suggesting their therapeutic potential as anti-prostate cancer agents. For clinical drug development, one-month sustained-release depots of TAK-448 and TAK-683, TAK-448-SR(1M) and TAK-683-SR(1M), were designed to improve usability in clinical practice. In this study, the pharmacokinetics/pharmacodynamics (PK/PD) profiles of TAK-448-SR(1M) and TAK-683-SR(1M) were initially tested in male rats to ensure their eligibility as one-month depots. The therapeutic advantages of TAK-448-SR(1M) and TAK-683-SR(1M) over TAP-144-SR(1M) were then investigated in a JDCaP xenograft rat model. TAK-448-SR(1M) and TAK-683-SR(1M) maintained certain levels of plasma TAK-448 free form (TAK-448F) and plasma TAK-683 free form (TAK-683F) for at least 4 weeks, before clearance from the circulation. Accompanying their desirable PK profiles, TAK-448-SR(1M) and TAK-683-SR(1M) showed favorable PD responses as one-month depots and demonstrated better testosterone control than TAP-144-SR(1M). Both depots exerted rapid and profound suppression of plasma testosterone levels in male rats. These profound suppressive effects were maintained in dose-dependent manners, before recovery toward normal levels. In the JDCaP xenograft model, TAK-448-SR(1M) and TAK-683-SR(1M) both showed better prostate-specific antigen (PSA) control than TAP-144-SR(1M), although all treatment groups eventually experienced PSA recurrence and tumor regrowth. In conclusion, this study demonstrates that both TAK-448-SR(1M) and TAK-683-SR(1M) have desirable and better PK/PD profiles than TAP-144-SR(1M) in rats, which could potentially provide better clinical outcomes in androgen-dependent prostate cancer.
Collapse
|
28
|
Stalewski J, Hargrove DM, Wolfe M, Kohout TA, Kamal A. Additive effect of simultaneous continuous administration of degarelix and TAK-448 on LH suppression in a castrated rat model. Eur J Pharmacol 2018; 824:24-29. [PMID: 29378196 DOI: 10.1016/j.ejphar.2018.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022]
Abstract
Gonadotropin releasing hormone (GnRH) analogs have long been used in androgen deprivation therapy (ADT) in the treatment of prostate cancer. Chronic administration of either GnRH agonists or antagonists leads to suppression of testosterone production in the testes via either downregulation or direct blockade of the GnRH receptor in the pituitary, respectively. Chronic administration of kisspeptin analogs has more recently been shown to lead to testosterone suppression via desensitization of GnRH neurons in the hypothalamus and an optimized kisspeptin analog, TAK-448, was proven effective in a small phase 1 trial. The current study explored the hypothesis that co-administration of TAK-448 and the GnRH antagonist, degarelix, would have an additive effect on hormonal suppression, as a result of simultaneous intervention in separate steps in the same pathway. TAK-448 or degarelix were first administered individually to castrated rats in order to identify low doses capable of partial or no suppression of luteinizing hormone (LH). In the second step, combinations of the low doses of TAK-448 and degarelix were assessed in a 14 day study and compared to the drugs administered separately. The results showed that simultaneous intervention at the kisspeptin and GnRH receptors caused a more pronounced LH suppression than either drug alone, demonstrating an additive or potentiating effect. These results suggest that such a drug combination may hold promise as novel forms of androgen deprivation therapy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jacek Stalewski
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA.
| | - Diane M Hargrove
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Monica Wolfe
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Trudy A Kohout
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Adeela Kamal
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| |
Collapse
|
29
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
30
|
d'Anglemont de Tassigny X, Jayasena C, Murphy KG, Dhillo WS, Colledge WH. Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS One 2017; 12:e0176821. [PMID: 28464043 PMCID: PMC5413024 DOI: 10.1371/journal.pone.0176821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Kisspeptins regulate the mammalian reproductive axis by stimulating release of gonadotrophin releasing hormone (GnRH). Different length kisspeptins (KP) are found of 54, 14, 13 or 10 amino-acids which share a common C-terminal 10-amino acid sequence. KP-54 and KP-10 have been widely used to stimulate the reproductive axis but data suggest that KP-54 and KP-10 are not equally effective at eliciting reproductive hormone secretion after peripheral delivery. To confirm this, we analysed the effect of systemic administration of KP-54 or KP-10 on luteinizing hormone (LH) secretion into the bloodstream of male mice. Plasma LH measurements 10 min or 2 hours after kisspeptin injection showed that KP-54 can sustain LH release far longer than KP-10, suggesting a differential mode of action of the two peptides. To investigate the mechanism for this, we evaluated the pharmacokinetics of the two peptides in vivo and their potential to cross the blood brain barrier (BBB). We found that KP-54 has a half-life of ~32 min in the bloodstream, while KP-10 has a half-life of ~4 min. To compensate for this difference in half-life, we repeated injections of KP-10 every 10 min over 1 hr but failed to reproduce the sustained rise in LH observed after a single KP-54 injection, suggesting that the failure of KP-10 to sustain LH release may not just be related to peptide clearance. We tested the ability of peripherally administered KP-54 and KP-10 to activate c-FOS in GnRH neurons behind the blood brain barrier (BBB) and found that only KP-54 could do this. These data are consistent with KP-54 being able to cross the BBB and suggest that KP10 may be less able to do so.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Channa Jayasena
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - Kevin G. Murphy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London at Hammersmith Campus, Commonwealth Building, London, United Kingdom
| | - William H. Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Aytürk N, Firat T, Kükner A, Özoğul C, Töre F, Kandirali İE, Yilmaz B. The effect of kisspeptin on spermatogenesis and apoptosis in rats. Turk J Med Sci 2017; 47:334-342. [PMID: 28263511 DOI: 10.3906/sag-1505-69] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 04/21/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM To study the effect of kisspeptin, a gonadotropin release stimulator, on the testicular tissue of the rat. MATERIALS AND METHODS Four groups were formed as follows: control, Kiss-10 501397645907nmol administration for 1 day, Kiss-10 administration for 13 days, and one last group kept for 7 days following Kiss-10 applied for 13 days. Testicular tissues were stained with hematoxylin-eosin, periodic acid Schiff, Masson trichrome staining, terminal deoxynucleotidyl transferased UTP nick-end labeling, and Ki-67 immune staining. Serum testosterone levels were determined. RESULTS Serum testosterone level increased following acute application, while it was reduced by chronic treatment. Spermatogenic cells as stained by Ki-67 and TUNEL increased in the treated groups compared to the controls. Following a 7-day rest after treatment, a decrease in testosterone levels and Ki-67-stained cell numbers and an increase in TUNEL-stained cells were observed. Leydig cells showed increased vacuolization in the Kiss-1 group. Leydig cell vacuolization continued in the Kiss (13) group and was reduced in the Kiss (13 + 7) group. CONCLUSION Kiss-10 increased spermatogenic cell proliferation, while testosterone level and proliferation decreased and apoptosis increased during the waiting period.
Collapse
Affiliation(s)
- Nilüfer Aytürk
- Department of Histology and Embryology, Faculty of Medicine, Medipol University, İstanbul, Turkey
| | - Tülin Firat
- Department of Histology and Embryology, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey
| | - Aysel Kükner
- Department of Histology and Embryology, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey
| | - Candan Özoğul
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatma Töre
- Department of Physiology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - İsmail Engin Kandirali
- Department of Urology Clinics, Bağcılar Education and Research Hospital, İstanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, İstanbul Yeditepe University, İstanbul, Turkey
| |
Collapse
|
32
|
Gahete MD, Vázquez-Borrego MC, Martínez-Fuentes AJ, Tena-Sempere M, Castaño JP, Luque RM. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol 2016; 438:100-106. [PMID: 27477782 DOI: 10.1016/j.mce.2016.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Kisspeptin (Kiss1) is an amidated neurohormone that belongs to the RF-amide peptide family, which has a key role in the control of reproduction. Specifically, kisspeptin regulates reproductive events, including puberty and ovulation, primarily by activating the surface receptor Kiss1r (aka GPR54), at hypothalamic gonadotropin-releasing hormone (GnRH) neurons. More recently, it has been found that kisspeptin peptide is present in the hypophyseal portal circulation and that the Kiss1/Kiss1r system is expressed in pituitary cells, which suggest that kisspeptin could exert an endocrine, paracrine or even autocrine role at the pituitary gland level. Indeed, mounting evidence is pointing towards a direct role of kisspeptin in the control of not only gonadotropins but also other pituitary secretions such as growth hormone or prolactin. In this review, we summarize the most recent advances in the study of the role that the Kiss/Kiss1r system plays in the control of pituitary gland function, paying special attention to the direct role of this neuropeptide on pituitary cells and its interactions with other relevant regulators.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain.
| |
Collapse
|
33
|
Abstract
Kisspeptins are a group of peptide fragments encoded by the KISS1 gene in humans. They bind to kisspeptin receptors with equal efficacy. Kisspeptins and their receptors are expressed by neurons in the arcuate and anteroventral periventricular nuclei of the hypothalamus. Oestrogen mediates negative feedback of gonadotrophin-releasing hormone secretion via the arcuate nucleus. Conversely, it exerts positive feedback via the anteroventral periventricular nucleus. The sexual dimorphism of these nuclei accounts for the differential behaviour of the hypothalamic-pituitary-gonadal axis between genders. Kisspeptins are essential for reproductive function. Puberty is regulated by the maturation of kisspeptin neurons and by interactions between kisspeptins and leptin. Hence, kisspeptins have potential diagnostic and therapeutic applications. Kisspeptin agonists may be used to localise lesions in cases of hypothalamic-pituitary-gonadal axis dysfunction and evaluate the gonadotrophic potential of subfertile individuals. Kisspeptin antagonists may be useful as contraceptives in women, through the prevention of premature luteinisation during in vitro fertilisation, and in the treatment of sex steroid-dependent diseases and metastatic cancers.
Collapse
Affiliation(s)
- Eng Loon Tng
- Associate Consultant, Department of Medicine, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Singapore 609606
| |
Collapse
|
34
|
Song H, Wang M, Wang Z, Yu H, Wang Z, Zhang Q. Identification and characterization of kiss2 and kissr2 homologs in Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1073-1092. [PMID: 26905261 DOI: 10.1007/s10695-016-0199-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The role of kisspeptin in puberty onset has been extensively investigated by neuroendocrinologists in the past decade. In the present study, we first cloned and analyzed Pokiss2 and Pokissr2 genes in Paralichthys olivaceus, a Pleuronectiformes fish. By 5'/3' rapid amplification of cDNA ends (RACE), the P. olivaceus kiss2 gene (Pokiss2) and two isoforms of the P. olivaceus kissr2 gene (Pokissr2) transcripts were cloned. During development, Pokissr2 was maternally inherited but Pokiss2 was not, and their expression reached maximum and minimum levels, respectively, when the gonads began to develop. Analysis of tissue distribution revealed that Pokiss2 and Pokissr2 transcripts were predominantly expressed in the brain and gonads, with expression levels in females higher than those in males. Moreover, Pokiss2 and Pokissr2 both showed significantly higher expression in brains and gonads during puberty. In situ hybridization of the ovary at pre-vitellogenesis stage and testis at spermatogonial proliferation stage revealed that both Pokiss2 and Pokissr2 were expressed in spermatocyte, oocytes, and some somatic cells. Our results also showed significantly stronger Pokiss2 expression in the area of the third ventricle of females than males and no Pokissr2 expression in this region in both sexes. These results lay a strong foundation for understanding the role of kisspeptin in neuroendocrine system in teleosts, in particular in Pleuronectiformes.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
35
|
Native recombinant kisspeptin can induce gnrh1 and kissr2 expression in Paralichthys olivaceus in vitro. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:36-43. [PMID: 27260091 DOI: 10.1016/j.cbpb.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Kisspeptins have been described as one of the most potent activators of the hypothalamic-pituitary-gonadal axis. Kisspeptins control the onset of reproductive functions during puberty by directly stimulating the neuronal activity and release of gonadotropin-releasing hormone (GnRH). The function of kisspeptins has been investigated in vivo and in vitro. In our study, three kinds of recombinant kisspeptin proteins were expressed in Escherichia coli. Kisspeptin fragments Kp54, Kp44, and Kp10 translated from Paralichthys olivaceus kiss2 gene were then obtained. Kp44 contained 44 amide acids (aa) which are the same as the N-terminal of Kp54; Kp10 shares the same 10 aa with the C-terminal of Kp54 but Kp10 also contains some other amide acids. In the dose course of treatments with prokaryotically expressed peptides, Kp54 and Kp10 could induce the expression of kissr2 and gnrh1; by contrast, Kp44 could not induce a similar expression. These results provided direct evidence that the core decapeptide of kisspeptin is necessary to ensure its biological functions. In the time course of the Kp54 treatments on two kinds of cultured brain cells, different patterns of kissr2 and gnrh1 mRNA suggested that the responses of these cells to kisspeptins depends on cell type and treatment duration. Thus, our research provided alternative methods to investigate the functions of kisspeptin in vitro and to detect biological activities; this research also established basis for kisspeptin applications in production processes.
Collapse
|
36
|
Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17α-ethinylestradiol in rare minnow Gobiocypris rarus. Mol Biol Rep 2016; 43:737-49. [DOI: 10.1007/s11033-016-4014-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
|
37
|
Tariq AR, Shabab M. Effect of kisspeptin challenge on testosterone and inhibin secretion from in vitro testicular tissue of adult male rhesus monkey (Macaca mulatta). Andrologia 2016; 49. [PMID: 27108483 DOI: 10.1111/and.12590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Kisspeptin expression has been found in gonads but a direct role of kisspeptin in reproduction is not known. The objective of this study was to find a dose and time related effect of kisspeptin on testicular hormones secretion of adult male rhesus monkey (n = 5). Kisspeptin (1, 10, 100, 1000 pm) was incubated to a culture of testes (100 mg fragments) of male rhesus monkey and medium for hormone (testosterone and inhibin) measurement was collected after 30, 60 and 120 min. 10 IU hCG (180 min) and 50 ng FSH (60 and 120 min) were incubated to the culture for checking testicular cells ability to secrete hormones in vitro. Kisspeptin did not significantly (P < 0.05) increase the testosterone and inhibin levels at any dose. However, one way anova at pooled doses showed an increase in testosterone levels and paired t-test at pooled doses showed inhibin decrease after 120 min of incubation suggesting an independent effect of time. hCG and FSH significantly (P < 0.05) increased hormone concentration compared to the basal groups. We concluded that kisspeptin has no role in testicular regulation related to testosterone and inhibin release but kisspeptin may have other roles in testicular regulation.
Collapse
Affiliation(s)
- A R Tariq
- Faculty of Biological Sciences, Department of Animal Sciences, Qauid-e-Azam University, Islamabad, Pakistan
| | - M Shabab
- Faculty of Biological Sciences, Department of Animal Sciences, Qauid-e-Azam University, Islamabad, Pakistan
| |
Collapse
|
38
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
39
|
Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 2015; 13:21-32. [DOI: 10.1038/nrurol.2015.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Zhu C, Takasu C, Morine Y, Bando Y, Ikemoto T, Saito Y, Yamada S, Imura S, Arakawa Y, Shimada M. KISS1 Associates with Better Outcome via Inhibiting Matrix Metalloproteinase-9 in Colorectal Liver Metastasis. Ann Surg Oncol 2015; 22 Suppl 3:S1516-23. [PMID: 26471489 DOI: 10.1245/s10434-015-4891-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cancer metastasis is a major contributor to patient death because of its systemic nature and resistance to therapeutic agents. KISS1, originally identified to be a metastasis suppressor, couples to its receptor KISS1R and plays a pivotal role in suppressing cancer metastasis. In this study, we investigated KISS1 and KISS1R expression in colorectal liver metastasis (CRLM), and analyzed their correlation with patients' clinicopathological variables, including prognosis. METHODS Overall, 55 patients with CRLM who underwent hepatectomy between 2003 and 2013 were enrolled in this study. Immunohistochemistry was performed to evaluate the protein expression of KISS1, KISS1R, and matrix metalloproteinase-9 (MMP-9). Clinicopathological variables, including prognosis, were compared between low- and high-expressing groups of KISS1 or KISS1R. We analyzed the correlation of KISS1 or KISS1R protein expression with MMP-9. RESULTS Expression of both KISS1 and KISS1R was significantly correlated with overall survival (p = 0.0283 and p = 0.0275, respectively). The 5-year overall survival rate of the KISS1 and KISS1R low groups was 44.3 and 39.3 %, and 73.7 and 67.9 % in the high groups, respectively. Multivariate analysis revealed that KISS1 low expression was an independent prognostic factor (p = 0.037, hazard ratio 0.20). Moreover, KISS1 low-expression patients had more frequent distant metastasis (p < 0.05). Furthermore, KISS1 low-expressing tumor tissues expressed more MMP-9 protein (p = 0.034), which was mainly expressed in neutrophils at the metastatic tumor edge. CONCLUSION KISS1 could be a promising prognostic and therapeutic marker in CRLM. KISS1 low expression may induce high MMP-9 expression in neutrophils.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Surgery, The University of Tokushima, Tokushima, Japan.,Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yoshimi Bando
- Department of Molecular and Environmental Pathology, The University of Tokushima, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, The University of Tokushima, Tokushima, Japan.,Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, The University of Tokushima, Tokushima, Japan.,Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan
| | - Satoru Imura
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yusuke Arakawa
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
41
|
Jayasena CN, Abbara A, Narayanaswamy S, Comninos AN, Ratnasabapathy R, Bassett P, Mogford JT, Malik Z, Calley J, Ghatei MA, Bloom SR, Dhillo WS. Direct comparison of the effects of intravenous kisspeptin-10, kisspeptin-54 and GnRH on gonadotrophin secretion in healthy men. Hum Reprod 2015; 30:1934-41. [PMID: 26089302 PMCID: PMC4507333 DOI: 10.1093/humrep/dev143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION How potently does the novel hypothalamic stimulator of reproduction, kisspeptin, increase gonadotrophin secretion when compared with GnRH in healthy men? SUMMARY ANSWER At the doses tested, intravenous administration of either of two major kisspeptin isoforms, kisspeptin-10 and -54, was associated with similar levels of gonadotrophin secretion in healthy men; however, GnRH was more potent when compared with either kisspeptin isoform. WHAT IS KNOWN ALREADY Kisspeptin-10 and -54 are naturally occurring hormones in the kisspeptin peptide family which potently stimulates endogenous GnRH secretion from the hypothalamus, so have the potential to treat patients with reproductive disorders. Rodent studies suggest that kisspeptin-54 is more potent when compared with kisspepitn-10; however, their effects have not previously been directly compared in humans, or compared with direct pituitary stimulation of gonadotrophin secretion using GnRH. STUDY DESIGN, SIZE AND DURATION A single-blinded placebo controlled physiological study was performed from January to December 2013. Local ethical approval was granted, and five participants were recruited to each dosing group. PARTICIPANTS/MATERIALS, SETTING, METHODS Healthy men were administered vehicle, kisspeptin-10, kisspeptin-54 and GnRH intravenously for 3 h on different study days. Each hormone was administered at 0.1, 0.3 and 1.0 nmol/kg/h doses (n = 5 subjects per group). Regular blood sampling was conducted throughout the study to measure LH and FSH. Study visits were conducted at least a week apart. MAIN RESULTS AND THE ROLE OF CHANCE Serum LH and FSH levels were ∼3-fold higher during GnRH infusion when compared with kisspeptin-10 and ∼2-fold higher when compared with kisspeptin-54 [mean area under the curve serum LH during infusion (in hours times international units per litre, h.IU/l): 10.81 ± 1.73, 1.0 nmol/kg/h kisspeptin-10; 14.43 ± 1.27, 1.0 nmol/kg/h kisspeptin-54; 34.06 ± 5.18, 1.0 nmol/kg/h GnRH, P < 0.001 versus kisspeptin-10, P < 0.01 versus kisspeptin-54]. LIMITATIONS, REASONS FOR CAUTION This study had a small sample size. WIDER IMPLICATIONS OF THE FINDINGS Kisspeptin offers a novel means of stimulating the reproductive axis. Our data suggest that kisspeptin stimulates gonadotrophin secretion less potently when compared with GnRH; however, kisspeptin may stimulate gonadotrophins in a more physiological manner when compared with current therapies. Kisspeptin is emerging as a future therapeutic agent, so it is important to establish which kisspeptin hormones could be used to treat patients with infertility. Results of this study suggest that either isoform has similar effects on reproductive hormone secretion in healthy men when administered intravenously. STUDY FUNDING/COMPETING INTERESTS This work is funded by grants from the MRC and NIHR and is supported by the NIHR Imperial Biomedical Research Centre Funding Scheme. C.N.J. is supported by an NIHR Clinical Lectureship. A.A. is supported by Wellcome Trust Research Training Fellowships. A.N.C. is supported by Wellcome Trust Translational Medicine Training Fellowship. W.S.D. is supported by an NIHR Career Development Fellowship.
Collapse
Affiliation(s)
- C N Jayasena
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - A Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - S Narayanaswamy
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - A N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - R Ratnasabapathy
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - P Bassett
- Statsconsultancy Ltd, 40 Longwood Lane, Amersham, Bucks HP7 9EN, UK
| | - J T Mogford
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - Z Malik
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - J Calley
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - M A Ghatei
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - S R Bloom
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| | - W S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, London W12 0NN, UK
| |
Collapse
|
42
|
Clarke H, Dhillo WS, Jayasena CN. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol Metab (Seoul) 2015; 30:124-41. [PMID: 26194072 PMCID: PMC4508256 DOI: 10.3803/enm.2015.30.2.124] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin has recently emerged as a key regulator of the mammalian reproductive axis. It is known that kisspeptin, acting centrally via the kisspeptin receptor, stimulates secretion of gonadotrophin releasing hormone (GnRH). Loss of kisspeptin signaling causes hypogonadotrophic hypogonadism in humans and other mammals. Kisspeptin interacts with other neuropeptides such as neurokinin B and dynorphin, to regulate GnRH pulse generation. In addition, a growing body of evidence suggests that kisspeptin signaling be regulated by nutritional status and stress. Kisspeptin may also represent a novel potential therapeutic target in the treatment of fertility disorders. Early human studies suggest that peripheral exogenous kisspeptin administration stimulates gonadotrophin release in healthy adults and in patients with certain forms of infertility. This review aims to concisely summarize what is known about kisspeptin as a regulator of reproductive function, and provide an update on recent advances within this field.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
43
|
Song H, He Y, Ma L, Zhou X, Liu X, Qi J, Zhang Q. Characterisation of kisspeptin system genes in an ovoviviparous teleost: Sebastes schlegeli. Gen Comp Endocrinol 2015; 214:114-25. [PMID: 24955882 DOI: 10.1016/j.ygcen.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/08/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
Abstract
Kisspeptins are neuropeptides that play important roles in the reproduction and the onset of puberty in vertebrate by activating their receptor, Kissr. In the present study, we first isolated kiss1 and kissr4 genes from an ovoviviparous fish, the black rockfish (Sebastes schlegeli) by homologue cloning. Phylogenetic analysis indicated that the kiss and kissr of S. schlegeli belonged to kiss1 and kissr4 respectively. Quantitative real-time PCR analysis showed that the kissr4 was expressed mainly in the brain and testis, while the kiss1 was expressed predominantly in the heart of both sexes. As for the different gonadal maturation stages the kiss1 showed different expression patterns in different tissues. During the early development stage, expression levels of the ligand and receptor genes showed similar increasing trends. The promoter region of kissr4 contained several putative transcription factor (TF) binding sites which may have the function of regulating kisspeptin system gene expression, providing potential targets for future in-depth investigation. These results together confirmed that the kisspeptin system in S. schlegeli may be involved in reproduction and other activities. Furthermore, our study laid the groundwork for further learning about the evolution and function of kisspeptin system in fish even vertebrate.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Liman Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaosu Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
44
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen Comp Endocrinol 2015; 211:81-91. [PMID: 25452028 DOI: 10.1016/j.ygcen.2014.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Kisspeptin, via Gpr54 receptor, regulates puberty onset in most vertebrates. Thus, the direct involvement of kisspeptin activity in testis physiology was investigated in the anuran amphibian, Pelophylax esculentus. In this vertebrate gpr54 mRNA has been localized in both interstitial compartment and spermatogonia (SPG), whereas SPG proliferation requires the cooperation between estradiol and testicular Gonadotropin releasing hormone (Gnrh). In the pre-reproductive period, dose response curve to assess the effects of Kisspeptin-10 (Kp-10) was carried out in vitro (dose range: 10(-9)-10(-6)M; incubation times: 1 and 4h); proliferative activity and germ cell progression were evaluated by expression analysis of proliferating cell nuclear antigen (pcna), estrogen receptor beta (erβ), Gnrh system (gnrh1, gnrh2, gnrhr1, r2, r3) and by the count of empty, mitotic and meiotic tubules. All selected markers were up regulated at 4h Kp-10 incubation. Histological analysis also proved the increase of mitotic activity and the progression of spermatogenesis. Besides Kp-10 modulation of testicular Gnrh system, in vitro treatment with 17β-estradiol (10(-6)M) ± the antagonist ICI182-780 (10(-5)M) revealed gnrh2 and gnrhr3 estrogen dependent expression. In the reproductive period, testes were incubated for 1 and 4h with Kp-10 (10(-7)M) or Kp-10 (10(-7)M)+kisspeptin antagonist [Kp-234 (10(-6)M)]. Results obtained in the pre-reproductive period were confirmed and Kp-234 completely counteracted Kp-10 effects. In conclusion, Kp-10 modulated the expression of pcna, erβ, gnrhs and gnrhrs, inducing the progression of the spermatogenesis.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Vincenza Ciaramella
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy.
| |
Collapse
|
45
|
Millar RP, Babwah AV. KISS1R: Hallmarks of an Effective Regulator of the Neuroendocrine Axis. Neuroendocrinology 2015; 101:193-210. [PMID: 25765628 DOI: 10.1159/000381457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022]
Abstract
Kisspeptin (KP) is now well recognized as a potent stimulator of gonadotropin-releasing hormone (GnRH) secretion and thereby a major regulator of the neuroendocrine-reproductive axis. KP signals via KISS1R, a G protein-coupled receptor (GPCR) that activates the G proteins Gαq/11. Modulation of the interaction of KP with KISS1R is therefore a potential new therapeutic target for stimulating (in infertility) or inhibiting (in hormone-dependent diseases) the reproductive hormone cascade. Major efforts are underway to target KISS1R in the treatment of sex steroid hormone-dependent disorders and to stimulate endogenous hormonal responses along the neuroendocrine axis as part of in vitro fertilization protocols. The development of analogs modulating KISS1R signaling will be aided by an understanding of the intracellular pathways and dynamics of KISS1R signaling under normal and pathological conditions. This review focuses on KISS1R recruitment of intracellular signaling (Gαq/11- and β-arrestin-dependent) pathways that mediate GnRH secretion and the respective roles of rapid desensitization, internalization, and recycling of resensitized receptors in maintaining an active population of KISS1R at the cell surface to facilitate prolonged KP signaling. Additionally, this review summarizes and discusses the major findings of an array of studies examining the desensitization of KP signaling in man, domestic and laboratory animals. This discussion highlights the major effects of ligand efficacy and concentration and the physiological, developmental, and metabolic status of the organism on KP signaling. Finally, the potential for the utilization of KP and analogs in stimulating and inhibiting the reproductive hormone cascade as an alternative to targeting the downstream GnRH receptor is discussed.
Collapse
Affiliation(s)
- Robert P Millar
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
46
|
Abstract
The kisspeptins are a family of neuropeptides which act as upstream stimulators of gonadotrophin releasing hormone (GnRH) neurons. Kisspeptin signalling is prerequisite to establishing the normal human reproductive phenotype; loss of function mutations in the KISS1 or KISS1R gene produces normosmic hypogonadotrophic hypogonadism in humans and mice, whilst increased activation of KISS1R causes precocious puberty. Administration of exogenous kisspeptin to human subjects stimulates an acute gonadotrophin rise. Serum kisspeptin levels also markedly increase during pregnancy. The identification of kisspeptin has been one of the biggest discoveries in the field of reproductive endocrinology, since the isolation and sequencing of GnRH in 1977, and has generated a novel research avenue which has received much attention over the past decade. This research has delineated many properties of the KISS1-KISS1R system, but there is still further work to do. Understanding kisspeptin’s role throughout our reproductive lifetime should help us better understand—and therefore treat—disorders of reproductive function. Promisingly, the current data supports the potential to develop kisspeptin based therapies. As an outlook article this paper focusses predominantly on our groups recent investigations into the effects of kisspeptin administration to humans and the potential therapeutic role of kisspeptin.
Collapse
|
47
|
Calder M, Chan YM, Raj R, Pampillo M, Elbert A, Noonan M, Gillio-Meina C, Caligioni C, Bérubé NG, Bhattacharya M, Watson AJ, Seminara SB, Babwah AV. Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology 2014; 155:3065-78. [PMID: 24877624 PMCID: PMC4098000 DOI: 10.1210/en.2013-1916] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive neuroendocrine axis, and loss of Kiss1 in the mouse results in infertility, a condition generally attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss1(-/-) female mice, acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization; however, these mice are still unable to achieve pregnancy because embryos fail to implant. Progesterone treatment did not overcome this defect. Kiss1(+/-) embryos transferred to a wild-type female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kisspeptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and the ability of the uterus to undergo decidualization. Instead, the loss of Kiss1 expression specifically disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly expressed in Kiss1(-/-) uterine glands and that the administration of exogenous Lif to hormone-primed Kiss1(-/-) female mice is sufficient to partially rescue implantation. Taken together, our study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study provides compelling reasons to explore this role in other species, particularly livestock and humans.
Collapse
|
48
|
Matsui H, Masaki T, Akinaga Y, Kiba A, Takatsu Y, Nakata D, Tanaka A, Ban J, Matsumoto SI, Kumano S, Suzuki A, Ikeda Y, Yamaguchi M, Watanabe T, Ohtaki T, Kusaka M. Pharmacologic profiles of investigational kisspeptin/metastin analogues, TAK-448 and TAK-683, in adult male rats in comparison to the GnRH analogue leuprolide. Eur J Pharmacol 2014; 735:77-85. [DOI: 10.1016/j.ejphar.2014.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
|
49
|
Zmora N, Stubblefield J, Golan M, Servili A, Levavi-Sivan B, Zohar Y. The medio-basal hypothalamus as a dynamic and plastic reproduction-related kisspeptin-gnrh-pituitary center in fish. Endocrinology 2014; 155:1874-86. [PMID: 24484170 DOI: 10.1210/en.2013-1894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Kisspeptin regulates reproductive events, including puberty and ovulation, primarily via GnRH neurons. Prolonged treatment of prepubertal striped bass females with kisspeptin (Kiss) 1 or Kiss2 peptides failed to enhance puberty but suggested a gnrh-independent pituitary control pathway. Kiss2 inhibited, but Kiss1 stimulated, FShβ expression and gonadal development, although hypophysiotropic gnrh1 and gnrh receptor expression remained unchanged. In situ hybridization and immunohistochemistry on brains and pituitaries revealed a differential plasticity between the 2 kisspeptin neurons. The differences were most pronounced at the prespawning phase in 2 regions along the path of gnrh1 axons: the nucleus lateralis tuberis (NLT) and the neurohypophysis. Kiss1 neurons appeared in the NLT and innervated the neurohypophysis of prespawning males and females, reaching Lh gonadotropes in the proximal pars distalis. Males, at all reproductive stages, had Kiss2 innervations in the NLT and the neurohypophysis, forming large axonal bundles in the former and intermingling with gnrh1 axons. Unlike in males, only preovulatory females had massive NLT-neurohypophysis staining of kiss2. Kiss2 neurons showed a distinct appearance in the NLT pars ventralis-equivalent region only in spawning zebrafish, indicating that this phenomenon is widespread. These results underscore the NLT as important nuclei for kisspeptin action in 2 facets: 1) kisspeptin-gnrh interaction, both kisspeptins are involved in the regulation of gnrh release, in a stage- and sex-dependent manner, especially at the prespawning phase; and 2) gnrh-independent effect of Kiss peptides on the pituitary, which together with the plastic nature of their neuronal projections to the pituitary implies that a direct gonadotropic regulation is plausible.
Collapse
MESH Headings
- Animals
- Aquaculture
- Axons/drug effects
- Axons/metabolism
- Bass/physiology
- Dose-Response Relationship, Drug
- Drug Implants
- Female
- Fertility Agents, Female/pharmacology
- Fish Proteins/biosynthesis
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Follicle Stimulating Hormone, beta Subunit/biosynthesis
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamo-Hypophyseal System/cytology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus, Middle/cytology
- Hypothalamus, Middle/drug effects
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Kisspeptins/administration & dosage
- Kisspeptins/metabolism
- Kisspeptins/pharmacology
- Maryland
- Pituitary Gland, Posterior/cytology
- Pituitary Gland, Posterior/drug effects
- Pituitary Gland, Posterior/growth & development
- Pituitary Gland, Posterior/metabolism
- Sexual Maturation/drug effects
- Up-Regulation/drug effects
- Xenopus Proteins/administration & dosage
- Xenopus Proteins/metabolism
- Xenopus Proteins/pharmacology
Collapse
Affiliation(s)
- Nilli Zmora
- Department of Marine Biotechnology (N.Z., J.S., Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202; Faculty of Agriculture, Food and Environment (M.G., B.L.-S.), The Hebrew University, Rehobot, Israel 76100; and Ifremer (A.S.), Unité de Physiologie Fonctionnelle des Organismes Marins, Laboratoire des sciences de l'environnement marin Unité mixte de recherche 6539, Plouzané 29280, France
| | | | | | | | | | | |
Collapse
|
50
|
Hsu MC, Wang JY, Lee YJ, Jong DS, Tsui KH, Chiu CH. Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction 2014; 147:835-45. [PMID: 24567427 DOI: 10.1530/rep-13-0368] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptin acts as an upstream regulator of the hypothalamus-pituitary-gonad axis, which is one of the main regulatory systems for mammalian reproduction. Kiss1 and its receptor Kiss1r (also known as G protein-coupled receptor 54 (Gpr54)) are expressed in various organs, but their functions are not well understood. The purpose of this study was to investigate the expression profiles and functions of kisspeptin and KISS1R in the reproductive tissues of imprinting control region mice. To identify the expression pattern and location of kisspeptin and KISS1R in gonads, testes and ovarian tissues were examined by immunohistochemical or immunofluorescent staining. Kisspeptin and KISS1R were expressed primarily in Leydig cells and seminiferous tubules respectively. KISS1R was specifically localized in the acrosomal region of spermatids and mature spermatozoa. Kisspeptin, but not KISS1R, was expressed in the cumulus-oocyte complex and oviductal epithelium of ovarian and oviductal tissues. The sperm intracellular calcium concentrations significantly increased in response to treatment with kisspeptin 10 in Fluo-4-loaded sperm. The IVF rates decreased after treatment of sperm with the kisspeptin antagonist peptide 234. These results suggest that kisspeptin and KISS1R might be involved in the fertilization process in the female reproductive tract. In summary, this study indicates that kisspeptin and KISS1R are expressed in female and male gametes, respectively, and in mouse reproductive tissues. These data strongly suggest that the kisspeptin system could regulate mammalian fertilization and reproduction.
Collapse
Affiliation(s)
- Meng-Chieh Hsu
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Jyun-Yuan Wang
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Yue-Jia Lee
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - De-Shien Jong
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Kuan-Hao Tsui
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Chih-Hsien Chiu
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| |
Collapse
|