1
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2024. [PMID: 39428707 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C Sinton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
2
|
Lagarde CB, Thapa K, Cullen NM, Hawes ML, Salim K, Benz MC, Dietrich SR, Burow BE, Bunnell BA, Martin EC, Collins-Burow BM, Lynch RM, Hoang VT, Burow ME, Fang JS. Obesity and leptin in breast cancer angiogenesis. Front Endocrinol (Lausanne) 2024; 15:1465727. [PMID: 39439572 PMCID: PMC11493622 DOI: 10.3389/fendo.2024.1465727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
At the time of breast cancer diagnosis, most patients meet the diagnostic criteria to be classified as obese or overweight. This can significantly impact patient outcome: breast cancer patients with obesity (body mass index > 30) have a poorer prognosis compared to patients with a lean BMI. Obesity is associated with hyperleptinemia, and leptin is a well-established driver of metastasis in breast cancer. However, the effect of hyperleptinemia on angiogenesis in breast cancer is less well-known. Angiogenesis is an important process in breast cancer because it is essential for tumor growth beyond 1mm3 in size as well as cancer cell circulation and metastasis. This review investigates the role of leptin in regulating angiogenesis, specifically within the context of breast cancer and the associated tumor microenvironment in obese patients.
Collapse
Affiliation(s)
- Courtney B. Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Kapil Thapa
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
| | - Nicole M. Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Mackenzie L. Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Khudeja Salim
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Megan C. Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Sophie R. Dietrich
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
- United States Department of Agriculture Southern Regional Research Center, New Orleans, LA, United States
| | - Brandon E. Burow
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Elizabeth C. Martin
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Bridgette M. Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Ronald M. Lynch
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Van T. Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Matthew E. Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jennifer S. Fang
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
3
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
4
|
Jiménez-Cortegana C, Gutiérrez-García C, Sánchez-Jiménez F, Vilariño-García T, Flores-Campos R, Pérez-Pérez A, Garnacho C, Sánchez-León ML, García-Domínguez DJ, Hontecillas-Prieto L, Palazón-Carrión N, De La Cruz-Merino L, Sánchez-Margalet V. Impact of obesity‑associated myeloid‑derived suppressor cells on cancer risk and progression (Review). Int J Oncol 2024; 65:79. [PMID: 38940351 PMCID: PMC11251741 DOI: 10.3892/ijo.2024.5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Obesity is a chronic disease caused by the accumulation of excessive adipose tissue. This disorder is characterized by chronic low‑grade inflammation, which promotes the release of proinflammatory mediators, including cytokines, chemokines and leptin. Simultaneously, chronic inflammation can predispose to cancer development, progression and metastasis. Proinflammatory molecules are involved in the recruitment of specific cell populations in the tumor microenvironment. These cell populations include myeloid‑derived suppressor cells (MDSCs), a heterogeneous, immature myeloid population with immunosuppressive abilities. Obesity‑associated MDSCs have been linked with tumor dissemination, progression and poor clinical outcomes. A comprehensive literature review was conducted to assess the impact of obesity‑associated MDSCs on cancer in both preclinical models and oncological patients with obesity. A secondary objective was to examine the key role that leptin, the most important proinflammatory mediator released by adipocytes, plays in MDSC‑driven immunosuppression Finally, an overview is provided of the different therapeutic approaches available to target MDSCs in the context of obesity‑related cancer.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Cristian Gutiérrez-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Rocio Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Histology and Cytology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Maria L. Sánchez-León
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville 41013, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville 41013, Spain
| |
Collapse
|
5
|
Griesler B, Hölzel M, Oswald J, Fänder J, Fischer T, Büttner M, Quandt D, Bähr I, Jasinski-Bergner S, Bazwinsky-Wutschke I, Kielstein H. Impact of siRNA-Mediated Cofilin-1 Knockdown and Obesity Associated Microenvironment on the Motility of Natural Killer Cells. Immunol Invest 2024; 53:713-729. [PMID: 38721960 DOI: 10.1080/08820139.2024.2327327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The anti-tumor capacity of natural killer (NK) cells heavily relies on their ability to migrate towards their target cells. This process is based on dynamic actinrearrangement, so-called actin treadmilling, andis tightly regulated by proteins such as cofilin-1. The aim of the present study was to identify the role of cofilin-1 (CFL-1) in the migratory behavior of NK cells and to investigate a possible impact of an obesity-associated micromilieu on these cells, as it is known that obesity correlates with various impaired NK cell functions. CFL-1 was knocked-down via transfection of NK-92 cells with respective siRNAs. Obesity associated micromilieu was mimicked by incubation of NK-92 cells with adipocyte-conditioned medium from human preadipocyte SGBS cells or leptin. Effects on CFL-1 levels, the degree of phosphorylation to the inactive pCFL-1 as well as NK-92 cell motility were analyzed. Surprisingly, siRNA-mediated CFL-1 knockdown led to a significant increase of migration, as determined by enhanced velocity and accumulated distance of migration. No effect on CFL-1 nor pCFL-1 expression levels, proportion of phosphorylation and cell migratory behavior could be demonstrated under the influence of an obesity-associated microenvironment. In conclusion, the results indicate a significant effect of a CFL-1 knockdown on NK cell motility.
Collapse
Affiliation(s)
- Bruno Griesler
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Internal Medicine IV, University Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marijke Hölzel
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jana Oswald
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Fänder
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pediatrics I, University Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Trutz Fischer
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Internal Medicine I, University Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Maximilian Büttner
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Basirjafar P, Zandvakili R, Masoumi J, Zainodini N, Taghipour Z, Khorramdelazad H, Yousefi S, Tavakoli T, Vatanparast M, Safdel S, Gheitasi M, Ayoobi F, Naseri B, Jafarzadeh A. Leptin/lipopolysaccharide-treated dendritic cell vaccine improved cellular immune responses in an animal model of breast cancer. Immunopharmacol Immunotoxicol 2024; 46:73-85. [PMID: 37647347 DOI: 10.1080/08923973.2023.2253989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-β) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-β and FOXP3 expression (p < .05). CONCLUSION Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.
Collapse
Affiliation(s)
- Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Immuology of Infectious Diseases Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Anatomy, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Soheila Yousefi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tayyebeh Tavakoli
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahboobeh Vatanparast
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sepehr Safdel
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Gheitasi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ayoobi
- Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
8
|
Ider M, Yildiz R, Naseri A, Gülersoy E, Alkan F, Ok M, Erturk A, Sulu K, Durgut MK. Investigation of gastrointestinal injury-related biomarkers in dairy cattle with displaced abomasum. Vet Med Sci 2023; 9:2893-2900. [PMID: 37776262 PMCID: PMC10650368 DOI: 10.1002/vms3.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Displaced abomasum (DA) is one of the most important metabolic disorders of dairy cattle. In DA, ischaemic damage may occur as a result of impaired perfusion due to abomasal displacement, which may result in gastrointestinal mucosal damage. OBJECTIVE Investigation of gastrointestinal tissue damage in cattle with right displacement of the abomasum (RDA) and left displacement of the abomasum (LDA) using intestinal-related biomarkers. METHODS Forty-eight DA (24 LDA, 24 RDA) and 15 healthy Holstein dairy cows were enrolled between March 2021 and July 2022. Serum biomarkers including gamma-enteric smooth muscle actin (ACTG-2), liver-fatty acid binding proteins (L-FABP), platelet activating factor (PAF), trefoil factor-3 (TFF-3), leptin, claudin-3 and interleukin-8 (IL-8) concentrations were measured from venous blood samples. RESULTS L-FABP concentrations in the LDA group and TFF-3 concentrations in the RDA group were lower than in the control group. The leptin concentration of the RDA group was higher than that of the other groups. There was a negative correlation between lactate, leptin and IL-8 concentrations. There was a negative correlation between lactate and TFF-3, whereas leptin and lactate were positively correlated. Leptin was the more reliable biomarker for discriminating between RDA and LDA cases. CONCLUSION Changes in serum L-FABP, TFF-3 and leptin concentrations in cattle with DA may reflect acute intestinal injury and the subsequent repair phase. However, these biomarkers had poor diagnostic performance in discriminating between healthy and cattle with DA, while leptin emerged as the most useful marker in differentiating LDA from RDA cases.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Ramazan Yildiz
- Faculty of Veterinary MedicineDepartment of Internal MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Amir Naseri
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Erdem Gülersoy
- Faculty of Veterinary MedicineDepartment of Internal MedicineHarran UniversitySanlıurfaTurkey
| | - Fahrettin Alkan
- Faculty of Veterinary MedicineDepartment of SurgerySelcuk UniversityKonyaTurkey
| | - Mahmut Ok
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Alper Erturk
- Faculty of Veterinary MedicineDepartment of Internal MedicineMustafa Kemal UniversityHatayTurkey
| | - Kadir Sulu
- Faculty of Veterinary MedicineDepartment of Internal MedicineSiirt UniversitySiirtTurkey
| | - Murat Kaan Durgut
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| |
Collapse
|
9
|
Leung YB, Cave N, Wester TJ. Loss of body weight and lean mass in long-stay, hospitalized canine patients. J Anim Physiol Anim Nutr (Berl) 2023; 107:1444-1455. [PMID: 37246960 DOI: 10.1111/jpn.13833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
A high prevalence of malnutrition occurs in human hospitals and has been associated with detrimental consequences. By comparison, much less is known in hospitalized veterinary patients. The aims of this study were to evaluate the prevalence of malnutrition and body composition changes in long-stay hospitalised patients using an isotopic dilution technique. An additional objective was to compare the changes in composition with commonly used methods measuring body fat and lean mass. The dogs consumed on average 77.5% of their estimated resting energy requirements during their stay. The majority (78.3%) of dogs lost body weight, of which a greater proportion was lean mass (61.8%) than fat mass (FM) (38.2%). There was a moderate correlation between body condition score and percentage FM measured at admission (Kendall's τ = 0.51; p = 0.002), and at discharge (Kendall's τ = 0.55; p = 0.001). However, there was no correlation between muscle condition score and fat-free mass at either admission or discharge (p > 0.1). Duration of stay was positively associated with loss of body weight (p < 0.001), but was not associated with changes in either lean or FM expressed as a percentage of body weight or in absolute terms (p > 0.1), which was presumed to be explained by small sample size and variation. Food intake was not found to a significant factor for lean or FM loss (p > 0.1). These findings indicate that weight loss is common in hospitalized canine patients, which is not explained by simple under-eating. Other factors such as inflammation and inactivity should be evaluated in future studies to determine their role in influencing muscle and FM changes in hospitalized canine patients.
Collapse
Affiliation(s)
- Y Becca Leung
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nick Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Timothy J Wester
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Botha A, Fuller A, Beechler BR, Combrink HJ, Jolles AE, Maloney SK, Hetem RS. Cold and Hungry: Heterothermy Is Associated with Low Leptin Levels in a Bulk Grazer during a Drought. Physiol Biochem Zool 2023; 96:342-355. [PMID: 37713716 DOI: 10.1086/726162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractReduced energy intake can compromise the ability of a mammal to maintain body temperature within a narrow 24-h range, leading to heterothermy. To investigate the main drivers of heterothermy in a bulk grazer, we compared abdominal temperature, body mass, body condition index, and serum leptin levels in 11 subadult Cape buffalo (Syncerus caffer caffer) during a drought year and a nondrought year. Low food availability during the drought year (as indexed by grass biomass, satellite imagery of vegetation greenness, and fecal chlorophyll) resulted in lower body condition index, lower body mass relative to that expected for an equivalent-aged buffalo, and lower leptin levels. The range of 24-h body temperature rhythm was 2°C during the nondrought year and more than double that during the drought year, and this was caused primarily by a lower minimum 24-h body temperature rhythm during the cool dry winter months. After rain fell and vegetation greenness increased, the minimum 24-h body temperature rhythm increased, and the range of 24-h body temperature rhythm was smaller than 2°C. In order of importance, poor body condition, low minimum 24-h air temperature, and low serum leptin levels were the best predictors of the increase in the range of 24-h body temperature rhythm. While the thermoregulatory role of leptin is not fully understood, the association between range of 24-h body temperature rhythm and serum leptin levels provides clues about the underlying mechanism behind the increased heterothermy in large mammals facing food restriction.
Collapse
|
11
|
Gonçalves CCRA, Feitosa BM, Cavalcante BV, Lima ALGDSB, de Souza CM, Joventino LB, Cavalcante MB. Obesity and recurrent miscarriage: The interconnections between adipose tissue and the immune system. Am J Reprod Immunol 2023; 90:e13757. [PMID: 37641378 DOI: 10.1111/aji.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
Currently, obesity is considered a global public health problem. It is the main risk factor for noncommunicable diseases and reproductive complications, such as recurrent miscarriage (RM). RM affects approximately 1% of couples of reproductive age, and recent studies suggest that its prevalence is increasing. Immunological abnormalities may be responsible for a significant number of cases of unexplained RM. Obesity is recognized as a chronic low-grade inflammatory condition. The accumulation of fat in obese adipose tissue promotes changes in the local and systemic immune response. Adipokines, exosomes, micro-RNAs, lipids, and other factors released or secreted by adipose tissue are responsible for the interconnection between obesity and the immune system. Obesity-induced dysregulation of the innate and acquired immune response is also involved in the immunopathology of pregnancy loss in patients with unexplained RM. Therefore, understanding the communication pathways between maternal adipose tissue and the immune response in women living with obesity and RM is an important objective. Thus, diagnostic tools and new immunomodulatory therapies may be proposed for the management of patients with concurrent obesity and RM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo Borges Cavalcante
- Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
- CONCEPTUS - Reproductive Medicine, Fortaleza, Brazil
| |
Collapse
|
12
|
Bendaya I, Ben Jemaa A, Sahraoui G, Kharrat M, Sdiri W, Oueslati R. Immunometabolism mRNA expression phenotypes and reprogramming of CD14 in T2DM with or without CVD. Int Immunopharmacol 2023; 122:110665. [PMID: 37487262 DOI: 10.1016/j.intimp.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) have a significant impact on the expression of genes in peripheral blood mononuclear cells (PBMCs). The primary objective of this study was to investigate the role of two signaling pathways, STAT1/6, and two important modulators of immunometabolism, leptin and PPARs, in the development of T2DM with and without CVD. Furthermore, the study aimed to assess the correlation between these factors and the dynamics of CD14 in PBMCs. This research was conducted within the context of a growing body of literature on the complex pathophysiology of T2DM and its association with CVD. Prior studies have indicated that T2DM is characterized by an imbalance in immunometabolism and the involvement of various signaling pathways. MATERIALS AND METHODS Blood samples were collected from a total of 47 subjects, including 7 healthy volunteers, 20 individuals diagnosed with diabetes and cardiovascular disease (D.CVD) and another 20 individuals diagnosed with diabetes only (D). PBMCs were isolated from these samples, and the expression levels of leptin, PPARγ, PPARα, and CD14 genes were measured using Real-Time PCR. RESULTS The most relevant result showed that diabetic patients with CVD had significantly higher levels of leptin expression, which was positively correlated with STAT1 (r = 0.7497, p = 0.0001). On the other hand, diabetic patients without CVD had elevated PPARγ expression, which was strongly correlated with STAT6 (r = 0.8437, p = 0.0001). Interestingly, we found a significant increase in the PPARγ/ PPARα ratio in the D.CVD group compared to the D group (4.273 ± 0.9531; 7.52 ± 3.556, p = 0.0479). Moreover, CD14 expression was significantly reduced in this group compared to diabetic patients without CVD. CONCLUSION These findings suggested that the immunometabolic imbalance in T2DM was driven by a STAT1/Leptin phenotype in diabetic patients with CVD and by a STAT6/PPARγ phenotype in diabetic patients without CVD. Taking into account STAT1/Leptin and STAT6/PPARγ profiling could help clinicians identify novel therapeutic targets for T2DM and other related diseases.
Collapse
Affiliation(s)
- Imen Bendaya
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia.
| | - Awatef Ben Jemaa
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia; Department of Biology, Faculty of science of Gafsa ,University of Gafsa, Gafsa, Tunisia
| | - Ghada Sahraoui
- Department of Pathology, Salah Azaeiz Institute, Bab Saadoun 1006 Tunis, Tunis, Tunisia
| | - Maher Kharrat
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wissem Sdiri
- Department of Cardiology, University Hospital Habib Bougatfa of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
13
|
Meta M, Bilčík B, Čavarga I, Grzegorzewska AK, Kundeková B, Máčajová M. The potential effect of leptin co-administration on photodynamic damage using quail chorioallantoic membrane model. Photodiagnosis Photodyn Ther 2023; 43:103711. [PMID: 37459940 DOI: 10.1016/j.pdpdt.2023.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND The chorioallantoic membrane (CAM) of the Japanese quail is an excellent model for studying photodynamic therapy (PDT) due to its rich vascularization. PDT is used not only in oncological treatment but also in infectious diseases, or psoriasis, where it yields significant advantages. This treatment also has its limitations, such as burning, itching, erythema, redness, swelling, and delayed wound healing. The aim of this study was to analyse the potentially protective properties of the tissue hormone leptin during PDT. METHODS Japanese quail embryos incubated ex ovo were used in this experiment. On the 9th day of embryonic development, leptin (5 μg) and photosensitiser hypericin (79 μM) were topically applied, followed by irradiation. The effect of leptin co-administration was evaluated from CAM images and histological structure analysis, histological samples, and qPCR, where the expression of genes involved in angiogenesis, apoptosis, and oxidative stress was monitored. RESULTS We observed vascular damage in all experimental groups, the highest damage was found after the application of hypericin without leptin coadministration. Histological analysis confirmed the protective effect of leptin. qPCR analysis presented differences in FREK gene expression, but also in genes involved in oxidative stress like SOD, NRF-1, NRF-2, and GPX7. The application of leptin significantly reduced the expression of apoptosis regulatory proteins CASP3, cytochrome C, and APAF1. CONCLUSIONS Our results in the CAM model suggest a possible protective effect of leptin to prevent PDT damage and aid in the subsequent regeneration of target tissues after antimicrobial PDT.
Collapse
Affiliation(s)
- Majlinda Meta
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005, Bratislava, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005, Bratislava, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005, Bratislava, Slovakia
| | - Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture, Al. Mickiewicza 24/28, 30059, Krakow, Poland
| | - Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005, Bratislava, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005, Bratislava, Slovakia.
| |
Collapse
|
14
|
Nguyen TT, Loureiro ZY, Desai A, DeSouza T, Joyce S, Khair L, Samant A, Cirka H, Solivan-Rivera J, Ziegler R, Brehm M, Messina LM, Corvera S. A distinct class of hematopoietic stem cells develop from the human yellow bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555167. [PMID: 37693594 PMCID: PMC10491256 DOI: 10.1101/2023.08.29.555167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aging and metabolic diseases are accompanied by systemic inflammation, but the mechanisms that induce this state are not known. We developed a human bone-marrow organoid system to explore mechanisms underlying metabolic-disease associated systemic inflammation. We find that a distinct type of hematopoietic stem cell (HSC) develops in the adipose-rich, yellow bone marrow, which is known to gradually replace the hematopoietic red marrow as we age and during metabolic disease. Unlike HSCs derived from the red bone marrow, HSCs derived from the yellow bone marrow have higher proliferation rates, increase myeloid differentiation, skew towards pro-inflammatory M1 macrophage differentiation, and express a distinct transcriptomic profile associated with responsiveness to wounding. Yellow marrow-derived HSCs express higher levels of the leptin receptor, which we find to be further increased in patients with type 2 diabetes. Our work demonstrates that the human long bone yellow marrow is a niche for a distinct class of HSCs which could underlie hematopoietic dysfunction during aging and metabolic disease processes suggesting a shared inflammaging mechanism.
Collapse
|
15
|
Liu J, Wong SSC. Molecular Mechanisms and Pathophysiological Pathways of High-Fat Diets and Caloric Restriction Dietary Patterns on Pain. Anesth Analg 2023; 137:137-152. [PMID: 36729981 DOI: 10.1213/ane.0000000000006289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pain perception provides evolutionary advantages by enhancing the probability of survival, but chronic pain continues to be a significant global health concern in modern society. Various factors are associated with pain alteration. Accumulating evidence has revealed that obesity correlates with enhanced pain perception, especially in chronic pain individuals. Existing dietary patterns related to obesity are primarily high-fat diets (HFD) and calorie restriction (CR) diets, which induce or alleviate obesity separately. HFD has been shown to enhance nociception while CR tends to alleviate pain when measuring pain outcomes. Herein, this review mainly summarizes the current knowledge of the effects of HFD and CR on pain responses and underlying molecular mechanisms of the immunological factors, metabolic regulation, inflammatory processes, Schwann cell (SC) autophagy, gut microbiome, and other pathophysiological signaling pathways involved. This review would help to provide insights on potential nonpharmacological strategies of dietary patterns in relieving pain.
Collapse
Affiliation(s)
- Jingjing Liu
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| | - Stanley Sau Ching Wong
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| |
Collapse
|
16
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
17
|
Dincer F, Atmaca H, Akman L, Oktay LM, Karaca B, Terek MC. Effects of leptin on the viability of human ovarian cancer cells and changes in cytokine expression levels. PeerJ 2023; 11:e15246. [PMID: 37155466 PMCID: PMC10122840 DOI: 10.7717/peerj.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Background Obesity is associated with increased mortality among ovarian cancer and is a poor prognostic factor. There are significant links between the leptin hormone, a product of the obesity gene, and the development of ovarian cancer. Leptin is a vital hormone-like cytokine secreted from adipose tissue and is mainly involved in the maintenance of energy homeostasis. It regulates several intracellular signaling pathways and also interacts with various hormones and energy regulators. It acts as a growth factor by stimulating cell proliferation and differentiation and in this way contributes to cancer cell development. The aim of the study was to investigate the effects of leptin on human ovarian cancer cells. Methods In this study, the effects of increasing the concentration of leptin were investigated on the cell viability of OVCAR-3 and MDAH-2774 ovarian cancer lines by MTT assay. Moreover, to elucidate the molecular mechanisms of leptin in ovarian cancer cells, changes in the expression levels of 80 cytokines were evaluated after leptin treatment via a human cytokine antibody array. Results Leptin increases the proliferation of both ovarian cancer cell lines. IL-1 level was increased in OVCAR-3 cells and TGF-β level was increased in MDAH-2774 cells after leptin treatment. A decrease in IL-2, MCP-2/CCL8 and MCP-3/CCL7 levels was detected in both ovarian cancer cell lines with leptin administration. An increase in IL-3 and IL-10 expressions, insulin-like growth factor binding proteins (IGFBP) IGFBP-1, IGFBP-2 and IGFBP-3 levels were detected in both ovarian cancer cell lines with leptin administration. In conclusion; leptin has a proliferative effect on human ovarian cancer cell lines and affects different cytokines in different types of ovarian cancer cells.
Collapse
Affiliation(s)
- Fatih Dincer
- Divison of Gynecologic Oncology, Health Sciences University İzmir Tepecik Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Levent Akman
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| | - Latife Merve Oktay
- Department of Medical Biology, Medicine Faculty, Ege University, Bayraklı, İzmir, Turkey
| | - Burcak Karaca
- Department of Medical Oncology, Tulay Aktas Oncology Hospital, Ege University, Bayraklı, İzmir, Turkey
| | - Mustafa Cosan Terek
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| |
Collapse
|
18
|
MOKASHİ PR, BHANDARY S. “ESTIMATION OF SALIVARY LEPTIN LEVELS IN CHILDREN WITH EARLY CHILDHOOD CARIES – AN INTERVENTIONAL STUDY”. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.1100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Early childhood caries (ECC) is a pathologic condition of multifactorial nature. The diagnosis of the same has been limited to clinical and radiographic aids with very little significance to assess its inflammatory component. objectives: The present study aims to evaluate the role of leptin, an adipocytokine as a non-invasive inflammatory biomarker in ECC.
Materials and Method: A total of 60 children between the age of (3-5) years were selected for the study. The study subjects were divided into three groups of 20 each including Group 1 as control, Group 2 with mild to moderate ECC and Group 3 with severe ECC. Saliva samples were taken from all subjects and collected again after 2 months following rehabilitative intervention. Levels of salivary leptin were determined using Enzyme-Linked Immunosorbent Assay (ELISA).
Results: Levels of salivary leptin were significantly associated with severity of dental caries. The intragroup comparisons of pre and post treatment levels of salivary leptin showed significant reductions in both mild to moderate ECC and severe ECC groups following caries control. Inter group evaluation between mild to moderate ECC and severe ECC post treatment showed statistically significant decline of leptin levels in comparison to baseline values.
Conclusion: There was a statistically significant decline in salivary leptin levels between the mild moderate and severe ECC group, after 2 months following caries control. Thus, leptin holds a potential to be recognized as a reliable future prognostic and diagnostic inflammatory marker in early childhood caries.
Collapse
|
19
|
Wang Y, Hu C. Leptin and Asthma: What Are the Interactive Correlations? Biomolecules 2022; 12:biom12121780. [PMID: 36551211 PMCID: PMC9775505 DOI: 10.3390/biom12121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Leptin is an adipokine directly correlated with the proinflammatory obese-associated phenotype. Leptin has been demonstrated to inhibit adipogenesis, promote fat demarcation, promote a chronic inflammatory state, increase insulin sensitivity, and promote angiogenesis. Leptin, a regulator of the immune response, is implicated in the pathology of asthma. Studies involved in the key cell reaction and animal models of asthma have provided vital insights into the proinflammatory role of leptin in asthma. Many studies described the immune cell and related cellular pathways activated by leptin, which are beneficial in asthma development and increasing exacerbations. Subsequent studies relating to animal models support the role of leptin in increasing inflammatory cell infiltration, airway hyperresponsiveness, and inflammatory responses. However, the conclusive effects of leptin in asthma are not well elaborated. In the present study, we explored the general functions and the clinical cohort study supporting the association between leptin and asthma. The main objective of our review is to address the knowns and unknowns of leptin on asthma. In this perspective, the arguments about the different faces of leptin in asthma are provided to picture the potential directions, thus yielding a better understanding of asthma development.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
20
|
Gouvêa VN, Cooke RF, Marques RS. Impacts of stress-induced inflammation on feed intake of beef cattle. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.962748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Livestock animals are often exposed to unavoidable stressful situations during their productive life that triggers stress-induced inflammatory responses, which are known to influence their nutrient requirements and feed intake. Decreased growth performance and immunocompetence of stressed livestock are often the main consequence of reduced feed intake. Because feed intake is usually reduced in animals experiencing stress conditions, concentrations of certain nutrients in the diets typically need to be increased to meet the requirements of the animals. Therefore, understanding the mechanisms that control feed intake in animals experiencing stress-induced inflammation is essential for increasing intake, milk or meat production, feed efficiency, and animal health. This review highlights the hormones regulating feed intake in ruminants and how stress-induced inflammation affect these hormones at local and systemic levels. The mechanism of feed intake regulation in ruminants is extremely complex and involves multiple controls. The liver is an important sensor of energy status in animals under homeostatic conditions, which transmits signals to brain feeding centers that modulate appetite. However, the physiologic consequences associated with different stressors will rearrange the hierarchy of mechanisms controlling feed intake compared to animals under homeostatic conditions, and other tissues (e.g., intestines), systems (e.g., endocrine and lymphatic) hormones (e.g., leptin and ghrelin) will directly affect intake regulation during stress and inflammatory conditions. It is suggested that the immune system can interact with the central nervous system to modulate feed intake. As example, stress events elicit numerous stressors that increase circulating proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-8, and acute-phase proteins (APP), and the magnitude of these responses are negatively correlated with feed intake. A direct effect of these cytokines on rumen microbial fermentation and intestinal barrier function was also reported and might indirectly affect intake regulation in ruminants. This review describes the main hormones and proinflammatory cytokines involved in stress-induced inflammation and how they can directly or indirectly affect intake regulation in ruminants. Understanding the mechanisms controlling feed intake in ruminants will help producers to implement management and feed strategies to optimize productivity and profitability in stressed livestock species.
Collapse
|
21
|
Ella K, Sűdy ÁR, Búr Z, Koós B, Kisiczki ÁS, Mócsai A, Káldi K. Time restricted feeding modifies leukocyte responsiveness and improves inflammation outcome. Front Immunol 2022; 13:924541. [PMID: 36405720 PMCID: PMC9666763 DOI: 10.3389/fimmu.2022.924541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Time restricted eating, the dietary approach limiting food intake to a maximal 10-hour period of daytime is considered beneficial in metabolic dysfunctions, such as obesity and diabetes. Rhythm of food intake and parallel changes in serum nutrient levels are also important entrainment signals for the circadian clock, particularly in tissues involved in metabolic regulation. As both the metabolic state and the circadian clock have large impact on immune functions, we investigated in mice whether time restricted feeding (TRF) affects systemic inflammatory potential. TRF slackened the symptoms in K/BxN serum-transfer arthritis, an experimental model of human autoimmune joint inflammation. Compared to ad libitum conditions TRF reduced the expression of inflammatory mediators in visceral adipose tissue, an integrator and coordinator of metabolic and inflammatory processes. Furthermore, TRF strengthened the oscillation of peripheral leukocyte counts and alongside decreased the pool of both marginated and tissue leukocytes. Our data suggest that the altered leukocyte distribution in TRF mice is related to the attenuated expression of adhesion molecules on the surface of neutrophils and monocytes. We propose that TRF modifies both rhythm and inflammatory potential of leukocytes which contribute to the milder reactivity of the immune system and therefore time-restricted eating could serve as an effective complementary tool in the therapy of autoinflammatory processes.
Collapse
|
22
|
Abiri B, Ahmadi AR, Hejazi M, Amini S. Obesity, Diabetes Mellitus, and Metabolic Syndrome: Review in the Era of COVID-19. Clin Nutr Res 2022; 11:331-346. [PMID: 36381471 PMCID: PMC9633974 DOI: 10.7762/cnr.2022.11.4.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now at pandemic levels leading to considerable morbidity and mortality throughout the globe. Patients with obesity, diabetes, and metabolic syndrome (MetS) are mainly susceptible and more probably to get severe side effects when affected by this virus. The pathophysiologic mechanisms for these notions have not been completely known. The pro-inflammatory milieu observed in patients with metabolic disruption could lead to COVID-19-mediated host immune dysregulation, such as immune dysfunction, severe inflammation, microvascular dysfunction, and thrombosis. The present review expresses the current knowledge regarding the influence of obesity, diabetes mellitus, and MetS on COVID-19 infection and severity, and their pathophysiological mechanisms.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Amirhossein Ramezani Ahmadi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Shirin Amini
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar 64517-73865, Iran
| |
Collapse
|
23
|
Bhaumik S, Lockett J, Saif Z, Lai A, Salomon C, Whitehead J, Clifton VL. The impact of obesity and uncontrolled asthma during pregnancy on metabolic and inflammatory pathways. J Asthma 2022; 60:1141-1152. [PMID: 36214455 DOI: 10.1080/02770903.2022.2134794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Asthma and obesity are both inflammatory complications of pregnancy and when combined contribute to an increased risk of uncontrolled asthma during pregnancy and poor perinatal outcomes. Our previous work has identified the presence of maternal asthma is associated with a proinflammatory milieu in the placenta and reduced fetal growth. The current study was designed to determine the relationships between immunomodulatory metabolic pathways and inflammation and establish whether these pathways are associated with uncontrolled asthma in obese pregnant women.Fifty-three obese (BMI >30) pregnant women were recruited prospectively. Participants were classified as having no asthma, controlled asthma, and uncontrolled asthma based on a doctor diagnosis and assessment using the Asthma Control Questionnaire (ACQ). Circulating plasma concentrations of metabolic hormones leptin, adiponectin, insulin, glucose, and extracellular vesicle (EVs) associated cytokines were measured at 18- and 36-weeks gestation.Concentrations of metabolic and inflammatory markers among obese participants with or without asthma were not significantly different throughout gestation. However total adiponectin concentrations increased as gestation progressed in obese, non-asthmatic women but did not increase in women with asthma. Plasma adiponectin and leptin levels in women with uncontrolled asthma were positively correlated with EV inflammatory markers including GM-CSF, IL-6, TNFα and IFNγ protein.This study demonstrated that most metabolic markers remain unchanged with the presence and severity of asthma in obese pregnant women. However, differences in the associations between metabolic and inflammatory pathways were observed in women with asthma and may be one of the mechanisms contributing to uncontrolled asthma in obese pregnant women.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane, Australia
| | - Zarqa Saif
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jon Whitehead
- Department of Life Sciences, The University of Lincoln, Lincoln, United Kingdom
| | - Vicki L Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Hou J, Yang Y, Gao H, Ouyang T, Liu Q, Ding R, Kan H. Systematic investigation of the clinical significance and prognostic value of the CBXs in esophageal cancer. Medicine (Baltimore) 2022; 101:e30888. [PMID: 36221371 PMCID: PMC9542684 DOI: 10.1097/md.0000000000030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer (ESCA), one of the most aggressive malignant tumors, has been announced to be the ninth most common cancer and the sixth leading cause of cancer-related death in the world. Chromobox family members (CBXs) are important epigenetic regulators which are related with the transcription of target genes. The role of CBXs in carcinomas has been reported in many studies. However, the function and prognostic value of different CBXs in ESCA are still largely unknown. In this article, we first performed differential expression analysis through several methods including Oncomine and Gene Expression Profiling Interactive Analysis. The results led us to determine the differential expression of CBXs in pan-cancer, especially ESCA. Then we evaluated the prognostic value of different CBX messenger RNA (mRNA) expression in patients with ESCA through the Kaplan-Meier plotter and the Human Protein Atlas database. In addition, we used cBioPortal to explore all genetic alterations and mutations in the CBXs in ESCA. Simultaneously, the correlation between its expression and the level of immune infiltration of ESCA was visualized by TIMER. Finally, the biological function of CBXs in ESCA is obtained through Biological Enrichment Analysis including gene ontology and Kyoto Encyclopedia of Genes and Genomes. The expression levels of CBX3/4/5 and CBX8 in ESCA tissues increased significantly and the expression level of CBX7 decreased through differential expression analysis. Additionally, CBX1 is significantly related to the clinical cancer stage and disease-free survival of ESCA patients. The high mRNA expression of CBX4 is related to the short overall survival of patients with esophageal squamous cell carcinoma, and the high mRNA expression of CBX3/7/8 is related to the short overall survival of patients with esophageal adenocarcinoma, indicating that CBX1/3/4/7/8 may be a potential prognostic biomarker for the survival of ESCA patients. Besides, the expression of CBXs is significantly related to the infiltration of a variety of immune cells, including six types of CD4-positive T-lymphocytes, macrophages, neutrophils, bursindependentlymphocyte, CD8-positive T-lymphocytes cells and dendritic cells in ESCA. Moreover, we found that CBXs are mainly associated with the inhibition of cell cycle and apoptosis pathway. Further, enrichment analysis indicated that CBXs and correlated genes were enriched in mismatch repair, DNA replication, cancer pathways, and spliceosomes. Our research may provide new insights into the choice of prognosis biomarkers of the CBXs in ESCA.
Collapse
Affiliation(s)
- Jun Hou
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, China
| |
Collapse
|
25
|
Michalak A, Kasztelan-Szczerbińska B, Cichoż-Lach H. Impact of Obesity on the Course of Management of Inflammatory Bowel Disease—A Review. Nutrients 2022; 14:nu14193983. [PMID: 36235636 PMCID: PMC9573343 DOI: 10.3390/nu14193983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is already well-known that visceral adipose tissue is inseparably related to the pathogenesis, activity, and general outcome of inflammatory bowel disease (IBD). We are getting closer and closer to the molecular background of this loop, finding certain relationships between activated mesenteric tissue and inflammation within the lumen of the gastrointestinal tract. Recently, relatively new data have been uncovered, indicating a direct impact of body fat on the pattern of pharmacological treatment in the course of IBD. On the other hand, ileal and colonic types of Crohn’s disease and ulcerative colitis appear to be more diversified than it was thought in the past. However, the question arises whether at this stage we are able to translate this knowledge into the practical management of IBD patients or we are still exploring the scientific background of this pathology, having no specific tools to be used directly in patients. Our review explores IBD in the context of obesity and associated disorders, focusing on adipokines, creeping fat, and possible relationships between these disorders and the treatment of IBD patients.
Collapse
|
26
|
Chronic Leptin Deficiency Improves Tolerance of Physiological Damage and Host-Pathogen Cooperation during Yersinia pseudotuberculosis Infection. Infect Immun 2022; 90:e0024222. [PMID: 35924898 PMCID: PMC9476980 DOI: 10.1128/iai.00242-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.
Collapse
|
27
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
28
|
Ribeiro FM, Silva MA, Lyssa V, Marques G, Lima HK, Franco OL, Petriz B. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:927170. [PMID: 35966101 PMCID: PMC9365995 DOI: 10.3389/fendo.2022.927170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is one of the major pandemics of the 21st century. Due to its multifactorial etiology, its treatment requires several actions, including dietary intervention and physical exercise. Excessive fat accumulation leads to several health problems involving alteration in the gut-microbiota-brain axis. This axis is characterized by multiple biological systems generating a network that allows bidirectional communication between intestinal bacteria and brain. This mutual communication maintains the homeostasis of the gastrointestinal, central nervous and microbial systems of animals. Moreover, this axis involves inflammatory, neural, and endocrine mechanisms, contributes to obesity pathogenesis. The axis also acts in appetite and satiety control and synthesizing hormones that participate in gastrointestinal functions. Exercise is a nonpharmacologic agent commonly used to prevent and treat obesity and other chronic degenerative diseases. Besides increasing energy expenditure, exercise induces the synthesis and liberation of several muscle-derived myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY, ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus, exercise may serve as a rebalancing agent of the gut-microbiota-brain axis under the stimulus of chronic low-grade inflammation induced by obesity. So far, there is little evidence of modification of the gut-brain axis as a whole, and this narrative review aims to address the molecular pathways through which exercise may act in the context of disorders of the gut-brain axis due to obesity.
Collapse
Affiliation(s)
- Filipe M. Ribeiro
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Maycon A. Silva
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Victória Lyssa
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasilia, Brazil
| | - Gabriel Marques
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Henny K. Lima
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Octavio L. Franco
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
- Postgraduate Program in Rehabilitation Sciences - University of Brasília, Brasília, Brazil
| |
Collapse
|
29
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
30
|
Yang CF, Liu WW, Wang HQ, Zhang JL, Li K, Diao ZY, Yue QL, Yan GJ, Li CJ, Sun HX. Gonadal white adipose tissue is important for gametogenesis in mice through maintenance of local metabolic and immune niches. J Biol Chem 2022; 298:101818. [PMID: 35278432 PMCID: PMC9052151 DOI: 10.1016/j.jbc.2022.101818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Gonadal white adipose tissue (gWAT) can regulate gametogenesis via modulation of neuroendocrine signaling. However, the effect of gWAT on the local microenvironment of the gonad was largely unknown. Herein, we ruled out that gWAT had a neuroendocrine effect on gonad function through a unilateral lipectomy strategy, in which cutting off epididymal white adipose tissue could reduce seminiferous tubule thickness and decrease sperm counts only in the adjacent testis and epididymis of the affected gonad. Consistent with the results in males, in females, ovary mass was similarly decreased by lipectomy. We determined that the defects in spermatogenesis were mainly caused by augmented apoptosis and decreased proliferation of germ cells. Transcriptome analysis suggested that lipectomy could disrupt immune privilege and activate immune responses in both the testis and ovary on the side of the lipectomy. In addition, lipidomics analysis in the testis showed that the levels of lipid metabolites such as free carnitine were elevated, whereas the levels of glycerophospholipids such as phosphatidylcholines and phosphatidylethanolamines were decreased, which indicated that the metabolic niche was also altered. Finally, we show that supplementation of phosphatidylcholine and phosphatidylethanolamine could partially rescue the observed phenotype. Collectively, our findings suggest that gWAT is important for gonad function by not only affecting whole-body homeostasis but also via maintaining local metabolic and immune niches.
Collapse
Affiliation(s)
- Chao-Fan Yang
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wen-Wen Liu
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Hai-Quan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kang Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhen-Yu Diao
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiu-Ling Yue
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Gui-Jun Yan
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Hai-Xiang Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Manchanda AS, Kwan AC, Ishimori M, Thomson LEJ, Li D, Berman DS, Bairey Merz CN, Jefferies C, Wei J. Coronary Microvascular Dysfunction in Patients With Systemic Lupus Erythematosus and Chest Pain. Front Cardiovasc Med 2022; 9:867155. [PMID: 35498009 PMCID: PMC9053571 DOI: 10.3389/fcvm.2022.867155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chest pain is a common symptom in patients with systemic lupus erythematosus, an autoimmune disease that is associated with increased cardiovascular morbidity and mortality. While chest pain mechanisms can be multifactorial and often attributed to non-coronary or non-cardiac cardiac etiologies, emerging evidence suggests that ischemia with no obstructive coronary arteries (INOCA) is a prevalent condition in patients with chest pain and no obstructive coronary artery disease. Coronary microvascular dysfunction is reported in approximately half of SLE patients with suspected INOCA. In this mini review, we highlight the cardiovascular risk assessment, mechanisms of INOCA, and diagnostic approach for patients with SLE and suspected CMD.
Collapse
Affiliation(s)
- Ashley S. Manchanda
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alan C. Kwan
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mariko Ishimori
- Division of Rheumatology and Department of Biomedical Sciences, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Louise E. J. Thomson
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daniel S. Berman
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jefferies
- Division of Rheumatology and Department of Biomedical Sciences, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- *Correspondence: Janet Wei
| |
Collapse
|
32
|
Obesity and Leptin Resistance in the Regulation of the Type I Interferon Early Response and the Increased Risk for Severe COVID-19. Nutrients 2022; 14:nu14071388. [PMID: 35406000 PMCID: PMC9002648 DOI: 10.3390/nu14071388] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the “Suppressor Of Cytokine Signaling 1 and 3” (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the “typical western” conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.
Collapse
|
33
|
Strath LJ, Brooks MS, Sorge RE, Judd SE. Relationship between diet and relative risk of pain in a cross-sectional analysis of the REGARDS longitudinal study. Pain Manag 2022; 12:168-179. [PMID: 34431328 PMCID: PMC8772533 DOI: 10.2217/pmt-2021-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Determine if dietary patterns affect risk of pain. Methods: Data from 16,061 participants (55.4% females, 32.3% Black, age 65 ± 9 years) in the REGARDS study were categorized based on the adherence to previous dietary patterns reflecting the prevalent foods within each (convenience, alcohol/salads, plant-based, sweets/fats and 'Southern'). A modified Poisson regression model was used to determine whether dietary patterns were associated with relative risk (RR) of pain. Results: High adherence to 'Southern' dietary pattern was associated with a 41% (95% CI: 23, 61%) increase in RR of pain. High adherence to a plant-based dietary pattern showed a 22% (95% CI: 11, 31%) decrease in the RR of pain. Conclusion: Poor quality dietary patterns increase the RR of pain, while plant-based patterns lowered the RR. Diet patterns should be incorporated into medical history.
Collapse
Affiliation(s)
- Larissa J Strath
- Department of Psychology, College of Arts & Sciences, The University of Alabama at Birmingham, AL 35294, USA
| | - Marquita S Brooks
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, AL 35294, USA
| | - Robert E Sorge
- Department of Psychology, College of Arts & Sciences, The University of Alabama at Birmingham, AL 35294, USA,Author for correspondence:
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Scheurlen KM, Snook DL, Walter MN, Cook CN, Fiechter CR, Pan J, Beal RJ, Galandiuk S. Itaconate and leptin affecting PPARγ in M2 macrophages: A potential link to early-onset colorectal cancer. Surgery 2022; 171:650-656. [PMID: 34876290 PMCID: PMC8885843 DOI: 10.1016/j.surg.2021.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/28/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Along with the rising incidence of obesity, there has been an increase in patients diagnosed with early-onset colorectal cancer (<50 years old). In colorectal cancer, worse patient survival is associated with certain cytokine expression and downregulation of peroxisome proliferator activated receptor gamma expression. The effects of the obesity hormone leptin and macrophage-specific metabolite itaconate on these mechanisms are poorly understood. We investigated their impact on peroxisome proliferator activated receptor gamma and macrophage cytokine expression in vitro. METHODS M2-like macrophages were treated with either leptin, 4-octyl itaconate, or dimethyl itaconate in a dose- and time-dependent manner. Gene expression after treatment with 4 doses (D1-4) of each compound was analyzed at 4 time points (3, 6, 18, and 24 hours). RESULTS Peroxisome proliferator activated receptor gamma was downregulated after 4-octyl itaconate treatment at 18 hours (FC -32.67, P ≤ .001). Interleukin-8 was upregulated after leptin and dimethyl itaconate treatment at 6 hours (FC 26.35 at D4, P ≤ .001, and FC 23.26 at D3, P = .006). Dimethyl itaconate upregulated IL-1β at 24 hours (FC 18.00 at D4, P ≤ .001). Tumor necrosis factor-α showed maximum downregulation after 4-octyl itaconate at 18 hours (FC -103.25 at D4, P ≤ .001). CONCLUSIONS Itaconate downregulates peroxisome proliferator activated receptor gamma as a tumor-suppressing factor and upregulates anti-inflammatory cytokines in M2-like macrophages. Itaconate provides a link between obesity and colorectal cancer and may be a key regulator in early-onset colorectal cancer.
Collapse
Affiliation(s)
- Katharina M Scheurlen
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Dylan L Snook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Mary N Walter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Cheyenne N Cook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Casey R Fiechter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Robert J Beal
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY.
| |
Collapse
|
35
|
Leptin in Dental Pulp and Periapical Tissues: A Narrative Review. Int J Mol Sci 2022; 23:ijms23041984. [PMID: 35216099 PMCID: PMC8880140 DOI: 10.3390/ijms23041984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Leptin is a non-glycosylated 16 kDa protein synthesized mainly in adipose cells. The main function of leptin is to regulate energy homeostasis and weight control in a central manner. There is increasing evidence that leptin also has systemic effects, acting as a link between innate and acquired immune responses. The expression of leptin and its receptor in human dental pulp and periradicular tissues have already been described, as well as several stimulatory effects of leptin protein expression in dental and periodontal tissues. The aim of this paper was to review and to compile the reported scientific literature on the role and effects of leptin in the dental pulp and periapical tissues. Twelve articles accomplished the inclusion criteria, and a comprehensive narrative review was carried out. Review of the available scientific literature concluded that leptin has the following effects on pulpal and periapical physiology: 1) Stimulates odontogenic differentiation of dental pulp stem cells (DPSCs), 2) Increases the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), odontoblastic proteins involved in odontoblastic differentiation and dentin mineralization, 3) Stimulates vascular endothelial growth factor (VEGF) expression in human dental pulp tissue and primary cultured cells of human dental pulp (hDPCs), 4) Stimulates angiogenesis in rat dental pulp cells, and 5) Induces the expression of interleucinas 6 and 8 in human periodontal ligament cells (hPDLCs). There is evidence which suggests that leptin is implicated in the dentin mineralization process and in pulpal and periapical inflammatory and reparative responses.
Collapse
|
36
|
Martins R, Capitão C, Fialho M, Feteira-Santos R, Virgolino A, Santos RR, Alarcão V, Silva M, Arriaga M, Graça P, Gregório MJ, Santos O. Are beliefs and attitudes about COVID-19 associated with self-perceived changes in food consumption? Results from a nationwide survey during lockdown. Appetite 2022; 168:105681. [PMID: 34500013 PMCID: PMC8421078 DOI: 10.1016/j.appet.2021.105681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to understand how beliefs and attitudes regarding COVID-19 are associated with self-perceived changes in food consumption during lockdown between March 19 and May 2, 2020. We conducted a cross-sectional study with a non-probabilistic weighted sample of the Portuguese population. Data were collected using an online survey and telephone interviews. The association between agreement with sentences about food and COVID-19 and perceived changes in food consumption were assessed by multinomial logistic regression models. Overall, 5858 citizens were included, with a mean age of 38.2 (17.3) years. Exclusive agreement with the belief "SARS-CoV-2 can be transmitted by food" (27.5%) was associated with decreased odds of perceived positive changes (e.g., increased consumption of fruit and vegetables). Agreement only with the attitudinal sentence "I started to consume foods that may protect against COVID-19" (11.9%) was associated with positive perceived consumption changes (e.g., increasing fruit and vegetables, and decreasing soft drinks and snacks). Cumulative agreement (with both sentences; 10.6%) was also associated with mostly positive food consumption changes. Specific beliefs and attitudes regarding COVID-19 and food are associated with self-perceived changes in food consumption. Longitudinal research is needed to understand how beliefs and/or attitudes about the role of food in infectious diseases act as determinants of eating behavior modification.
Collapse
Affiliation(s)
- Raquel Martins
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Carolina Capitão
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Mónica Fialho
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Rodrigo Feteira-Santos
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ana Virgolino
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ricardo R Santos
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Violeta Alarcão
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro de Investigação e Estudos de Sociologia, ISCTE - Instituto Universitário de Lisboa, Avenida das Forças Armadas, 1649-026, Lisbon, Portugal
| | - Marlene Silva
- Programa Nacional para a Promoção da Atividade Física, Direção-Geral da Saúde, Alameda D. Afonso Henriques, 45, 1049-005, Lisbon, Portugal; CIDEFES - Faculdade de Educação Física e Desporto, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024, Lisbon, Portugal
| | - Miguel Arriaga
- Direção-Geral da Saúde, Alameda D. Afonso Henriques, 45, 1049-005, Lisbon, Portugal; CRW-C Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisbon, Portugal
| | - Pedro Graça
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Oporto, Portugal; Programa Nacional para a Promoção da Alimentação Saudável, Direção-Geral da Saúde, Alameda D. Afonso Henriques, 45, 1049-005, Lisbon, Portugal
| | - Maria João Gregório
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Oporto, Portugal; Programa Nacional para a Promoção da Alimentação Saudável, Direção-Geral da Saúde, Alameda D. Afonso Henriques, 45, 1049-005, Lisbon, Portugal
| | - Osvaldo Santos
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal; Unbreakable Idea Research, Estrada Nacional 115, Sítio da Caniceira, nº 1, Casarão, 2550-426, Painho, Portugal
| |
Collapse
|
37
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
García-Estevez L, González-Martínez S, Moreno-Bueno G. The Leptin Axis and Its Association With the Adaptive Immune System in Breast Cancer. Front Immunol 2021; 12:784823. [PMID: 34868066 PMCID: PMC8634160 DOI: 10.3389/fimmu.2021.784823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue secretes various peptides, including leptin. This hormone acts through the leptin receptor (Ob-R), which is expressed ubiquitously on the surface of various cells, including breast cancer cells and immune cells. Increasing evidence points to an interaction between the tumor microenvironment, tumor cells, and the immune system. Leptin plays an important role in breast cancer tumorigenesis and may be implicated in activation of the immune system. While breast cancer cannot be considered an immunogenic cancer, the triple-negative subtype is an exception. Specific immune cells - tumor infiltrating lymphocytes - are involved in the immune response and act as predictive and prognostic factors in certain breast cancer subtypes. The aim of this article is to review the interaction between adipose tissue, through the expression of leptin and its receptor, and the adaptive immune system in breast cancer.
Collapse
Affiliation(s)
- Laura García-Estevez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| | - Silvia González-Martínez
- Pathology Department, Hospital Ramón y Cajal, Madrid, Spain.,Fundación Contigo Contra el Cáncer de la Mujer, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain
| |
Collapse
|
39
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Plasma adipocytokines distinguish tuberculous lymphadenitis from pulmonary tuberculosis. Tuberculosis (Edinb) 2021; 132:102161. [PMID: 34891038 DOI: 10.1016/j.tube.2021.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Adipocytokines are the major secretory products of adipose tissue and potential markers of metabolism and inflammation. However, their association in host immune response against tuberculous lymphadenitis (TBL) disease is not known. Thus, we measured the systemic levels of adipocytokines in TBL (n = 44) and compared to pulmonary tuberculosis (PTB, n = 44) and healthy control (HC, n = 44) individuals. We also examined the pre and post-treatment adipocytokine levels in TBL individuals upon completion of standard anti-tuberculosis treatment (ATT). The receiver operating characteristics (ROC) were performed between TBL, PTB and HCs to find the potential discriminatory markers. Finally, principal component (PCA) analysis was performed to reveal the expression patterns of adipocytokines among study groups. Our results demonstrate that TBL is associated with significantly higher systemic levels of adipocytokines (except resistin) when compared with PTB and significantly lower levels when compared with HC (except adiponectin) individuals. Upon completion of ATT, the systemic levels of adiponectin and resistin were significantly decreased when compared to pre-treatment levels. Upon ROC analysis, all the three adipocytokines discriminated TBL from PTB but not with HCs, respectively. Similarly, adipocytokines were differentially clustered in TBL in comparison to PTB in PCA analysis. Therefore, adipocytokines are a distinguishing feature in TBL compared to PTB individuals.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India; National Institute for Research in Tuberculosis (NIRT), Chennai, India.
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Strath LJ, Totsch SK, Quinn TL, Menard M, Philip George A, Lukens SL, Simmons J, Zhang Y, Sorge RE. The effect of the Standard American Diet on Iba-1 immunoreactivity in the spinal cord before and after peripheral inflammatory injury in rats. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Kamareddine L, Ghantous CM, Allouch S, Al-Ashmar SA, Anlar G, Kannan S, Djouhri L, Korashy HM, Agouni A, Zeidan A. Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. J Inflamm Res 2021; 14:5349-5365. [PMID: 34703273 PMCID: PMC8528546 DOI: 10.2147/jir.s322231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiac remodeling is the process by which the heart adapts to stressful stimuli, such as hypertension and ischemia/reperfusion; it ultimately leads to heart failure upon long-term exposure. Autophagy, a cellular catabolic process that was originally considered as a mechanism of cell death in response to detrimental stimuli, is thought to be one of the main mechanisms that controls cardiac remodeling and induces heart failure. Dysregulation of the adipokines leptin and adiponectin, which plays essential roles in lipid and glucose metabolism, and in the pathophysiology of the neuroendocrine and cardiovascular systems, has been shown to affect the autophagic response in the heart and to contribute to accelerate cardiac remodeling. The obesity-associated protein leptin is a pro-inflammatory, tumor-promoting adipocytokine whose elevated levels in obesity are associated with acute cardiovascular events, and obesity-related hypertension. Adiponectin exerts anti-inflammatory and anti-tumor effects, and its reduced levels in obesity correlate with the pathogenesis of obesity-associated cardiovascular diseases. Leptin- and adiponectin-induced changes in autophagic flux have been linked to cardiac remodeling and heart failure. In this review, we describe the different molecular mechanisms of hyperleptinemia- and hypoadiponectinemia-mediated pathogenesis of cardiac remodeling and the involvement of autophagy in this process. A better understanding of the roles of leptin, adiponectin, and autophagy in cardiac functions and remodeling, and the exact signal transduction pathways by which they contribute to cardiac diseases may well lead to discovery of new therapeutic agents for the treatment of cardiovascular remodeling.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Crystal M Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan, Lebanon
| | - Soumaya Allouch
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sarah A Al-Ashmar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Gulsen Anlar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Surya Kannan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Hesham M Korashy
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Huang YH, Su TC, Wang CH, Wong SL, Chien YH, Wang YT, Hwu WL, Lee NC. RNA-seq of peripheral blood mononuclear cells of congenital generalized lipodystrophy type 2 patients. Sci Data 2021; 8:265. [PMID: 34645804 PMCID: PMC8514467 DOI: 10.1038/s41597-021-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Illumina RNA-seq analysis was used to characterize the whole transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with congenital generalized lipodystrophy. RNA-seq information for seven patients with type 2 congenital generalized lipodystrophy (CGL2; Berardinelli-Seip congenital lipodystrophy, BSCL2) was obtained and compared with similar information for seven age- and sex-matched healthy control subjects. All seven CGL2 patients carried biallelic pathogenic mutations affecting the BSCL2 gene and had clinical symptoms of varying severity. The findings provide the whole-transcriptome signatures of PBMCs of CGL2 patients, allowing further exploration of gene expression patterns/signatures associated with the various clinical symptoms of patients with this disease. Measurement(s) | RNA-Seq • RNA | Technology Type(s) | Illumina HiSeq. 2500 • RNA sequencing | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.15022521
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Chien Su
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tai Wang
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
43
|
Reduced Endothelial Leptin Signaling Increases Vascular Adrenergic Reactivity in a Mouse Model of Congenital Generalized Lipodystrophy. Int J Mol Sci 2021; 22:ijms221910596. [PMID: 34638939 PMCID: PMC8508873 DOI: 10.3390/ijms221910596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.
Collapse
|
44
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
45
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
46
|
Hunsche C, Hernandez O, Mela V, Viveros MP, De la Fuente M. The Postnatal Leptin Surge Supports Immune Cell Function in Rats. Immunol Invest 2021; 51:1347-1363. [PMID: 34121590 DOI: 10.1080/08820139.2021.1940199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Leptin plays an important role in the regulation of the immune response. There is a physiological surge of leptin in rodents during the neonatal period, which has mainly been studied in the context of brain development. However, little is known about the effects of this neonatal leptin surge on immunity. Therefore, we investigated whether blocking this leptin surge could affect several immune functions.Methods: Male and female rats were injected subcutaneously with 5 mg/Kg/day of rat pegylated super leptin antagonist during the neonatal period (PND5-9). On the peripubertal period, relevant functions as well as cytokine release by spleen leukocytes were studied in these animals.Results: The results showed that the animals significantly display an impaired anti-tumor NK activity and chemotactic and proliferation capacity of lymphocytes in response to mitogens. In addition, several cytokine concentrations, released under mitogen-stimulated conditions, were also altered.Conclusion: In conclusion, the neonatal leptin surge seems to be involved in the establishment of an adequate immune response and cytokine profile, which are crucial for the maintenance of a healthy life.
Collapse
Affiliation(s)
- Caroline Hunsche
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology). Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Research Institute of Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Oskarina Hernandez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology). Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Virginia Mela
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology). Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - M Paz Viveros
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology). Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology). Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Research Institute of Hospital 12 de Octubre (I+12), Madrid, Spain
| |
Collapse
|
47
|
Zhu J, Ruan G, Cen H, Meng T, Zheng S, Wang Y, Li B, Zhu Z, Han W, Winzenberg T, Wluka AE, Cicuttini F, Wang B, Ding C. Association of serum levels of inflammatory markers and adipokines with joint symptoms and structures in participants with knee osteoarthritis. Rheumatology (Oxford) 2021; 61:1044-1052. [PMID: 34114615 DOI: 10.1093/rheumatology/keab479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/15/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To investigate the longitudinal associations of serum inflammatory markers and adipokines with joint symptoms and structures in participants with knee osteoarthritis (OA). METHODS Two hundred participants (46.5% female, mean age 63.1 years, mean BMI 29.5 kg/m2) from Tasmania part of the VIDEO (Vitamin D Effect on OA) study were randomly selected in the current study. Serum levels of 19 biomarkers, scores of Western Ontario and McMaster Universities Index (WOMAC), and magnetic resonance imaging-assessed knee structures were evaluated at baseline and month 24. The patterns of biomarkers were derived from principal component analysis and their association with knee symptoms and structures were examined using adjusted generalized estimating equations. RESULTS Five components explained 78% of the total variance. Interleukin (IL)-1β, -2, -4, -6, -8, -17A, -17F, -21, -22 and -23 loaded the highest on the first component, which was associated with increased bone marrow lesions (BMLs) and WOMAC dysfunction score. IL-10, -12 and granulocyte-macrophage colony-stimulating factor loaded on the second component, which was associated with increased cartilage volume, and decreased effusion-synovitis and WOMAC scores. Leptin, adipsin and C-reactive protein loaded on the third component, which was positively associated with WOMAC scores. Resistin loaded on the fourth component, which was associated with increased BMLs and cartilage defects. Apelin-36 and adiponectin loaded on the fifth component, which was associated with increased BMLs. CONCLUSION Various inflammatory and metabolic components were associated differently with joint symptoms and structural changes in knee OA, suggesting a complex inflammatory and metabolic inter-relationship in the pathogenesis of knee OA.
Collapse
Affiliation(s)
- Jimin Zhu
- Department of Public Health and General Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Han Cen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Preventive Medicine, Medical School, Ningbo University, Ningbo, China
| | - Tao Meng
- Department of Rheumatology and Immunology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuang Zheng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Rheumatology and Immunology, Arthritis Research Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baikun Li
- Department of Public Health and General Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Zhaohua Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiyu Han
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Anita E Wluka
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Binghui Wang
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Changhai Ding
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
48
|
Wiggins KB, Smith MA, Schultz-Cherry S. The Nature of Immune Responses to Influenza Vaccination in High-Risk Populations. Viruses 2021; 13:v13061109. [PMID: 34207924 PMCID: PMC8228336 DOI: 10.3390/v13061109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The current pandemic has brought a renewed appreciation for the critical importance of vaccines for the promotion of both individual and public health. Influenza vaccines have been our primary tool for infection control to prevent seasonal epidemics and pandemics such as the 2009 H1N1 influenza A virus pandemic. Certain high-risk populations, including the elderly, people with obesity, and individuals with comorbidities such as type 2 diabetes mellitus, are more susceptible to increased disease severity and decreased vaccine efficacy. High-risk populations have unique microenvironments and immune responses that contribute to increased vulnerability for influenza infections. This review focuses on these differences as we investigate the variations in immune responses to influenza vaccination. In order to develop better influenza vaccines, it is critical to understand how to improve responses in our ever-growing high-risk populations.
Collapse
|
49
|
Karampela I, Chrysanthopoulou E, Skyllas G, Christodoulatos GS, Kandri E, Antonakos G, Stratigou T, Armaganidis A, Dalamaga M. Circulating leptin, soluble leptin receptor and free leptin index in critically ill patients with sepsis: a prospective observational study. Minerva Anestesiol 2021; 87:880-890. [PMID: 34102805 DOI: 10.23736/s0375-9393.21.15368-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Leptin, the prototype adipokine, exerts immunomodulatory actions being implicated in inflammatory responses during sepsis. Clinical evidence regarding its role in sepsis has been contradictory, while free leptin has not been studied. Our aim was to jointly investigate circulating total leptin, its soluble receptor (sOBR), and free leptin, as well as their kinetics in critically ill patients with sepsis regarding their diagnostic and prognostic value. METHODS In a prospective study, serum total leptin, sOBR and free leptin index (FLI) were determined in 102 critically ill patients with sepsis within 48 hours from sepsis onset and one week after enrollment, and in 102 age and gender-matched healthy controls. RESULTS Upon enrollment, total leptin, sOB-R and FLI were significantly higher in septic patients compared to controls and they were positively correlated with sepsis severity scores, while they presented a significant decrease during the first week (p<0.001). The decrease in total leptin and sOB-R was significantly higher in patients with sepsis compared to septic shock and in survivors compared to nonsurvivors at 28 days (p<0.001). Higher serum total leptin was independently associated with survival at 28 days (enrollment: HR 0.86, p=0.03; one week after: HR 0.77, p<0.001). Higher kinetics of total leptin (but not FLI) was independently associated with survival after adjustment (HR: 0.48, p=0.001). CONCLUSIONS Higher circulating total leptin and its higher kinetics during the first week from sepsis onset independently predict 28 day survival in critically ill patients. Free leptin did not present any additional diagnostic and prognostic value in sepsis.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece -
| | - Evangelia Chrysanthopoulou
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | - George Skyllas
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | | | - Evangelia Kandri
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Antonakos
- Laboratory of Clinical Biochemistry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | - Theodora Stratigou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Armaganidis
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Elma Ö, Lebuf E, Marnef AQ, Tümkaya Yilmaz S, Coppieters I, Clarys P, Nijs J, Malfliet A, Deliens T. Diet can exert both analgesic and pronociceptive effects in acute and chronic pain models: a systematic review of preclinical studies. Nutr Neurosci 2021; 25:2195-2217. [PMID: 34096825 DOI: 10.1080/1028415x.2021.1934956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although diet is an essential aspect of human health, the link between diet and pain is still not well understood. Preclinical animal research provides information to understand underlying mechanisms that allow identifying the needs for human research. OBJECTIVES This study aims to give a systematic overview of the current evidence from preclinical studies regarding the analgesic and pronociceptive effects of various diets in non-neuropathic, non-cancer, or non-visceral acute and chronic pain models. STUDY DESIGN A systematic Review. SETTING This study examined studies that investigate the analgesic and pronociceptive effects of various diets in non-neuropathic, non-cancer, or non-visceral acute and chronic pain models. METHODS This review was conducted following the PRISMA guidelines and was registered in PROSPERO with the registration number CRD42019133473. The certainty of evidence was examined by a modified GRADE approach. RESULTS After the screening process twenty-four eligible papers were included in this review. Nineteen studies examined acute pain, nine studies chronic inflammatory pain, and four studies assessed both acute and chronic pain models. LIMITATIONS Due to the heterogeneity of the included studies, a meta-analysis was not included in this study. CONCLUSIONS In animal models, excessive saturated, monounsaturated or omega-6 polyunsaturated fat ingestion and diets rich in fats and carbohydrates can decrease pain sensitivity in acute nociceptive pain, whereas it can induce mechanical allodynia and heat hyperalgesia in chronic inflammatory pain. Additionally, diets rich in anti-inflammatory ingredients, as well as a calorie-restricted diet can promote recovery from primary mechanical allodynia and heat hyperalgesia in chronic inflammatory pain.
Collapse
Affiliation(s)
- Ömer Elma
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elien Lebuf
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Arturo Quiroz Marnef
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sevilay Tümkaya Yilmaz
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Iris Coppieters
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Nijs
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Anneleen Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Tom Deliens
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|