1
|
Zhu Q, Luo D, Li Y, Yu L, Zhang Z, Ouyang F, Li L, Lu M, Hu C, Dong Y, Ma C, Liang Y, Zhao TJ, Chen FJ, Li P, Yang TS. CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation. LIFE METABOLISM 2025; 4:loae035. [PMID: 39872985 PMCID: PMC11770823 DOI: 10.1093/lifemeta/loae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 01/30/2025]
Abstract
Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive. Here, we show that FSP27 exacerbates obesity and angiotensin Ⅱ (Ang Ⅱ)-induced AAA progression. FSP27 deficiency in mice inhibited high-fat diet-induced PVAT expansion and inflammation. Both global and adipose tissue-specific FSP27 ablation significantly decreased obesity-related AAA incidence. Deficiency of FSP27 in adipocytes abrogated matrix metalloproteinase-12 (MMP12) expression in aortic tissues. Infiltrated macrophages, which partially colocalize with MMP12, were significantly decreased in the FSP27-deficient aorta. Mechanistically, knockdown of Fsp27 in 3T3-L1 adipocytes inhibited C-C motif chemokine ligand 2 (CCL2) expression and secretion through a c-Jun N-terminal kinase (JNK)-dependent pathway, thereby leading to reduced induction of macrophage migration, while Cidec overexpression rescued this effect. Overall, our study demonstrates that CIDEC/FSP27 in adipose tissue contributes to obesity-related AAA formation, at least in part, by enhancing PVAT inflammation and macrophage infiltration, thus shedding light on its significance as a key regulator in the context of obesity-related AAA.
Collapse
Affiliation(s)
- Qing Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Da Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Yining Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Liyang Yu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
| | - Zixuan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Feng Ouyang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
| | - Manxi Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Changyong Hu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yinuo Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Chengxin Ma
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yan Liang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
- School of Life Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tian-Shu Yang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Yadav AK, MacNeill JJ, Krylov A, Ashrafi N, Mimi RA, Saxena R, Liu S, Graham SF, Wan J, Morral N. Sex- and age-associated factors drive the pathophysiology of MASLD. Hepatol Commun 2024; 8:e0523. [PMID: 39185904 PMCID: PMC11357696 DOI: 10.1097/hc9.0000000000000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity. Sex and age affect MASLD prevalence and pathophysiology. The use of animal models fed Western-style diets is vital for investigating the molecular mechanisms contributing to metabolic dysregulation and for facilitating novel drug target identification. However, the sex-associated and age-associated mechanisms underlying the pathophysiology remain poorly understood. This knowledge gap limits the development of personalized sex-specific and age-specific drug treatments. METHODS Young (7 wk) and aged (52 wk) male and female mice were fed a high-fat diet (HFD) or low-fat diet. Liver metabolome (>600 molecules) and transcriptome profiles were analyzed. RESULTS Male and female mice fed an HFD developed obesity, glucose intolerance, and hepatic steatosis. However, fasting blood glucose, insulin, and serum alanine aminotransferase levels were higher in males fed an HFD, indicating a more severe metabolic disease. In addition, males showed significant increases in liver diacylglycerides and glycosylceramides (known mediators of insulin resistance and fibrosis), and more changes in the transcriptome: extracellular matrix organization and proinflammatory genes were elevated only in males. In contrast, no major increase in damaging lipid classes was observed in females fed an HFD. However, aging affected the liver to a greater extent in females. Acylcarnitine levels were significantly reduced, suggestive of changes in fatty acid oxidation, and broad changes in the transcriptome were observed, including reduced oxidative stress response gene expression and alterations in lipid partitioning genes. CONCLUSIONS Here, we show distinct responses to an HFD between males and females. Our study underscores the need for using both sexes in drug target identification studies, and characterizing the molecular mechanisms contributing to the MASLD pathophysiology in aging animals.
Collapse
Affiliation(s)
- Ajay K. Yadav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Justin J. MacNeill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksei Krylov
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia Ashrafi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romana Ashrafi Mimi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stewart F. Graham
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Oakland University-William Beaumont School of Medicine, Rochester, Michigan USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Zhuang W, Chen Z, Shu X, Zhang J, Zhu R, Shen M, Chen J, Zheng X. Establishment of a Steatosis Model in LMH Cells, Chicken Embryo Hepatocytes, and Liver Tissues Based on a Mixture of Sodium Oleate and Palmitic Acid. Animals (Basel) 2024; 14:2173. [PMID: 39123699 PMCID: PMC11311026 DOI: 10.3390/ani14152173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Research on hepatic steatosis in animal husbandry has been a prominent area of study. Developing an appropriate in vitro cellular steatosis model is crucial for comprehensively investigating the mechanisms involved in liver lipid deposition in poultry and for identifying potential interventions to address abnormalities in lipid metabolism. The research on the methods of in vitro liver steatosis in chickens, particularly the effects of different fat mixtures, is still lacking. In this study, LMH cells were utilized to investigate the effects of OA, SO, PA, SP, and their pairwise combinations on steatosis development, with the aim of identifying the optimal conditions for inducing steatosis. Analysis of triglyceride (TG) content in LMH cells revealed that OA and SP had limited efficacy in increasing TG content, while a combination of SO and PA in a 1:2 ratio exhibited the highest TG content. Moreover, Oil Red O staining results in LMH cells demonstrated that the combination treatment had a more pronounced induction effect compared to 0.375 mM SO. Additionally, RNA-seq analysis showed that 0.375 mM SO significantly influenced the expression of genes associated with fatty acid metabolism compared to the control group, whereas the combination of SO and PA led to an enrichment of key GO terms associated with programmed cell death. These findings suggest that varying conditions of cellular steatosis could lead to distinct disruptions in gene expression. The optimal conditions for inducing steatosis in LMH cells were also tested on chicken embryonic liver cells and embryos. TG detection and Oil Red O staining assays showed that the combination of SO and PA successfully induced steatosis. However, the gene expression pattern differed from that of LMH cells. This study lays the foundations for further investigations into avian hepatic steatosis.
Collapse
Affiliation(s)
- Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (W.Z.); (Z.C.); (X.S.); (J.Z.); (R.Z.); (M.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
4
|
Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z, Chen M, Yi J, Zhu C. Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:844-856. [PMID: 38606478 PMCID: PMC11214951 DOI: 10.3724/abbs.2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 04/13/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Yajing Liu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Weiqian Hu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jing Yang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Bing Lin
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Zhentian Zhang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Mingyan Chen
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jingwen Yi
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Cuifeng Zhu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| |
Collapse
|
5
|
Wydorski PJ, Zmijewska A, Franczak A. The Extremely-Low-Frequency Electromagnetic Field Affects Apoptosis and Oxidative-Stress-Related Genes and Proteins in the Porcine Endometrium-An In Vitro Study. Int J Mol Sci 2024; 25:6931. [PMID: 39000040 PMCID: PMC11241303 DOI: 10.3390/ijms25136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, the extremely-low-frequency electromagnetic field (ELF-EMF) is recognized as environmental pollution. The data indicate that the ELF-EMF may affect factors related to epigenetic regulation and alter important biological processes in the uterus. The impact of the ELF-EMF on apoptosis and oxidative-stress-related genes has not been documented in porcine endometrium. This raises the question of whether the exposure to the ELF-EMF can induce apoptosis and/or oxidative stress in the endometrium of pigs during the peri-implantation period. Porcine endometrial slices (100 ± 5 mg) collected (n = 5) during the peri-implantation period were treated in vitro with ELF-EMF at a frequency of 50 Hz and flux density of 8 × 104 mG for 2 h. To determine the effect of ELF-EMF on apoptosis and oxidative stress in the endometrium, CASP3, CASP7, CIDEB, GADD45G, NOS1, NOS2, NOS3, and TP53I3 mRNA transcript were analyzed using real-time PCR, and protein abundance of CASP3, CASP7 using Western blot, and eNOS using ELISA were determined. Moreover, CASP3/7 and NOS activity was analyzed using flow cytometry and colorimetry, respectively. The decreased CASP7 and increased NOS3 mRNA transcript and protein abundance in ELF-EMF-treated endometrium were observed. Moreover, CIDEB, GADD45G, and TP53I3 mRNA transcript abundance was increased. Only p ≤ 0.05 was considered a statistically significant difference. The documented alterations indicate the potential of the ELF-EMF to affect apoptosis and generate oxidative stress in the endometrium. The insight into observed consequences documents for the first time the fact that the ELF-EMF may influence endometrial cell proliferation, angiogenesis, and/or tissue receptivity during peri-implantation.
Collapse
Affiliation(s)
| | | | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (P.J.W.); (A.Z.)
| |
Collapse
|
6
|
Guo L, Lei J, Li P, Wang Y, Wang J, Song T, Zhu B, Jia J, Miao J, Cui H. Hedan tablet ameliorated non-alcoholic steatohepatitis by moderating NF-κB and lipid metabolism-related pathways via regulating hepatic metabolites. J Cell Mol Med 2024; 28:e18194. [PMID: 38506086 DOI: 10.1111/jcmm.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Liying Guo
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Yuming Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wang
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Taotao Song
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Jing Miao
- Department of Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Liu H, Yerevanian A, Westerhoff M, Hastings MH, Guerra JRB, Zhao M, Svensson KJ, Cai B, Soukas AA, Rosenzweig A. Roles of Activin A and Gpnmb in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Diabetes 2024; 73:260-279. [PMID: 37934943 PMCID: PMC10796305 DOI: 10.2337/db23-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model. Surprisingly, overexpression of hepatic Activin A dramatically mitigated MASLD, reducing liver steatosis and inflammation as well as systemic fat accumulation, while improving insulin sensitivity. Further studies identified a dramatic decrease in the lipid-associated macrophages marker glycoprotein NMB (Gpnmb) by Activin A, and Gpnmb knockdown in the same model produced similar benefits and transcriptional changes to Activin A expression. These studies reveal a surprising protective role for Activin A in MASLD and the potential for SASP proteins to have context-specific beneficial effects. Moreover, they implicate both Activin A and Gpnmb as potential therapeutic targets for this condition. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Huan Liu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Armen Yerevanian
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Margaret H. Hastings
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Justin Ralph Baldovino Guerra
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander A. Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
8
|
Nikopoulou C, Kleinenkuhnen N, Parekh S, Sandoval T, Ziegenhain C, Schneider F, Giavalisco P, Donahue KF, Vesting AJ, Kirchner M, Bozukova M, Vossen C, Altmüller J, Wunderlich T, Sandberg R, Kondylis V, Tresch A, Tessarz P. Spatial and single-cell profiling of the metabolome, transcriptome and epigenome of the aging mouse liver. NATURE AGING 2023; 3:1430-1445. [PMID: 37946043 PMCID: PMC10645594 DOI: 10.1038/s43587-023-00513-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Niklas Kleinenkuhnen
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Swati Parekh
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Tonantzi Sandoval
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Farina Schneider
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Patrick Giavalisco
- Metabolic Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Kat-Folz Donahue
- FACS and Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Marcel Kirchner
- FACS and Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mihaela Bozukova
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Wunderlich
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vangelis Kondylis
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Peter Tessarz
- Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
- Department of Human Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
10
|
Li Q, Wang O, Ji B, Zhao L, Zhao L. Alcohol, White Adipose Tissue, and Brown Adipose Tissue: Mechanistic Links to Lipogenesis and Lipolysis. Nutrients 2023; 15:2953. [PMID: 37447280 PMCID: PMC10346806 DOI: 10.3390/nu15132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
According to data from the World Health Organization, there were about 3 million deaths caused by alcohol consumption worldwide in 2016, of which about 50% were related to liver disease. Alcohol consumption interfering with the normal function of adipocytes has an important impact on the pathogenesis of alcoholic liver disease. There has been increasing recognition of the crucial role of adipose tissue in regulating systemic metabolism, far beyond that of an inert energy storage organ in recent years. The endocrine function of adipose tissue is widely recognized, and the significance of the proteins it produces and releases is still being investigated. Alcohol consumption may affect white adipose tissue (WAT) and brown adipose tissue (BAT), which interact with surrounding tissues such as the liver and intestines. This review briefly introduces the basic concept and classification of adipose tissue and summarizes the mechanism of alcohol affecting lipolysis and lipogenesis in WAT and BAT. The adipose tissue-liver axis is crucial in maintaining lipid homeostasis within the body. Therefore, this review also demonstrates the effects of alcohol consumption on the adipose tissue-liver axis to explore the role of alcohol consumption in the crosstalk between adipose tissue and the liver.
Collapse
Affiliation(s)
- Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells. Mol Biol Rep 2023; 50:2033-2039. [PMID: 36538173 DOI: 10.1007/s11033-022-08101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells. METHODS AND RESULTS C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01). CONCLUSION Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.
Collapse
|
12
|
Qian K, Tol MJ, Wu J, Uchiyama LF, Xiao X, Cui L, Bedard AH, Weston TA, Rajendran PS, Vergnes L, Shimanaka Y, Yin Y, Jami-Alahmadi Y, Cohn W, Bajar BT, Lin CH, Jin B, DeNardo LA, Black DL, Whitelegge JP, Wohlschlegel JA, Reue K, Shivkumar K, Chen FJ, Young SG, Li P, Tontonoz P. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. Nature 2023; 613:160-168. [PMID: 36477540 PMCID: PMC9995219 DOI: 10.1038/s41586-022-05507-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3β) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3β is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3β have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3β is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3β associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3β-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lauren F Uchiyama
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander H Bedard
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Weston
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pradeep S Rajendran
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuta Shimanaka
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yesheng Yin
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bryce T Bajar
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benita Jin
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feng-Jung Chen
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Al-Bulish MSM, Cao W, Yang R, Wang Y, Xue C, Tang Q. Docosahexaenoic acid-rich fish oil alleviates hepatic steatosis in association with regulation of gut microbiome in ob/ob mice. Food Res Int 2022; 157:111373. [PMID: 35761631 DOI: 10.1016/j.foodres.2022.111373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
It remains to study whether docosahexaenoic acid-rich fish oil (DHA-FO) improves hepatic lipid metabolism by leptin-independent mechanisms. We used ob/ob mice as a model to investigate the effects of DHA-FO on hepatic steatosis. DHA-FO inhibited lipid droplets (LD) formation in liver of ob/ob mice. Probably because DHA-FO consumption prevented the accumulation of oleic acid, and suppressed the synthesis of triglycerides and cholesteryl esters. These beneficial effects might be concerned with the promotion of short chain fatty acids (SCFAs) production. Furthermore, DHA-FO could reverse gut bacteria dysbiosis, including increasing the abundance of SCFAs producers (e.g. Akkermansia and unclassified_Muribaculaceae), and suppressing the proliferation of conditional pathogenic bacteria, such as unclassified_Lachnospiraceae. DHA-FO also promoted colonic microbial function ("Glycerolipid metabolism") associated with lipid metabolism. As a potential ingredient for functional food, DHA-FO reduced LD accumulation, which might be associated with modulation of obesity-linked gut microbiome in ob/ob mice.
Collapse
Affiliation(s)
| | - Wanxiu Cao
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ruili Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Yang L, Jia X, Fang D, Cheng Y, Zhai Z, Deng W, Du B, Lu T, Wang L, Yang C, Gao Y. Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23115986. [PMID: 35682666 PMCID: PMC9181043 DOI: 10.3390/ijms23115986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It is still not fully elucidated whether adipogenesis is also involved in the weight loss mechanisms by metformin. We therefore used adipose-derived stem cells (ADSCs) from inguinal and epididymal fat pads to investigate the effects and mechanisms of metformin on adipogenesis in vitro. Our results demonstrate the similar effect of metformin inhibition on lipid accumulation, lipid droplets fusion, and growth in adipose-derived stem cells from epididymal fat pads (Epi-ADSCs) and adipose-derived stem cells from inguinal fat pads (Ing-ADSCs) cultures. We identified that cell death-inducing DFFA-like effector c (Cidec), Perilipin1, and ras-related protein 8a (Rab8a) expression increased ADSCs differentiation. In addition, we found that metformin inhibits lipid droplets fusion and growth by decreasing the expression of Cidec, Perilipin1, and Rab8a. Activation of AMPK pathway signaling in part involves metformin inhibition on Cidec, Perilipin1, and Rab8a expression. Collectively, our study reveals that metformin inhibits lipid storage, fusion, and growth of lipid droplets via reduction in Cidec and its regulatory factors in ADSCs cultures. Our study supports the development of clinical trials on metformin-based therapy for patients with overweight and obesity.
Collapse
Affiliation(s)
- Lijing Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Zhaoyi Zhai
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Wenyang Deng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| |
Collapse
|
15
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
16
|
Ping Z, Guo Z, Lu M, Chen Y, Liu L. Association of CIDEB gene promoter methylation with overweight or obesity in adults. Aging (Albany NY) 2022; 14:3607-3616. [PMID: 35475772 PMCID: PMC9085220 DOI: 10.18632/aging.204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022]
Abstract
Objective: To explore the association of the methylation level of cell death-inducing DFF45-like effector B (CIDEB) gene promoter with overweight or obesity in the abdominal subcutaneous adipose tissue (SAT) and omental adipose tissue (OAT) of adults. Methods: A total of 61 patients undergoing abdominal surgery in the hospital were selected with an average age of 51.87 years. According to the diagnostic criteria of Chinese adult obesity, the subjects were divided into normal-weight group (n = 28) and overweight/obesity group (n = 33). CIDEB promoter methylation level in abdominal SAT and OAT was detected by the MethylTarget technology, then its relationship with overweight or obesity was analyzed. Results: (1) There were no statistical differences between the normal-weight group and overweight/obesity group in Methylation levels of 16 CpG sites in the CIDEB gene promoter sequence. (2) The methylation level of OAT was higher than that of SAT, and there were significant differences in 16 CpG sites. (3) There were 3 statistically significant haplotypes between the normal-weight group and overweight/obesity group (2 in SAT and 1 in OAT). Conclusions: The methylation level of CIDEB gene promoter in abdominal SAT and OAT may be related to overweight or obesity in adults, and the specific regulatory mechanism needs to be further studied.
Collapse
Affiliation(s)
- Zhiguang Ping
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyan Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Lu
- Nursing Department of Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Yanzi Chen
- Henan Huapu Pharmaceutical Technology Co., Ltd., Zhengzhou, Henan, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Lee SY, Kwon S, Ha HJ, Lee SH, Park HH. Helical filament structure of the DREP3 CIDE domain reveals a unified mechanism of CIDE-domain assembly. Acta Crystallogr D Struct Biol 2021; 77:1543-1553. [PMID: 34866610 PMCID: PMC8647176 DOI: 10.1107/s2059798321010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
The cell-death-inducing DFF45-like effector (CIDE) domain is a protein-interaction module comprising ∼80 amino acids and was initially identified in several apoptotic nucleases and their regulators. CIDE-domain-containing proteins were subsequently identified among proteins involved in lipid metabolism. Given the involvement of CIDE-domain-containing proteins in cell death and lipid homeostasis, their structure and function have been intensively studied. Here, the head-to-tail helical filament structure of the CIDE domain of DNA fragmentation factor-related protein 3 (DREP3) is presented. The helical filament structure was formed by opposing positively and negatively charged interfaces of the domain and was assembled depending on protein and salt concentrations. Although conserved filament structures are observed in CIDE family members, the structure elucidated in this study and its comparison with previous structures indicated that the size and the number of molecules used in one turn vary. These findings suggest that this charged-surface-based head-to-tail helical filament structure represents a unified mechanism of CIDE-domain assembly and provides insight into the function of various forms of the filament structure of the CIDE domain in higher-order assembly for apoptotic DNA fragmentation and control of lipid-droplet size.
Collapse
Affiliation(s)
- So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Tung CT, Lin HJ, Lin CW, Mersmann HJ, Ding ST. The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail. Poult Sci 2021; 100:101470. [PMID: 34624771 PMCID: PMC8503669 DOI: 10.1016/j.psj.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.
Collapse
Affiliation(s)
- Cheng-Ting Tung
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C.; Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan, R.O.C..
| |
Collapse
|
19
|
Shi Y, Pizzini J, Wang H, Das F, Abdul Azees PA, Ghosh Choudhury G, Barnes JL, Zang M, Weintraub ST, Yeh CK, Katz MS, Kamat A. β2-Adrenergic receptor agonist induced hepatic steatosis in mice: modeling nonalcoholic fatty liver disease in hyperadrenergic states. Am J Physiol Endocrinol Metab 2021; 321:E90-E104. [PMID: 34029162 PMCID: PMC8321826 DOI: 10.1152/ajpendo.00651.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. β-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of β2-adrenergic receptors (β2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of β2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective β2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying β2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that β2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete β-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic β2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that β2-adrenergic receptor (β2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete β-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for β2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.
Collapse
Affiliation(s)
- Yun Shi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jason Pizzini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Parveez Ahamed Abdul Azees
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mengwei Zang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Michael S Katz
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Amrita Kamat
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
20
|
Fan M, Du X, Chen X, Bai H, Loor JJ, Shen T, Liang Y, Sun X, Xu Q, Song Y, Wang Z, Liu G, Yang L, Li X, Li X, Gao W. Inhibition of cell death inducing DNA fragmentation factor-α-like effector c (CIDEC) by tumor necrosis factor-α induces lipolysis and inflammation in calf adipocytes. J Dairy Sci 2021; 104:6134-6145. [PMID: 33685683 DOI: 10.3168/jds.2020-19319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023]
Abstract
Dairy cows with ketosis exhibit signs of pronounced adipose tissue lipolysis and systemic inflammation, both of which exacerbate this metabolic disorder. In nonruminants, CIDEC plays a pivotal role in the formation of large unilocular lipid droplets. The present study aimed to ascertain the role of CIDEC in the lipolytic and inflammatory response of white adipose tissue (WAT) in vivo and in vitro. Subcutaneous adipose tissue and blood samples were collected from 15 healthy cows (blood β-hydroxybutyrate concentration < 1.2 mM) and 15 cows with clinical ketosis (blood β-hydroxybutyrate concentration > 3.0 mM) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were used for in vitro studies. Isolated adipocytes were treated with 0, 0.1, 1, or 10 ng/mL TNF-α for 3 h, transfected with CIDEC small interfering RNA for 48 h, or transfected with CIDEC overexpression adenovirus for 48 h followed by treatment with TNF-α (0.1 ng/mL) for 3 h. Serum concentrations of fatty acids were greater, and dry matter intake, milk yield, and serum glucose concentrations lower in cows with clinical ketosis. Protein and mRNA abundance of CIDEC were lesser in subcutaneous WAT of clinically ketotic versus healthy cows. Furthermore, the ratio of phosphorylated hormone sensitive lipase (p-LIPE) to LIPE, phosphorylated RELA (p-RELA) to RELA, and protein abundance of PNPLA2 and phosphorylated inhibitor of κBα (p-NFKBIA) were greater in dairy cows with clinical ketosis. The mRNA abundance of proinflammatory cytokines TNFA and IL1B were greater, and the anti-inflammatory cytokine IL10 was lower in WAT of dairy cows with clinical ketosis. In calf adipocytes, exogenous TNF-α (0.1, 1, or 10 ng/mL) decreased protein and mRNA abundance of CIDEC. In addition, exogenous TNF-α or knockdown of CIDEC reduced the secretion of the anti-inflammatory cytokine IL-10, but increased the ratio of p-LIPE to LIPE, p-RELA to RELA, protein abundance of PNPLA2 and p-NFKBIA, glycerol content, and the secretion of IL-1β in calf adipocytes. Overexpression of CIDEC in TNFα-treated adipocytes attenuated lipolysis and activation of the NF-κB signaling pathway. Overall, these data suggest that inhibition of lipid droplet-associated protein CIDEC by TNF-α contributes to the pronounced lipolysis and inflammation of calf adipocytes, and CIDEC is a relevant target in clinically ketotic cows.
Collapse
Affiliation(s)
- Minghe Fan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiying Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Hongxu Bai
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xudong Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Qiushi Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Wenwen Gao
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China.
| |
Collapse
|
21
|
Xu D, Li P, Xu L. Characterization of the Role of Rab18 in Mediating LD-ER Contact and LD Growth. Methods Mol Biol 2021; 2293:229-241. [PMID: 34453721 DOI: 10.1007/978-1-0716-1346-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipid droplets (LDs) are dynamic cellular organelles found in most eukaryotic cells. Lipid incorporation from endoplasmic reticulum (ER) to LD is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link that mediates ER and LD cross talk remains elusive. Here, we describe the methodology used to characterize the function of Rab18 in regulating LD homeostasis and LD-ER contact. First, we focus on the quantitative assay used to measure intracellular LDs morphological changes. This is followed by a detailed description of the use of the APEX-label technology in combination with electron microscope (EM) to visualize ER-LD contact sites. These assays are valuable for the investigation of LD-associated proteins such as Rab18 in establishing membrane contact sites between LDs and other subcellular organelles.
Collapse
Affiliation(s)
- Dijin Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Xiang W, Cheng S, Zhou Y, Ma L. Effects of 1,25(OH) 2 D 3 on lipid droplet growth in adipocytes. Biofactors 2020; 46:943-954. [PMID: 31904171 DOI: 10.1002/biof.1610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to explore the effects of 1,25(OH)2 D3 on lipid droplet (LD) growth in 3T3-L1 adipocytes of hypertrophy model. Cocktail method was used to induce differentiation in 3T3-L1 cells. After 8 days, the cells were modeled by 100, 300, 600, and 900 μM palmitic acid (PA) for 24 hr. The best concentration of modeling was screened by MTT results and triglycerides (TG) content. The model cells were intervened by 1, 10, and 100 nM 1,25(OH)2 D3 for 24 hr. Then, the TG content of cells were detected and stained by oil red O. The diameter and quantity of LDs were analyzed. mRNA relative expression levels of genes related to LD (CIDE-a, Fsp27, PLIN-1), upstream response factor (PPAR-α, PPAR-γ, and VDR), and TG metabolism (long chain acyl-CoA synthetase 3, 1-acylglycerol-3-phosphate O-acyltransferase 1, adipose triglyceride lipase, diacylglycerol acyltransferase 1, diacylglycerol acyltransferase 2, glycerol-3-phosphate O-acyltransferase 3, glycerol-3-phosphate O-acyltransferase 4, hormone-sensitive lipase, mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetyl glucosaminyl transferase, phosphatidic acid phosphatase, and uncoupling protein-1) were detected by RT-qPCR. A total of 300 μM PA was selected as the optimum concentration. Compared with model group, 10 and 100 nM 1,25(OH)2 D3 decreased the average diameter, increased the quantity of LDs, upregulated PPAR-α and PLIN-1 mRNA expression levels, and downregulated CIDE-a and Fsp27 mRNA expression levels significantly (p < .05). However, 1 nM 1,25(OH)2 D3 did not alter LD morphology and TG content. mRNA expression levels of long chain acyl-CoA synthetase 3, 1-acylglycerol-3-phosphate O-acyltransferase 1, diacylglycerol acyltransferase 2, glycerol-3-phosphate O-acyltransferase 3, and glycerol-3-phosphate O-acyltransferase 4 in 10 and 100 nM groups were significantly lower than those in the model group (p < .05); mRNA expression levels of adipose triglyceride lipase, diacylglycerol acyltransferase 1, hormone-sensitive lipase, mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetyl glucosaminyl transferase, phosphatidic acid phosphatase, and uncoupling protein-1 were significantly increased in the 100 nM group (p < .05). The 10 and 100 nM 1,25(OH)2 D3 can inhibit LD fusion, promote LD decomposition, reduce LD volume, and inhibit lipogenesis through the PPAR-α signaling pathway.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Nutrition and Diet, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Arumugam MK, Talawar S, Listenberger L, Donohue TM, Osna NA, Kharbanda KK. Role of Elevated Intracellular S-Adenosylhomocysteine in the Pathogenesis of Alcohol-Related Liver Disease. Cells 2020; 9:cells9061526. [PMID: 32585865 PMCID: PMC7349643 DOI: 10.3390/cells9061526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The earliest manifestation of alcohol-related liver disease (ALD) is steatosis, characterized by the accumulation of lipid droplets (LDs) in hepatocytes. Findings from our laboratory have indicated that many pathological changes, including steatosis, correlate with the alcohol-induced hepatocellular increases in S-adenosylhomocysteine (SAH). Based on these considerations, we hypothesized that an experimental increase in intracellular SAH alone will result in similar steatotic changes to those seen after alcohol exposure. METHODS Freshly isolated rat hepatocytes grown on collagen-coated plates were exposed to serum-free medium containing 50 µmol/L oleic acid and varying concentrations of 3-deazaadenosine (DZA) to experimentally elevate intracellular SAH levels. RESULTS Overnight exposure to DZA treatment dose-dependently increased hepatocellular triglyceride accumulation, which was also evident by morphological visualization of larger-sized LDs. The rise in triglycerides and LDs accompanied increases in mRNA and protein levels of several LD-associated proteins known to regulate LD number and size. Furthermore, DZA treatment caused a decline in the levels of lipases that prevent fat accumulation as well as increased the expression of factors involved in lipogenesis and fatty acid mobilization. Collectively, our results indicate that the elevation of intracellular SAH is sufficient to promote fat accumulation in hepatocytes, which is similar to that seen after alcohol exposure.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.T.); (T.M.D.J.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sharanappa Talawar
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.T.); (T.M.D.J.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Laura Listenberger
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.T.); (T.M.D.J.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.T.); (T.M.D.J.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.T.); (T.M.D.J.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-995-3752; Fax: +1-402-995-4600
| |
Collapse
|
24
|
Zhang L, Ding L, Shi H, Wang C, Xue C, Zhang T, Wang Y. Eicosapentaenoic acid-enriched phospholipids suppressed lipid accumulation by specific inhibition of lipid droplet-associated protein FSP27 in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2244-2251. [PMID: 31919850 DOI: 10.1002/jsfa.10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sea cucumber is a rich source of eicosapentaenoic acid in the form of eicosapentaenoic acid-enriched phospholipids (EPA-PL). It is known to be efficacious in preventing obesity. However, few studies have focused on the role of EPA-PL in inhibiting lipid accumulation by lipid droplets (LDs). This study first investigated the effect of EPA-PL from sea cucumber on the formation of LDs and the underlying mechanism in C57BL/6J mice. The mice were randomly divided into two groups and treated for 8 weeks or 3, 7, and 14 days with either (i) a high-sucrose diet (model group), (ii) a high-sucrose diet plus 2% EPA-PL (EPA-PL group). RESULTS Eight-week EPA-PL supplementation significantly reduced lipid accumulation and LD size in liver and white adipose tissue (WAT), which was accompanied by the decreased expression of LDs-associated protein FSP27. A 3-day EPA-PL treatment suppressed the mRNA expression of Fsp27. The mRNA level of Fsp27 reached its 'normal level' after withdrawing EPA-PL for 7 days, suggesting that EPA-PL might serve as a rapid regulator of FSP27. Furthermore, EPA-PL increased the expression of lipolysis genes Hsl and Atgl accompanied by the regulation of Pparγ in WAT. CONCLUSIONS Dietary EPA-PL from sea cucumber (Cucumaria frondosa) protected against lipid accumulation by regulating LDs-associated protein FSP27, which might provide novel evidence for the anti-obesity action of EPA-PL. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chengcheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
25
|
Assembly of platforms for signal transduction in the new era: dimerization, helical filament assembly, and beyond. Exp Mol Med 2020; 52:356-366. [PMID: 32139779 PMCID: PMC7156525 DOI: 10.1038/s12276-020-0391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 11/08/2022] Open
Abstract
Supramolecular organizing center (SMOC)-mediated signal transduction is an emerging concept in the field of signal transduction that is ushering in a new era. The formation of location-specific, higher-order SMOCs is particularly important for cell death and innate immune signaling processes. Several protein interaction domains, including the death domain (DD) superfamily and the CIDE domain, are representative mediators of SMOC assembly in cell death and innate immune signaling pathways. DD superfamily- and CIDE domain-containing proteins form SMOCs that activate various caspases and provide signaling scaffold platforms. These assemblies can lead to signal transduction and amplification during signaling events. In this review, we summarize recent findings on the molecular basis of DD superfamily- and CIDE domain-mediated SMOC formation. Improved understanding of large molecular signaling complexes that form during innate (nonspecific) immune responses could help develop treatments for multiple diseases including cancer. Correct cell signaling requires precise protein interactions and binding, which are mediated by specific sites on the surface of the protein molecules involved. Innate immune responses and cell death mechanisms rely on such protein interactions, and defects can cause signaling abnormalities and trigger disease. Hyun Ho Park and co-workers at Chung-Ang University in Seoul, South Korea, reviewed recent insights into the presence of supramolecular organizing centers (SMOCs), localized complexes of signaling proteins that form during immune responses. The researchers highlight existing understanding of SMOC assembly processes. A better understanding of SMOCs will help to explain enzyme activation, signal amplification and cell signaling control mechanisms.
Collapse
|
26
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Impact of genotype, body weight and sex on the prenatal muscle transcriptome of Iberian pigs. PLoS One 2020; 15:e0227861. [PMID: 31990923 PMCID: PMC6986718 DOI: 10.1371/journal.pone.0227861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
Growth is dependent on genotype and diet, even at early developmental stages. In this study, we investigated the effects of genotype, sex, and body weight on the fetal muscle transcriptome of purebred Iberian and crossbred Iberian x Large White pigs sharing the same uterine environment. RNA sequencing was performed on 16 purebred and crossbred fetuses with high body weight (340±14g and 415±14g, respectively) and 16 with low body weight (246±14g and 311±14g, respectively), on gestational day 77. Genotype had the greatest effect on gene expression, with 645 genes identified as differentially expressed (DE) between purebred and crossbred animals. Functional analysis showed differential regulation of pathways involved in energy and lipid metabolism, muscle development, and tissue disorders. In purebred animals, fetal body weight was associated with 35 DE genes involved in development, lipid metabolism and adipogenesis. In crossbred animals, fetal body weight was associated with 60 DE genes involved in muscle development, viability, and immunity. Interestingly, the results suggested an interaction genotype*weight for some DE genes. Fetal sex had only a modest effect on gene expression. This study allowed the identification of genes, metabolic pathways, biological functions and regulators related to fetal genotype, weight and sex, in animals sharing the same uterine environment. Our findings contribute to a better understanding of the molecular events that influence prenatal muscle development and highlight the complex interactions affecting transcriptional regulation during development.
Collapse
|
28
|
Su X, Weng S, Peng D. New Insights into Apolipoprotein A5 and the Modulation of Human Adipose-derived Mesenchymal Stem Cells Adipogenesis. Curr Mol Med 2020; 20:144-156. [PMID: 31560287 DOI: 10.2174/1566524019666190927155702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
Background:
The hallmark of obesity is the excessive accumulation of
triglyceride (TG) in adipose tissue. Apolipoprotein A5 (ApoA5) has been shown to
influence the prevalence and pathogenesis of obesity. However, the underlying
mechanisms remain to be clarified.
Methods:
Human adipose-derived mesenchymal stem cells (AMSCs) were treated with
600 ng/ml human recombinant ApoA5 protein. The effect of ApoA5 on intracellular TG
content and adipogenic related factors expression were determined. Furthermore, the
effect of ApoA5 on CIDE-C expression was also observed.
Results:
During the process of adipogenesis, ApoA5 treatment reduced the intracellular
accumulation of lipid droplets and the TG levels; meanwhile, ApoA5 down-regulated the
expression levels of adipogenic related factors, including CCAAT enhancer-binding
proteins α/β (C/EBPα/β), fatty acid synthetase (FAS), and fatty acid-binding protein 4
(FABP4). Furthermore, the suppression of adipogenesis by ApoA5 was mediated
through the inhibition of CIDE-C expression, an important factor which promotes the
process of adipogenesis. However, over-expressing intracellular CIDE-C could lead to
the loss-of-function of ApoA5 in inhibiting AMSCs adipogenesis.
Conclusions:
In conclusion, ApoA5 inhibits the adipogenic process of AMSCs through,
at least partly, down-regulating CIDE-C expression. The present study provides novel
mechanisms whereby ApoA5 prevents obesity via AMSCs in humans.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuwei Weng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Wang J, Liu H, Xie G, Cai W, Xu J. Identification of hub genes and key pathways of dietary advanced glycation end products‑induced non‑alcoholic fatty liver disease by bioinformatics analysis and animal experiments. Mol Med Rep 2019; 21:685-694. [PMID: 31974594 PMCID: PMC6947946 DOI: 10.3892/mmr.2019.10872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease. Advanced glycation end products (AGEs) negatively affect the liver and accelerate NAFLD progression; however, the underlying mechanisms remain unclear. The present study aimed to examine the effect and mechanism of dietary AGEs on the mouse liver using bioinformatics and in vivo experimental approaches. Gene expression datasets associated with NAFLD were obtained from the Gene Expression Omnibus and differentially expressed genes (DEGs) were identified using GEO2R. Functional enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery and a protein-protein interaction network for the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes database. MCODE, a Cytoscape plugin, was subsequently used to identify the most significant module. The key genes involved were verified in a dietary AGE-induced non-alcoholic steatohepatitis (NASH) mouse model using reverse transcription-quantitative PCR (RT-qPCR). The 462 DEGs associated with NAFLD in the two datasets, of which 34 overlapping genes were found in two microarray datasets. Functional analysis demonstrated that the 34 DEGs were enriched in the ‘PPAR signaling pathway’, ‘central carbon metabolism in cancer’, and ‘cell adhesion molecules (CAMs)’. Moreover, four hub genes (cell death-inducing DFFA-like effector a, cell death-inducing DFFA-like effector c, fatty acid-binding protein 4 and perilipin 4) were identified from a protein-protein interaction network and were verified using RT-qPCR in a mouse model of NASH. The results suggested that AGEs and their receptor axis may be involved in NAFLD onset and/or progression. This integrative analysis identified candidate genes and pathways in NAFLD, as well as DEGs and hub genes related to NAFLD progression in silico and in vivo.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Honghong Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guijiao Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University,
Nanchang, Jiangxi 330006, P.R. China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
30
|
Gao G, Sheng Y, Yang H, Chua BT, Xu L. DFCP1 associates with lipid droplets. Cell Biol Int 2019; 43:1492-1504. [PMID: 31293035 DOI: 10.1002/cbin.11199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
Abstract
Double FYVE-containing protein 1 (DFCP1) is ubiquitously expressed, participates in intracellular membrane trafficking and labels omegasomes through specific interactions with phosphatidylinositol-3-phosphate (PI3P). Previous studies showed that subcellular DFCP1 proteins display multi-organelle localization, including in the endoplasmic reticulum (ER), Golgi apparatus and mitochondria. However, its localization and function on lipid droplets (LDs) remain unclear. Here, we demonstrate that DFCP1 localizes to the LD upon oleic acid incubation. The ER-targeted domain of DFCP1 is indispensable for its LD localization, which is further enhanced by double FYVE domains. Inhibition of PI3P binding at the FYVE domain through wortmannin treatment or double mutation at C654S and C770S have no effect on DFCP1's LD localization. These show that the mechanisms for DFCP1 targeting the omegasome and LDs are different. DFCP1 deficiency in MEF cells causes an increase in LD number and reduces LD size. Interestingly, DFCP1 interacts with GTP-bound Rab18, an LD-associated protein. Taken together, our work demonstrates the dynamic localization of DFCP1 is regulated by nutritional status in response to cellular metabolism.
Collapse
Affiliation(s)
- Guangang Gao
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Sheng
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 New South Wales, Sydney, Australia
| | - Boon Tin Chua
- The Institute of Metabolism and Integrative Biology, Fudan University, 200438, Shanghai, China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
31
|
Plasticity of histone modifications around Cidea and Cidec genes with secondary bile in the amelioration of developmentally-programmed hepatic steatosis. Sci Rep 2019; 9:17100. [PMID: 31745102 PMCID: PMC6863835 DOI: 10.1038/s41598-019-52943-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
We recently reported that a treatment with tauroursodeoxycholic acid (TUDCA), a secondary bile acid, improved developmentally-deteriorated hepatic steatosis in an undernourishment (UN, 40% caloric restriction) in utero mouse model after a postnatal high-fat diet (HFD). We performed a microarray analysis and focused on two genes (Cidea and Cidec) because they are enhancers of lipid droplet (LD) sizes in hepatocytes and showed the greatest up-regulation in expression by UN that were completely recovered by TUDCA, concomitant with parallel changes in LD sizes. TUDCA remodeled developmentally-induced histone modifications (dimethylation of H3K4, H3K27, or H3K36), but not DNA methylation, around the Cidea and Cidec genes in UN pups only. Changes in these histone modifications may contribute to the markedly down-regulated expression of Cidea and Cidec genes in UN pups, which was observed in the alleviation of hepatic fat deposition, even under HFD. These results provide an insight into the future of precision medicine for developmentally-programmed hepatic steatosis by targeting histone modifications.
Collapse
|
32
|
Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019; 20:863. [PMID: 31729950 PMCID: PMC6858653 DOI: 10.1186/s12864-019-6221-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the most important factors positively associated with meat quality. Triglycerides (TGs), as the main component of IMF, play an essential role in muscle lipid metabolism. This transcriptome analysis of pectoralis muscle tissue aimed to identify functional genes and biological pathways likely contributing to the extreme differences in the TG content of broiler chickens. Results The study included Jingxing-Huang broilers that were significantly different in TG content (5.81 mg/g and 2.26 mg/g, p < 0.01) and deposition of cholesterol also showed the same trend. This RNA sequencing analysis was performed on pectoralis muscle samples from the higher TG content group (HTG) and the lower TG content group (LTG) chickens. A total of 1200 differentially expressed genes (DEGs) were identified between two groups, of which 59 DEGs were related to TG and steroid metabolism. The HTG chickens overexpressed numerous genes related to adipogenesis and lipogenesis in pectoralis muscle tissue, including the key genes ADIPOQ, CD36, FABP4, FABP5, LPL, SCD, PLIN1, CIDEC and PPARG, as well as genes related to steroid biosynthesis (DHCR24, LSS, MSMO1, NSDHL and CH25H). Additionally, key pathways related to lipid storage and metabolism (the steroid biosynthesis and peroxisome proliferator activated receptor (PPAR) signaling pathway) may be the key pathways regulating differential lipid deposition between HTG group and LTG group. Conclusions This study showed that increased TG deposition accompanying an increase in steroid synthesis in pectoralis muscle tissue. Our findings of changes in gene expression of steroid biosynthesis and PPAR signaling pathway in HTG and LTG chickens provide insight into genetic mechanisms involved in different lipid deposition patterns in pectoralis muscle tissue.
Collapse
|
33
|
Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and lncRNA) and mRNAs in Normal Tissues. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:9029351. [PMID: 31565069 PMCID: PMC6745163 DOI: 10.1155/2019/9029351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 02/01/2023]
Abstract
Genes that encode proteins playing a role in more than one biological process are frequently dependent on their tissue context, and human diseases result from the altered interplay of tissue- and cell-specific processes. In this work, we performed a computational approach that identifies tissue-specific co-expression networks by integrating miRNAs, long-non-coding RNAs, and mRNAs in more than eight thousands of human samples from thirty normal tissue types. Our analysis (1) shows that long-non coding RNAs and miRNAs have a high specificity, (2) confirms several known tissue-specific RNAs, and (3) identifies new tissue-specific co-expressed RNAs that are currently still not described in the literature. Some of these RNAs interact with known tissue-specific RNAs or are crucial in key cancer functions, suggesting that they are implicated in tissue specification or cell differentiation.
Collapse
|
34
|
Tang P, Low HB, Png CW, Torta F, Kumar JK, Lim HY, Zhou Y, Yang H, Angeli V, Shabbir A, Tai ES, Flavell RA, Dong C, Wenk MR, Yang DY, Zhang Y. Protective Function of Mitogen-Activated Protein Kinase Phosphatase 5 in Aging- and Diet-Induced Hepatic Steatosis and Steatohepatitis. Hepatol Commun 2019; 3:748-762. [PMID: 31168510 PMCID: PMC6546013 DOI: 10.1002/hep4.1324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/19/2019] [Indexed: 01/09/2023] Open
Abstract
Nonalcoholic fatty liver disease is currently the most common liver disease and is a leading cause of liver-related morbidity and mortality. However, its pathogenesis remains largely unclear. We previously showed that mice deficient in mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP5) spontaneously developed insulin resistance and glucose intolerance, which are associated with visceral obesity and adipose tissue inflammation. In this study, we discovered that mice deficient in MKP5 developed more severe hepatic steatosis and steatohepatitis with age or with feeding on a high-fat diet (HFD) compared to wild-type (WT) mice, and this was associated with increased expression of proinflammatory cytokines and collagen genes. Increased p38 activation in MKP5 knockout (KO) liver compared to that in WT liver was detected, which contributed to increased expression of lipid droplet-associated protein cell death-inducing DFF45-like effector A (CIDEA) and CIDEC/fat-specific protein 27 but not CIDEB through activating transcription factor 2 (ATF2). In addition, MKP5 KO liver had higher peroxisome proliferator-activated receptor gamma (PPARγ) expression compared with WT liver. On the other hand, overexpression of MKP5 or inhibition of p38 activation in hepatocytes resulted in reduced expression of PPARγ. Inhibition of p38 resulted in alleviation of hepatic steatosis in KO liver in response to HFD feeding, and this was associated with reduced expression of CIDEA, CIDEC, and proinflammatory cytokines. Conclusion: MKP5 prevents the development of nonalcoholic steatohepatitis by suppressing p38-ATF2 and p38-PPARγ to reduce hepatic lipid accumulation, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Peng Tang
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| | - Heng Boon Low
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| | - Chin Wen Png
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| | - Federico Torta
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Jaspal Kaur Kumar
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Hwee Ying Lim
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| | - Yi Zhou
- Cancer Science Institute of SingaporeYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Henry Yang
- Cancer Science Institute of SingaporeYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Veronique Angeli
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| | - Asim Shabbir
- Department of MedicineYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - E. Shyong Tai
- Department of MedicineYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Richard A. Flavell
- Department of ImmunobiologyHoward Hughes Medical Institute, Yale UniversityNew HavenCT
| | | | - Markus R. Wenk
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Dan Yock Yang
- Department of MedicineYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yongliang Zhang
- Department of Microbiology and ImmunologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Immunology Program, Life Sciences InstituteNational University of SingaporeSingapore
| |
Collapse
|
35
|
Bariatric Surgery in Rats Upregulates FSP27 Expression in Fat Tissue to Affect Fat Hydrolysis and Metabolism. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6415732. [PMID: 31205943 PMCID: PMC6530210 DOI: 10.1155/2019/6415732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
Abstract
Purpose To explore the changes in FSP27 expression and fat metabolism in adipose tissue and their relationship after bariatric surgery in rats. Method Food intake, body weight, triglyceride content, fat distribution, and fat cell morphology were evaluated in rats grouped into control, sham, sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) groups. Immunohistochemistry and western blotting were used to detect protein expression and real-time PCR was used to detect mRNA expression. Mouse 3T3-L1 preadipocytes were used to assess the effects of different energy levels and nutrient factors on FSP27 in adipocytes. Result Food intake, body weight, and triglyceride levels were reduced in RYGB and SG rats within 28 days after surgery, with a more pronounced effect in the RYGB group. Weight loss was mainly due to loss of fat mass rather than loss of lean mass, with the most pronounced decrease in trunk fat. FSP27 expression increased in lean rat adipocytes accompanied by increased lipid droplets (LDs). In SG and RYGB rats, the FSP27 protein concentration gradually increased in white adipose tissue (WAT) after operation. Hormone-sensitive lipase (HSL), p-HSL/HSL, Adipose Triglyceride Lipase (ATGL), and Comparative Gene Identification-58 (CGI-58) gradually decreased in SG and RYGB rats, but they were always higher than in control and sham animals. FSP27 was also decreased in 3T3-L1 adipocytes of animals with a high-energy diet. Conclusion FSP27 is associated with rat lipid metabolism and its expression varies with energy and nutrient supply. It can inhibit excessive hydrolysis and fat accumulation by regulating HSL and ATGL expression and by mediating LDs formation.
Collapse
|
36
|
Hu R, Chen B, Wang Z, Qin A, Zhao Z, Lou X, Tang BZ. Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials 2019; 203:43-51. [DOI: 10.1016/j.biomaterials.2019.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
|
37
|
Mather IH, Masedunskas A, Chen Y, Weigert R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J Dairy Sci 2019; 102:2760-2782. [PMID: 30471915 PMCID: PMC7094374 DOI: 10.3168/jds.2018-15459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Milk fat comprises membrane-coated droplets of neutral lipid, which constitute the predominant source of lipids for survival of the suckling neonate. From the perspective of the dairy industry, they are the basis for the manufacture of butter and essential ingredients in the production of cheese, yogurt, and specialty dairy produce. To provide mechanistic insight into the assembly and secretion of lipid droplets during lactation, we developed novel intravital imaging techniques using transgenic mice, which express fluorescently tagged marker proteins. The number 4 mammary glands were surgically prepared under a deep plane of anesthesia and the exposed glands positioned as a skin flap with intact vascular supply on the stage of a laser-scanning confocal microscope. Lipid droplets were stained by prior exposure of the glands to hydrophobic fluorescent BODIPY (boron-dipyrromethene) dyes and their formation and secretion monitored by time-lapse subcellular microscopy over periods of 1 to 2 h. Droplets were transported to the cell apex by directed (superdiffusive) motion at relatively slow and intermittent rates (0-2 µm/min). Regardless of size, droplets grew by numerous fusion events during transport and as they were budding from the cell enveloped by apical membranes. Surprisingly, droplet secretion was not constitutive but required an injection of oxytocin to induce contraction of the myoepithelium with subsequent release of droplets into luminal spaces. These novel results are discussed in the context of the current paradigm for milk fat synthesis and secretion and as a template for future innovations in the dairy industry.
Collapse
Affiliation(s)
- Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742; National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.
| | - Andrius Masedunskas
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Roberto Weigert
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
38
|
Zhou H, Zhang W. Gene expression profiling reveals candidate biomarkers and probable molecular mechanism in diabetic peripheral neuropathy. Diabetes Metab Syndr Obes 2019; 12:1213-1223. [PMID: 31413612 PMCID: PMC6662509 DOI: 10.2147/dmso.s209118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the molecular mechanism and search for candidate biomarkers in the gene expression profile of patients with diabetic peripheral neuropathy (DPN). METHODS Differentially expressed genes (DEGs) of progressive vs non-progressive DPN patients in dataset GSE24290 were screened. Functional enrichment analysis was conducted, and hub genes were extracted from the protein-protein interaction network. The expression level of hub genes in serum samples in another dataset GSE95849 was obtained, followed by the ROC curve analysis. RESULTS A total of 352 DEGs were obtained from dataset GSE24290. They were involved in 14 gene ontology terms and 10 Kyoto Encyclopedia of Genes and Genomes pathways, mainly related to lipid metabolism. Eight hub genes (LEP, APOE, ADIPOQ, FABP4, CD36, GPAM, CIDEC, and PNPLA4) were revealed, and their expression level was obtained in dataset GSE95849. The receiver operating characteristic curve analysis indicated that CIDEC (AUC=1), APOE (AUC=0.833), CD36 (AUC=0.803), and PNPLA4 (AUC=0.861) might be candidate serum biomarkers of DPN. CONCLUSION Lipid metabolism of Schwann cells might be inhibited in progressive DPN. CIDEC, APOE, CD36, and PNPLA4 might be potential predictive biomarkers in the early DPN diagnosis of patients with DM.
Collapse
Affiliation(s)
- Han Zhou
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| | - WenChuan Zhang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
- Correspondence: WenChuan ZhangDepartment of Neurosurgery, Ninth People Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of ChinaTel +86 0 215 331 6077Email
| |
Collapse
|
39
|
Breher-Esch S, Sahini N, Trincone A, Wallstab C, Borlak J. Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease. BMC Med Genomics 2018; 11:111. [PMID: 30547786 PMCID: PMC6295111 DOI: 10.1186/s12920-018-0438-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures. METHODS PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways. RESULTS Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance. CONCLUSION The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.
Collapse
Affiliation(s)
- Stephanie Breher-Esch
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anna Trincone
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christin Wallstab
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
40
|
Peng G, Huang E, Ruan J, Huang L, Liang H, Wei Q, Xie X, Zeng Q, Huang J. Effects of a high energy and low protein diet on hepatic and plasma characteristics and Cidea and Cidec mRNA expression in liver and adipose tissue of laying hens with fatty liver hemorrhagic syndrome. Anim Sci J 2018; 90:247-254. [PMID: 30523654 DOI: 10.1111/asj.13140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
Cidea and Cidec are two members of Cell death-inducing DNA fragmentation factor-alpha-like effector family proteins, which could be involved in lipid or fat metabolism. To better understand the roles of Cidea and Cidec in fatty liver hemorrhagic syndrome (FLHS), 150 healthy 155-day-old Hyline Brown laying hens were randomly divided into control group (fed with basic diet) and experimental group (fed with high-energy low-protein [HELP] diet). Analysis of the liver by tissue sectioning and hematoxylin and eosin staining showed that the HELP diet induced micro-vesicular steatosis in laying hens. Subsequently, based on the liver color scores and the range of lipid accumulation observed in histological examination, we classified livers with <50% vacuolization as mild FLHS and >50% as severe FLHS. The results showed that the levels of Cidea and Cidec mRNA expression were markedly elevated in the liver and adipose tissues with FLHS and the levels of Cidea and Cidec mRNA expression in the liver with severe FLHS were significantly higher than that in the liver with mild FLHS. Thus, the present study revealed that the Cidea and Cidec genes may be involved in pathways of FLHS formation.
Collapse
Affiliation(s)
- Gang Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Enfu Huang
- Jiangxi Biotech Vocational College, Nanchang, China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Liumei Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiping Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qingjie Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
41
|
Wang J, Yan C, Xu C, Chua BT, Li P, Chen FJ. Polybasic RKKR motif in the linker region of lipid droplet (LD)-associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. J Biol Chem 2018; 293:19330-19343. [PMID: 30361435 DOI: 10.1074/jbc.ra118.004892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles and a central site for lipid synthesis, storage, and mobilization. The size of LDs reflects the dynamic regulation of lipid metabolism in cells. Previously, we found that cell death-inducing DFFA-like effector C (CIDEC) mediates LD fusion and growth by lipid transfer through LD-LD contact sites in adipocytes and hepatocytes. The CIDE-N domains of CIDEC molecules form homodimers, whereas the CIDE-C domain plays an important role in LD targeting and enrichment. Here, using targeted protein deletions and GFP expression coupled with fluorescence microscopy, we identified a polybasic RKKR motif in the linker region that connects the CIDE-N and CIDE-C domains of CIDEC and functions as a regulatory motif for LD fusion. We found that deletion of the linker region or mutation of the RKKR motif increases the formation of supersized LDs compared with LD formation in cells with WT CIDEC. This enhanced LD fusion activity required the interaction between CIDE-N domains. Mechanistically, we found that the RKKR motif interacts with acidic phospholipids via electrostatic attraction. Loss of this motif disrupted the protein-lipid interaction, resulting in enhanced lipid droplet fusion activity and thus formation of larger LDs. In summary, we have uncovered a CIDEC domain that regulates LD fusion activity, a finding that provides insights into the inhibitory regulation of LD fusion through CIDEC-lipid interactions.
Collapse
Affiliation(s)
- Jia Wang
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Chengsong Yan
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Chenqi Xu
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Boon Tin Chua
- the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Peng Li
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| | - Feng-Jung Chen
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, .,the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
42
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
43
|
Zhou L, Yu M, Arshad M, Wang W, Lu Y, Gong J, Gu Y, Li P, Xu L. Coordination Among Lipid Droplets, Peroxisomes, and Mitochondria Regulates Energy Expenditure Through the CIDE-ATGL-PPARα Pathway in Adipocytes. Diabetes 2018; 67:1935-1948. [PMID: 29986925 DOI: 10.2337/db17-1452] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022]
Abstract
Metabolic homeostasis is maintained by an interplay among tissues, organs, intracellular organelles, and molecules. Cidea and Cidec are lipid droplet (LD)-associated proteins that promote lipid storage in brown adipose tissue (BAT) and white adipose tissue (WAT). Using ob/ob/Cidea-/- , ob/ob/Cidec-/- , and ob/ob/Cidea-/-/Cidec-/- mouse models and CIDE-deficient cells, we studied metabolic regulation during severe obesity to identify ways to maintain metabolic homeostasis and promote antiobesity effects. The phenotype of ob/ob/Cidea-/- mice was similar to that of ob/ob mice in terms of serum parameters, adipose tissues, lipid storage, and gene expression. Typical lipodystrophy accompanied by insulin resistance occurred in ob/ob/Cidec-/- mice, with ectopic storage of lipids in the BAT and liver. Interestingly, double deficiency of Cidea and Cidec activated both WAT and BAT to consume more energy and to increase insulin sensitivity compared with their behavior in the other three mouse models. Increased lipolysis, which occurred on the LD surfaces and released fatty acids, led to activated β-oxidation and oxidative phosphorylation in peroxisomes and mitochondria in CIDE-deficient adipocytes. The coordination among LDs, peroxisomes, and mitochondria was regulated by adipocyte triglyceride lipase (ATGL)-peroxisome proliferator-activated receptor α (PPARα). Double deficiency of Cidea and Cidec activated energy consumption in both WAT and BAT, which provided new insights into therapeutic approaches for obesity and diabetes.
Collapse
Affiliation(s)
- Linkang Zhou
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Miao Yu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Wenmin Wang
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Ye Lu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Jingyi Gong
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yangnan Gu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
44
|
Su X, Kong Y, Peng DQ. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis 2018; 17:174. [PMID: 30053818 PMCID: PMC6064078 DOI: 10.1186/s12944-018-0833-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein A5 (apoA5) has been identified to play an important role in lipid metabolism, specifically in triglyceride (TG) and TG-rich lipoproteins (TRLs) metabolism. Numerous evidence has demonstrated for an association between apoA5 and the increased risk of obesity and metabolic syndrome, but the mechanism remains to be fully elucidated. Recently, several studies verified that apoA5 could significantly reduce plasma TG level by stimulating lipoprotein lipase (LPL) activity, and the intracellular role of apoA5 has also been proved since apoA5 is associated with cytoplasmic lipid droplets (LDs) and affects intrahepatic TG accumulation. Furthermore, since adipocytes provide the largest storage depot for TG and play a crucial role in the development of obesity, we could infer that apoA5 also acts as a novel regulator to modulate TG storage in adipocytes. In this review, we focus on the association of gene and protein of apoA5 with obesity and metabolic syndrome, and provide new insights into the physiological role of apoA5 in humans, giving a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yi Kong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Dao-Quan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
The utrophin-beta 2 syntrophin complex regulates adipocyte lipid droplet size independent of adipogenesis. Mol Cell Biochem 2018; 452:29-39. [PMID: 30014220 DOI: 10.1007/s11010-018-3409-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Utrophin is a widely expressed cytoskeleton protein and is associated with lipid droplets (LDs) in adipocytes. The scaffold protein beta 2 syntrophin (SNTB2) controls signaling events by recruiting distinct membrane and cytoskeletal proteins, and binds to utrophin. Here we show that SNTB2 forms a complex with utrophin in adipocytes. SNTB2 protein is strongly diminished when utrophin is low. Of note, knock-down of utrophin or SNTB2 enhances LD growth during adipogenesis. SNTB2 reduction has no effect on basal and induced lipolysis, and insulin-stimulated phosphorylation of Akt is normal. The antilipolytic activity of insulin is enhanced in adipocytes with low SNTB2, while knock-down of utrophin has no effect. Uptake of exogenously supplied oleate and linoleate is comparable in scrambled and SNTB2 siRNA-treated cells. In the fibroblasts, diminished SNTB2 is associated with lower proliferation. CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding proteins which are critical transcription factors for adipogenesis are normally expressed. Consequently, maturation of cells with SNTB2 knock-down is not grossly impaired. In fibroblasts, SNTB2 is localized to filamentous and vesicular structures which are distinct from beta actin, alpha tubulin, endoplasmic reticulum, early endosomes, lysosomes and mitochondria. Collectively, our data provide evidence that the utrophin-SNTB2 complex regulates LD size without affecting adipogenesis.
Collapse
|
46
|
Rajamoorthi A, Lee RG, Baldán Á. Therapeutic silencing of FSP27 reduces the progression of atherosclerosis in Ldlr -/- mice. Atherosclerosis 2018; 275:43-49. [PMID: 29859472 PMCID: PMC6113075 DOI: 10.1016/j.atherosclerosis.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
Abstract
Background and aims Obesity, hepatosteatosis, and hypertriglyceridemia are components of the metabolic syndrome and independent risk factors for cardiovascular disease. The lipid droplet-associated protein CIDEC (cell death-inducing DFFA-like effector C), known in mice as FSP27 (fat-specific protein 27), plays a key role in maintaining triacylglyceride (TAG) homeostasis in adipose tissue and liver, and controls circulating TAG levels in mice. Importantly, mutations and SNPs in CIDEC are associated with dyslipidemia and altered metabolic function in humans. Here we tested whether systemic silencing of Fsp27 using antisense oligonucleotides (ASOs) was atheroprotective in LDL receptor knock-out (Ldlr−/−) mice. Methods Atheroprone Ldlr−/− mice were fed a high-fat, high-cholesterol diet for 12 weeks while simultaneously dosed with saline, ASO-ctrl, or ASO-Fsp27. Results Data show that, compared to control treatments, silencing Fsp27 significantly reduced body weight gain and visceral adiposity, prevented diet-induced hypertriglyceridemia, and reduced athero-sclerotic lesion size both in en face aortas and in the aortic root. Conclusions Our findings suggest that therapeutic silencing of Fsp27 with ASOs may be beneficial in the prevention and management of atherogenic disease in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis, MO, 63104, USA; Liver Center, Saint Louis University, Saint Louis, MO, 63104, USA.
| |
Collapse
|
47
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
48
|
Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, Huang T, Ferguson C, Parton RG, Yang H, Li P. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 2018; 217:975-995. [PMID: 29367353 PMCID: PMC5839781 DOI: 10.1083/jcb.201704184] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Lipid incorporation from endoplasmic reticulum (ER) to lipid droplet (LD) is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link mediating ER and LD cross talk remains elusive. Here, we identified Rab18 as an important Rab guanosine triphosphatase in controlling LD growth and maturation. Rab18 deficiency resulted in a drastically reduced number of mature LDs and decreased lipid storage, and was accompanied by increased ER stress. Rab3GAP1/2, the GEF of Rab18, promoted LD growth by activating and targeting Rab18 to LDs. LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER-LD contact. Cells with defects in the NRZ/SNARE complex function showed reduced LD growth and lipid storage. Overall, our data reveal that the Rab18-NRZ-SNARE complex is critical protein machinery for tethering ER-LD and establishing ER-LD contact to promote LD growth.
Collapse
Affiliation(s)
- Dijin Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dongyu Zhao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinhai Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tuozhi Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Singaravelu R, Quan C, Powdrill MH, Shaw TA, Srinivasan P, Lyn RK, Alonzi RC, Jones DM, Filip R, Russell RS, Pezacki JP. MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Sci Rep 2018; 8:361. [PMID: 29321595 PMCID: PMC5762714 DOI: 10.1038/s41598-017-18529-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cellular metabolism. To characterise miRNAs crucial to the maintenance of hepatic lipid homeostasis, we examined the overlap between the miRNA signature associated with inhibition of peroxisome proliferator activated receptor-α (PPAR-α) signaling, a pathway regulating fatty acid metabolism, and the miRNA profile associated with 25-hydroxycholesterol treatment, an oxysterol regulator of sterol regulatory element binding protein (SREBP) and liver X receptor (LXR) signaling. Using this strategy, we identified microRNA-7 (miR-7) as a PPAR-α regulated miRNA, which activates SREBP signaling and promotes hepatocellular lipid accumulation. This is mediated, in part, by suppression of the negative regulator of SREBP signaling: ERLIN2. miR-7 also regulates genes associated with PPAR signaling and sterol metabolism, including liver X receptor β (LXR-β), a transcriptional regulator of sterol synthesis, efflux, and excretion. Collectively, our findings highlight miR-7 as a novel mediator of cross-talk between PPAR, SREBP, and LXR signaling pathways in the liver.
Collapse
Affiliation(s)
- Ragunath Singaravelu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Curtis Quan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Megan H Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Prashanth Srinivasan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rodney K Lyn
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rhea C Alonzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel M Jones
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | - Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | - John P Pezacki
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
50
|
Huang JZ, Huang LM, Zeng QJ, Huang EF, Liang HP, Wei Q, Xie XH, Ruan JM. Distribution and quantitative analysis of CIDEa and CIDEc in broiler chickens: accounting for differential fat deposition between strains. Br Poult Sci 2017; 59:173-179. [PMID: 29219006 DOI: 10.1080/00071668.2017.1415426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Differences in the expression of CIDEa and CIDEc in 20 different tissues were examined. Both CIDEa and CIDEc mRNA transcripts were predominantly but variably expressed in white adipose tissue (WAT) but were also expressed at moderate levels in the kidney and liver and at lower levels in the ovary. Interestingly, among WAT types, both CIDEa and CIDEc were expressed at the lowest levels in heart coronary WAT. 2. To better understand the roles of CIDEa and CIDEc in the fat deposition of broiler chickens, the differences in lipid droplet (LD) size and mRNA levels of CIDEa and CIDEc between lean-type and fat-type broiler chicken lines were studied. LD sizes were larger in fat-type broiler lines, and CIDEa and CIDEc mRNA levels in white adipose, kidney and liver tissues were significantly higher in fat-type broiler lines than in their lean counterparts. 3. Developmental expression patterns of CIDEa and CIDEc mRNA were analysed in different tissue types (WAT, liver and kidney) in Arbor Acres broiler chickens, and CIDEa and CIDEc mRNA expression levels increased during sequential developmental stages, achieving peak expression levels at week 6. 4. These observations suggest that the functions of CIDEa and CIDEc reflect inherent characteristics of lipid metabolism that contribute to the differences in fat deposition between strains. The results in this study contribute to a more robust understanding of the tissue distribution and expression patterns of CIDEa and CIDEc mRNA and facilitate further research concerning the molecular mechanism underlying fat deposition in broiler chickens.
Collapse
Affiliation(s)
- J Z Huang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - L M Huang
- b College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , P. R. China
| | - Q J Zeng
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - E F Huang
- c Department of Animal Science , Jiangxi Biotech Vocational College , Nanchang , P. R. China
| | - H P Liang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - Q Wei
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - X H Xie
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - J M Ruan
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| |
Collapse
|