1
|
Torres AS, Robison MK, Brewer GA. The role of the LC-NE system in attention: From cells, to systems, to sensory-motor control. Neurosci Biobehav Rev 2025; 175:106233. [PMID: 40412462 DOI: 10.1016/j.neubiorev.2025.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Attention control is a fundamental cognitive function that enables individuals to sustain focus, shift attention flexibly, and filter distractions in a goal-directed manner. The locus coeruleus-norepinephrine (LC-NE) system plays a pivotal role in this process by dynamically regulating arousal, prioritizing salient stimuli, and optimizing cognitive performance. This review synthesizes evidence from molecular, cellular, systems, cognitive neuroscience, and behavioral studies to elucidate the LC-NE system's role in attention control. We first examine the neurophysiological mechanisms of the LC, highlighting its distinct firing patterns-tonic and phasic activity-and their impact on attention. Next, we integrate findings from animal models, human neuroimaging, electrophysiology, and computational modeling, demonstrating how LC-NE activity influences sensory processing, cognitive flexibility, and executive function. We interpret these findings through the lens of three major theoretical frameworks: Adaptive Gain Theory (AGT), which describes how LC activity optimizes task engagement, the Network Reset Hypothesis (NRH), which describes how optimizes network connectivity, and the Glutamate Amplifies NE Effects (GANE) model, which explains how NE enhances neural selectivity and suppresses irrelevant signals. Collectively, the evidence underscores the LC-NE system's role in modulating the signal-to-noise ratio in cortical and subcortical circuits, thereby shaping attention and behavior. We conclude by discussing implications for individual differences, age-related cognitive decline, and emphasizing the need for interdisciplinary research that integrates emerging technologies to further unravel the complexities of LC function.
Collapse
|
2
|
Kutch JJ. Preparing the brain for pain: new insights and potential biomarkers. Pain 2025; 166:1221-1222. [PMID: 39620347 PMCID: PMC12074888 DOI: 10.1097/j.pain.0000000000003485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 05/15/2025]
Affiliation(s)
- Jason J. Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Ding J, Zhang X, Liu J, Hu Z, Yang Z, Tang Y, Ding Y. Entrainment of rhythmic tonal sequences on neural oscillations and the impact on subjective emotion. Sci Rep 2025; 15:17462. [PMID: 40394192 PMCID: PMC12092629 DOI: 10.1038/s41598-025-98548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/14/2025] [Indexed: 05/22/2025] Open
Abstract
Music possesses a remarkable capacity to evoke a broad spectrum of subjective responses and promote healing in humans, with rhythm playing a crucial role among its various elements. Rhythmic entrainment is considered as one of the fundamental mechanisms, yet its subsequent behavioral responses and quantitative relationship remain unclear. In the study presented here, we combined behavioral and electroencephalography experiments to explore the relationship between neural entrainment and emotional responses to rhythmic auditory stimuli, focusing on the emotional dimensions of valence, arousal, and dominance. Our findings reveal that while all sequences across 12 different presenting rates significantly entrain neural oscillations, sequences at different rates elicit distinct impacts on subjective emotional experience. The intensity of neural entrainment is associated with changes in emotional valence and dominance under specific frequency conditions. This insight addresses a gap in the existing literature regarding the dominance dimension and provides potential for developing more targeted and precise clinical interventions to enhance emotional well-being in the future.
Collapse
Affiliation(s)
- Jiaxin Ding
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jingjing Liu
- Department of Psychosomatic Medicine, Shanghai East Hospital Tongji University School of Medicine, Shanghai, China
| | - Zhishan Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Yue Ding
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
4
|
Qin Q, Liu X, Wang B, Wang X, Liang S, Chen C, Li M, Han C, Zhao X. Association between Electroencephalographic microstates abnormalities and cognitive dysfunction in drug-naive MDD. Brain Res 2025; 1860:149660. [PMID: 40294714 DOI: 10.1016/j.brainres.2025.149660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES This study aims to investigate the link between Electroencephalography (EEG) microstate anomalies and cognitive impairments in individuals with drug-naive Major depressive disorder (MDD). METHODS We recruited 29 patients with drug-naive MDD and 30 healthy controls. The Hamilton Depression Rating Scale (HDRS-17) measured symptom severity, the MATRICS Consensus Cognitive Battery (MCCB) assessed neurocognitive function, and resting-state EEG data were collected using 64 scalp electrodes. Analysis of EEG microstates was conducted via the Microstate Analysis plugin for EEGLAB. RESULTS MDD group had lower scores in six neurocognitive MCCB domains. For EEG microstates, four similar ones (A - D) were found in both groups. Notably, microstate C duration was lower in MDD group (t = 4.549, P < 0.001), microstate D occurrence (t = 2.258, P = 0.028) and proportion (t = 3.733, P < 0.001) were lower in MDD group. There were significant differences in all 4 microstate transition probabilities between groups. For example, A - B, B - A etc. transitions were higher in MDD, while A - C, A - D etc. were lower.The proportion of microstate D was found positively correlated with Speed of processing (SOP) score (r = 0.499, df = 26, P = 0.007) and Working memory (WM) score (r = 0.451, df = 26, P = 0.016). The Occurrence of microstate D was found positively correlated with SOP score (r = 0.383, df = 26, P = 0.044) and WM score (r = 0.389, df = 26, P = 0.041). CONCLUSIONS MDD patients show alterations in sub-second brain dynamics, characterized by a decreased proportion and occurrence of microstate D and shorter duration of microstate C, and significant shifts in microstate transition probabilities. These changes correlate with cognitive deficits across several domains, including processing speed and working memory.
Collapse
Affiliation(s)
- Qin Qin
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Xinyu Liu
- Department of Clinical Psychology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong, PR China
| | - Bin Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Xin Wang
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin 300384, PR China
| | - Sixiang Liang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Chao Chen
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin 300384, PR China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Chuanliang Han
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Xixi Zhao
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China.
| |
Collapse
|
5
|
Babiloni C, Arakaki X, Baez S, Barry RJ, Benussi A, Blinowska K, Bonanni L, Borroni B, Bayard JB, Bruno G, Cacciotti A, Carducci F, Carino J, Carpi M, Conte A, Cruzat J, D'Antonio F, Della Penna S, Del Percio C, De Sanctis P, Escudero J, Fabbrini G, Farina FR, Fraga FJ, Fuhr P, Gschwandtner U, Güntekin B, Guo Y, Hajos M, Hallett M, Hampel H, Hanoğlu L, Haraldsen I, Hassan M, Hatlestad-Hall C, Horváth AA, Ibanez A, Infarinato F, Jaramillo-Jimenez A, Jeong J, Jiang Y, Kamiński M, Koch G, Kumar S, Leodori G, Li G, Lizio R, Lopez S, Ferri R, Maestú F, Marra C, Marzetti L, McGeown W, Miraglia F, Moguilner S, Moretti DV, Mushtaq F, Noce G, Nucci L, Ochoa J, Onorati P, Padovani A, Pappalettera C, Parra MA, Pardini M, Pascual-Marqui R, Paulus W, Pizzella V, Prado P, Rauchs G, Ritter P, Salvatore M, Santamaria-García H, Schirner M, Soricelli A, Taylor JP, Tankisi H, Tecchio F, Teipel S, Kodamullil AT, Triggiani AI, Valdes-Sosa M, Valdes-Sosa P, Vecchio F, Vossel K, Yao D, Yener G, Ziemann U, Kamondi A. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol 2025; 172:33-50. [PMID: 39978053 DOI: 10.1016/j.clinph.2025.02.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
In this "centenary" paper, an expert panel revisited Hans Berger's groundbreaking discovery of human restingstate electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) in 1924, his foresight of substantial clinical applications in patients with "senile dementia," and new developments in the field, focusing on Alzheimer's disease (AD), the most prevalent cause of dementia in pathological aging. Clinical guidelines issued in 2024 by the US National Institute on Aging-Alzheimer's Association (NIA-AA) and the European Neuroscience Societies did not endorse routine use of rsEEG biomarkers in the clinical workup of older adults with cognitive impairment. Nevertheless, the expert panel highlighted decades of research from independent workgroups and different techniques showing consistent evidence that abnormalities in rsEEG delta, theta, and alpha rhythms (< 30 Hz) observed in AD patients correlate with wellestablished AD biomarkers of neuropathology, neurodegeneration, and cognitive decline. We posit that these abnormalities may reflect alterations in oscillatory synchronization within subcortical and cortical circuits, inducing cortical inhibitory-excitatory imbalance (in some cases leading to epileptiform activity) and vigilance dysfunctions (e.g., mental fatigue and drowsiness), which may impact AD patients' quality of life. Berger's vision of using EEG to understand and manage dementia in pathological aging is still actual.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, (FR), Italy.
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, USA; Trinity College Dublin, Dublin, Ireland
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong 2522, Australia
| | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Katarzyna Blinowska
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Laura Bonanni
- Department of Medicine, Aging Sciences University G. d'Annunzio of Chieti-Pescara Chieti 66100 Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
| | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - John Carino
- Clinical Neurophysiology, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Javier Escudero
- Institute for Imaging, Data and Communications, School of Engineering, University of Edinburgh, UK
| | - Giovanni Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Francesca R Farina
- The University of Chicago Division of the Biological Sciences 5841 S Maryland Avenue Chicago, IL 60637, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Francisco J Fraga
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Tianjin Huanhu Hospital, Tianjin, China
| | - Mihaly Hajos
- Cognito Therapeutics, Cambridge, MA, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD 20892-1428, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013 Paris, France
| | - Lutfu Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ira Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mahmoud Hassan
- MINDIG, F-35000 Rennes, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - András Attila Horváth
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary
| | - Agustin Ibanez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | | | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Yang Jiang
- Aging Brain and Cognition Laboratory, Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Maciej Kamiński
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sanjeev Kumar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Gang Li
- Real World Evidence & Medical Value, Global Medical Affairs, Neurology, Eisai Inc., New Jersey, USA
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Fernando Maestú
- Center For Cognitive and Computational Neuroscience, Complutense University of Madrid, Spain
| | - Camillo Marra
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; Memory Clinic, Foundation Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Department of Engineering and Geology, "G. d'Annunzio" University of Chieti and Pescara, Pescara, Italy
| | - William McGeown
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide V Moretti
- Alzheimer's Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| | | | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - John Ochoa
- Neurophysiology Laboratory GNA-GRUNECO. Universidad de Antioquia, Antioquia, Colombia
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Brain Health Center, University of Brescia, Brescia, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Mario Alfredo Parra
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany; University Medical Center Göttingen, Göttingen, Germany
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, 14000 Caen, France
| | - Petra Ritter
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | | | - Hernando Santamaria-García
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Michael Schirner
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Franca Tecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Roma, Italy
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Antonio Ivano Triggiani
- Neurophysiology of Epilepsy Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pedro Valdes-Sosa
- Cuban Center for Neuroscience, Havana, Cuba; The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fabrizio Vecchio
- Universidad de los Andes, Bogota, Colombia; Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Neurosurgery and Neurointervention and Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Cavaleri R, McLain NJ, Heindel M, Schrepf A, Rodriguez LV, Kutch JJ. Peak alpha frequency is related to the degree of widespread pain, but not pain intensity or duration, among people with urologic chronic pelvic pain syndrome. Pain Rep 2025; 10:e1251. [PMID: 40078419 PMCID: PMC11902939 DOI: 10.1097/pr9.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Introduction Effective prevention and management strategies for chronic pain remain elusive. This has prompted investigations into biomarkers to better understand the mechanisms underlying pain development and persistence. One promising marker is low peak alpha frequency (PAF), an electroencephalography (EEG) measure that has been associated with increased sensitivity during acute experimental pain. However, findings regarding the relationship between PAF and chronic pain are variable, potentially due to disparate levels of central sensitization among chronic pain populations. This is evidenced by the variable extent of widespread pain, a phenotypic marker for central sensitization, observed across individuals with chronic pain. Objective To explore the impact of widespread pain on PAF among people with chronic pain. Method Thirty-eight individuals with urologic chronic pelvic pain syndrome were categorized as having widespread (n = 24) or localized (n = 14) pain based upon self-reported body maps. Electroencephalography data were collected under resting conditions, and PAF was determined using spectral analysis. Results Participants with widespread pain had a significantly lower global average PAF than those with localized pain, after controlling for age and sex. This relationship persisted even when accounting for pain intensity and duration. Peak alpha frequency differences were observed across all EEG electrodes, particularly in the sensorimotor and occipital regions. Conclusion Preliminary findings suggest that PAF may represent a potential biomarker for central sensitization in chronic pain, highlighting the importance of considering pain distribution in chronic pain research. Future studies with larger samples should investigate the neural mechanisms underlying these observations and the clinical utility of PAF in diverse chronic pain populations.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, NSW, Australia
| | - Natalie J. McLain
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Matthew Heindel
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jason J. Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Bonnefond M, Jensen O. The role of alpha oscillations in resisting distraction. Trends Cogn Sci 2025; 29:368-379. [PMID: 39668059 DOI: 10.1016/j.tics.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in suppressing distractors is extensively debated. One debate concerns whether alpha oscillations suppress anticipated visual distractors through increased power. Whereas some studies suggest that alpha oscillations support distractor suppression, others do not. We identify methodological differences that may explain these discrepancies. A second debate concerns the mechanistic role of alpha oscillations. We and others previously proposed that alpha oscillations implement gain reduction in early visual regions when target load or distractor interference is high. Here, we suggest that parietal alpha oscillations support gating or stabilization of attentional focus and that alpha oscillations in ventral attention network (VAN) support resistance to attention capture. We outline future studies needed to uncover the precise mechanistic role of alpha oscillations.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
8
|
Kornfeld-Sylla SS, Gelegen C, Norris JE, Chaloner FA, Lee M, Khela M, Heinrich MJ, Finnie PSB, Ethridge LE, Erickson CA, Schmitt LM, Cooke SF, Wilkinson CL, Bear MF. A human electrophysiological biomarker of Fragile X Syndrome is shared in V1 of Fmr1 KO mice and caused by loss of FMRP in cortical excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644144. [PMID: 40166357 PMCID: PMC11957138 DOI: 10.1101/2025.03.19.644144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Predicting clinical therapeutic outcomes from preclinical animal studies remains an obstacle to developing treatments for neuropsychiatric disorders. Electrophysiological biomarkers analyzed consistently across species could bridge this divide. In humans, alpha oscillations in the resting state electroencephalogram (rsEEG) are altered in many disorders, but these disruptions have not yet been characterized in animal models. Here, we employ a uniform analytical method to show in males with fragile X syndrome (FXS) that the slowed alpha oscillations observed in adults are also present in children and in visual cortex of adult and juvenile Fmr1 -/y mice. We find that alpha-like oscillations in mice reflect the differential activity of two classes of inhibitory interneurons, but the phenotype is caused by deletion of Fmr1 specifically in cortical excitatory neurons. These results provide a framework for studying alpha oscillation disruptions across species, advance understanding of a critical rsEEG signature in the human brain and inform the cellular basis for a putative biomarker of FXS.
Collapse
|
9
|
Yuasa K, Groen IIA, Piantoni G, Montenegro S, Flinker A, Devore S, Devinsky O, Doyle W, Dugan P, Friedman D, Ramsey N, Petridou N, Winawer J. Precise Spatial Tuning of Visually Driven Alpha Oscillations in Human Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.11.528137. [PMID: 36865223 PMCID: PMC9979988 DOI: 10.1101/2023.02.11.528137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field. We separated the alpha oscillatory power from broadband power changes. The variation in alpha oscillatory power with stimulus position was then fit by a population receptive field (pRF) model. We find that the alpha pRFs have similar center locations to pRFs estimated from broadband power (70-180 Hz) but are several times larger. The results demonstrate that alpha suppression in human visual cortex can be precisely tuned. Finally, we show how the pattern of alpha responses can explain several features of exogenous visual attention. Significance Statement The alpha oscillation is the largest electrical signal generated by the human brain. An important question in systems neuroscience is the degree to which this oscillation reflects system-wide states and behaviors such as arousal, alertness, and attention, versus much more specific functions in the routing and processing of information. We examined alpha oscillations at high spatial precision in human patients with intracranial electrodes implanted over visual cortex. We discovered a surprisingly high spatial specificity of visually driven alpha oscillations, which we quantified with receptive field models. We further use our discoveries about properties of the alpha response to show a link between these oscillations and the spread of visual attention.Grant support: NIH R01 MH111417 (Petridou, Winawer, Ramsey, Devinsky); JSPS Overseas Research Fellowship (Yuasa)The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
|
10
|
Han C, Zhang Z, Lin Y, Huang S, Mao J, Xiang W, Wang F, Liang Y, Chen W, Zhao X. Monitoring Sleep Quality Through Low α-Band Activity in the Prefrontal Cortex Using a Portable Electroencephalogram Device: Longitudinal Study. J Med Internet Res 2025; 27:e67188. [PMID: 40063935 PMCID: PMC11933759 DOI: 10.2196/67188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The pursuit of sleep quality has become an important aspect of people's global quest for overall health. However, the objective neurobiological features corresponding to subjective perceptions of sleep quality remain poorly understood. Although previous studies have investigated the relationship between electroencephalogram (EEG) and sleep, the lack of longitudinal follow-up studies raises doubts about the reproducibility of their findings. OBJECTIVE Currently, there is a gap in research regarding the stable associations between EEG data and sleep quality assessed through multiple data collection sessions, which could help identify potential neurobiological targets related to sleep quality. METHODS In this study, we used a portable EEG device to collect resting-state prefrontal cortex EEG data over a 3-month follow-up period from 42 participants (27 in the first month, 25 in the second month, and 40 in the third month). Each month, participants' sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) to estimate their recent sleep quality. RESULTS We found that there is a significant and consistent positive correlation between low α band activity in the prefrontal cortex and PSQI scores (r=0.45, P<.001). More importantly, this correlation remained consistent across all 3-month follow-up recordings (P<.05), regardless of whether we considered the same cohort or expanded the sample size. Furthermore, we discovered that the periodic component of the low α band primarily contributed to this significant association with PSQI. CONCLUSIONS These findings represent the first identification of a stable and reliable neurobiological target related to sleep quality through multiple follow-up sessions. Our results provide a solid foundation for future applications of portable EEG devices in monitoring sleep quality and screening for sleep disorders in a broad population.
Collapse
Affiliation(s)
- Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Yuchen Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shaojia Huang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Jidong Mao
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Weiwen Xiang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Fang Wang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuping Liang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Wufang Chen
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Xixi Zhao
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection and Laboratory for Clinical Medicine,, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. Brain 2025; 148:875-885. [PMID: 39282945 PMCID: PMC11884654 DOI: 10.1093/brain/awae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. Although SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signalling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (PD, n = 58; healthy control, n = 27) and task-free magnetoencephalography (PD, n = 58; healthy control, n = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha-band (8-12 Hz) activity in patients with decreased LC neuromelanin, which were more strongly associated in patients with worse attentional impairments. This negative alpha-band-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha-band activity is inversely related to attention scores. Using neurochemical co-localization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha-band activity. Our data also show that rhythmic beta-band (15-29 Hz) activity in the left somatomotor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha-band activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
12
|
Ali EN, Lueck CJ, Martin KL, Borbelj A, Maddess T. Photic drive response in people with epilepsy: Exploring the interaction with background alpha rhythm. Vision Res 2025; 228:108548. [PMID: 39874611 DOI: 10.1016/j.visres.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.3 ± 4.6 years; 8 males), and 15 control subjects (mean age 52.7 ± 4.6 years; 9 males) underwent EEG with modified intermittent photic stimulation (IPS). The modification allowed so-called alpha-band gain to be measured. None of the PwE had demonstrated photosensitivity. The modified IPS method alternated eyes-open and eyes-closed conditions with and without IPS. The alpha-band gain appeared as N-fold changes in PDR when IPS (or its harmonics) and the alpha-bands overlapped. An epileptic attack within 1 month of testing significantly increased alpha-band gain by 1.36×. Generalised epilepsy (but not focal epilepsy) significantly decreased alpha-band gain y 0.79×. Each decade of age beyond the mean age significantly increased alpha-band gain by 1.09×. Similar significant interactions were seen between alpha and the second harmonic of IPS driving frequencies that matched alpha frequencies, i.e. for recent attack and, generalized epilepsy. The interactions thus appeared to be occurring between cortical IPS outputs and the alpha generator. These changes were most evident at electrodes O1 and O2. Investigating alpha-band gain using modified IPS offers a way to quantify cortical hyperexcitability in epilepsy and other diseases. It also provides new information about alpha and so too predictive coding, which appears to be at least partly governed by alpha.
Collapse
Affiliation(s)
- Eman N Ali
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia; Department of Neuroscience, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Christian J Lueck
- School of Medicine and Psychology, Australian National University, Acton, ACT, Australia
| | - Kate L Martin
- Department of Neurology, the Canberra Hospital, Canberra, ACT, Australia
| | - Angela Borbelj
- Department of Neurology, the Canberra Hospital, Canberra, ACT, Australia
| | - Ted Maddess
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.
| |
Collapse
|
13
|
James TM, Burgess AP. Estimating Chronological Age From the Electrical Activity of the Brain: How EEG-Age Can Be Used as a Marker of General Brain Functioning. Psychophysiology 2025; 62:e70033. [PMID: 40090876 PMCID: PMC11911306 DOI: 10.1111/psyp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/30/2024] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
With an aging global population, the number of older adults with age-related changes in the brain, including dementia, will continue to increase unless we can make progress in the early detection and treatment of such conditions. There is extensive literature on the effects of aging on the EEG, particularly a decline in the Peak Alpha Frequency (PAF), but here, in a reversal of convention, we used the EEG power-frequency spectrum to estimate chronological age. The motivation for this approach was that an individual's brain age might act as a proxy for their general brain functioning, whereby a discrepancy between chronological age and EEG age could prove clinically informative by implicating deleterious conditions. With a sample of sixty healthy adults, whose ages ranged from 20 to 78 years, and using multivariate methods to analyze the broad EEG spectrum (0.1-45 Hz), strong positive correlations between chronological age and EEG age emerged. Furthermore, EEG age was a more accurate estimate and accounted for more variance in chronological age than well-established PAF-based estimates of age, indicating that EEG age could be a more comprehensive measure of general brain functioning. We conclude that EEG age could become a biomarker for neural and cognitive integrity.
Collapse
Affiliation(s)
- Thomas M. James
- Aston Research Centre for Health in Ageing (ARCHA) and Aston Institute of Health and Neurodevelopment (IHN), College of Health and Life Sciences (HLS), School of PsychologyAston UniversityBirminghamUK
| | | |
Collapse
|
14
|
Del Percio C, Lizio R, Lopez S, Noce G, Jakhar D, Carpi M, Bölükbaş B, Soricelli A, Salvatore M, Güntekin B, Yener G, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Salerni M, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Helvacı Yılmaz N, Kıyı İ, Özbek-İşbitiren Y, Frisoni GB, Cuoco S, Barone P, D'Anselmo A, Bonanni L, Biundo R, D'Antonio F, Bruno G, Giubilei F, De Pandis F, Rotondo R, Antonini A, Babiloni C. Resting-state electroencephalographic rhythms depend on sex in patients with dementia due to Parkinson's and Lewy Body diseases: An exploratory study. Neurobiol Dis 2025; 206:106807. [PMID: 39855475 DOI: 10.1016/j.nbd.2025.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are more prevalent in males than females. Furthermore, they typically showed abnormally high delta (< 4 Hz) and low alpha (8-10 Hz) rhythms from resting-state electroencephalographic (rsEEG) activity. Here, we hypothesized that those abnormalities may depend on the patient's sex. An international database provided clinical-demographic-rsEEG datasets for cognitively unimpaired older (Healthy; N = 49; 24 females), PDD (N = 39; 13 females), and DLB (N = 38; 15 females) participants. Each group was stratified into matched female and male subgroups. The rsEEG rhythms were investigated across the individual rsEEG delta, theta, and alpha frequency bands based on the individual alpha frequency peak. The eLORETA freeware was used to estimate cortical rsEEG sources. In the Healthy group, widespread rsEEG alpha source activities were greater in the females than in the males. In the PDD group, widespread rsEEG delta source activities were lower and widespread rsEEG alpha source activities were greater in the females than in the males. In the DLB group, central-parietal rsEEG delta source activities were lower, and posterior rsEEG alpha source activities were greater in the females than in the males. These results suggest sex-dependent hormonal modulation of neuroprotective-compensatory neurophysiological mechanisms in PDD and DLB patients underlying the generation of rsEEG delta and alpha rhythms, which should be considered in the treatment of vigilance dysregulation in those patients.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy.
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Burcu Bölükbaş
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; IBG: International Biomedicine and Genome Center, Izmir, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Medipol University Istanbul Parkinson's Disease and Movement Disorders Center (PARMER), Istanbul, Turkey
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Yağmur Özbek-İşbitiren
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Anita D'Anselmo
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Roberta Biundo
- Department of Neuroscience, University of Padua, Padua, PD, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Francesca De Pandis
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele Roma, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, PD, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy
| |
Collapse
|
15
|
Park J, Ho RLM, Wang WE, Chiu SY, Shin YS, Coombes SA. Age-related changes in neural oscillations vary as a function of brain region and frequency band. Front Aging Neurosci 2025; 17:1488811. [PMID: 40040743 PMCID: PMC11876397 DOI: 10.3389/fnagi.2025.1488811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced aging is associated with robust changes in neural activity. In addition to the well-established age-related slowing of the peak alpha frequency, there is a growing body of evidence showing that older age is also associated with changes in alpha power and beta power. Despite the important progress that has been made, the interacting effects of age and frequency band have not been directly tested in sensor and source space while controlling for aperiodic components. In the current study we address these limitations. We recruited 54 healthy younger and older adults and measured neural oscillations using a high-density electroencephalogram (EEG) system during resting-state with eyes closed. After preprocessing the EEG data and controlling for aperiodic components, we computed alpha and beta power in both sensor and source space. Permutation two-way ANOVAs between frequency band and age group were performed across all electrodes and across all dipoles. Our findings revealed significant interactions in sensorimotor, parietal, and occipital regions. The pattern driving the interaction varied across regions, with older age associated with a progressive decrease in alpha power and a progressive increase in beta power from parietal to sensorimotor regions. Our findings demonstrate that age-related changes in neural oscillations vary as a function of brain region and frequency band. We interpret our findings in the context of clinical and preclinical evidence of age effects on the cholinergic circuit and the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
Collapse
Affiliation(s)
- Jinhan Park
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachel L. M. Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Y. Chiu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Young Seon Shin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephen A. Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Chmiel J, Stępień-Słodkowska M. Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers. J Clin Med 2025; 14:545. [PMID: 39860557 PMCID: PMC11766307 DOI: 10.3390/jcm14020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision. Methods: This mechanistic review examines the pattern of resting-state EEG activity. With a focus on publications published between January 1995 and October 2024, we carried out a comprehensive search in October 2024 across a number of databases, including PubMed/Medline, Research Gate, Google Scholar, and Cochrane. Results: The literature search yielded 17 studies included in this review. The studies varied significantly in their methodology and patient characteristics. Despite this, a common biomarker typical of ALS was found-reduced alpha power. Regarding other oscillations, the findings are less consistent and sometimes contradictory. As this is a mechanistic review, three possible explanations for this biomarker are provided. The main and most important one is increased cortical excitability. In addition, due to the limitations of the studies, recommendations for future research on this topic are outlined to enable a further and better understanding of EEG patterns in ALS. Conclusions: Most studies included in this review showed alpha power deficits in ALS patients, reflecting pathological hyperexcitability of the cerebral cortex. Future studies should address the methodological limitations identified in this review, including small sample sizes, inconsistent frequency-band definitions, and insufficient functional outcome measures, to solidify and extend current findings.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
17
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
19
|
Del Percio C, Lizio R, Lopez S, Noce G, Carpi M, Jakhar D, Soricelli A, Salvatore M, Yener G, Güntekin B, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Carducci F, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Özbek-İşbitiren Y, D’Anselmo A, Bonanni L, Biundo R, D’Antonio F, Bruno G, Antonini A, Giubilei F, Farotti L, Parnetti L, Frisoni GB, Babiloni C. Resting-State EEG Alpha Rhythms Are Related to CSF Tau Biomarkers in Prodromal Alzheimer's Disease. Int J Mol Sci 2025; 26:356. [PMID: 39796211 PMCID: PMC11720070 DOI: 10.3390/ijms26010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show abnormally high delta (<4 Hz) and low alpha (8-12 Hz) rhythms measured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated with the diagnostic cerebrospinal fluid (CSF) amyloid-tau biomarkers in ADMCI patients. An international database provided clinical-demographic-rsEEG datasets for cognitively unimpaired older (Healthy; N = 45), ADMCI (N = 70), and noADMCI (N = 45) participants. The rsEEG rhythms spanned individual delta, theta, and alpha frequency bands. The eLORETA freeware estimated cortical rsEEG sources. Posterior rsEEG alpha source activities were reduced in the ADMCI group compared not only to the Healthy group but also to the noADMCI group (p < 0.001). Negative associations between the CSF phospho-tau and total tau levels and posterior rsEEG alpha source activities were observed in the ADMCI group (p < 0.001), whereas those with CSF amyloid beta 42 levels were marginal. These results suggest that neurophysiological brain neural oscillatory synchronization mechanisms regulating cortical arousal and vigilance through rsEEG alpha rhythms are mainly affected by brain tauopathy in ADMCI patients.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Giuseppe Noce
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Matteo Carpi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Andrea Soricelli
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
- Department of Medical, Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, 35340 İzmir, Turkey;
- IBG: International Biomedicine and Genome Center, 35340 Izmir, Turkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey;
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Fabrizio Stocchi
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
- Department of Neurology, Telematic University San Raffaele, 00166 Rome, Italy
| | - Laura Vacca
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Chiara Coletti
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AE, UK;
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Nesrin Helvacı Yılmaz
- Department of Neurology, Medipol University Istanbul Parkinson’s Disease and Movement Disorders Center (PARMER), 34718 Istanbul, Turkey;
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Yağmur Özbek-İşbitiren
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Anita D’Anselmo
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Roberta Biundo
- Department of General Psychology, University of Padua, 35128 Padova, Italy;
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy;
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, 06123 Perugia, Italy;
| | - Lucilla Parnetti
- Department of Medicine and Surgery, University of Perugia, 05100 Perugia, Italy;
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
20
|
Johnson-Black PH, Carlson JM, Vespa PM. Traumatic brain injury and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:75-96. [PMID: 39986729 DOI: 10.1016/b978-0-443-13408-1.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Trauma is one of the most common causes of disorders of consciousness (DOC) worldwide. Traumatic brain injury (TBI) leads to heterogeneous, multifocal injury via focal brain damage and diffuse axonal injury, causing an acquired network disorder. Recovery occurs through reemergence of dynamic cortical and subcortical networks. Accurate diagnostic evaluation is essential toward promoting recovery and may be more challenging in traumatic than non-traumatic brain injuries. Standardized neurobehavioral assessment is the cornerstone for assessments in the acute, prolonged, and chronic phases of traumatic DOC, while structural and functional neuroimaging, tractography, nuclear medicine studies, and electrophysiologic techniques assist with differentiation of DOC states and prognostication. Prognosis for recovery is better for patients with TBI than those with non-traumatic brain injuries, and the timeline for recovery is longer. The majority of patients experience improvement in their DOC within the first year post-injury, but recovery can continue for five and even ten years after TBI. Pharmacologic therapy and device-related neuromodulation represent important areas for future research.
Collapse
Affiliation(s)
- Phoebe H Johnson-Black
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Julia M Carlson
- Department of Neurology, UNC Neurorecovery Clinic, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Paul M Vespa
- Assistant Dean of Research in Critical Care, Gary L. Brinderson Family Chair in Neurocritical Care, Department of Neurosurgery and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
21
|
Suresh T, Iwane F, Zhang M, McElmurry M, Manesiya M, Freedberg MV, Hussain SJ. Motor sequence learning elicits mu peak-specific corticospinal plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606022. [PMID: 39211097 PMCID: PMC11361050 DOI: 10.1101/2024.07.31.606022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Motor cortical (M1) transcranial magnetic stimulation (TMS) interventions increase corticospinal output and improve motor learning when delivered during sensorimotor mu rhythm trough but not peak phases, suggesting that the mechanisms supporting motor learning may be most active during mu trough phases. Based on these findings, we predicted that motor sequence learning-related corticospinal plasticity would be most evident when measured during mu trough phases. Healthy adults were assigned to either a sequence or no-sequence group. Participants in the sequence group practiced the implicit serial reaction time task (SRTT), which contained an embedded, repeating 12-item sequence. Participants in the no-sequence group practiced a version of the SRTT that contained no sequence. We measured mu phase-independent and mu phase-dependent MEP amplitudes using EEG-informed single-pulse TMS before, immediately after, and 30 minutes after the SRTT in both groups. All participants performed a retention test one hour after SRTT acquisition. In both groups, mu phase-independent MEP amplitudes increased following SRTT acquisition, but the pattern of mu phase-dependent MEP amplitude changes after SRTT acquisition differed between groups. Relative to the no-sequence group, the sequence group showed greater peak-specific MEP amplitude increases 30 minutes after SRTT acquisition. Further, the magnitude of these peak-specific MEP amplitude increases was negatively associated with the magnitude of sequence-specific learning. Contrary to our original hypothesis, results revealed that motor sequence-specific learning elicits peak-specific corticospinal plasticity. Findings provide first direct evidence for the presence of a mu phase-dependent motor learning mechanism in the human brain. New and Noteworthy Recent work suggests that motor learning's neural mechanisms may be most active during specific sensorimotor mu rhythm phases. If so, motor sequence learning-induced corticospinal plasticity should be more evident during some mu phases than others. Our results show that motor sequence-specific learning elicits corticospinal plasticity that is most prominent during mu peak phases. Further, this peak-specific plasticity correlates with learning. Findings establish the presence of a mu phase-dependent motor learning mechanism in the human brain.
Collapse
|
22
|
Cipriano L, Liparoti M, Troisi Lopez E, Romano A, Sarno L, Mazzara C, Alivernini F, Lucidi F, Sorrentino G, Sorrentino P. Brain fingerprint and subjective mood state across the menstrual cycle. Front Neurosci 2024; 18:1432218. [PMID: 39712222 PMCID: PMC11659225 DOI: 10.3389/fnins.2024.1432218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Background Brain connectome fingerprinting represents a recent and valid approach in assessing individual identifiability on the basis of the subject-specific brain functional connectome. Although this methodology has been tested and validated in several neurological diseases, its performance, reliability and reproducibility in healthy individuals has been poorly investigated. In particular, the impact of the changes in brain connectivity, induced by the different phases of the menstrual cycle (MC), on the reliability of this approach remains unexplored. Furthermore, although the modifications of the psychological condition of women during the MC are widely documented, the possible link with the changes of brain connectivity has been poorly investigated. Methods We conducted the Clinical Connectome Fingerprint (CCF) analysis on source-reconstructed magnetoencephalography signals in a cohort of 24 women across the MC. Results All the parameters of identifiability did not differ according to the MC phases. The peri-ovulatory and mid-luteal phases showed a less stable, more variable over time, brain connectome compared to the early follicular phase. This difference in brain connectome stability in the alpha band significantly predicted the self-esteem level (p-value <0.01), mood (p-value <0.01) and five (environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance) of the six dimensions of well-being (p-value <0.01, save autonomy). Conclusion These results confirm the high reliability of the CCF as well as its independence from the MC phases. At the same time the study provides insights on changes of the brain connectome in the different phases of the MC and their possible role in affecting women's subjective mood state across the MC. Finally, these changes in the alpha band share a predictive power on self-esteem, mood and well-being.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Liparoti
- Department of Philosophical, Pedagogical and Quantitative-Economic Sciences, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Laura Sarno
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Camille Mazzara
- Department of Promoting Health, Maternal-Infant and Specialized Medicine “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Institute of Biophysics of National Research Council, Palermo, Italy
| | - Fabio Alivernini
- Department of Social and Developmental Psychology, Sapienza University of Rome, Rome, Italy
| | - Fabio Lucidi
- Department of Social and Developmental Psychology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
- ICS Maugeri Hermitage Napoli, via Miano, Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Sun J, Yan J, Zhao L, Wei X, Qiu C, Dong W, Luo B, Zhang W. Spinal Cord Stimulation for Prolonged Disorders of Consciousness: A Study on Scalp Electroencephalography. CNS Neurosci Ther 2024; 30:e70180. [PMID: 39736021 DOI: 10.1111/cns.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Patients with disorders of consciousness (DOC) undergoing spinal cord stimulation (SCS) for arousal treatment require an assessment of their conscious state before and after the procedure. This is typically evaluated using behavioral scales (CRS-R), but this method can be influenced by the subjectivity of the physician. Event-related potentials (ERP) and EEG power spectrum are associated with the recovery of consciousness. This study aims to explore the electrophysiological and behavioral evidence of consciousness recovery in DOC patients after spinal cord stimulation (SCS) and to investigate the role of scalp EEG as a guide for preoperative assessment related to the surgery. METHODS For the 27 recruited patients, the CRS-R scale assessment and ERP P300 evaluation were completed before the surgery. At 3 months post-surgery, all 27 patients underwent the same assessments as preoperatively, and at 6 months post-surgery, the same evaluations were repeated for the 15 patients who could still be followed up. Between May 2023 and November 2023, resting-state EEG was collected from 13 patients using a 19-channel setup, with additional resting-state EEG recordings taken at 3 months and 6 months after the surgery. The EEG data were processed using EEGLAB to obtain P300-related metrics and EEG power spectrum. Changes in the CRS-R scale, ERP, and EEG power spectrum before and after the surgery were compared. RESULTS The Behavioral Scale (CRS-R) showed significant improvement at 3 months and 6 months post-surgery compared to preoperative assessments, with statistical significance (p < 0.001). The resting-state EEG power in the 5-9 Hz frequency band demonstrated statistically significant improvements at the P3 and O1 electrodes; however, this statistical result do not survive FDR correction. In the 9-13 Hz and 20-35 Hz frequency bands, the power spectrum showed statistically significant improvements across most electrodes of the brain, and these results survive FDR correction (p < 0.05). The mean amplitude, peak, and latency of P300 at the Pz electrode showed significant improvements at 3 months and 6 months post-surgery compared to preoperative values, with statistical significance (p < 0.05). CONCLUSION Our study shows that SCS can effectively improve the consciousness states of patients with DOC. After surgery, there were positive changes in the EEG power spectrum of the patients, transitioning from type "B" to better types "C" and "D." The average amplitude, peak, and latency of P300 also demonstrated significant improvements postoperatively. We believe that the "ABCD" model and ERP assessment applied during the preoperative evaluation can effectively enhance the success rate of SCS surgery in promoting awakening.
Collapse
Affiliation(s)
- Jian Sun
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiuqi Yan
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Zhao
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wei
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Kokkinos V, Koupparis AM, Fekete T, Privman E, Avin O, Almagor O, Shriki O, Hadanny A. The Posterior Dominant Rhythm Remains Within Normal Limits in the Microgravity Environment. Brain Sci 2024; 14:1194. [PMID: 39766393 PMCID: PMC11674868 DOI: 10.3390/brainsci14121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain's health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm (PDR) change under microgravity conditions compared to earth-based scalp EEG recordings. METHODS Three crew members during the 16-day AXIOM-1 mission to the International Space Station (ISS), underwent scalp EEG recordings before, during, and after the mission by means of a dry-electrode self-donning headgear designed to support long-term EEG recordings in space. Resting-state recordings were performed with eyes open and closed during relaxed wakefulness. The electrodes representative of EEG activity in each occipital lobe were used, and consecutive PDR oscillations were identified during periods of eye closure. In turn, cursor-based markers were placed at the negative peak of each sinusoidal wave of the PDR. Waveform averaging and time-frequency analysis were performed for all PDR samples for the respective pre-mission, mission, and post-mission EEGs. RESULTS No significant differences were found in the mean frequency of the PDR in any of the crew subjects between their EEG on the ISS and their pre- or post-mission EEG on ground level. The PDR oscillations varied over a ±1Hz standard deviation range. Similarly, no significant differences were found in PDR's power spectral density. CONCLUSIONS Our study shows that the spectral features of the PDR remain within normal limits in a short exposure to the microgravity environment, with its frequency manifesting within an acceptable ±1 Hz variation from the pre-mission mean. Further investigations for EEG features and markers reflecting the human brain neurophysiology during space missions are required.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | | | - Tomer Fekete
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| | - Eran Privman
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| | - Ofer Avin
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Ophir Almagor
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel; (O.A.); (O.A.); (O.S.)
| | - Amir Hadanny
- Brain.Space, Tel Aviv 58855, Israel; (T.F.); (E.P.); (A.H.)
| |
Collapse
|
26
|
Murphy M, Jiang C, Wang LA, Kozhemiako N, Wang Y, Wang J, Pan JQ, Purcell SM. Electroencephalographic Microstates During Sleep and Wake in Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100371. [PMID: 39296796 PMCID: PMC11408315 DOI: 10.1016/j.bpsgos.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Aberrant functional connectivity is a hallmark of schizophrenia. The precise nature and mechanism of dysconnectivity in schizophrenia remains unclear, but evidence suggests that dysconnectivity is different in wake versus sleep. Microstate analysis uses electroencephalography (EEG) to investigate large-scale patterns of coordinated brain activity by clustering EEG data into a small set of recurring spatial patterns, or microstates. We hypothesized that this technique would allow us to probe connectivity between brain networks at a fine temporal resolution and uncover previously unknown sleep-specific dysconnectivity. Methods We studied microstates during sleep in patients with schizophrenia by analyzing high-density EEG sleep data from 114 patients with schizophrenia and 79 control participants. We used a polarity-insensitive k-means analysis to extract a set of 6 microstate topographies. Results These 6 states included 4 widely reported canonical microstates. In patients and control participants, falling asleep was characterized by a shift from microstates A, B, and C to microstates D, E, and F. Microstate F was decreased in patients during wake, and microstate E was decreased in patients during sleep. The complexity of microstate transitions was greater in patients than control participants during wake, but this reversed during sleep. Conclusions Our findings reveal behavioral state-dependent patterns of cortical dysconnectivity in schizophrenia. Furthermore, these findings are largely unrelated to previous sleep-related EEG markers of schizophrenia such as decreased sleep spindles. Therefore, these findings are driven by previously undescribed sleep-related pathology in schizophrenia.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Chenguang Jiang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lei A. Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jun Wang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Shaun M. Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Rice DA, Ozolins C, Biswas R, Almesfer F, Zeng I, Parikh A, Vile WG, Rashid U, Graham J, Kluger MT. Home-based EEG Neurofeedback for the Treatment of Chronic Pain: A Randomized Controlled Clinical Trial. THE JOURNAL OF PAIN 2024; 25:104651. [PMID: 39154809 DOI: 10.1016/j.jpain.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
This parallel, 2-arm, blinded, randomized controlled superiority trial examined whether, when added to usual care, active-electroencephalography neurofeedback (EEG NFB) was safe and more effective than sham control-EEG NFB for chronic pain. In total, 116 participants with chronic pain were randomly assigned (1:1) to usual care plus ≥32 sessions of active-EEG NFB upregulating relative alpha power over C4 or usual care plus ≥32 sessions of sham control-EEG NFB. Per-protocol analyses revealed no significant between-group differences in the primary outcome, Brief Pain Inventory average pain (mean difference [95% confidence interval]: -.04 [-.39 to .31], P = .90), or any secondary outcomes. However, 44% of participants in the active-EEG NFB group and 45% in the control-EEG NFB group reported at least a moderate (≥30%), clinically important improvement in Brief Pain Inventory average pain. The number of treatment-emergent adverse events were similar in both groups (P = .83), and none were serious. Post hoc analyses revealed similar upregulated relative alpha power in both groups during training, with concordant positive rewards delivered to the active-EEG group 100% of the time and the control-EEG group ∼25% of the time, suggesting a partially active sham intervention. When added to usual care, the active-EEG NFB intervention used in this study was not superior to the sham control-EEG NFB intervention. However, a large proportion of participants in both groups reported a clinically important reduction in pain intensity. A partially active sham intervention may have obscured between-group differences. The intervention was free of important side effects, with no safety concerns identified. PERSPECTIVE: This study is the first attempt at an appropriately blinded, randomized, sham-controlled trial of alpha EEG NFB for the treatment of chronic pain. The findings may interest people living with chronic pain, clinicians involved in chronic pain management, and may inform the design of future EEG NFB trials. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12621000667819.
Collapse
Affiliation(s)
- David A Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand; Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand.
| | | | - Riya Biswas
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Irene Zeng
- Department of Biostatistics, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Ankit Parikh
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Jon Graham
- PhysioFunction Ltd., Northampton, Northamptonshire, United Kingdom
| | - Michal T Kluger
- Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology and Perioperative Medicine, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Liljefors J, Almeida R, Rane G, Lundström JN, Herman P, Lundqvist M. Distinct functions for beta and alpha bursts in gating of human working memory. Nat Commun 2024; 15:8950. [PMID: 39419974 PMCID: PMC11486900 DOI: 10.1038/s41467-024-53257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple neural mechanisms underlying gating to working memory have been proposed with divergent results obtained in human and animal studies. Previous findings from non-human primates suggest prefrontal beta frequency bursts as a correlate of transient inhibition during selective encoding. Human studies instead suggest a similar role for sensory alpha power fluctuations. To cast light on these discrepancies we employed a sequential working memory task with distractors for human participants. In particular, we examined their whole-brain electrophysiological activity in both alpha and beta bands with the same single-trial burst analysis earlier performed on non-human primates. Our results reconcile earlier findings by demonstrating that both alpha and beta bursts in humans correlate with the filtering and control of memory items, but with region and task-specific differences between the two rhythms. Occipital beta burst patterns were selectively modulated during the transition from sensory processing to memory retention whereas prefrontal and parietal beta bursts tracked sequence order and were proactively upregulated prior to upcoming target encoding. Occipital alpha bursts instead increased during the actual presentation of unwanted sensory stimuli. Source reconstruction additionally suggested the involvement of striatal and thalamic alpha and beta. Thus, specific whole-brain burst patterns correlate with different aspects of working memory control.
Collapse
Affiliation(s)
- Johan Liljefors
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rita Almeida
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Gustaf Rane
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Brooks CJ, Fielding J, White OB, Badcock DR, McKendrick AM. Exploring the Phenotype and Possible Mechanisms of Palinopsia in Visual Snow Syndrome. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39412817 PMCID: PMC11488523 DOI: 10.1167/iovs.65.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Palinopsia (persistent afterimages and/or trailing) is a common but poorly understood symptom of the neurological condition visual snow syndrome. This study aimed to collect a phenotypical description of palinopsia in visual snow syndrome and probe for abnormalities in temporal visual processing, hypothesizing that palinopsia could arise from increased visibility of normal afterimage signals or prolonged visible persistence. Methods Thirty controls and 31 participants with visual snow syndrome (18 with migraine) took part. Participants completed a palinopsia symptom questionnaire. Contrast detection thresholds were measured before and after brief exposure to a spatial grating because deficient contrast adaptation could increase afterimage visibility. Temporal integration and segregation were assessed using missing-element and odd-element tasks, respectively, because prolonged persistence would promote integration at wide temporal offsets. To distinguish the effects of visual snow syndrome from comorbid migraine, 25 people with migraine alone participated in an additional experiment. Results Palinopsia was common in visual snow syndrome, typically presenting as unformed images that were frequently noticed. Contrary to our hypotheses, we found neither reduced contrast adaptation (F(3.22, 190.21) = 0.71, P = 0.56) nor significantly prolonged temporal integration thresholds (F(1, 59) = 2.35, P = 0.13) in visual snow syndrome. Instead, participants with visual snow syndrome could segregate stimuli in closer succession than controls (F(1, 59) = 4.62, P = 0.04, ηp2 = 0.073) regardless of co-occurring migraine (F(2, 53) = 1.22, P = 0.30). In contrast, individuals with migraine alone exhibited impaired integration (F(2, 53) = 4.44, P = 0.017, ηp2 = 0.14). Conclusions Although neither deficient contrast adaptation nor prolonged visible persistence explains palinopsia, temporal resolution of spatial cues is enhanced and potentially more flexible in visual snow syndrome.
Collapse
Affiliation(s)
- Cassandra J. Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B. White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R. Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
- Lions Eye Institute, Nedlands, Australia
- School of Allied Health, The University of Western Australia, Crawley, Australia
| |
Collapse
|
30
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Sano M, Iwatsuki K, Hirata H, Hoshiyama M. Imbalance in positive and negative acceleration ratio of alpha oscillation in patients with complex regional pain syndrome. Heliyon 2024; 10:e36463. [PMID: 39281607 PMCID: PMC11401108 DOI: 10.1016/j.heliyon.2024.e36463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives To elucidate the functional characteristics of the brain in the presence of chronic pain using electroencephalography (EEG), with a focus on the dynamics of neural excitation and inhibition. Methods Resting-state EEG was performed in: 17 patients with complex regional pain syndrome (CRPS) who exhibited chronic pain higher than 20 on the visual analogue scale (VAS), 6 patients with reduced CRPS symptoms and chronic pain less than 20 on VAS, and healthy age-matched controls. For the analysis, 50 s of electroencephalogram (EEG) signals were extracted from EEG recordings during wakefulness and rest with eyes closed. The envelope of the alpha frequency band was calculated by examining the positive and negative accelerations of the envelope oscillation, ratio of positive (Ap) to negative (An) accelerations (Ap-An ratio), and mean amplitude of the envelope. Comparisons were made between patients and controls, and correlations between these EEG measures and the subjective pain VAS were evaluated.Significant differences in the value of Ap, An and Ap-An ratio were observed at temporal and central electrodes between patients with pain symptoms and controls. Those with reduced CRPS symptoms exhibited a distinct Ap-An ratio at the majority of electrodes when compared with those exhibiting chronic pain. Conclusions Distinct patterns in alpha wave envelope dynamics, reflecting excitatory and inhibitory activities, were associated with chronic pain in patients with CRPS. The pain-relieved state of CRPS suggested that a new balance of activities was established. This relationship indicated a potential association between altered alpha oscillation characteristics and the subjective experience of pain. Significance This study introduces a novel method for analyzing alpha oscillation envelopes, providing new insights into the neural pathophysiology of chronic pain in CRPS patients. This approach has the potential to enhance our understanding of the alterations in brain function that occur under chronic pain conditions.
Collapse
Affiliation(s)
- Misako Sano
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Katsuyuki Iwatsuki
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Hitoshi Hirata
- Department of Hnad Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Minoru Hoshiyama
- Division of Prevention & Rehabilitation Sciences, Graduate School of Health Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
- Brain & Mind Research Center, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| |
Collapse
|
32
|
Mahmoud W, Baur D, Zrenner B, Brancaccio A, Belardinelli P, Ramos-Murguialday A, Zrenner C, Ziemann U. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front Neurol 2024; 15:1427198. [PMID: 39253360 PMCID: PMC11381265 DOI: 10.3389/fneur.2024.1427198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored. Objective Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor μ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients. Methods We conducted a parallel group, randomized double-blind controlled trial in 30 chronic stroke patients (clinical trial registration number: NCT05005780). The experimental intervention group received EEG-triggered rTMS of the ipsilesional M1 [1,200 pulses; 0.33 Hz; 100% of the resting motor threshold (RMT)], while the control group received low-frequency rTMS of the contralesional motor cortex (1,200 pulses; 1 Hz, 115% RMT), i.e., an established treatment protocol. Both groups received 12 rTMS sessions (20 min, 3× per week, 4 weeks) followed by 50 min of physiotherapy. The primary outcome measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) scores between baseline, immediately post-treatment and 3 months' follow-up. Results Both groups showed significant improvement in the primary outcome measure (FMA-UE) and the secondary outcome measures. This included the reduction in spasticity, measured objectively using the hand-held dynamometer, and enhanced motor function as measured by the Wolf Motor Function Test (WMFT). There were no significant differences between the groups in any of the outcome measures. Conclusion The application of brain state-dependent rTMS for rehabilitation in chronic stroke patients is feasible. This pilot study demonstrated that the brain oscillation-synchronized rTMS protocol produced beneficial effects on motor impairment, motor function and spasticity that were comparable to those observed with an established therapeutic rTMS protocol. Clinical Trial Registration ClinicalTrials.gov, identifier [NCT05005780].
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arianna Brancaccio
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Belardinelli
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Murphy M, Carrión RE, Rubio J, Malhotra AK. Peak alpha frequency and electroencephalographic microstates are correlated with aggression in schizophrenia. J Psychiatr Res 2024; 175:60-67. [PMID: 38704982 PMCID: PMC11374487 DOI: 10.1016/j.jpsychires.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Large scale retrospective studies have shown an association between schizophrenia and risk of violence. Overall, this increase in risk is small and does not justify or support stigmatizing public perceptions or media depictions of people with schizophrenia. Nonetheless, in some situations, some symptoms of schizophrenia can increase the risk of violent behavior. Prediction of this behavior would allow high impact preventive interventions. However, to date the neurobiological correlates of violent behavior in schizophrenia are not well understood, precluding the development of prognostic biomarkers. We used electroencephalography to measure alpha activity and microstates from 31 patients with schizophrenia and 18 age matched controls. Participants also completed multiple assessments of current aggressive tendencies and their lifetime history of aggressive acts. We found that individual alpha peak frequency was negatively correlated with aggression scores in both patients and controls (largest Spearman's r = -0.45). Furthermore, this result could be replicated in data taken from a single frontal channel suggesting that this may be possible to obtain in routine clinical settings (largest Spearman's r = -0.40). We also found that transitions between microstates corresponding to auditory and visual networks were inversely correlated with aggression scores. Finally, we found that, within patients, aggression was correlated with the degree of randomness between microstate transitions. This suggests that aggression is related to inappropriate switching between large scale brain networks and subsequent failure to appropriately integrate complicated environmental and internal stimuli. By elucidating some of the electrophysiological correlates of aggression, these data facilitate the development of prognostic biomarkers.
Collapse
Affiliation(s)
- Michael Murphy
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Ricardo E Carrión
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| | - Jose Rubio
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| | - Anil K Malhotra
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Northwell, New Hyde Park, NY, USA
| |
Collapse
|
34
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306729. [PMID: 38746335 PMCID: PMC11092732 DOI: 10.1101/2024.05.01.24306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Down syndrome is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n=29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n=29) and cognitive-matched (n=58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and cognitive-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
|
35
|
Hight D, Ehrhardt A, Lersch F, Luedi MM, Stüber F, Kaiser HA. Lower alpha frequency of intraoperative frontal EEG is associated with postoperative delirium: A secondary propensity-matched analysis. J Clin Anesth 2024; 93:111343. [PMID: 37995609 DOI: 10.1016/j.jclinane.2023.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older patients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a higher rate of POD. METHOD Retrospective analysis of patients` data from a prospective observational study in cardiac surgical patients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site concentrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for best balance. This incorporated 18 variables, whereas patients with missing variable information or without an alpha oscillation were excluded. RESULT Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 1.3, p < 0.001). CONCLUSION Intraoperative slower frontal peak alpha frequency is independently associated with POD after cardiac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. Further studies are needed to investigate if there is a causal link between alpha frequency and POD.
Collapse
Affiliation(s)
- Darren Hight
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Alexander Ehrhardt
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland
| | - Friedrich Lersch
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Markus M Luedi
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Department for Anesthesiology, Intensive, Rescue and Pain medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Frank Stüber
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Heiko A Kaiser
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland.
| |
Collapse
|
36
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
37
|
Lopez S, Hampel H, Chiesa PA, Del Percio C, Noce G, Lizio R, Teipel SJ, Dyrba M, González-Escamilla G, Bakardjian H, Cavedo E, Lista S, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Dubois B, Babiloni C. The association between posterior resting-state EEG alpha rhythms and functional MRI connectivity in older adults with subjective memory complaint. Neurobiol Aging 2024; 137:62-77. [PMID: 38431999 DOI: 10.1016/j.neurobiolaging.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Patrizia Andrea Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Martin Dyrba
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Gabriel González-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hovagim Bakardjian
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Giuseppe Spinelli
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University, San Raffaele, Rome, Italy
| | | | - Marie-Odile Habert
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Nuclear Medicine, Paris F-75013, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| |
Collapse
|
38
|
Babiloni C, Gentilini Cacciola E, Tucci F, Vassalini P, Chilovi A, Jakhar D, Musat AM, Salvatore M, Soricelli A, Stocchi F, Vacca L, Ferri R, Catania V, Mastroianni C, D'Ettorre G, Noce G. Resting-state EEG rhythms are abnormal in post COVID-19 patients with brain fog without cognitive and affective disorders. Clin Neurophysiol 2024; 161:159-172. [PMID: 38492271 DOI: 10.1016/j.clinph.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Several persons experiencing post-covid-19 (post-COVID) with "brain fog" (e.g., fatigue, cognitive and psychiatric disorders, etc.) show abnormal resting-state electroencephalographic (rsEEG) rhythms reflecting a vigilance dysfunction. Here, we tested the hypothesis that in those post-COVID persons, abnormal rsEEG rhythms may occur even when cognitive and psychiatric disorders are absent. METHODS The experiments were performed on post-COVID participants about one year after hospitalization for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Inclusion criteria included a "brain fog" claim, no pre-infection, and actual organic chronic disease. Matched controls (no COVID) were also enrolled. All participants underwent clinical/neuropsychological assessment (including fatigue assessment) and rsEEG recordings. The eLORETA freeware estimated regional rsEEG cortical sources at individual delta (<4 Hz), theta (4-7 Hz), and alpha (8-13 Hz) bands. Beta (14-30 Hz) and gamma (30-40 Hz) bands were pre-fixed. RESULTS More than 90% of all post-COVID participants showed no cognitive or psychiatric disorders, and 75% showed ≥ 2 fatigue symptoms. The post-COVID group globally presented lower posterior rsEEG alpha source activities than the Control group. This effect was more significant in the long COVID-19 patients with ≥ 2 fatigue symptoms. CONCLUSIONS In post-COVID patients with no chronic diseases and cognitive/psychiatric disorders, "brain fog" can be associated with abnormal posterior rsEEG alpha rhythms and subjective fatigue. SIGNIFICANCE These abnormalities may be related to vigilance and allostatic dysfunctions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | - Elio Gentilini Cacciola
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Agnese Chilovi
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | - Andreea Maria Musat
- Department of Physiology and Pharmacology "Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele Rome, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | | | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
39
|
Jensen O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. COMMUNICATIONS PSYCHOLOGY 2024; 2:36. [PMID: 38665356 PMCID: PMC11041682 DOI: 10.1038/s44271-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information - a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B152TT UK
| |
Collapse
|
40
|
Nwakamma MC, Stillman AM, Gabard-Durnam LJ, Cavanagh JF, Hillman CH, Morris TP. Slowing of Parameterized Resting-State Electroencephalography After Mild Traumatic Brain Injury. Neurotrauma Rep 2024; 5:448-461. [PMID: 38666007 PMCID: PMC11044859 DOI: 10.1089/neur.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Reported changes in electroencephalography (EEG)-derived spectral power after mild traumatic brain injury (mTBI) remains inconsistent across existing literature. However, this may be a result of previous analyses depending solely on observing spectral power within traditional canonical frequency bands rather than accounting for the aperiodic activity within the collected neural signal. Therefore, the aim of this study was to test for differences in rhythmic and arrhythmic time series across the brain, and in the cognitively relevant frontoparietal (FP) network, and observe whether those differences were associated with cognitive recovery post-mTBI. Resting-state electroencephalography (rs-EEG) was collected from 88 participants (56 mTBI and 32 age- and sex-matched healthy controls) within 14 days of injury for the mTBI participants. A battery of executive function (EF) tests was collected at the first session with follow-up metrics collected approximately 2 and 4 months after the initial visit. After spectral parameterization, a significant between-group difference in aperiodic-adjusted alpha center peak frequency within the FP network was observed, where a slowing of alpha peak frequency was found in the mTBI group in comparison to the healthy controls. This slowing of week 2 (collected within 2 weeks of injury) aperiodic-adjusted alpha center peak frequency within the FP network was associated with increased EF over time (evaluated using executive composite scores) post-mTBI. These findings suggest alpha center peak frequency within the FP network as a candidate prognostic marker of EF recovery and may inform clinical rehabilitative methods post-mTBI.
Collapse
Affiliation(s)
- Mark C. Nwakamma
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Alexandra M. Stillman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Laurel J. Gabard-Durnam
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Charles H. Hillman
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Timothy P. Morris
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Applied Psychology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Abstract
Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case in which alpha does not correlate with temporal resolution: when stimuli are presented amidst strong visual drive. Based on findings regarding alpha rhythmogenesis and wave spatial propagation, we suggest that stimulus-induced, bottom-up alpha oscillations play a role in temporal integration. We propose a theoretical model, informed by visual persistence, lateral inhibition, and network refractory periods, and simulate physiologically plausible scenarios of the interaction between bottom-up alpha and the temporal segregation. Our simulations reveal that different features of oscillations, including frequency, phase, and power, can influence temporal perception and provide a theoretically informed starting point for future empirical studies.
Collapse
|
42
|
Steina A, Sure S, Butz M, Vesper J, Schnitzler A, Hirschmann J. Mapping Subcortico-Cortical Coupling-A Comparison of Thalamic and Subthalamic Oscillations. Mov Disord 2024; 39:684-693. [PMID: 38380765 DOI: 10.1002/mds.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandra Steina
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Neurosurgical Clinic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
Wilkinson CL, Yankowitz L, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components: Implications for understanding thalamocortical development during infancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550114. [PMID: 37546863 PMCID: PMC10401947 DOI: 10.1101/2023.07.21.550114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with higher thalamocortical-dependent, anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
| | - Lisa Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
44
|
Yang L, Xu C, Qin Y, Chen K, Xie Y, Zhou X, Liu T, Tan S, Liu J, Yao D. Exploring resting-state EEG oscillations in patients with Neuromyelitis Optica Spectrum Disorder. Brain Res Bull 2024; 208:110900. [PMID: 38364986 DOI: 10.1016/j.brainresbull.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Quantitative resting-state electroencephalography (rs-EEG) is a convenient method for characterizing the functional impairments and adaptations of the brain that has been shown to be valuable for assessing many neurological and psychiatric disorders, especially in monitoring disease status and assisting neuromodulation treatment. However, it has not yet been explored in patients with neuromyelitis optica spectrum disorder (NMOSD). This study aimed to investigate the rs-EEG features of NMOSD patients and explore the rs-EEG features related to disease characteristics and complications (such as anxiety, depression, and fatigue). METHODS A total of 32 NMOSD patients and 20 healthy controls (HCs) were recruited; their demographic and disease information were collected, and their anxiety, depression, and fatigue symptoms were evaluated. The rs-EEG power spectra of all the participants were obtained. After excluding the participants with low-quality rs-EEG data during processing, statistical analysis was conducted based on the clinical information and rs-EEG data of 29 patients and 19 HCs. The rs-EEG power (the mean spectral energy (MSE) of absolute power and relative power in all frequency bands, as well as the specific power for all electrode sites) of NMOSD patients and HCs was compared. Furthermore, correlation analyses were performed between rs-EEG power and other variables for NMOSD patients (including the disease characteristics and complications). RESULTS The distribution of the rs-EEG power spectra in NMOSD patients was similar to that in HCs. The dominant alpha-peaks shifted significantly towards a lower frequency for patients when compared to HCs. The delta and theta power was significantly increased in the NMOSD group compared to that in the HC group. The alpha oscillation power was found to be significantly negatively associated with the degree of anxiety (reflected by the anxiety subscore of hospital anxiety and depression scale (HADS)) and the degree of depression (reflected by the depression subscore of HADS). The gamma oscillation power was revealed to be significantly positively correlated with the fatigue severity scale (FSS) score, while further analysis indicated that the electrode sites of almost the whole brain region showing correlations with fatigue. Regarding the disease variables, no statistically significant rs-EEG features were related to the main disease features in NMOSD patients. CONCLUSION The results of this study suggest that the rs-EEG power spectra of NMOSD patients show increased slow oscillations and are potential biomarkers of widespread white matter microstructural damage in NMOSD. Moreover, this study revealed the rs-EEG features associated with anxiety, depression, and fatigue in NMOSD patients, which might help in the evaluation of these complications and the development of neuromodulation treatment. Quantitative rs-EEG analysis may play an important role in the management of NMOSD patients, and future studies are warranted to more comprehensively understand its application value.
Collapse
Affiliation(s)
- Lili Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Congyu Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Zhou
- Department of Psychosomatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Chengdu, China.
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
45
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Babiloni C, Noce G, Tucci F, Jakhar D, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Radicati F, Fuhr P, Gschwandtner U, Ransmayr G, Parnetti L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Hünerli D, Taylor JP, Schumacher J, McKeith I, Frisoni GB, Antonini A, Ferreri F, Bonanni L, De Pandis MF, Del Percio C. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson's disease. Neurobiol Aging 2024; 135:1-14. [PMID: 38142464 DOI: 10.1016/j.neurobiolaging.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences, CESI, and Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz., Austria
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angelo Antonini
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Florinda Ferreri
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Caffarra S, Kanopka K, Kruper J, Richie-Halford A, Roy E, Rokem A, Yeatman JD. Development of the Alpha Rhythm Is Linked to Visual White Matter Pathways and Visual Detection Performance. J Neurosci 2024; 44:e0684232023. [PMID: 38124006 PMCID: PMC11059423 DOI: 10.1523/jneurosci.0684-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its predominance in the EEG signal, large variations can be observed in alpha properties during development, with an increase in alpha frequency over childhood and adulthood. Here, we tested the hypothesis that these changes in alpha rhythm are related to the maturation of visual white matter pathways. We capitalized on a large diffusion MRI (dMRI)-EEG dataset (dMRI n = 2,747, EEG n = 2,561) of children and adolescents of either sex (age range, 5-21 years old) and showed that maturation of the optic radiation specifically accounts for developmental changes of alpha frequency. Behavioral analyses also confirmed that variations of alpha frequency are related to maturational changes in visual perception. The present findings demonstrate the close link between developmental variations in white matter tissue properties, electrophysiological responses, and behavior.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Klint Kanopka
- Stanford University Graduate School of Education, Stanford 94305, California
| | - John Kruper
- Department of Psychology, University of Washington, Seattle 91905, Washington
- eScience Institute, University of Washington, Seattle 98195-1570, Washington
| | - Adam Richie-Halford
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
| | - Ethan Roy
- Stanford University Graduate School of Education, Stanford 94305, California
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle 91905, Washington
- eScience Institute, University of Washington, Seattle 98195-1570, Washington
| | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
| |
Collapse
|
48
|
Bernardes TS, Santos KCS, Nascimento MR, Filho CANES, Bazan R, Pereira JM, de Souza LAPS, Luvizutto GJ. Effects of anodal transcranial direct current stimulation over motor cortex on resting-state brain activity in the early subacute stroke phase: A power spectral density analysis. Clin Neurol Neurosurg 2024; 237:108134. [PMID: 38335706 DOI: 10.1016/j.clineuro.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Despite promising results, the effects of transcranial direct current stimulation (tDCS) in the early stages of stroke and its impact on brain activity have been poorly studied. Therefore, this study aimed to investigate the effect of tDCS applied over the ipsilesional motor cortex on resting-state brain activity in the early subacute phase of stroke. METHODS This is a pilot, randomized, double-blind, proof-of-concept study. The patients with stroke were randomly assigned into two groups: anodal tDCS (A-tDCS) or sham tDCS (S-tDCS). For A-tDCS, the anode was placed over the ipsilesional motor cortex, while the cathode was placed over the left or right supraorbital area (Fp2 for left stroke or Fp1 for right stroke). For the real stimulation, a constant current of 1.0 mA was delivered for 20 min and then ramped down linearly for 30 s, maintaining a resistance below 10 kΩ. For the sham stimulation, the stimulator was turned on, and the current intensity was gradually increased for 30 s, tapered off over 30 s, and maintained for 30 min without stimulation. Each stimulation was performed for three consecutive sessions with an interval of 1 h between them. The primary outcome was spectral electroencephalography (EEG) analysis based on the Power Spectral Density (PSD) determined by EEG records of areas F3, F4, C3, C4, P3, and P4. Brain Vision Analyzer software processed the signals, EEG power spectral density (PSD) was calculated before and after stimulation, and alpha, beta, delta, and theta power were analyzed. The secondary outcomes included hemodynamic variables based on the difference between baseline (D0) and post-intervention session (D1) values of systolic (SBP) and diastolic (DBP) blood pressure, heart rate (HR), respiratory rate (RR) and peripheral oxygen saturation (SPO2). Mann-Whitney test was used to compare position measurements of two independent samples; Fisher's exact test was used to compare two proportions; paired Wilcoxon signed-rank test was used to compare the median differences in the within-group comparison, and Spearman correlations matrix among spectral power analysis between EEG bands was performed to verify consistency of occurrence of oscillations. Statistical significance was set at P < 0.05. RESULTS An increase in PSD in the alpha frequency in the P4 region was observed after the intervention in the A-tDCS group, as compared to the placebo group (before = 6.13; after = 10.45; p < 0.05). In the beta frequency, an increase in PSD was observed in P4 (before = 4.40; after = 6.79; p < 0.05) and C4 (before = 4.43; after = 6.94; p < 0.05) after intervention in the A-tDCS group. There was a reduction in PSD at delta frequency in C3 (before = 293.8; after = 58.6; p < 0.05) after intervention in the A-tDCS group. In addition, it was observed a strong relationship between alpha and theta power in the A-tDCS group before and after intervention. However, the sham group showed correlations between more power bands (alpha and theta, alpha and delta, and delta and theta) after intervention. There was no difference in hemodynamic variables between the intra- (before and after stimulation) and inter-groups (mean difference). CONCLUSION Anodal tDCS over the ipsilesional motor cortex had significant effects on the brain electrical activity in the early subacute stroke phase, increasing alpha and beta wave activities in sensorimotor regions while reducing slow delta wave activity in motor regions. These findings highlight the potential of anodal tDCS as a therapeutic intervention in the early stroke phase.
Collapse
Affiliation(s)
- Tiago Soares Bernardes
- Department of Medicine, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Kelly Cristina Sousa Santos
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Monalisa Resende Nascimento
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology, and Psychiatry, Botucatu Medical School (UNESP), Botucatu, SP, Brazil
| | - Janser Moura Pereira
- Statistical Department, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
49
|
Ericson J, Palva S, Palva M, Klingberg T. Strengthening of alpha synchronization is a neural correlate of cognitive transfer. Cereb Cortex 2024; 34:bhad527. [PMID: 38220577 PMCID: PMC10839847 DOI: 10.1093/cercor/bhad527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.
Collapse
Affiliation(s)
- Julia Ericson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Satu Palva
- Neuroscience Center, HilIFE-Helsinki Institute of Lifescience, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Matias Palva
- Neuroscience Center, HilIFE-Helsinki Institute of Lifescience, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, 00076 Aalto, Finland
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
50
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|