1
|
Ji X, Wang W, Li J, Liu L, Yue H. Oxidation-reduction process of Arabidopsis thaliana roots induced by bisphenol compounds based on RNA-seq analysis. J Environ Sci (China) 2025; 148:188-197. [PMID: 39095156 DOI: 10.1016/j.jes.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 08/04/2024]
Abstract
Bisphenol compounds (BPs) have various industrial uses and can enter the environment through various sources. To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity, Arabidopsis thaliana was exposed to bisphenol A (BPA), BPB, BPE, BPF, and BPS at 1, 3, 10 mg/L for a duration of 14 days, and their growth status were monitored. At day 14, roots and leaves were collected for internal BPs exposure concentration detection, RNA-seq (only roots), and morphological observations. As shown in the results, exposure to BPs significantly disturbed root elongation, exhibiting a trend of stimulation at low concentration and inhibition at high concentration. Additionally, BPs exhibited pronounced generation of reactive oxygen species, while none of the pollutants caused significant changes in root morphology. Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots, with BPS exhibiting the highest level of accumulation. The results of RNA-seq indicated that the shared 211 differently expressed genes (DEGs) of these 5 exposure groups were enriched in defense response, generation of precursor metabolites, response to organic substance, response to oxygen-containing, response to hormone, oxidation-reduction process and so on. Regarding unique DEGs in each group, BPS was mainly associated with the redox pathway, BPB primarily influenced seed germination, and BPA, BPE and BPF were primarily involved in metabolic signaling pathways. Our results provide new insights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiande Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Liangpo Liu
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024:1-58. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Del Rosario Salas-Sandoval E, Pérez-Segura T, Garcia-Segura S, Dos Santos AJ. Innovative approaches to electrochemical oxidation of Bisphenol B in synthetic and complex water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176762. [PMID: 39393701 DOI: 10.1016/j.scitotenv.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The substitution of Bisphenol A (BPA) with Bisphenol B (BPB) has raised concerns due to BPB's increased environmental presence and its potential hazards. Despite the frequent detection in water environments, effective removal methods for BPB are still limited. This study hypothesizes that electrochemical oxidation (EO) can effectively degrade BPB and its by-products. To test this, EO was applied under various conditions, analyzing the role of anode material, current density, pH, and BPB concentration. The results revealed that BPB degradation followed pseudo-first-order kinetics, with boron-doped diamond (BDD) anode showing a rate constant 27 times higher than iridium oxide electrodes. After 180 min, BDD achieved 81.8 % mineralization of BPB. The remaining organic load was associated to easily biodegradable short-chain carboxylic acids. Additionally, the EO process was evaluated in different matrices, including drinking water, tap water, simulated municipal wastewater, and synthetic urine, to assess the impact of matrix complexity. Electrogenerated oxidants, such as hydroxyl radicals, sulfate radicals, and active chlorine, significantly enhanced BPB degradation rates in real water matrices. Energy consumption varied from 5.32 kWh m-3 in drinking water to 2.28 kWh m-3 in synthetic urine, demonstrating the role of matrix composition in EO efficiency. These findings show that EO is a promising technology for removing BPB and similar chemicals in real-world water matrices.
Collapse
Affiliation(s)
- Elizabeth Del Rosario Salas-Sandoval
- Departamento de Ingeniería Química, DCNE, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, Guanajuato 36050, Mexico; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Tzayam Pérez-Segura
- Departamento de Ingeniería Química, DCNE, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, Guanajuato 36050, Mexico
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Alexsandro J Dos Santos
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
4
|
Đurić L, Milanović M, Drljača Lero J, Milošević N, Milić N. In silico analysis of endocrine-disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. J Appl Toxicol 2024. [PMID: 39129338 DOI: 10.1002/jat.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Owning to the increasing body of evidence about the ubiquitous exposure to endocrine disruptors (EDCs), particularly bisphenol A (BPA), and associated health effects, BPA has been gradually substituted with insufficiently tested structural analogs. The unmanaged excessive use of antimicrobial agents such as triclosan (TCS) during the COVID-19 outbreak has also raised concerns about its possible interferences with hormonal functions. The similarity of BPA and estradiol, as well as TCS and non-steroidal estrogens, imply that endocrine-disrupting properties of their analogs could be predicted based on the chemical structure. Hence, this study aimed to evaluate the endocrine-disrupting potential of BPA substitutes as well as TCS derivatives and degradation/biotransformation metabolites, in comparison to BPA and TCS based on their molecular properties, computational predictions of pharmacokinetics and binding affinities to nuclear receptors. Based on the obtained results several under-researched BPA analogs exhibited higher binding affinities for nuclear receptors than BPA. Notable analogs included compounds detected in receipts (DD-70, BTUM-70, TGSA, and BisOPP-A), along with a flame retardant, BDP. The possible health hazards linked to exposure to TCS and its mono-hydroxylated metabolites were also found. Further research is needed in order to elucidate the health impacts of these compounds and promote better regulation practices.
Collapse
Affiliation(s)
- Larisa Đurić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Maja Milanović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
5
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
6
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
7
|
Hoffmann-Dishon N, Barnett-Itzhaki Z, Zalko D, Hemi R, Farzam N, Hauser R, Racowsky C, Baccarelli AA, Machtinger R. Endocrine-disrupting chemical concentrations in follicular fluid and follicular reproductive hormone levels. J Assist Reprod Genet 2024; 41:1637-1642. [PMID: 38557803 PMCID: PMC11224170 DOI: 10.1007/s10815-024-03101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE To determine correlations between chemicals in follicular fluid (FF) and follicular reproductive hormone levels. METHODS The analysis was part of a larger cohort study to determine associations between exposure to EDCs and in vitro fertilization (IVF) outcomes. FF was aspirated from a single leading follicle per participant. Demographics and data on exposure to EDCs were self-reported by the participants using a questionnaire. The concentrations of estradiol (E2), progesterone (PG), anti-Mullerian hormone (AMH), and inhibin B, as well as that of 12 phthalate metabolites and 12 phenolic chemicals were measured in each FF sample. Multivariate linear regression model was used to identify the drivers of hormone levels based on participant's age, BMI, smoking status, and chemical exposure for the monitored chemicals detected in more than 50% of the samples. Benjamini-Hochberg false discovery rate (FDR) correction was applied on the resulting p values (q value). RESULTS FF samples were obtained from 72 women (mean age 30.9 years). Most of the phthalates and phenolic substances monitored (21/24, 88%) were identified in FF. Ten compounds (7 phthalate metabolites, 3 phenols) were found in more than 50% of samples. In addition, there were positive associations between E2 levels and mono-n-butyl phthalate (MnBP) (beta = 0.01) and mono-isobutyl phthalate (MiBP) (beta = 0.03) levels (q value < 0.05). CONCLUSION Higher concentrations of several phthalate metabolites, present among others in personal care products, were associated with increased E2 levels in FF. The results emphasize the need to further investigate the mechanisms of action of such EDCs on hormonal cyclicity and fertility in women.
Collapse
Affiliation(s)
- Nathalie Hoffmann-Dishon
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Zohar Barnett-Itzhaki
- Public Health Services, Ministry of Health, 9446724, Jerusalem, Israel
- Faculty of Engineering, Ruppin Academic Center, 4025000, Emek Hefer, Israel
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, 4025000, Emek Hefer, Israel
| | - Daniel Zalko
- UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rina Hemi
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Nahid Farzam
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ronit Machtinger
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat-Gan 5262000, Israel.
- School of Medicine, Tel-Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
8
|
Useini A, Schwerin IK, Künze G, Sträter N. Structural Studies on the Binding Mode of Bisphenols to PPARγ. Biomolecules 2024; 14:640. [PMID: 38927044 PMCID: PMC11202036 DOI: 10.3390/biom14060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and bisphenol B (BPB) are widely used in the production of plastics, and their potential adverse health effects, particularly on endocrine disruption and metabolic health, have raised concern. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a pivotal role in metabolic regulation and adipogenesis, making it a target of interest in understanding the development of obesity and associated health impacts. In this study, we employ X-ray crystallography and molecular dynamics (MD) simulations to study the interaction of PPARγ with BPA and BPB. Crystallographic structures reveal the binding of BPA and BPB to the ligand binding domain of PPARγ, next to C285, where binding of partial agonists as well as antagonists and inverse agonists of PPARγ signaling has been previously observed. However, no interaction of BPA and BPB with Y437 in the activation function 2 site is observed, showing that these ligands cannot stabilize the active conformation of helix 12 directly. Furthermore, free energy analyses of the MD simulations revealed that I341 has a large energetic contribution to the BPA and BPB binding modes characterized in this study.
Collapse
Affiliation(s)
- Abibe Useini
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| | - Inken Kaja Schwerin
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, 04105 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| |
Collapse
|
9
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
10
|
Metruccio F, Battistoni M, Di Renzo F, Bacchetta R, Santo N, Menegola E. Teratogenic and neuro-behavioural toxic effects of bisphenol A (BPA) and B (BPB) on Xenopus laevis development. Reprod Toxicol 2024; 123:108496. [PMID: 37951421 DOI: 10.1016/j.reprotox.2023.108496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Bisphenol A (BPA) is a plastic additive with endocrine disruptive activity, classified in 2017 by EU ECHA as substance of very high concern. A correlation between environmental exposure to BPA and congenital defects has been described in humans and in experimental species, including the amphibian Xenopus laevis. Among BPA analogues, bisphenol B (BPB) is used as alternative in different not-EU countries, including US, but seems to share with BPA its endocrine disruptor properties. Aim of the present work is the evaluation of the effects of BPB versus BPA exposure in a X. laevis developmental model. A windowed exposure (R-FETAX method) was applied covering the developmental phylotypic period (teratogenicity window), or the late tailbud stages (neuro-behavioural toxicity window, corresponding to the spontaneous swimming acquisition period). Samples were monitored for lethal effects during the full test period. External morphology evaluation and deglutition functional test were applied in any group. Abnormal tadpoles were also processed for cartilage staining. In groups exposed during neuro-behavioural toxicity window the swimming test was also applied. Lethality and malformations were obtained only in samples exposed during the teratogenicity window; these data were modelled using PROAST software and BPB relative potency resulted about 3 times higher than BPA. The day-by-day evaluation revealed that lethality was correlated to embryonic abnormal development of gills and apoptosis in gill primordia. Teratogenicity was never detected in groups exposed during the neuro-behavioural toxicity window, where some significant neuro-behavioural deficits were detected in tadpoles exposed to the highest tested concentrations of BPA and BPB.
Collapse
Affiliation(s)
- F Metruccio
- ICPS, ASST Fatebenefratelli Sacco, via GB Grassi, 74, 20159 Milan, Italy
| | - M Battistoni
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| | - F Di Renzo
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy.
| | - R Bacchetta
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| | - N Santo
- Unitech NOLIMITS, Imaging Facility, Università degli Studi di Milano, via Golgi, 19, 20133 Milan, Italy
| | - E Menegola
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| |
Collapse
|
11
|
Štefunková N, Greifová H, Jambor T, Tokárová K, Zuščíková L, Bažány D, Massányi P, Capcarová M, Lukáč N. Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In Vitro. Life (Basel) 2023; 14:3. [PMID: 38276253 PMCID: PMC10821247 DOI: 10.3390/life14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife.
Collapse
Affiliation(s)
- Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia (P.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
13
|
Arrokhman S, Luo YH, Lin P. Additive cardiotoxicity of a bisphenol mixture in zebrafish embryos: The involvement of calcium channel and pump. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115225. [PMID: 37418940 DOI: 10.1016/j.ecoenv.2023.115225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A (BPA) and its analogs, such as bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol B (BPB), are often simultaneously detected in environmental and human specimens. Thus, assessing the toxicity of bisphenol (BP) mixtures is more relevant than assessing that of each BP type. Here, we found that BPs, individually or in a mixture, concentration-dependently and additively increased the mortality of zebrafish embryos (ZFEs) at 96 h post fertilization (hpf) and induced bradycardia (i.e., reduced heart rate) at 48 hpf, indicating their cardiotoxic potency. BPAF was the most potent, followed by BPB, BPA, and BPF. We then explored the mechanism underlying BP-induced bradycardia in ZFEs. Although BPs increased the mRNA expression of the estrogen-responsive gene, treatment with the estrogen receptor inhibitor ICI 182780 did not prevent BP-induced bradycardia. Because they did not change cardiomyocyte counts or heart development-related gene expression, BPs might not affect cardiomyocyte development. By contrast, BPs might impair calcium homeostasis during cardiac contraction and relaxation through the downregulation of the expression of the mRNAs for the pore-forming subunit of L-type Ca2+ channel (LTCC; cacna1c) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA; atp2a2a). BPs reduced SERCA activity significantly. BPs also potentiated the cardiotoxicity induced by the LTCC blocker nisoldipine, conceivably by inhibiting SERCA activity. In conclusion, BPs additively induced bradycardia in ZFEs, possibly by impeding calcium homeostasis during cardiac contraction and relaxation. BPs also potentiated the cardiotoxicity of calcium channel blockers.
Collapse
Affiliation(s)
- Salim Arrokhman
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
14
|
Kovačič A, Modic M, Hojnik N, Štampar M, Gulin MR, Nannou C, Koronaiou LA, Heath D, Walsh JL, Žegura B, Lambropoulou D, Cvelbar U, Heath E. Degradation and toxicity of bisphenol A and S during cold atmospheric pressure plasma treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131478. [PMID: 37116332 DOI: 10.1016/j.jhazmat.2023.131478] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Bisphenols are widely recognised as toxic compounds that potentially threaten the environment and public health. Here we report the use of cold atmospheric pressure plasma (CAP) to remove bisphenol A (BPA) and bisphenol S (BPS) from aqueous systems. Additionally, methanol was added as a radical scavenger to simulate environmental conditions. After 480 s of plasma treatment, 15-25 % of BPA remained, compared to > 80 % of BPS, with BPA being removed faster (-kt = 3.4 ms-1, half-life = 210 s) than BPS (-kt = 0.15 ms-1, half-life 4700 s). The characterisation of plasma species showed that adding a radical scavenger affects the formation of reactive oxygen and nitrogen species, resulting in a lower amount of ˙OH, H2O2, and NO2- but a similar amount of NO3-. In addition, a non-target approach enabled the elucidation of 11 BPA and five BPS transformation products. From this data, transformation pathways were proposed for both compounds, indicating nitrification with further cleavage, demethylation, and carboxylation, and the coupling of smaller bisphenol intermediates. The toxicological characterisation of the in vitro HepG2 cell model has shown that the mixture of transformation products formed during CAP is less toxic than BPA and BPS, indicating that CAP is effective in safely degrading bisphenols.
Collapse
Affiliation(s)
- Ana Kovačič
- Department of Environmental Sciences O2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Martina Modic
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia; Laboratory for Gaseous Electronics F6, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Nataša Hojnik
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia; Laboratory for Gaseous Electronics F6, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia
| | - Martin Rafael Gulin
- Department of Environmental Sciences O2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Christina Nannou
- Department of Chemistry, International Hellenic University, GR 65404 Kavala, Greece
| | - Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Thessaloniki GR-57001, Greece
| | - David Heath
- Department of Environmental Sciences O2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - James L Walsh
- York Plasma Institute, University of York, YO10 5DQ, UK
| | - Bojana Žegura
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia; National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia
| | - Dimitra Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Thessaloniki GR-57001, Greece
| | - Uroš Cvelbar
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia; Laboratory for Gaseous Electronics F6, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences O2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
16
|
Schmidhauser M, Hankele AK, Ulbrich SE. Reconsidering "low-dose"-Impacts of oral estrogen exposure during preimplantation embryo development. Mol Reprod Dev 2023; 90:445-458. [PMID: 36864780 DOI: 10.1002/mrd.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Perturbations of estrogen signaling during developmental stages of high plasticity may lead to adverse effects later in life. Endocrine-disrupting chemicals (EDC) are compounds that interfere with the endocrine system by particularly mimicking the action of endogenous estrogens as functional agonists or antagonists. EDCs compose synthetic and naturally occurring compounds discharged into the environment, which may be taken up via skin contact, inhalation, orally due to contaminated food or water, or via the placenta during in utero development. Although estrogens are efficiently metabolized by the liver, the role of circulating glucuro- and/or sulpho-conjugated estrogen metabolites in the body has not been fully addressed to date. Particularly, the role of intracellular cleavage to free functional estrogens could explain the hitherto unknown mode of action of adverse effects of EDC at very low concentrations currently considered safe. We summarize and discuss findings on estrogenic EDC with a focus on early embryonic development to highlight the need for reconsidering low dose effects of EDC.
Collapse
Affiliation(s)
- Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
17
|
Mahmad A, Ubaidah Noh T, Izzah Khalid N. Eco-friendly water treatment: The role of MIL metal–organic frameworks for the bisphenols adsorption from water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Wu X, Yang X, Tian Y, Xu P, Yue H, Sang N. Bisphenol B and bisphenol AF exposure enhances uterine diseases risks in mouse. ENVIRONMENT INTERNATIONAL 2023; 173:107858. [PMID: 36881955 DOI: 10.1016/j.envint.2023.107858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/26/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) analogs, bisphenol B (BPB) and bisphenol AF (BPAF) have been widely detected in the environment and human products with increasing frequency. However, uterine health risks caused by BPB and BPAF exposure need to be further elucidated. The study aimed to explore whether BPB or BPAF exposure will induce adverse outcomes in uterus. Female CD-1 mice were continuously exposed to BPB or BPAF for 14 and 28 days. Morphological examination showed that BPB or BPAF exposure caused endometrial contraction, decreased epithelial height, and increased number of glands. Bioinformatics analysis indicated that both BPB and BPAF disturbed the immune comprehensive landscape of the uterus. In addition, survival and prognosis analysis of hub genes and tumor immune infiltration evaluation were performed. Finally, the expression of hub genes was verified by quantitative real-time PCR (qPCR). Disease prediction found that eight of the BPB and BPAF co-response genes, which participated in the immune invasion of the tumor microenvironment, were associated with uterine corpus endometrial carcinoma (UCEC). Importantly, the gene expression levels of Srd5a1 after 28-day BPB and BPAF exposure were 7.28- and 25.24-fold higher than those of the corresponding control group, respectively, which was consistent with the expression trend of UCEC patients, and its high expression was significantly related to the poor prognosis of patients (p = 0.003). This indicated that Srd5a1 could be a valuable signal of uterus abnormalities caused by BPA analogs exposure. Our study revealed the key molecular targets and mechanisms of BPB or BPAF exposure induced uterine injury at the transcriptional level, providing a perspective for evaluating the safety of BPA substitutes.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
19
|
Yue H, Yang X, Wu X, Tian Y, Xu P, Sang N. Identification of risk for ovarian disease enhanced by BPB or BPAF exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120980. [PMID: 36587784 DOI: 10.1016/j.envpol.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The ban on bisphenol A (BPA) has led to a rapid increase in the use of BPA analogs, and they are increasingly being detected in the natural environment and biological organisms. Studies have pointed out that BPA analogs can lead to adverse health outcomes. However, their interference with ovarian tissue has not been fully elucidated. In this study, seven- to eight-week-old CD-1 mice were exposed to corn oil containing 300 μg/kg/day bisphenol B (BPB) or bisphenol AF (BPAF) through oral gavage, and ovarian tissues were collected at 14 and 28 days of exposure. Ovarian toxicity was evaluated by the ovarian index, ovarian area, and follicle number. mRNA-seq was used to identify differentially expressed genes (DEGs) and infer the association of DEGs with ovarian diseases. BPB or BPAF exposure induced morphological changes in ovarian tissue in CD-1 mice. In addition, Gene Ontology (GO) analysis revealed disturbances in biological processes (BP) associated with steroid biosynthetic process (GO:0006694) and cellular calcium ion homeostasis (GO:0006874). Subsequently, regulatory networks of BPA analogs (BPB or BPAF)-DEGs-ovarian diseases were constructed. Importantly, the expression levels of DEGs and transcription factors (TFs) associated with ovarian disease were altered. BPB or BPAF exposure causes damage to ovarian morphology through the synergistic effects of multiple biological processes and may be associated with altered mRNA expression profiles as a risk factor for ovarian diseases.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
20
|
Sapounidou M, Norinder U, Andersson PL. Predicting Endocrine Disruption Using Conformal Prediction - A Prioritization Strategy to Identify Hazardous Chemicals with Confidence. Chem Res Toxicol 2022; 36:53-65. [PMID: 36534483 PMCID: PMC9846826 DOI: 10.1021/acs.chemrestox.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.
Collapse
Affiliation(s)
| | - Ulf Norinder
- Department
of Computer and Systems Sciences, Stockholm
University, Box 7003, 164
07 Kista, Sweden,MTM
Research
Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden,Department
of Pharmaceutical Biosciences, Uppsala University, Box 591, 75 124 Uppsala, Sweden
| | | |
Collapse
|
21
|
Martin L, Zhang Y, First O, Mustieles V, Dodson R, Rosa G, Coburn-Sanderson A, Adams CD, Messerlian C. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. ENVIRONMENT INTERNATIONAL 2022; 170:107576. [PMID: 36283156 PMCID: PMC9890927 DOI: 10.1016/j.envint.2022.107576] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 10/08/2022] [Indexed: 05/04/2023]
Abstract
Non-persistent endocrine-disrupting chemicals (EDCs), including phthalates and phenols, are ubiquitous in both the environment and human body. A growing body of epidemiologic studies have identified concerning links between EDCs and adverse reproductive and developmental health effects. Despite consistent evidence, risk assessments and policy interventions often arrive late. This presents an urgent need to identify evidence-based interventions for implementation at both clinical and community levels to reduce EDC exposure, especially in susceptible populations. The reproductive life cycle (menarche to menopause for females and after pubertal onset for males) includes some of the most vulnerable periods to environmental exposures, such as the preconception and perinatal stages, representing a key window of opportunity to intervene and prevent unfavorable health outcomes. This review aims to synthesize and assess behavioral, dietary, and residential EDC-driven interventions to develop recommendations for subsequent, larger-scale studies that address knowledge-gaps in current interventions during the reproductive life cycle. We selected 21 primary interventions for evaluation, in addition to four supplemental interventions. Among these, accessible (web-based) educational resources, targeted replacement of (known) toxic products, and personalization of the intervention through meetings and support groups, were the most promising strategies for reducing EDC concentrations. However, we document a paucity of interventions to prevent phthalate and phenol exposures during the reproductive years, especially among men. Accordingly, we recommend additional, larger clinical and community-based intervention studies to reduce EDC exposure. Specifically, future intervention studies should focus on short-term, mid-, and long-term exposure reduction to phthalates and phenols. The latter, especially, is required for the development of clinical and public health guidelines to promote reproductive and developmental health globally.
Collapse
Affiliation(s)
- Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gabriela Rosa
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Charleen D Adams
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
22
|
Olivier SONGUESAME, Catherine PIVETEAU, Alexandre BIELA, Richard KAMGA, Benoit DEPREZ. Occurrence of bisphenols and contribution of edibles liquids conditioned in plastic packaging to the dietary exposure in Cameroon. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Huang H, Liang J, Tang P, Yu C, Fan H, Liao Q, Long J, Pan D, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87170-87183. [PMID: 35802331 DOI: 10.1007/s11356-022-21817-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols are endocrine disruptor chemicals that disrupt thyroid hormone homeostasis. However, evidence on the effects of bisphenol mixtures on thyroid hormones are insufficient. Therefore, the present study aimed to explore the effects of bisphenol substitutes and bisphenol mixtures on thyroid hormones during pregnancy. The study was conducted among 446 pregnant women in the Guangxi Zhuang Birth Cohort (GZBC), China. In multiple linear regressions, compared with the low-exposure group, bisphenol S (BPS) concentrations in the middle-exposure group led to a 10.90% (95% CI: - 18.16%, - 2.99%) decrease in triiodothyronine (T3) levels in the first trimester; tetrabromobisphenol A (TBBPA) levels in the middle-exposure group led to an 8.26% (95% CI: - 15.82%, - 0.01%) decrease in T3 levels in the first trimester; bisphenol B (BPB) levels in the middle-exposure group led to higher free thyroxine (FT4) levels (9.84%; 95% CI: 1.73%, 18.60%) in the second trimester; bisphenol F (BPF) in the middle-exposure group led to higher FT4 levels (8.59%, 95% CI: 0.53%, 17.31%) in the second trimester; and TBBPA levels in the high-exposure group led to a 9.39% (95% CI: 1.46%, 17.93%) increase in FT4 levels in the second trimester. The Bayesian kernel machine regression (BKMR) and restricted cubic spline (RCS) models showed a U-shaped dose-response relationship between bisphenol A (BPA) and free triiodothyronine (FT3) (p < 0.01) as well as BPS and FT4 (p < 0.05). Nonlinear relationships were also observed between the bisphenol mixture and FT3. Overall, maternal bisphenol exposure affected thyroid hormone levels during pregnancy. This study provides evidence that BPB, BPF, BPS, and TBBPA are unsafe substitutes for BPA, as well as the overall effect of bisphenols on adverse health in human beings.
Collapse
Affiliation(s)
- Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuanxiang Yu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Guo Y, Yu RQ, Zhang L, Liang Y, Liu Z, Sun X, Wu Y. Cross-Generational Impacts of Diet Shift on Bisphenol Analogue Loads in Indo-Pacific Humpback Dolphins ( Sousa chinensis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10764-10774. [PMID: 35861411 DOI: 10.1021/acs.est.2c02222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous pollutants to marine organisms as endocrine disruptive chemicals. However, the residue contamination and the trophic transfer of BPs in the apex predator nearshore dolphins are poorly studied. Here, we measured the concentrations of six BPs, including bisphenol A (BPA), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), bisphenol P (BPP), and bisphenol S (BPS) in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) (n = 75) collected from the Pearl River Estuary during a period with significant dietary changes (2004-2020). BPA and BPAF were the dominant components of the residue ∑BPs in the liver, with a proportion of 80%. Sex, maturity, and stranding location had no significant effects on BP levels. The generalized additive models indicated that BPA levels in juveniles and adults decreased from 2004 to 2013 while increasing from 2013 to 2020. The temporal trend of BPA levels was likely driven by the shift of the dominant diet from Harpadon nehereus to Thryssa spp. The concurrent increase of BPA loads in calves and juveniles and adults over the recent decades suggested that the diet-mediated variations of maternal BPA levels could be redistributed to their offspring.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
25
|
Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55457-55472. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPs), the main endocrine-disrupting chemicals used in polycarbonate plastics, epoxy-phenol resins, and some other manufacturers, have been interestingly focused to find their toxic effects in recent years. Due to the strong relation between bisphenols and some crucial receptors such as ERs, AR, glucocorticoid receptor, THRs, ERRs, hPXR, AhR, and etcetera, the disrupting and oncogenic role of these chemicals on reproductive, respiratory, and circulatory systems and a broad group of body tissues have been investigated. BPs induce oxidant enzymes, exert antioxidant enzymes from body cells, and result in the expression of proinflammatory genes, leading to cell apoptosis and inflammation. To maintain the homeostasis of human body cells, Nrf2, the key regulator of oxidative stress (Ashrafizadeh et al., 2020a; Ashrafizadeh et al., 2020c; Boroumand et al., 2018), confronts BP-induced ROS and RNS through the activation of antioxidant enzymes such as SOD1/2, CAT, GSH, GPX, HO-1, and etcetera. Chemicals and drugs such as LUT, NAC, GEN, L-NMMA, Ph2Se2, and GE can regulate the interactions between BPs and Nrf2. Despite the vital role of controlled levels of Nrf2 as an anti-inflammatory and antiapoptotic element, the uncontrolled activity of this transcription factor could lead to cell proliferation and tumorigenesis through NQO1, SLC7a11, Gclm, HMOX1, NQO1 gene activation, and some other genes. To avoid the excessive activity of Nrf2, some protein complexes like CUL3-RBX1-Keap1 (as the primary regulator), β-TrCP, and WDR23 regulate Nrf2's function. It is necessary to note that BPA, as the most famous member, is further reviewed due to its resemblance to the bisphenol family to each other.
Collapse
Affiliation(s)
- Amin Salehabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Rubin AM, Seebacher F. Bisphenols impact hormone levels in animals: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154533. [PMID: 35288143 DOI: 10.1016/j.scitotenv.2022.154533] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Bisphenols are used in the manufacture of plastics and are endocrine disrupting compounds detectable in free living organisms and environments globally. The original bisphenol, bisphenol A (BPA), is best known as a xenoestrogen, but it also disrupts other steroid hormones and other classes of hormones including thyroid and pituitary hormones. When its toxicity became better known, BPA was replaced by presumably less toxic alternatives, including bisphenols S, F, and AF. However, recent data suggest that all bisphenols can have endocrine disrupting effects, although their impacts remain unresolved particularly in non-human animals. Our aim was to establish the current state-of-knowledge of the effects of different bisphenols on circulating hormone levels in non-human animals. Our meta-analysis showed that a diverse range of hormones (including thyroid hormones, corticosterone, follicle stimulating hormone, luteinizing hormone, and estradiol) are strongly impacted by exposure to any bisphenol type, and that in laboratory rats (Rattus norvegicus) the effect was modified by life-stage. Although there were qualitative differences, BPA alternatives had as great or greater effects on hormone levels as BPA. However, data coverage across hormones was uneven, and most studies measured the effects of BPA on vertebrate reproductive hormones. Similarly, taxonomic coverage was poor. Over 80% of data originated from laboratory rats and zebrafish (Danio rerio) and there are no data for whole classes of invertebrates and vertebrates (e.g., amphibians). Our results show that all bisphenols alter circulating levels of a broad range of hormones. However, the current state-of-knowledge is incomplete so that the ecological impacts of bisphenols are difficult to gauge, although based on the available data bisphenols are likely to be detrimental to a broad range of taxa and ecosystems.
Collapse
Affiliation(s)
- Alexander M Rubin
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Li HM, Li YY, Zhang YC, Li JB, Xu HM, Xiong YM, Qin ZF. Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113453. [PMID: 35390692 DOI: 10.1016/j.ecoenv.2022.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There is growing concern about adverse effects of bisphenol A alternatives including bisphenol B (BPB) due to their estrogenic activity. However, limited data are available concerning the influences of BPB on male reproductive development in vertebrates, especially in amphibians, which are believed to be susceptible to estrogenic chemicals. The present study investigated the effects of 10, 100 and 1000 nM BPB (2.42, 24.2 and 242 μg/L) on testis development in Xenopus laevis, a model amphibian species for studying gonadal feminization. We found that exposure to BPB from stages 45/46 to 52 resulted in down-regulation of testis-biased gene expression and up-regulation of ovary-biased gene and vitellogenin (vtgb1) expression in gonad-mesonephros complexes (GMCs) of tadpoles at stage 52, coupled with suppressed cell proliferation in testes and reduced gonadal metameres, resembling the effects of 17ß-estradiol. Moreover, an estrogen receptor (ER) antagonist ICI 182780 antagonized BPB-caused up-regulation of ovary-biased gene and vtgb1 expression to some degree, indicating that the effects of BPB on X. laevis testis differentiation could be partly mediated by ER. All observations demonstrate that early exposure to BPB inhibited testis differentiation and exerted certain feminizing effects during gonadal differentiation. When exposure was extended to post-metamorphosis, testes exhibited histological and morphological abnormalities including segmented, discontinuous and fragmented shapes, besides altered sex-dimorphic gene expression. Notably, most of BPB-caused alterations were not concentration-dependent, but the lowest concentration indeed exerted significant effects. Overall, our study for the first time reveals that low concentrations of BPB can disrupt testis differentiation partly due to its estrogenic activity and subsequently cause testicular dysgenesis after metamorphosis, highlighting its reproductive risk to amphibians and other vertebrates including humans. Our finding also implies that estrogenic chemicals-caused testis differentiation inhibition at tadpole stages could predict later testicular dysgenesis after metamorphosis, meaning a possibility of early detection of abnormal testis development caused by estrogenic chemicals.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Chi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Zhu B, Wei N. Tyrosinase-functionalized polyhydroxyalkanoate bio-beads as a novel biocatalyst for degradation of bisphenol analogues. ENVIRONMENT INTERNATIONAL 2022; 163:107225. [PMID: 35398803 DOI: 10.1016/j.envint.2022.107225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol compounds are emerging contaminants of high concerns with known endocrine-disrupting effects. Biocatalysis provides a green chemistry alternative for advanced treatment in water reclamation. This study createda novel biocatalyst through genetically immobilizing the Bacillus megaterium tyrosinase enzyme (BmTyr) on the surface ofself-assembled polyhydroxyalkanoate (PHA) biopolymer beads (termed PHA-BmTyr) by using synthetic biology techniques and demonstrated one-pot in vivo production of the biocatalyst for effective degradation and detoxification of various bisphenol analogues for the first time. The degradation pathway of bisphenols was determined to be mediated by the monophenolase and diphenolase activity of BmTyr. Notably, biocatalytic bisphenol degradation by PHA-BmTyr could substantially reduce or eliminate estrogenic activity of the contaminants, and the degradation products had remarkably lower acute and chronic toxicity than their parent compounds. Furthermore, the PHA-BmTyr biocatalyst had high reusability for multiple bisphenol degradation reaction cycles and showed excellent stability that retained 100% and 86.6% of the initial activity when stored at 4 °C and room temperature, respectively for 30 days. Also, the PHA-BmTyr biocatalyst could efficiently degrade bisphenol analogues in real wastewater effluent matrix. This study provides a promising approach to develop innovative biocatalysis technologies for sustainable water reclamation.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61822, United States.
| |
Collapse
|
29
|
Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic compound utilized to manufacture plastics for Food Contact Materials (FCMs) or resins for the inside of food containers. Since it was recognized as an Endocrine-Disrupting Chemical (EDC), its implications in pathologies, such as cancer, obesity, diabetes, immune system alterations, and developmental and mental disorders, have been widely documented. Diet is considered the main source of exposure for humans to BPA. Consequently, continuous monitoring of the levels of BPA in foods is necessary to assess the risk associated with its consumption in one’s diet. So far, many reviews have been published on biosensors and aptamer-based biosensors, but none of them focus on their applications in their analyses of bisphenols in food matrices. With this review, the authors aim to fill this gap and to take a snapshot of the current state-of-the-art research on aptasensors designed to detect BPA in food matrices. Given that a new TDI value has recently been proposed by the EFSA (0.04 ng/kg), the search for new sensitive tools for the quantitative analysis of BPA is more topical and urgent than ever. From this perspective, aptasensors prove to be a good alternative to traditional analytical techniques for determining BPA levels in food.
Collapse
|
30
|
Niu L, Zhang S, Wang S, An L, Manoli K, Sharma VK, Yu X, Feng M. Overlooked environmental risks deriving from aqueous transformation of bisphenol alternatives: Integration of chemical and toxicological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128208. [PMID: 34999398 DOI: 10.1016/j.jhazmat.2021.128208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Owing to the widespread prevalence and ecotoxicity of bisphenol alternatives such as bisphenol S, bisphenol F, and bisphenol AF, the past decade has witnessed the publication of a remarkable number of studies related to their transformation and remediation in natural waters. However, the reactivity, removal efficiency, transformation products (TPs), and mechanisms of such emerging pollutants by different treatment processes have not been well elucidated. Particularly, the transformation-driven environmental risks have been mostly overlooked. Therefore, we present a review to address these issues from chemical and toxicological viewpoints. Four degradation systems can be largely classified as catalytic persulfate (PS) oxidation, non-catalytic oxidation, photolysis and photocatalysis, and biodegradation. It was found that bisphenol alternatives possess distinct reactivities with different oxidizing species, with the highest performance for hydroxyl radicals. All systems exhibit superior elimination efficiency for these compounds. The inadequate mineralization suggests the formation of recalcitrant TPs, from which the overall reaction pathways are proposed. The combined experimental and in silico analysis indicates that many TPs have developmental toxicity, endocrine-disrupting effects, and genotoxicity. Notably, catalytic PS systems and non-catalytic oxidation result in the formation of coupling products as well as halogenated TPs with higher acute and chronic toxicity and lower biodegradability than the parent compounds. In contrast, photolysis and photocatalysis generate hydroxylated and bond-cleavage TPs with less toxicity. Overall, this review highlights the secondary environmental risks from the transformation of bisphenol alternatives by conventional and emerging treatment processes. Finally, future perspectives are recommended to address the knowledge gaps of these contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Siqin Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lili An
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kyriakos Manoli
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Virender K Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
31
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
32
|
Durcik M, Hiti L, Tomašič T, Mašič LP. New bisphenol A and bisphenol S analogs: Evaluation of their hERα agonistic and antagonistic activities using the OECD 455 in-vitro assay and molecular modeling. Chem Biol Interact 2022; 354:109820. [PMID: 35077665 DOI: 10.1016/j.cbi.2022.109820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are agonists of hERα receptors and due to BPA regulations in many countries, several substitutes that are close analogs to BPA and BPS were developed. In the presented study, we have determined human estrogen receptor (hER)α agonist and antagonist activities with the validated OECD assay with the hERα-Hela9903 cell line for five different chemical classes of BPA and BPS analogs. This study also defined clear structure-activity relationships for agonist and antagonist activities of the 12 bisphenols on hERα, which are supported by molecular docking studies. These data show that classical analogs of BPA (e.g., bisphenols B, C, AP, E) have comparable or superior estrogenic agonist potencies compared to BPA and BPS. The most potent of these hERα agonists were even more potent than BPA, as bisphenol B and C, with IC50 values of 0.31 μM and 0.48 μM, respectively. Among these selected bisphenols, 4-4'-methylenebis (oxyethylenethio)diphenol was the most potent hERα antagonist, with an IC50 of 0.39 μM. The estrogenic agonist and antagonist potencies of these different chemical classes of BPA and BPS analogs are mutually comparable and can be used as a basis for further structure-activity relationships studies and human risk assessment.
Collapse
Affiliation(s)
- Martina Durcik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Banaderakhshan R, Kemp P, Breul L, Steinbichl P, Hartmann C, Fürhacker M. Bisphenol A and its alternatives in Austrian thermal paper receipts, and the migration from reusable plastic drinking bottles into water and artificial saliva using UHPLC-MS/MS. CHEMOSPHERE 2022; 286:131842. [PMID: 34388431 DOI: 10.1016/j.chemosphere.2021.131842] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) a synthetic, high production volume chemical identified as endocrine disruptor and toxic to reproduction is mainly used in the production of polycarbonate plastics, in epoxy resins, polyvinylchloride, thermal papers as color developer, and is present in a wide range of consumer goods such as food packaging materials, storage containers, and cash receipts. Due to its effects on health and legal restrictions, BPA is increasingly replaced by other bisphenols. In this study, BPA and 13 alternatives including BPS, Bisphenol F (BPF), Bisphenol B (BPB), Bisphenol C (BPC), Bisphenol Z (BPZ), Bisphenol M (BPM), Bisphenol P (BPP), Bisphenol AF (BPAF), Bisphenol FL (BPFL), Bisphenol C12 (BPC12), Tetramethylbisphenol A (tmBPA), 4,4-bisphenol (BP-4,4), and p,p-oxybisphenol were analyzed in thermal paper cash receipts (content) and migration studies were carried out in BPA-free labelled reusable plastic drinking bottles using a sensitive UHPLC-MS/MS method. The receipts contained almost only BPA and BPS, whereas BPS was found in all samples ranging at levels up to 38 μg/g. BPA was detected at low concentrations, only in one sample 11,000 μg/g were found, exceeding the EU limit of BPA in thermal paper of 0.02% per weight. In leaching solutions from the drinking bottles BPA, BPS and BPF were found at concentrations up to 0.047 μg/L BPA, 0.043 μg/L BPS, and <0.01 μg/L BPF. No other analogues were detected. However, these levels identified are far below the legal limits. In addition, a theoretical exposure assessment was conducted indicating that exposures were within the current regulatory guidelines.
Collapse
Affiliation(s)
- Rojin Banaderakhshan
- Institute of Sanitary Engineering and Water Pollution Control, Department WAU, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria; Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | - Paul Kemp
- Institute of Sanitary Engineering and Water Pollution Control, Department WAU, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Lea Breul
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | | | - Maria Fürhacker
- Institute of Sanitary Engineering and Water Pollution Control, Department WAU, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
34
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Yang Q, Zhu Z, Liu Q, Chen L. Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109167. [PMID: 34411698 DOI: 10.1016/j.cbpc.2021.109167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022]
Abstract
Bisphenol B (BPB), a widely used alternative of bisphenol A (BPA), has been detected in various environmental media and foodstuffs. However, the knowledge of the health risks about BPB is still limited. In this study, the effects of BPB on thyroid hormone homeostasis and neuronal development were evaluated by exposure of embryos 2 h post-fertilization (hpf) to BPB (0, 1, 10, 100 and 1000 μg/L) until 144 hpf. The results showed that 100 and 1000 μg/L BPB exposed larvae exhibited abnormal morphologies in phenotype and brain histological patterns. Significant decline of thyroid hormone thyroxine (T4) content and elevation of 3,5,3'-triiodothyronine (T3) content, along with the up-regulated expression of tg, trhr1, dio1, dio2, thrα, thrβ genes and down-regulated expression of tsh, ttr and trh genes in BPB exposed zebrafish larvae were observed. Moreover, locomotor activity of larvae was decreased, and the transcription of genes (e.g., elavl3, gap43, zn5, α-tubulin, syn2a and mbp) related to neuronal development were inhibited after exposure to BPB. The mechanism of neurotoxicity and thyroid disruption in zebrafish larvae induced by BPB were discussed.
Collapse
Affiliation(s)
- Qian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenzhu Zhu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
36
|
Vasiljevic T, Harner T. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148013. [PMID: 34323825 DOI: 10.1016/j.scitotenv.2021.148013] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) and its analogues are high-volume production organic synthetic compounds used in the synthesis of plastics. BPA has been categorized as an endocrine disrupting compound due to its ability to disrupt the hormonal makeup of living organisms. Air and dust are common sources of exposure of BPA for living organisms and most sources are anthropogenic and a result of thermal destruction of BPA containing materials, import and export of recyclable materials (especially e-waste) and fugitive emissions near BPA handling facilities. Current reports on BPA levels in air are limited and focused on effluent and surface water analysis (due to BPA's propensity for environmental distribution to water). BPA's presence in the developing part of the world is of particular concern due to lack of regulations and uncontrolled incinerations of domestic and imported waste. The current review summarizes up-to-date scientific literature on BPA's occurrence in air, alongside physico-chemical and partitioning properties, persistence in air, seasonal variation, consideration of analytical strategies for BPA analysis and toxicological information. Globally reported air concentrations of BPA are included in this report, alongside reports on indoor air concentration of BPA and its analogues. As a special interest, levels of tetrabromobisphenol (TBBPA) are also mentioned. Overall, the highest outdoor air levels of BPA were reported in China (1.1 × 106 pg/m3) near a low-tech e-waste recycling site, while examination of indoor dust revealed the presence of bisphenol analogues used in "BPA-free" products, raising questions about their safety. Due to their low volatility, BPA and its analogues are mainly present in air associated with particles; this has important implications for their persistence in air and the role of particulate matter (especially microplastics) in their transport and deposition. Current understanding of BPA's particle association is limited, hence studying its potential for heterogeneous oxidative transformations is a pressing need required for accurate accounting of potential risk to human health and the environment.
Collapse
Affiliation(s)
- Tijana Vasiljevic
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
37
|
Baralla E, Pasciu V, Varoni MV, Nieddu M, Demuro R, Demontis MP. Bisphenols' occurrence in bivalves as sentinel of environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147263. [PMID: 33930805 DOI: 10.1016/j.scitotenv.2021.147263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols are massively used in several manufacture processes such that bisphenol A (BPA) is ubiquitous in environment worldwide. After the implementation of regulations about BPA use, manufacturers have moved their production toward alternative substances structurally similar to it. Unfortunately, BPA analogues, given their structural similarity, exert also similar adverse effects. This review aims to investigate the occurrence of bisphenols (BPs) in bivalve molluscs. In this way, valuable information on the amount of BPs released into the environment in different areas are given. The current research indicates that BPA presence in bivalve molluscs has been investigated in Asia (Indian Ocean and Pacific Ocean), Europe (Mediterranean Sea, Baltic Sea and Atlantic Ocean) and America (Lake Mead, Nevada) with the highest amount of studies reported in bivalves harvested in Asian Coasts. BPA analogues are frequently detected in several matrices and their levels will continuously increase in the environment. Nevertheless, there is a current lack of studies analysing BPs other than BPA in bivalves. Further investigations should be conducted in this direction, in order to assess environmental distribution and the hazard for animals and human health given that seafood consumption could be an important pathway of bisphenols intake.
Collapse
Affiliation(s)
- Elena Baralla
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy.
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, Sassari, Italy
| | - Roberto Demuro
- Revenue Agency, Provincial Division of Sassari, Territory Office, piazzale Falcone 5e, Sassari, Italy
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| |
Collapse
|
38
|
Rogers LD. What Does CLARITY-BPA Mean for Canadians? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137001. [PMID: 34208913 PMCID: PMC8297219 DOI: 10.3390/ijerph18137001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A is an extremely high-volume chemical widely used in polycarbonate plastics, the linings of food and beverage tins, and shopping receipts. Canadians are ubiquitously exposed to bisphenol A and research shows that exposure at environmentally relevant doses causes endocrine disruption. Recent risk assessments and exposure estimates by the European Food Safety Authority have guided increased restrictions around the use of bisphenol A and established a lower tolerable daily intake, while the CLARITY-BPA program in the United States identified several adverse effects below this exposure level. Within the context of bisphenol toxicity and international regulation, this paper describes the need for revised bisphenol A risk assessments in Canada. Completed in 2008, the most recent bisphenol A risk assessment conducted by Health Canada does not include risks from alternative bisphenols or non-dietary exposure. It also does not account for the additive effects caused by simultaneous exposure to multiple endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
39
|
Ramírez V, Gálvez-Ontiveros Y, Porras-Quesada P, Martinez-Gonzalez LJ, Rivas A, Álvarez-Cubero MJ. Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. ENVIRONMENTAL RESEARCH 2021; 197:111062. [PMID: 33798517 DOI: 10.1016/j.envres.2021.111062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the most common endocrine disruptors found in the environment and its harmful health effects in humans and wildlife have been extensively reported One of the main aims of this review was to examine the metabolic pathways of BPA and BPA substitutes and the endocrine disrupting properties of their metabolites. According to the available literature, phase I and phase II metabolic reactions play an important role in the detoxification process of bisphenols (BPs), but their metabolism can also lead to the formation of highly reactive metabolites. The second part of this work addresses the associations between exposure to BPA and its analogues with the alterations in miRNAs expression and the effects of single nucleotide polymorphisms (SNPs). Available scientific evidence shows that BPs can dysregulate the expression of several miRNAs, and in turn, these miRNAs could be considered as epigenetic biomarkers to prevent the development of a variety of BP-mediated diseases. Interestingly, genetic polymorphisms are able to modify the relationship of BPA exposure with the risk of adverse health effects, suggesting that interindividual genetic differences modulate the susceptibility to the effects of environmental contaminants.
Collapse
Affiliation(s)
- Viviana Ramírez
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Patricia Porras-Quesada
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Ana Rivas
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - María Jesús Álvarez-Cubero
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
40
|
Xavier Senra MV, Fonseca AL. New tyrosinases with putative action against contaminants of emerging concern. Proteins 2021; 89:1180-1192. [PMID: 33969540 DOI: 10.1002/prot.26139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 04/30/2021] [Indexed: 11/07/2022]
Abstract
Tyrosinases (EC 1.14.18.1) are type-3 copper metalloenzymes with strong oxidative capacities and low allosteric selectivity to phenolic and non-phenolic aromatic compounds, which have been used as biosensors and biocatalysts to mitigate the impacts of environmental contaminants over aquatic ecosystems. However, the widespread use of these polyphenol oxidases is limited by elevated production costs and restricted knowledge on their spectrum of action. Here, six tyrosinase homologs were identified and characterized from the genomes of four widespread freshwater ciliates using bioinformatics. Next, we performed a virtual screening to calculate binding energies between 3D models of these homologs and ~ 1000 contaminants of emerging concern (CECs), as an indirect approach to identify likely and unlikely targets for tyrosinases. Many fine chemicals, pharmaceuticals, personal care products, illicit drugs, natural toxins, and pesticides exhibited strong binding energies to these new tyrosinases, suggesting the spectrum of targets of these enzymes might be considerably broader than previously thought. Many ciliates, including those carrying tyrosinase genes, are fast-growing unicellular microeukaryotes that can be efficiently cultured, at large scales, under in vitro conditions, suggesting these organisms should be regarded as potential low-cost sources of new environmental biotechnological molecules.
Collapse
Affiliation(s)
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
41
|
Akhbarizadeh R, Russo G, Rossi S, Golianova K, Moore F, Guida M, De Falco M, Grumetto L. Emerging endocrine disruptors in two edible fish from the Persian Gulf: Occurrence, congener profile, and human health risk assessment. MARINE POLLUTION BULLETIN 2021; 166:112241. [PMID: 33711611 DOI: 10.1016/j.marpolbul.2021.112241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of endocrine disrupting chemicals (EDCs) has been determined in two widely consumed fish species from Persian Gulf i.e., Epinephelus coioides and Platycephalus indicus by applying a validated analytical for the simultaneous detection of fourteen EDCs. The concentrations of all detected EDCs were greater in the liver than in the muscle (except for bisphenol A in P. indicus), suggesting a prolonged exposure of the fishes to these pollutants in the Persian Gulf. Specifically, the results showed that di (2-ethylhexyl) phthalate (DEHP) was the compound detected most frequently and at the highest concentration in both species. DEHP levels in ranged from 6.68 to 297.48 μg g-dw-1 and from 13.32 to 350.52 μg g-dw-1, in muscle and in liver, respectively. A risk assessment study was conducted, and demonstrated that consuming two fish based- meals per week may result in a moderate risk especially for vulnerable population groups.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Giacomo Russo
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy; School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN Edinburgh, United Kingdom
| | - Sergio Rossi
- Institute of Genetics and Biophysics "ABT" - CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Katarina Golianova
- Department of Biophysics, P.J.Šafárik University, Jesenná 5, 041 54, Košice, Slovakia
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Marco Guida
- Department of Biology, University Federico II of Naples, Naples, Italy
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy
| | - Lucia Grumetto
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136 Rome, Italy.
| |
Collapse
|
42
|
Li Y, Yan H, Yu Y, Zou C, Tian L, Xin X, Zhang S, Li Z, Ma F, Ge RS. Bisphenol B stimulates Leydig cell proliferation but inhibits maturation in late pubertal rats. Food Chem Toxicol 2021; 153:112248. [PMID: 33940105 DOI: 10.1016/j.fct.2021.112248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol B (BPB) has been used as a substitute for bisphenol A (BPA) in plastic materials. Whether BPB disrupts the male reproductive system remains unknown. Here, we report the effect of BPB on Leydig cell maturation in late puberty. Male Sprague-Dawley (35 days old) rats were gavaged with BPB at 0, 10, 100, and 200 mg/kg/day for 21 days. BPB significantly reduced body and epididymis weight at 200 mg/kg. BPB markedly decreased serum testosterone levels at 100 and 200 mg/kg and serum luteinizing hormone and follicle-stimulating hormone levels at 200 mg/kg. BPB significantly increased Leydig cell number at 100 and 200 mg/kg, while down-regulating the expression of Leydig cell genes (Cyp11a1 and Hsd3b1) at ≥100 mg/kg and up-regulating the expression of Sertoli cell genes (Pdgfra, Fshr, Sox9) and cell cycle regulators (Pcna, Ccnb1, Cdk2, and Cdk4) at 10-200 mg/kg. BPB markedly increased the phosphorylation of AKT1, AKT2, and ERK1/2 at 200 mg/kg. BPB increased the proliferation of rat immature Leydig cells via promoting the S/M2 phase shift at 100 and 1000 nM after 24-h culture in vitro. In conclusion, BPB disrupts Leydig cell maturation in late puberty by increasing Leydig cell number while inhibiting its maturation.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Cheng Zou
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Song Zhang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
43
|
Lisco G, Giagulli VA, Iovino M, Guastamacchia E, Pergola GD, Triggiani V. Endocrine-Disrupting Chemicals: Introduction to the Theme. Endocr Metab Immune Disord Drug Targets 2021; 22:677-685. [PMID: 33847259 DOI: 10.2174/1871530321666210413124425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms. AIM In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns. RESULTS The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone-responsive cells. DISCUSSION Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations. CONCLUSION Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| |
Collapse
|
44
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
45
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
46
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|
47
|
Wu JY, Hu ZJ, Sung HL. A water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole as a highly sensitive luminescence sensor for the selective detection of bisphenol AF and bisphenol B. CrystEngComm 2021. [DOI: 10.1039/d0ce01740j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole has been used as a sensor platform for the luminescence detection of bisphenol AF (BPAF) and bisphenol B (BPB) in water with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Jing-Yun Wu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Zhi-Jia Hu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Hui-Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students
- National Taiwan Normal University
- New Taipei City 244
- Taiwan
| |
Collapse
|
48
|
Zhang SX, Ding ZM, Ahmad MJ, Wang YS, Duan ZQ, Miao YL, Xiong JJ, Huo LJ. Bisphenol B Exposure Disrupts Mouse Oocyte Meiotic Maturation in vitro Through Affecting Spindle Assembly and Chromosome Alignment. Front Cell Dev Biol 2020; 8:616771. [PMID: 33392205 PMCID: PMC7773771 DOI: 10.3389/fcell.2020.616771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Bisphenol B (BPB), a substitute of bisphenol A (BPA), is widely used in the polycarbonate plastic and resins production. However, BPB proved to be not a safe alternative to BPA, and as an endocrine disruptor, it can harm the health of humans and animals. In the present study, we explored the effects of BPB on mouse oocyte meiotic maturation in vitro. We found that 150 μM of BPB significantly compromised the first polar body extrusion (PBE) and disrupted the cell cycle progression with meiotic arrest. The spindle assembly and chromosome alignment were disordered after BPB exposure, which was further demonstrated by the aberrant localization of p-MAPK. Also, BPB exposure increased the acetylation levels of α-tubulin. As a result, the spindle assemble checkpoint (SAC) was continuously provoked, contributing to meiotic arrest. We further demonstrated that BPB severely induced DNA damage, but the ROS and ATP production were not altered. Furthermore, the epigenetic modifications were changed after BPB exposure, as indicated by increased K3K9me3 and H3K27me3 levels. Besides, the pattern of estrogen receptor α (ERα) dynamics was disrupted with a mass gathering on the spindle in BPB-exposed oocytes. Our collective results indicated that exposure to BPB compromised meiotic maturation and damaged oocyte quality by affecting spindle assembly and chromosome alignment, acetylation of α-tubulin, DNA damage, epigenetic modifications, and ERα dynamics in mouse oocytes.
Collapse
Affiliation(s)
- Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
49
|
Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 2020; 518:110934. [PMID: 32659439 DOI: 10.1016/j.mce.2020.110934] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.
Collapse
Affiliation(s)
- Paola Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina.
| |
Collapse
|
50
|
Dragone R, Grasso G, Frazzoli C. Amperometric Cytosensor for Studying Mitochondrial Interferences Induced by Plasticizers Bisphenol B and Bisphenol A. Molecules 2020; 25:E5185. [PMID: 33171786 PMCID: PMC7664631 DOI: 10.3390/molecules25215185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
The widespread presence of plasticizers Bisphenol B (BPB) and Bisphenol A (BPA) in food contact materials, medical equipment, and common household products is a toxicological risk factor for health due to internal exposure after environmental dietary exposure. This work describes the use of an amperometric cytosensor (i.e., a whole cell-based amperometric biosensoristic device) for studying mitochondrial interferences of BPA and BPB (5-100 µg/mL) in the yeast Saccharomyces cerevisiae model following long-term (24 h) exposure (acute toxicity). Percentage interference (%ρ) on yeast aerobic mitochondrial catabolism was calculated after comparison of aerobic respiration of exposed and control S. cerevisiae cell suspensions. Results suggested the hypothesis of a dose-dependent co-action of two mechanisms, namely uncoupling of oxidative phosphorylation and oxidative stress. These mechanisms respectively matched with opposite effects of hyperstimulation and inhibition of cellular respiration. While uncoupling of oxidative phosphorylation and oxidative stress have been previously described as separate effects from in vitro BPA exposure using other biochemical endpoints and biological systems, effects of BPB on cellular aerobic respiration are here reported for the first time. Results highlighted a similar hyperstimulation effect after exposure to 5 µg/mL BPA and BPB. About a 2-fold higher cellular respiration inhibition potency was observed after exposures to 15, 30, and 100 µg/mL BPB compared to BPA. 2,4-Dinitrophenol (2,4-DNP) was used as model uncoupling agent. A time-dependent mechanism of mitochondrial interference was also highlighted.
Collapse
Affiliation(s)
- Roberto Dragone
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Gerardo Grasso
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Chiara Frazzoli
- Dipartimento Malattie Cardiovascolari, Dismetaboliche e dell’Invecchiamento, Istituto Superiore di Sanità, Via Giano della Bella, 34, 00162 Rome, Italy;
| |
Collapse
|