1
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
2
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
3
|
Lin Y, Gahn J, Banerjee K, Dobreva G, Singhal M, Dubrac A, Ola R. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis 2024; 27:193-209. [PMID: 38070064 PMCID: PMC11021264 DOI: 10.1007/s10456-023-09900-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/05/2023] [Indexed: 04/17/2024]
Abstract
Arterial-venous malformations (AVMs) are direct connections between arteries and veins without an intervening capillary bed. Either familial inherited or sporadically occurring, localized pericytes (PCs) drop is among the AVMs' hallmarks. Whether impaired PC coverage triggers AVMs or it is a secondary event is unclear. Here we evaluated the role of the master regulator of PC recruitment, Platelet derived growth factor B (PDGFB) in AVM pathogenesis. Using tamoxifen-inducible deletion of Pdgfb in endothelial cells (ECs), we show that disruption of EC Pdgfb-mediated PC recruitment and maintenance leads to capillary enlargement and organotypic AVM-like structures. These vascular lesions contain non-proliferative hyperplastic, hypertrophic and miss-oriented capillary ECs with an altered capillary EC fate identity. Mechanistically, we propose that PDGFB maintains capillary EC size and caliber to limit hemodynamic changes, thus restricting expression of Krüppel like factor 4 and activation of Bone morphogenic protein, Transforming growth factor β and NOTCH signaling in ECs. Furthermore, our study emphasizes that inducing or activating PDGFB signaling may be a viable therapeutic approach for treating vascular malformations.
Collapse
Affiliation(s)
- Yanzhu Lin
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Gahn
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kuheli Banerjee
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Mahak Singhal
- Laboratory of AngioRhythms, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montreal, QC, H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Roxana Ola
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
4
|
Liu G, Shu W, Chen Y, Fu Y, Fang S, Zheng H, Cheng W, Lin Q, Hu Y, Jiang N, Yu B. Bone-derived PDGF-BB enhances hippocampal non-specific transcytosis through microglia-endothelial crosstalk in HFD-induced metabolic syndrome. J Neuroinflammation 2024; 21:111. [PMID: 38685040 PMCID: PMC11057146 DOI: 10.1186/s12974-024-03097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1β (IL-1β) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.
Collapse
Affiliation(s)
- Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, China
| | - Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Shuai Fang
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Haonan Zheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weike Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
You TY, Dong Q, Cui M. Emerging Links between Cerebral Blood Flow Regulation and Cognitive Decline: A Role for Brain Microvascular Pericytes. Aging Dis 2023:AD.2022.1204. [PMID: 37163446 PMCID: PMC10389833 DOI: 10.14336/ad.2022.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 05/12/2023] Open
Abstract
Cognitive impairment associated with vascular etiology has been of considerable interest in the development of dementia. Recent studies have started to uncover cerebral blood flow deficits in initiating cognitive deterioration. Brain microvascular pericytes, the only type of contractile cells in capillaries, are involved in the precise modulation of vascular hemodynamics due to their ability to regulate resistance in the capillaries. They exhibit potential in maintaining the capillary network geometry and basal vascular tone. In addition, pericytes can facilitate better blood flow supply in response to neurovascular coupling. Their dysfunction is thought to disturb cerebral blood flow causing metabolic imbalances or structural injuries, leading to consequent cognitive decline. In this review, we summarize the characteristics of microvascular pericytes in brain blood flow regulation and outline the framework of a two-hit hypothesis in cognitive decline, where we emphasize how pericytes serve as targets of cerebral blood flow dysregulation that occurs with neurological challenges, ranging from genetic factors, aging, and pathological proteins to ischemic stress.
Collapse
Affiliation(s)
- Tong-Yao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zheng F, Ye C, Ge R, Wang Y, Tian XL, Chen Q, Li YH, Zhu GQ, Zhou B. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci 2023; 330:122023. [PMID: 37579834 DOI: 10.1016/j.lfs.2023.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Enhanced proliferation and migration of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling in hypertension. Adventitial fibroblasts (AFs)-derived extracellular vesicles (EVs) modulate vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the important roles of EVs-mediated miR-21-3p transfer in VSMC proliferation and migration and underlying mechanisms in SHR. AFs and VSMCs were obtained from aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were separated from AFs culture with ultracentrifugation method. MiR-21-3p content in the EVs of SHR was increased compared with those of WKY. MiR-21-3p mimic promoted VSMC proliferation and migration of WKY and SHR, while miR-21-3p inhibitor attenuated proliferation and migration only in the VSMCs of SHR. EVs of SHR stimulated VSMC proliferation and migration, which were attenuated by miR-21-3p inhibitor. Sorbin and SH3 domain containing 2 (SORBS2) mRNA and protein levels were reduced in the VSMCs of SHR. MiR-21-3p mimic inhibited, while miR-21-3p inhibitor promoted SORBS2 expressions in the VSMCs of both WKY and SHR. EVs of SHR reduced SORBS2 expression, which was prevented by miR-21-3p inhibitor. EVs of WKY had no significant effect on SORBS2 expressions. SORBS2 overexpression attenuated the roles of miR-21-3p mimic and EVs of SHR in promoting VSMC proliferation and migration of SHR. Overexpression of miR-21-3p in vivo promotes vascular remodeling and hypertension. These results indicate that miR-21-3p in the EVs of SHR promotes VSMC proliferation and migration via negatively regulating SORBS2 expression.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiao-Lei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
7
|
Fu J, Liang H, Yuan P, Wei Z, Zhong P. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Front Cell Neurosci 2023; 17:1267785. [PMID: 37780206 PMCID: PMC10536258 DOI: 10.3389/fncel.2023.1267785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Pericytes play an indispensable role in various organs and biological processes, such as promoting angiogenesis, regulating microvascular blood flow, and participating in immune responses. Therefore, in this review, we will first introduce the discovery and development of pericytes, identification methods and functional characteristics, then focus on brain pericytes, on the one hand, to summarize the functions of brain pericytes under physiological conditions, mainly discussing from the aspects of stem cell characteristics, contractile characteristics and paracrine characteristics; on the other hand, to summarize the role of brain pericytes under pathological conditions, mainly taking ischemic stroke as an example. Finally, we will discuss and analyze the application and development of pericytes as therapeutic targets, providing the research basis and direction for future microvascular diseases, especially ischemic stroke treatment.
Collapse
Affiliation(s)
- Jiaqi Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Ping Zhong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
8
|
Liu G, Wang J, Wei Z, Fang C, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, Lu H, Cao X, Wan M. Elevated PDGF-BB from Bone Impairs Hippocampal Vasculature by Inducing PDGFRβ Shedding from Pericytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206938. [PMID: 37102631 PMCID: PMC10369301 DOI: 10.1002/advs.202206938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Evidence suggests a unique association between bone aging and neurodegenerative/cerebrovascular disorders. However, the mechanisms underlying bone-brain interplay remain elusive. Here platelet-derived growth factor-BB (PDGF-BB) produced by preosteoclasts in bone is reported to promote age-associated hippocampal vascular impairment. Aberrantly elevated circulating PDGF-BB in aged mice and high-fat diet (HFD)-challenged mice correlates with capillary reduction, pericyte loss, and increased blood-brain barrier (BBB) permeability in their hippocampus. Preosteoclast-specific Pdgfb transgenic mice with markedly high plasma PDGF-BB concentration faithfully recapitulate the age-associated hippocampal BBB impairment and cognitive decline. Conversely, preosteoclast-specific Pdgfb knockout mice have attenuated hippocampal BBB impairment in aged mice or HFD-challenged mice. Persistent exposure of brain pericytes to high concentrations of PDGF-BB upregulates matrix metalloproteinase 14 (MMP14), which promotes ectodomain shedding of PDGF receptor β (PDGFRβ) from pericyte surface. MMP inhibitor treatment alleviates hippocampal pericyte loss and capillary reduction in the conditional Pdgfb transgenic mice and antagonizes BBB leakage in aged mice. The findings establish the role of bone-derived PDGF-BB in mediating hippocampal BBB disruption and identify the ligand-induced PDGFRβ shedding as a feedback mechanism for age-associated PDGFRβ downregulation and the consequent pericyte loss.
Collapse
Affiliation(s)
- Guanqiao Liu
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Jiekang Wang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ching‐Lien Fang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Ke Shen
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qian
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qi
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Tong Li
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Philip C. Wong
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| |
Collapse
|
9
|
Yasuda K, Noma H, Mimura T, Nonaka R, Sasaki S, Suganuma N, Shimura M. Effects of Intravitreal Ranibizumab Injection on Peripheral Retinal Microcirculation and Cytokines in Branch Retinal Vein Occlusion with Macular Edema. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1053. [PMID: 37374257 DOI: 10.3390/medicina59061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: To investigate peripheral blood flow in retinal vessels and vessel diameters after intravitreal ranibizumab injection (IRI) and the relationship between these parameters and cytokines in branch retinal vein occlusion (BRVO) with macular edema. Materials and Methods: We assessed relative flow volume (RFV) and the width of the main and branch retinal arteries and veins in the occluded and non-occluded regions before and after IRI in 37 patients with BRVO and macular edema. Measurements were made using laser speckle flowgraphy (LSFG). When performing IRI, we obtained samples of aqueous humor and analyzed them using the suspension array method to evaluate vascular endothelial growth factor (VEGF), placental growth factor (PlGF), platelet-derived growth factor (PDGF)-AA, soluble intercellular adhesion molecule (sICAM)-1, monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-6, IL-8, and interferon-inducible 10-kDa protein (IP-10). Results: In both retinal regions, before and after IRI, the RFV in the main artery and vein showed a significant correlation with the summed RFV in the respective branch vessels 1 and 2. In the occluded region, the RFV in the main vein was significantly negatively correlated with MCP-1, PDGF-AA, IL-6, and IL-8; the RFV in branch vein 1 was significantly negatively correlated with PlGF, MCP-1, IL-6, and IL-8; PDGF-AA was significantly negatively correlated with the width of the main and branch veins; and the RFVs of the main artery and vein decreased significantly from before to 1 month after IRI. Conclusions: Contrary to expectations, the study found that anti-VEGF therapy does not affect RFV in arteries and veins in patients with BRVO and macular edema. Furthermore, retinal blood flow is poor in patients with high MCP-1, IL-6, and IL-8. Finally, high PDGF-AA may result in smaller venous diameters and reduced retinal blood flow.
Collapse
Affiliation(s)
- Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Tatsuya Mimura
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan
| | - Ryota Nonaka
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Shotaro Sasaki
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Noboru Suganuma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan
| |
Collapse
|
10
|
Puig S, Gutstein HB. Chronic Morphine Modulates PDGFR-β and PDGF-B Expression and Distribution in Dorsal Root Ganglia and Spinal Cord in Male Rats. Neuroscience 2023; 519:147-161. [PMID: 36997020 DOI: 10.1016/j.neuroscience.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The analgesic effect of opioids decreases over time due to the development of analgesic tolerance. We have shown that inhibition of the platelet-derived growth factor beta (PDGFR-β) signaling eliminates morphine analgesic tolerance in rats. Although the PDGFR-β and its ligand, the platelet-derived growth factor type B (PDGF-B), are expressed in the substantia gelatinosa of the spinal cord (SG) and in the dorsal root ganglia (DRG), their precise distribution within different cell types of these structures is unknown. Additionally, the impact of a tolerance-mediating chronic morphine treatment, on the expression and distribution of PDGF-B and PDGFR-β has not yet been studied. Using immunohistochemistry (IHC), we found that in the spinal cord, PDGFR-β and PDGF-B were expressed in neurons and oligodendrocytes and co-localized with the mu-opioid receptor (MOPr) in opioid naïve rats. PDGF-B was also found in microglia and astrocytes. Both PDGFR-β and PDGF-B were detected in DRG neurons but not in spinal primary afferent terminals. Chronic morphine exposure did not change the cellular distribution of PDGFR-β or PDGF-B. However, PDGFR-β expression was downregulated in the SG and upregulated in the DRG. Consistent with our previous finding that morphine caused tolerance by inducing PDGF-B release, PDGF-B was upregulated in the spinal cord. We also found that chronic morphine exposure caused a spinal proliferation of oligodendrocytes. The changes in PDGFR-β and PDGF-B expression induced by chronic morphine treatment suggest potential mechanistic substrates underlying opioid tolerance.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Physiology, Boston University School of Medicine, Boston, 02118 MA, USA
| | - Howard B Gutstein
- Department of Anesthesiology, University of Connecticut Health Science Center, Farmington, 06030 CT, USA.
| |
Collapse
|
11
|
Kim SY, Kim YJ, Cho SY, Lee HG, Kwon S, Park SU, Jung WS, Moon SK, Park JM, Cho KH, Ko CN. Efficacy of Artemisia annua Linné in improving cognitive impairment in a chronic cerebral hypoperfusion-induced vascular dementia animal model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154683. [PMID: 36738479 DOI: 10.1016/j.phymed.2023.154683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease. Currently, no FDA-approved drugs are available for the treatment of VaD. Artemisia annua Linné (AA) is known to have antioxidant properties, but its effects and mechanisms of action on cognitive impairment are still unknown. PURPOSE In this study, the improvement in cognitive impairment by AA in terms of protection against oxidative stress, neuroinflammation, and preservation of the integrity of the neurovascular unit (NVU) was assessed in an animal model of VaD with bilateral common carotid artery occlusion (BCCAO). METHODS Eight-week-old male Wistar rats were allowed to adapt for four weeks, and BCCAO was induced at 12 weeks of age. The rats were randomly assigned into four groups, with seven rats in each group: sham group without BCCAO, VaD group that received oral administration of distilled water after BCCAO surgery, and two AA groups that received oral administration of 150 mg/kg or 750 mg/kg AA after BCCAO surgery for 8 weeks. Nine weeks after BCCAO surgery, the cognitive function of the rats was evaluated and accumulated oxidative stress was assessed by immunohistochemistry, immunofluorescence, and western blotting. Damage to the components of the NVU was evaluated, and sirtuin (Sirt) 1 and 2 expression and nuclear factor-erythrocyte 2-associated factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) activation were investigated to assess the reduction in cell signaling and antioxidant pathways. RESULTS BCCAO-induced cerebral perfusion decreased memory function and induced neuroinflammation and oxidative stress. But AA treatment mitigated cognitive impairment and reduced neuroinflammation and oxidative stress caused by chronic cerebral hypoperfusion. AA extracts activated the Nrf2/Keap1/activating antioxidant response elements pathway and maintained Sirt 1 and 2, subsequently leading to the maintenance of neurons, improved construct of microvessels, increased platelet-derived growth factor receptor beta, and platelet-endothelial cell adhesion molecule-1 associated with the blood-brain barrier integrity. CONCLUSION AA is effective in alleviating BCCAO-induced cognitive decline and its administration may be a useful therapeutic approach for VaD.
Collapse
Affiliation(s)
- Seo-Young Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea.
| |
Collapse
|
12
|
Park HY, van Bruggen VLE, Peutz-Kootstra CJ, Ophelders DRMG, Jellema RK, Reutelingsperger CPM, Rutten BPF, Wolfs TGAM. Time Dependent Changes in the Ovine Neurovascular Unit; A Potential Neuroprotective Role of Annexin A1 in Neonatal Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:ijms24065929. [PMID: 36983004 PMCID: PMC10054605 DOI: 10.3390/ijms24065929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Perinatal brain injury following hypoxia-ischemia (HI) is characterized by high mortality rates and long-term disabilities. Previously, we demonstrated that depletion of Annexin A1, an essential mediator in BBB integrity, was associated with a temporal loss of blood-brain barrier (BBB) integrity after HI. Since the molecular and cellular mechanisms mediating the impact of HI are not fully scrutinized, we aimed to gain mechanistic insight into the dynamics of essential BBB structures following global HI in relation to ANXA1 expression. Global HI was induced in instrumented preterm ovine fetuses by transient umbilical cord occlusion (UCO) or sham occlusion (control). BBB structures were assessed at 1, 3, or 7 days post-UCO by immunohistochemical analyses of ANXA1, laminin, collagen type IV, and PDGFRβ for pericytes. Our study revealed that within 24 h after HI, cerebrovascular ANXA1 was depleted, which was followed by depletion of laminin and collagen type IV 3 days after HI. Seven days post-HI, increased pericyte coverage, laminin and collagen type IV expression were detected, indicating vascular remodeling. Our data demonstrate novel mechanistic insights into the loss of BBB integrity after HI, and effective strategies to restore BBB integrity should potentially be applied within 48 h after HI. ANXA1 has great therapeutic potential to target HI-driven brain injury.
Collapse
Affiliation(s)
- Hyun Young Park
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Valéry L E van Bruggen
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | | | - Daan R M G Ophelders
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
13
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Zhou Y, Zhao Q, Wang M. Biomanufacturing of biomimetic three-dimensional nanofibrous multicellular constructs for tissue regeneration. Colloids Surf B Biointerfaces 2023; 223:113189. [PMID: 36736173 DOI: 10.1016/j.colsurfb.2023.113189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Biomanufacturing of functional tissue analogues is of great importance in regenerative medicine. However, this is still highly challenging due to extreme difficulties in recreating/recapitulating complicated anatomies of body tissues that have both well-defined three-dimensional (3D) multicellular organizations and bioactive nanofibrous extracellular matrix (ECM). In the current investigation, a biomanufacturing approach via concurrent emulsion electrospinning and coaxial cell electrospraying was developed, which could fabricate 3D nanofibrous multicellular constructs that resemble both the multicellular organizations and bioactive nanofibrous microenvironments of body tissues. In the proof-of-concept study, endothelial cells (ECs) and smooth muscle cells (SMCs) were placed in respective layers of multilayer-structured constructs. The two different construct layers consisted of nanofibers providing different topographies (randomly oriented nanofibers or aligned nanofibers) and contained different growth factors (vascular endothelial growth factor or platelet-derived growth factor). The ECs and SMCs in the different construct layers showed high cell densities (> 4 ×105 cells/cm2 after 4-day incubation) and high cell viabilities (> 95%). Owing to the contact guidance/stimulation by different fibrous topographies and sequential release of different growth factors, ECs and SMCs exhibited distinct morphologies (uniformly stretched plaque-shaped or directionally elongated) and displayed enhanced proliferative activities. Our biomanufacturing approach is shown to be effective and efficient in reconstituting/replicating cell-ECM organizations as well as their interactions similar to those in body tissues such as blood vessels, indicating the great promise to produce a range of tissue analogues with biomimetic structures and functions for modeling or regenerating body tissues.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
15
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
16
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
17
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
19
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
20
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
21
|
Pharmacological PDGFRβ inhibitors imatinib and sunitinib cause human brain pericyte death in vitro. Toxicol Appl Pharmacol 2022; 444:116025. [DOI: 10.1016/j.taap.2022.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
|
22
|
Chen SN, Lam CK, Wan YW, Gao S, Malak OA, Zhao SR, Lombardi R, Ambardekar AV, Bristow MR, Cleveland J, Gigli M, Sinagra G, Graw S, Taylor MR, Wu JC, Mestroni L. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. SCIENCE ADVANCES 2022; 8:eabk0052. [PMID: 35196083 PMCID: PMC8865769 DOI: 10.1126/sciadv.abk0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
FLNC truncating mutations (FLNCtv) are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different FLNCtv mutations displayed arrhythmias and impaired contraction. FLNC ablation induced a similar phenotype, suggesting that FLNCtv are loss-of-function mutations. Coimmunoprecipitation and proteomic analysis identified β-catenin (CTNNB1) as a downstream target. FLNC deficiency induced nuclear translocation of CTNNB1 and subsequently activated the platelet-derived growth factor receptor alpha (PDGFRA) pathway, which were also observed in human hearts with a-DCM and FLNCtv. Treatment with the PDGFRA inhibitor, crenolanib, improved contractile function of patient iPSC-CMs. Collectively, our findings suggest that PDGFRA signaling is implicated in the pathogenesis, and inhibition of this pathway is a potential therapeutic strategy in FLNC-related cardiomyopathies.
Collapse
Affiliation(s)
- Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Olfat A. Malak
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
- Department of Advanced Biomedical Sciences University of Naples “Federico II”, Naples, Italy
| | - Amrut V. Ambardekar
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Michael R. Bristow
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph Cleveland
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Matthew R.G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| |
Collapse
|
23
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
24
|
Ruchoux MM, Kalaria RN, Román GC. The pericyte: A critical cell in the pathogenesis of CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100031. [PMID: 34950895 PMCID: PMC8661128 DOI: 10.1016/j.cccb.2021.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
CADASIL is the most common hereditary small vessel disease presenting with strokes and subcortical vascular dementia caused by mutations in the NOTCH3 gene. CADASIL is a vasculopathy primarily involving vascular smooth-muscle cells. Arteriolar and capillary pericyte damage or deficiency is a key feature in disease pathogenesis. Pericyte-mediated cerebral venous insufficiency may explain white matter lesions and increased perivascular spaces. Central role of the pericyte offers novel approaches to the treatment of CADASIL.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small vessel disease presenting with migraine, mood and cognitive disorders, focal neurological deficits, recurrent ischemic attacks, lacunar infarcts and brain white matter changes. As they age, CADASIL patients invariably develop cognitive impairment and subcortical dementia. CADASIL is caused by missense mutations in the NOTCH3 gene resulting in a profound cerebral vasculopathy affecting primarily arterial vascular smooth muscle cells, which target the microcirculation and perfusion. Based on a thorough review of morphological lesions in arteries, veins, and capillaries in CADASIL, we surmise that arteriolar and capillary pericyte damage or deficiency appears a key feature in the pathogenesis of the disease. This may affect critical pericyte-endothelial interactions causing stroke injury and vasomotor disturbances. Changes in microvascular permeability due to perhaps localized blood-brain barrier alterations and pericyte secretory dysfunction likely contribute to delayed neuronal as well as glial cell death. Moreover, pericyte-mediated cerebral venous insufficiency may explain white matter lesions and the dilatation of Virchow-Robin perivascular spaces typical of CADASIL. The postulated central role of the pericyte offers some novel approaches to the study and treatment of CADASIL and enable elucidation of other forms of cerebral small vessel diseases and subcortical vascular dementia.
Collapse
Affiliation(s)
- Marie-Magdeleine Ruchoux
- Former researcher, Université d'Artois, Blood-Brain-Barrier Laboratory Lens France, Former advisor, Alzheimer's Clinic Methodist Neurological Institute, Houston TX, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gustavo C Román
- Methodist Neurological Institute, Department of Neurology, Houston Methodist Hospital Houston TX 77030, USA, Weill Cornell Medical College, New York NY, USA and Texas A&M Medical School, Bryan TX, USA
| |
Collapse
|
25
|
Perugini V, Santin M. A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures. Front Cell Dev Biol 2021; 9:701842. [PMID: 34650967 PMCID: PMC8507467 DOI: 10.3389/fcell.2021.701842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix-derived products (e.g. Matrigel) are widely used for in vitro cell cultures both as two-dimensional (2D) substrates and as three-dimensional (3D) encapsulation gels because of their ability to control cell phenotypes through biospecific cues. However, batch-to-batch variations, poor stability, cumbersome handling, and the relatively high costs strictly limit their use. Recently, a new substrate known as PhenoDrive-Y has been used as 2D coating of tissue culture plastic showing to direct the bone marrow mesenchymal stromal cells (MSCs) toward the formation of 3D spheroids. When organized into 3D spheroids, the MSCs expressed levels of pluripotency markers and of paracrine angiogenic activity higher than those of the MSCs adhering as fibroblast-like colonies on tissue culture plastic. The formation of the spheroids was attributed to the properties of this biomaterial that resemble the main features of the basement membrane by mimicking the mesh structure of collagen IV and by presenting the cells with orderly spaced laminin bioligands. In this study, PhenoDrive-Y was compared to Matrigel for its ability to drive the formation of perivascular stem cell niche-like structures in 2D co-culture conditions of human endothelial cells and adult bone marrow MSCs. Morphological analyses demonstrated that, when compared to Matrigel, PhenoDrive-Y led endothelial cells to sprout into a more consolidated tubular network and that the MSCs nestled as compact spheroids above the anastomotic areas of this network resemble more closely the histological features of the perivascular stem cell niche. A study of the expressions of relevant markers led to the identification of the pathways linking the PhenoDrive-Y biomimicking properties to the acquired histological features, demonstrating the enhanced levels of stemness, renewal potential, predisposition to migration, and paracrine activities of the MSCs.
Collapse
Affiliation(s)
- Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
26
|
Ando K, Shih YH, Ebarasi L, Grosse A, Portman D, Chiba A, Mattonet K, Gerri C, Stainier DYR, Mochizuki N, Fukuhara S, Betsholtz C, Lawson ND. Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Dev Biol 2021; 479:11-22. [PMID: 34310924 DOI: 10.1016/j.ydbio.2021.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan.
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus Flemingsberg, Neo, Blickagången 16, Hiss S, Plan 7, SE-141 57, Huddinge, Sweden
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States.
| |
Collapse
|
27
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|
29
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
30
|
Schofield CL, Rodrigo-Navarro A, Dalby MJ, Van Agtmael T, Salmeron-Sanchez M. Biochemical‐ and Biophysical‐Induced Barriergenesis in the Blood–Brain Barrier: A Review of Barriergenic Factors for Use in In Vitro Models. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
| | | |
Collapse
|
31
|
Lin A, Peiris NJ, Dhaliwal H, Hakim M, Li W, Ganesh S, Ramaswamy Y, Patel S, Misra A. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells 2021; 10:cells10030593. [PMID: 33800271 PMCID: PMC7999039 DOI: 10.3390/cells10030593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mural cells collectively refer to the smooth muscle cells and pericytes of the vasculature. This heterogenous population of cells play a crucial role in the regulation of blood pressure, distribution, and the structural integrity of the vascular wall. As such, dysfunction of mural cells can lead to the pathogenesis and progression of a number of diseases pertaining to the vascular system. Cardiovascular diseases, particularly atherosclerosis, are perhaps the most well-described mural cell-centric case. For instance, atherosclerotic plaques are most often described as being composed of a proliferative smooth muscle cap accompanied by a necrotic core. More recently, the role of dysfunctional mural cells in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, is being recognized. In this review, we begin with an exploration of the mechanisms underlying atherosclerosis and neurodegenerative diseases, such as mural cell plasticity. Next, we highlight a selection of signaling pathways (PDGF, Notch and inflammatory signaling) that are conserved across both diseases. We propose that conserved mural cell signaling mechanisms can be exploited for the identification or development of dual-pronged therapeutics that impart both cardio- and neuroprotective qualities.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cardiotonic Agents/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/genetics
- Parkinson Disease/metabolism
- Parkinson Disease/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Niridu Jude Peiris
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harkirat Dhaliwal
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Hakim
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Weizhen Li
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India;
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Cardiac Catheterization Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-18-0065-1373
| |
Collapse
|
32
|
Segura-Collar B, Mata-Martínez P, Hernández-Laín A, Sánchez-Gómez P, Gargini R. Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. Neuroscientist 2021; 28:222-237. [PMID: 33446074 DOI: 10.1177/1073858420985838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The brain is endowed with a unique cellular composition and organization, embedded within a vascular network and isolated from the circulating blood by a specialized frontier, the so-called blood-brain barrier (BBB), which is necessary for its proper function. Recent reports have shown that increments in the permeability of the blood vessels facilitates the entry of toxic components and immune cells to the brain parenchyma and alters the phenotype of the supporting astrocytes. All of these might contribute to the progression of different pathologies such as brain cancers or neurodegenerative diseases. Although it is well known that BBB breakdown occurs due to pericyte malfunctioning or to the lack of stability of the blood vessels, its participation in the diverse neural diseases needs further elucidation. This review summarizes what it is known about BBB structure and function and how its instability might trigger or promote neuronal degeneration and glioma progression, with a special focus on the role of pericytes as key modulators of the vasculature. Moreover, we will discuss some recent reports that highlights the participation of the BBB alterations in glioma growth. This pan-disease analysis might shed some light into these otherwise untreatable diseases and help to design better therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo Gargini
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| |
Collapse
|
33
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
34
|
Ojo J, Eisenbaum M, Shackleton B, Lynch C, Joshi U, Saltiel N, Pearson A, Ringland C, Paris D, Mouzon B, Mullan M, Crawford F, Bachmeier C. Mural cell dysfunction leads to altered cerebrovascular tau uptake following repetitive head trauma. Neurobiol Dis 2020; 150:105237. [PMID: 33383188 PMCID: PMC8170787 DOI: 10.1016/j.nbd.2020.105237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 12/29/2022] Open
Abstract
A pathological characteristic of repetitive traumatic brain injury (TBI) is the deposition of hyperphosphorylated and aggregated tau species in the brain and increased levels of extracellular monomeric tau are believed to play a role in the pathogenesis of neurodegenerative tauopathies. The pathways by which extracellular tau is eliminated from the brain, however, remains elusive. The purpose of this study was to examine tau uptake by cerebrovascular cells and the effect of TBI on these processes. We found monomeric tau interacts with brain vascular mural cells (pericytes and smooth muscle cells) to a greater extent than other cerebrovascular cells, indicating mural cells may contribute to the elimination of extracellular tau, as previously described for other solutes such as beta-amyloid. Consistent with other neurodegenerative disorders, we observed a progressive decline in cerebrovascular mural cell markers up to 12 months post-injury in a mouse model of repetitive mild TBI (r-mTBI) and human TBI brain specimens, when compared to control. These changes appear to reflect mural cell degeneration and not cellular loss as no difference in the mural cell population was observed between r-mTBI and r-sham animals as determined through flow cytometry. Moreover, freshly isolated r-mTBI cerebrovessels showed reduced tau uptake at 6 and 12 months post-injury compared to r-sham animals, which may be the result of diminished cerebrovascular endocytosis, as caveolin-1 levels were significantly decreased in mouse r-mTBI and human TBI cerebrovessels compared to their respective controls. Further emphasizing the interaction between mural cells and tau, similar reductions in mural cell markers, tau uptake, and caveolin-1 were observed in cerebrovessels from transgenic mural cell-depleted animals. In conclusion, our studies indicate repeated injuries to the brain causes chronic mural cell degeneration, reducing the caveolar-mediated uptake of tau by these cells. Alterations in tau uptake by vascular mural cells may contribute to tau deposition in the brain following head trauma and could represent a novel therapeutic target for TBI or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Max Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Ben Shackleton
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Cillian Lynch
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Utsav Joshi
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | | | - Andrew Pearson
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Charis Ringland
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
35
|
Aalkjær C, Nilsson H, De Mey JGR. Sympathetic and Sensory-Motor Nerves in Peripheral Small Arteries. Physiol Rev 2020; 101:495-544. [PMID: 33270533 DOI: 10.1152/physrev.00007.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
Collapse
Affiliation(s)
| | - Holger Nilsson
- Department Physiology, Gothenburg University, Gothenburg, Sweden
| | - Jo G R De Mey
- Deptartment Pharmacology and Personalized Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
36
|
Ray AT, Mazot P, Brewer JR, Catela C, Dinsmore CJ, Soriano P. FGF signaling regulates development by processes beyond canonical pathways. Genes Dev 2020; 34:1735-1752. [PMID: 33184218 PMCID: PMC7706708 DOI: 10.1101/gad.342956.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Death/genetics
- Cells, Cultured
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mutation
- Neural Crest/cytology
- Protein Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Ayan T Ray
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Catarina Catela
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
37
|
Sui A, Chen X, Shen J, Demetriades AM, Yao Y, Yao Y, Zhu Y, Shen X, Xie B. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1β/IL-18 activation pattern in an oxygen-induced ischemic retinopathy mouse model. Cell Death Dis 2020; 11:901. [PMID: 33093455 PMCID: PMC7582915 DOI: 10.1038/s41419-020-03076-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Activation of the nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome plays an important role in ocular neovascularization. In our study, we found that the expression and activation levels of NLRP3 inflammasome components, including NLRP3, an apoptosis-associated speck-like protein (ASC) containing caspase activation and recruitment domain (CARD) and caspase-1 (CAS1), were significantly upregulated. In addition, we found interleukin (IL)-1β activity increased while IL-18 activity decreased in the retinas of oxygen-induced ischemic retinopathy (OIR) mice. MCC950, an inhibitor of NLRP3, reversed the IL-1β/IL-18 activation pattern, inhibited the formation of retinal neovascularization (RNV), decreased the number of acellular capillaries and reduced leakage of retinal vessels. Moreover, MCC950 could regulate the expression of endothelial cell- and pericyte function-associated molecules, such as vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR)1, VEGFR2, matrix metalloproteinase (MMP)2, MMP9, tissue inhibitor of metalloproteinases (TIMP)1, TIMP2, platelet-derived growth factor receptor-β (PDGFR-β), platelet-derived growth factor-B (PDGF-B), and angiopoietin2 (Ang2). In vitro, recombinant human (r)IL-18 and rIL-1β regulated the expression of endothelial cell- and pericyte function-associated molecules and the proliferation and migration of endothelial cells and pericytes. We therefore determined that inhibiting the NLRP3 inflammasome with MCC950 can regulate the function of endothelial cells and pericytes by reversing the IL-1β/IL-18 activation pattern to ameliorate RNV and leakage; thereby opening new avenues to treat RNV-associated ocular diseases.
Collapse
Affiliation(s)
- Ailing Sui
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuping Chen
- The Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jikui Shen
- The Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Anna M Demetriades
- The Department of Ophthalmology, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| | - Yiyun Yao
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Yao
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanji Zhu
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Shen
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Xie
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
39
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
40
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Sun C, Sakashita H, Kim J, Tang Z, Upchurch GM, Yao L, Berry WL, Griffin TM, Olson LE. Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ as Negative Regulators of Adipogenesis. Cell Stem Cell 2020; 26:707-721.e5. [PMID: 32229310 DOI: 10.1016/j.stem.2020.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRβ. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances β3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRβ also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Zifeng Tang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - G Michael Upchurch
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
42
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
43
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
44
|
Furusho M, Ishii A, Hebert JM, Bansal R. Developmental stage-specific role of Frs adapters as mediators of FGF receptor signaling in the oligodendrocyte lineage cells. Glia 2019; 68:617-630. [PMID: 31670856 DOI: 10.1002/glia.23743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 10/12/2019] [Indexed: 11/12/2022]
Abstract
FGF signaling is important for numerous cellular processes and produces diverse cellular responses. Our recent studies using mice conditionally lacking FGF-Receptor-1 (Fgfr1) or Fgfr2 during different stages of myelinogenesis revealed that Fgfr signaling is first required embryonically for the specification of oligodendrocyte progenitors (OPCs) and then later postnatally for the growth of the myelin sheath during active myelination but not for OPC proliferation, differentiation, or ensheathment of axons. What intracellular signal transduction pathways are recruited immediately downstream of Fgfrs and mediate these distinct developmentally regulated stage-specific responses remain unclear. The adapter protein Fibroblast-Growth-Factor-Receptor-Substrate-2 (Frs2) is considered a key immediate downstream target of Fgfrs. Therefore, here, we investigated the in vivo role of Frs adapters in the oligodendrocyte lineage cells, using a novel genetic approach where mice were engineered to disrupt binding of Frs2 to Fgfr1 or Fgfr2, thus specifically uncoupling Frs2 and Fgfr signaling. In addition, we used conditional mutants with complete ablation of Frs2 and Frs3. We found that Frs2 is required for specification of OPCs in the embryonic telencephalon downstream of Fgfr1. In contrast, Frs2 is largely dispensable for transducing Fgfr2-mediated signals for the growth of the myelin sheath during postnatal myelination, implying the potential involvement of other adapters downstream of Fgfr2 for this function. Together, our data demonstrate a developmental stage-specific function of Frs2 in the oligodendrocyte lineage cells. This contextual requirement of adapter proteins, downstream of Fgfrs, could partly explain the distinct responses elicited by the activation of Fgfrs during different stages of myelinogenesis.
Collapse
Affiliation(s)
- Miki Furusho
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| | - Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| | - Jean M Hebert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| |
Collapse
|
45
|
Nakamura K, Ikeuchi T, Nara K, Rhodes CS, Zhang P, Chiba Y, Kazuno S, Miura Y, Ago T, Arikawa-Hirasawa E, Mukouyama YS, Yamada Y. Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. J Cell Biol 2019; 218:3506-3525. [PMID: 31541017 PMCID: PMC6781430 DOI: 10.1083/jcb.201807178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/10/2019] [Accepted: 07/31/2019] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke causes blood-brain barrier (BBB) breakdown due to significant damage to the integrity of BBB components. Recent studies have highlighted the importance of pericytes in the repair process of BBB functions triggered by PDGFRβ up-regulation. Here, we show that perlecan, a major heparan sulfate proteoglycan of basement membranes, aids in BBB maintenance and repair through pericyte interactions. Using a transient middle cerebral artery occlusion model, we found larger infarct volumes and more BBB leakage in conditional perlecan (Hspg2)-deficient (Hspg2 - / - -TG) mice than in control mice. Control mice showed increased numbers of pericytes in the ischemic lesion, whereas Hspg2 - / - -TG mice did not. At the mechanistic level, pericytes attached to recombinant perlecan C-terminal domain V (perlecan DV, endorepellin). Perlecan DV enhanced the PDGF-BB-induced phosphorylation of PDGFRβ, SHP-2, and FAK partially through integrin α5β1 and promoted pericyte migration. Perlecan therefore appears to regulate pericyte recruitment through the cooperative functioning of PDGFRβ and integrin α5β1 to support BBB maintenance and repair following ischemic stroke.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD .,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kazuki Nara
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD.,Tohoku University School of Medicine, Sendai, Japan
| | - Craig S Rhodes
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Yuta Chiba
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
46
|
Shaligram SS, Winkler E, Cooke D, Su H. Risk factors for hemorrhage of brain arteriovenous malformation. CNS Neurosci Ther 2019; 25:1085-1095. [PMID: 31359618 PMCID: PMC6776739 DOI: 10.1111/cns.13200] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with brain arteriovenous malformation (bAVM) are at risk of intracranial hemorrhage (ICH). Overall, bAVM accounts for 25% of hemorrhagic strokes in adults <50 years of age. The treatment of unruptured bAVMs has become controversial, because the natural history of these patients may be less morbid than invasive therapies. Available treatments include observation, surgical resection, endovascular embolization, stereotactic radiosurgery, or combination thereof. Knowing the risk factors for bAVM hemorrhage is crucial for selecting appropriate therapeutic strategies. In this review, we discussed several biological risk factors, which may contribute to bAVM hemorrhage.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| | - Ethan Winkler
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, California
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| |
Collapse
|
47
|
Bhowmick S, D'Mello V, Caruso D, Wallerstein A, Abdul-Muneer P. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol 2019; 317:260-270. [DOI: 10.1016/j.expneurol.2019.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
|
48
|
Karasozen Y, Osbun JW, Parada CA, Busald T, Tatman P, Gonzalez-Cuyar LF, Hale CJ, Alcantara D, O'Driscoll M, Dobyns WB, Murray M, Kim LJ, Byers P, Dorschner MO, Ferreira M. Somatic PDGFRB Activating Variants in Fusiform Cerebral Aneurysms. Am J Hum Genet 2019; 104:968-976. [PMID: 31031011 PMCID: PMC6506794 DOI: 10.1016/j.ajhg.2019.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor β gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.
Collapse
Affiliation(s)
- Yigit Karasozen
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Joshua W Osbun
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Carolina Angelica Parada
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tina Busald
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip Tatman
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Luis F Gonzalez-Cuyar
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Christopher J Hale
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Diana Alcantara
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - William B Dobyns
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington 98105, USA
| | - Mitzi Murray
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Medicine, Division of Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Louis J Kim
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Peter Byers
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Medicine, Division of Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Michael O Dorschner
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Manuel Ferreira
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
49
|
Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 2019; 33:8990-8998. [PMID: 31039042 PMCID: PMC6662981 DOI: 10.1096/fj.201900153r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)–expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown. Regulator of G-protein signaling 5 (RGS5) has been associated with pericyte detachment from the vascular wall, but whether it regulates pericyte function and vascular stabilization in the chronic phase of stroke is not known. Using RGS5–knockout (KO) mice, we study how loss of RGS5 affects the pericyte response and vascular remodeling in a stroke model at 7 d after ischemia. Loss of RGS5 leads to a shift toward an increase in the number of perivascular pericytes and reduction in the density of parenchymal PDGFR-β–expressing cells associated with normalized PDGFR-β activation after stroke. The redistribution of pericytes resulted in higher pericyte coverage, increased vascular density, preservation of vessel lengths, and a significant reduction in vascular leakage in RGS5-KO mice compared with controls. Our study demonstrates RGS5 in pericytes as an important target to enhance vascular remodeling.—Roth, M., Gaceb, A., Enström, A., Padel, T., Genové, G., Özen, I., Paul, G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Guillem Genové
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Bertrand L, Cho HJ, Toborek M. Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 2019; 142:502-511. [PMID: 30668645 PMCID: PMC6391611 DOI: 10.1093/brain/awy339] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multifunctional cells wrapped around endothelial cells via cytoplasmic processes that extend along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes of the blood-brain barrier are necessary for proper formation, development, stabilization, and maintenance of the blood-brain barrier. Blood-brain barrier pericytes regulate paracellular flow between cells, transendothelial fluid transport, maintain optimal chemical composition of the surrounding microenvironment, and protect endothelial cells from potential harmful substances. Thus, dysfunction or loss of blood-brain barrier pericytes is an important factor in the pathogenesis of several diseases that are associated with microvascular instability. Importantly, recent research indicates that blood-brain barrier pericytes can be a target of HIV-1 infection able to support productive HIV-1 replication. In addition, blood-brain barrier pericytes are prone to establish a latent infection, which can be reactivated by a mixture of histone deacetylase inhibitors in combination with TNF. HIV-1 infection of blood-brain barrier pericytes has been confirmed in a mouse model of HIV-1 infection and in human post-mortem samples of HIV-1-infected brains. Overall, recent evidence indicates that blood-brain barrier pericytes can be a previously unrecognized HIV-1 target and reservoir in the brain.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Michal Toborek Department of Biochemistry and Molecular Biology University of Miami School of Medicine Gautier Bldg., Room 528 1011 NW 15th Street Miami, FL 33136, USA E-mail:
| |
Collapse
|