1
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lin C, Li ZL, Cai XL, Hu SY, Lv F, Yang WJ, Ji LN. Indirect comparison of efficacy and safety of chiglitazar and thiazolidinedione in patients with type 2 diabetes: A meta-analysis. World J Diabetes 2023; 14:1573-1584. [PMID: 37970134 PMCID: PMC10642417 DOI: 10.4239/wjd.v14.i10.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-β (HOMA-β) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-β increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better β-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Zong-Lin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Ling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Sui-Yuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Wen-Jia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Li-Nong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Wang L, Huang B, Zeng Y, Yang J, Li Z, Ng JPL, Xu X, Su L, Yun X, Qu L, Chen R, Luo W, Wang Y, Chen C, Yang L, Qu Y, Zhang W, Chan JTW, Wang X, Law BYK, Mok SWF, Chung SK, Wong VKW. N-Acetylcysteine overcomes epalrestat-mediated increase of toxic 4-hydroxy-2-nonenal and potentiates the anti-arthritic effect of epalrestat in AIA model. Int J Biol Sci 2023; 19:4082-4102. [PMID: 37705749 PMCID: PMC10496504 DOI: 10.7150/ijbs.85028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
Epalrestat, an aldose reductase inhibitor (ARI), has been clinically adopted in treating diabetic neuropathy in China and Japan. Apart from the involvement in diabetic complications, AR has been implicated in inflammation. Here, we seek to investigate the feasibility of clinically approved ARI, epalrestat, for the treatment of rheumatoid arthritis (RA). The mRNA level of AR was markedly upregulated in the peripheral blood mononuclear cells (PBMCs) of RA patients when compared to those of healthy donors. Besides, the disease activity of RA patients is positively correlated with AR expression. Epalrestat significantly suppressed lipopolysaccharide (LPS) induced TNF-α, IL-1β, and IL-6 in the human RA fibroblast-like synoviocytes (RAFLSs). Unexpectedly, epalrestat treatment alone markedly exaggerated the disease severity in adjuvant induced arthritic (AIA) rats with elevated Th17 cell proportion and increased inflammatory markers, probably resulting from the increased levels of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA). Interestingly, the combined treatment of epalrestat with N-Acetylcysteine (NAC), an anti-oxidant, to AIA rats dramatically suppressed the production of 4-HNE, MDA and inflammatory cytokines, and significantly improved the arthritic condition. Taken together, the anti-arthritic effect of epalrestat was diminished or even overridden by the excessive accumulation of toxic 4-HNE or other reactive aldehydes in AIA rats due to AR inhibition. Co-treatment with NAC significantly reversed epalrestat-induced upregulation of 4-HNE level and potentiated the anti-arthritic effect of epalrestat, suggesting that the combined therapy of epalrestat with NAC may sever as a potential approach in treating RA. Importantly, it could be regarded as a safe intervention for RA patients who need epalrestat for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Macau Medical Science and Technology Research Association, Macau, China
| | - Zhi Li
- Centro Hospitalar Conde de São Januário, Macau, China
- Macau Medical Science and Technology Research Association, Macau, China
| | - Jerome P. L. Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Su
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chang Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuanqing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xingxia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
4
|
Lepechkin-Zilbermintz V, Bareket D, Gonnord V, Steffen A, Morice C, Michaut M, Munder A, Korshin EE, Contreras JM, Cerasi E, Sasson S, Gruzman A. Moderately lipophilic 2-(Het)aryl-6-dithioacetals, 2-phenyl-1,4-benzodioxane-6-dithioacetals and 2-phenylbenzofuran-5-dithioacetals: Synthesis and primary evaluation as potential antidiabetic AMPK-activators. Bioorg Med Chem 2023; 87:117303. [PMID: 37167713 DOI: 10.1016/j.bmc.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Since the 1950's, AMP-kinase (AMPK) has been used as a promising target for the development of antidiabetic drugs against Type 2 diabetes mellitus (T2D). Indeed, the canonical antidiabetic drug metformin recruits, at least partially, AMPK activation for its therapeutic effect. Herein we present design and synthesis of 20 novel relatively polar cyclic and acyclic dithioacetals of 2-(Het)arylchroman-6-carbaldehydes, 2-phenyl-1,4-benzodioxane-6-carbaldehyde, and 2-phenylbenzofuran-5-carbaldehyde, which were developed as potential AMPK activators. Three of the synthesized dithioacetals demonstrated significant enhancement (≥70%) of glucose uptake in rat L6 myotubes. Noteworthy, one of the dithioacetals, namely 4-(6-(1,3-dithian-2-yl)chroman-2-yl)pyridine, exhibited high potency comparing to other molecules. It increased the rate of glucose uptake in rat L6 myotubes and augmented insulin secretion from rat INS-1E cells in pharmacological relevant concentrations (up to 2 μM). Both effects were mediated by activation of AMPK. In addition, the compound showed excellent pharmacokinetic profile in healthy mice, including maximal oral bioavailability. Such bifunctionality (increased glucose uptake and insulin secretion) can be used as a starting point for the development of a novel class of antidiabetic drugs with dual activity that is relevant for T2D treatment.
Collapse
Affiliation(s)
| | - Daniel Bareket
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Virginie Gonnord
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Alexandre Steffen
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Christophe Morice
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Mathieu Michaut
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Anna Munder
- RECIPHARM Israel Ltd., 9 Hamzamara Str., 7404709, Nes Ziona, Israel
| | - Edward E Korshin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | | | - Erol Cerasi
- The Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
6
|
Kostopoulou E, Kalaitzopoulou E, Papadea P, Skipitari M, Rojas Gil AP, Spiliotis BE, Georgiou CD. Oxidized lipid-associated protein damage in children and adolescents with type 1 diabetes mellitus: New diagnostic/prognostic clinical markers. Pediatr Diabetes 2021; 22:1135-1142. [PMID: 34633133 DOI: 10.1111/pedi.13271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (DM1), a chronic metabolic disorder of autoimmune origin, has been associated with oxidative stress (OS), which plays a central role in the onset, progression, and long-term complications of DM1. The markers of OS lipid peroxidation products, lipid hydroperoxides (LOOH), and also malondialdehyde (MDA) and thiobarbituric reactive substances (TBARS) that oxidatively modify proteins (Pr) (i.e., PrMDA and PrTBARS, respectively), have been associated with DM2, DM1, diabetic neuropathy, and microalbuminuria. OBJECTIVE/SUBJECTS Here, we investigated LOOH, PrMDA and PrTBARS in 50 children and adolescents with DM1 and 21 controls. RESULTS The novel OS marker PrTBARS was assessed for the first time in children and adolescents with DM1. LOOH and the pair PrMDA/PrTBARS, representing early and late peroxidation stages, respectively, are found to be significantly higher (130%, 50/90%, respectively, at p < 0.001) in patients with DM1 compared to controls. The studied OS parameters did not differ with age, age at diagnosis, sex, duration of DM1, presence of recent ketosis/ketoacidosis, or mode of treatment. CONCLUSIONS We propose that LOOH, PrMDA and the new marker PrTBARS could serve as potential diagnostic clinical markers for identifying OS in children and adolescents with DM1, and may, perhaps, hold promise as a prognostic tool for future complications associated with the disease.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | | | | | | - Andrea Paola Rojas Gil
- Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | |
Collapse
|
7
|
Chen SM, Hee SW, Chou SY, Liu MW, Chen CH, Mochly-Rosen D, Chang TJ, Chuang LM. Activation of Aldehyde Dehydrogenase 2 Ameliorates Glucolipotoxicity of Pancreatic Beta Cells. Biomolecules 2021; 11:biom11101474. [PMID: 34680107 PMCID: PMC8533366 DOI: 10.3390/biom11101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023] Open
Abstract
Chronic hyperglycemia and hyperlipidemia hamper beta cell function, leading to glucolipotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies reactive aldehydes, such as methylglyoxal (MG) and 4-hydroxynonenal (4-HNE), derived from glucose and lipids, respectively. We aimed to investigate whether ALDH2 activators ameliorated beta cell dysfunction and apoptosis induced by glucolipotoxicity, and its potential mechanisms of action. Glucose-stimulated insulin secretion (GSIS) in MIN6 cells and insulin secretion from isolated islets in perifusion experiments were measured. The intracellular ATP concentrations and oxygen consumption rates of MIN6 cells were assessed. Furthermore, the cell viability, apoptosis, and mitochondrial and intracellular reactive oxygen species (ROS) levels were determined. Additionally, the pro-apoptotic, apoptotic, and anti-apoptotic signaling pathways were investigated. We found that Alda-1 enhanced GSIS by improving the mitochondrial function of pancreatic beta cells. Alda-1 rescued MIN6 cells from MG- and 4-HNE-induced beta cell death, apoptosis, mitochondrial dysfunction, and ROS production. However, the above effects of Alda-1 were abolished in Aldh2 knockdown MIN6 cells. In conclusion, we reported that the activator of ALDH2 not only enhanced GSIS, but also ameliorated the glucolipotoxicity of beta cells by reducing both the mitochondrial and intracellular ROS levels, thereby improving mitochondrial function, restoring beta cell function, and protecting beta cells from apoptosis and death.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Shih-Yun Chou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Meng-Wei Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 66217)
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
8
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|
9
|
Daniel B, Livne A, Cohen G, Kahremany S, Sasson S. Endothelial Cell-Derived Triosephosphate Isomerase Attenuates Insulin Secretion From Pancreatic Beta Cells of Male Rats. Endocrinology 2021; 162:6042346. [PMID: 33341896 DOI: 10.1210/endocr/bqaa234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis that contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. Glucose-stimulated insulin secretion (GSIS) assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass spectroscopic identification of the factor, and characterization of the mechanism of action. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme triosephosphate isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on the TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI-sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex attenuating interactions.
Collapse
Affiliation(s)
- Bareket Daniel
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ariela Livne
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Guy Cohen
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | - Shirin Kahremany
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shlomo Sasson
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Cordelli E, Soda P, Iannello G. Visual4DTracker: a tool to interact with 3D + t image stacks. BMC Bioinformatics 2021; 22:53. [PMID: 33557754 PMCID: PMC7869512 DOI: 10.1186/s12859-020-03820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022] Open
Abstract
Background Biological phenomena usually evolves over time and recent advances in high-throughput microscopy have made possible to collect multiple 3D images over time, generating \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3D+t$$\end{document}3D+t (or 4D) datasets. To extract useful information there is the need to extract spatial and temporal data on the particles that are in the images, but particle tracking and feature extraction need some kind of assistance. Results This manuscript introduces our new freely downloadable toolbox, the Visual4DTracker. It is a MATLAB package implementing several useful functionalities to navigate, analyse and proof-read the track of each particle detected in any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3D+t$$\end{document}3D+t stack. Furthermore, it allows users to proof-read and to evaluate the traces with respect to a given gold standard. The Visual4DTracker toolbox permits the users to visualize and save all the generated results through a user-friendly graphical user interface. This tool has been successfully used in three applicative examples. The first processes synthetic data to show all the software functionalities. The second shows how to process a 4D image stack showing the time-lapse growth of Drosophila cells in an embryo. The third example presents the quantitative analysis of insulin granules in living beta-cells, showing that such particles have two main dynamics that coexist inside the cells. Conclusions Visual4DTracker is a software package for MATLAB to visualize, handle and manually track \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3D+t$$\end{document}3D+t stacks of microscopy images containing objects such cells, granules, etc.. With its unique set of functions, it remarkably permits the user to analyze and proof-read 4D data in a friendly 3D fashion. The tool is freely available at https://drive.google.com/drive/folders/19AEn0TqP-2B8Z10kOavEAopTUxsKUV73?usp=sharing
Collapse
Affiliation(s)
- Ermanno Cordelli
- Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giulio Iannello
- Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
12
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
14
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
15
|
Ferreri C, Sansone A, Buratta S, Urbanelli L, Costanzi E, Emiliani C, Chatgilialoglu C. The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers (Basel) 2020; 12:E900. [PMID: 32272739 PMCID: PMC7226157 DOI: 10.3390/cancers12040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
A new pathway leading to the n-10 fatty acid series has been recently evidenced, starting from sapienic acid, a monounsaturated fatty acid (MUFA) resulting from the transformation of palmitic acid by delta-6 desaturase. Sapienic acid has attracted attention as a novel marker of cancer cell plasticity. Here, we analyzed fatty acids, including the n-10 fatty acid contents, and for the first time, compared cell membranes and the corresponding extracellular vesicles (EV) of two human prostatic adenocarcinoma cell lines of different aggressiveness (PC3 and LNCaP). The n-10 components were 9-13% of the total fatty acids in both cancer cell lines and EVs, with total MUFA levels significantly higher in EVs of the most aggressive cell type (PC3). High sapienic/palmitoleic ratios indicated the preference for delta-6 versus delta-9 desaturase enzymatic activity in these cell lines. The expressions analysis of enzymes involved in desaturation and elongation by qRT-PCR showed a higher desaturase activity in PC3 and a higher elongase activity toward polyunsaturated fatty acids than toward saturated fatty acids, compared to LNCaP cells. Our results improve the present knowledge in cancer fatty acid metabolism and lipid phenotypes, highlighting EV lipidomics to monitor positional fatty acid isomer profiles and MUFA levels in cancer.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| |
Collapse
|
16
|
Metabolomics Analysis of Nutrient Metabolism in β-Cells. J Mol Biol 2020; 432:1429-1445. [DOI: 10.1016/j.jmb.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
|
17
|
d'Angelo M, Castelli V, Tupone MG, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Cimini AM, Benedetti E. Lifestyle and Food Habits Impact on Chronic Diseases: Roles of PPARs. Int J Mol Sci 2019; 20:ijms20215422. [PMID: 31683535 PMCID: PMC6862628 DOI: 10.3390/ijms20215422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert important functions in mediating the pleiotropic effects of diverse exogenous factors such as physical exercise and food components. Particularly, PPARs act as transcription factors that control the expression of genes implicated in lipid and glucose metabolism, and cellular proliferation and differentiation. In this review, we aim to summarize the recent advancements reported on the effects of lifestyle and food habits on PPAR transcriptional activity in chronic disease.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
18
|
The Combination of Whole Cell Lipidomics Analysis and Single Cell Confocal Imaging of Fluidity and Micropolarity Provides Insight into Stress-Induced Lipid Turnover in Subcellular Organelles of Pancreatic Beta Cells. Molecules 2019; 24:molecules24203742. [PMID: 31627330 PMCID: PMC6833103 DOI: 10.3390/molecules24203742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Modern omics techniques reveal molecular structures and cellular networks of tissues and cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized all disciplines in cellular and molecular biology. These methods have also been employed in current investigations on the structure and function of insulin secreting beta cells under normal and pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic and transcriptomic analyses have pointed to significant alterations in protein expression and function in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in beta cells. This review focuses on confocal microscopy-based detection of these profound alterations in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells under such nutritional load conditions.
Collapse
|
19
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
20
|
Carillon J, Saby M, Barial S, Sansone A, Scanferlato R, Gayrard N, Lajoix AD, Jover B, Chatgilialoglu C, Ferreri C. Melon juice concentrate supplementation in an animal model of obesity: Involvement of relaxin and fatty acid pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Li J, Xu S, Liu Y, Yan Z, Zhang F, Lv Q, Tong N. Activated PPARβ/δ Protects Pancreatic β Cells in Type 2 Diabetic Goto-Kakizaki Rats from Lipoapoptosis via GPR40. Lipids 2019; 54:603-616. [PMID: 31364177 DOI: 10.1002/lipd.12182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
GW501516-activated peroxisome proliferator-activated receptor (PPAR) β/δ and G-protein-coupled receptor (GPR) 40 were shown to protect pancreatic β cells against lipoapoptosis. Therefore, this study aimed to investigate whether activated PPARβ/δ could protect type 2 diabetic rats from lipoapoptosis through regulation of GPR40 and to compare the protective effects of activated PPARβ/δ and PPARγ. We made an animal model of type 2 diabetic lipoapoptosis by feeding spontaneously type 2 diabetic Goto-Kakizaki (GK) rats with a high-fat diet (HFD) to evaluate the effects of PPARβ/δ on islet β cell apoptosis. And, treated INS-1 cells with 0.5 mM palmitate (PAM) in the absence/presence of GW501516 (a specific agonist of PPAR β/δ) and with/without transfection of GPR40 siRNA to explore the underlying molecular mechanism. HFD aggravated GK rats' poorer INSR30, lower mass, greater apoptosis of β cells, lower mass, and lower expression of GPR40, which were similarly improved by GW501516 at 3 or 6 mg/kg day and pioglitazone. Compared with pioglitazone, GW501516 caused more weight loss and had no effect on insulin resistance. GW501516 protected INS-1 cells from PAM-induced apoptosis by upregulating GPR40 and activating Akt/Bcl-2/caspase-3. Activated extracellular regulated protein kinases (ERK) was relevant to the lipoapoptosis in INS-1 cells, but was not involved in the antilipoapoptotic effect of GW501516. These results showed that the PPARβ/δ agonist GW501516 protected β cells from lipoapoptosis and improved β cell mass by upregulating GPR40 and activating the Akt/Bcl-2/caspase-3 pathway, but not the ERK-signaling pathway.
Collapse
Affiliation(s)
- Juan Li
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Shishi Xu
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Yuqi Liu
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Fang Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Qingguo Lv
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| |
Collapse
|
22
|
Hong F, Pan S, Guo Y, Xu P, Zhai Y. PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 2019; 24:molecules24142545. [PMID: 31336903 PMCID: PMC6680900 DOI: 10.3390/molecules24142545] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
It has been more than 36 years since peroxisome proliferator-activated receptors (PPARs) were first recognized as enhancers of peroxisome proliferation. Consequently, many studies in different fields have illustrated that PPARs are nuclear receptors that participate in nutrient and energy metabolism and regulate cellular and whole-body energy homeostasis during lipid and carbohydrate metabolism, cell growth, cancer development, and so on. With increasing challenges to human health, PPARs have attracted much attention for their ability to ameliorate metabolic syndromes. In our previous studies, we found that the complex functions of PPARs may be used as future targets in obesity and atherosclerosis treatments. Here, we review three types of PPARs that play overlapping but distinct roles in nutrient and energy metabolism during different metabolic states and in different organs. Furthermore, research has emerged showing that PPARs also play many other roles in inflammation, central nervous system-related diseases, and cancer. Increasingly, drug development has been based on the use of several selective PPARs as modulators to diminish the adverse effects of the PPAR agonists previously used in clinical practice. In conclusion, the complex roles of PPARs in metabolic networks keep these factors in the forefront of research because it is hoped that they will have potential therapeutic effects in future applications.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
23
|
Xepapadaki E, Maulucci G, Constantinou C, Karavia EA, Zvintzou E, Daniel B, Sasson S, Kypreos KE. Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1351-1360. [DOI: 10.1016/j.bbadis.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
24
|
Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040832. [PMID: 30769921 PMCID: PMC6412212 DOI: 10.3390/ijms20040832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.
Collapse
Affiliation(s)
- Roberta Scanferlato
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | | | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco De Spirito
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Giuseppe Maulucci
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| |
Collapse
|
25
|
Anderson EJ, Vistoli G, Katunga LA, Funai K, Regazzoni L, Monroe TB, Gilardoni E, Cannizzaro L, Colzani M, De Maddis D, Rossoni G, Canevotti R, Gagliardi S, Carini M, Aldini G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest 2018; 128:5280-5293. [PMID: 30226473 DOI: 10.1172/jci94307] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lalage A Katunga
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca Cannizzaro
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Uchida K, Shibata T, Toyokuni S, Daniel B, Zarkovic K, Zarkovic N, Sasson S. Development of a novel monoclonal antibody against 4-hydroxy-2E,6Z-dodecadienal (4-HDDE)-protein adducts: Immunochemical application in quantitative and qualitative analyses of lipid peroxidation in vitro and ex vivo. Free Radic Biol Med 2018; 124:12-20. [PMID: 29807161 DOI: 10.1016/j.freeradbiomed.2018.05.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
Non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) results in the formation of various α,β-unsaturated aldehydes, of which 4-hydroxyalkenals are abundant. The propensity of n-6 PUFA, such as linoleic acid, γ-linolenic acid and arachidonic acid, to undergo radical-induced peroxidation and generate 4-hydroxy-2E-nonenal (4-HNE) has been widely demonstrated. The ability of the latter to form covalent adducts with macromolecules and modify cellular functions has been linked to numerous pathological processes. Concomitantly, evidence has accumulated on specific signaling properties of low concentrations of 4-HNE that may induce hormetic and protective responses to peroxidation stress in cells. It has long been known that peroxidation of PUFA, and particularly arachidonic acid, also give rise to 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is more chemically reactive than 4-HNE. Few studies on 4-HDDE revealed its ability to avidly interact covalently with electronegative moieties in macromolecules and to its ability to selectively activate the transcriptional regulator Peroxisome Proliferator-Activated Receptor (PPAR)-β/δ. The research on 4-HDDE has been impeded due to the lack of available pure 4-HDDE and antibodies that recognize 4-HDDE-modified epitopes in proteins. The purpose of this study was to employ an established procedure to synthesize 4-HDDE and use it to create and characterize a monoclonal antibody against 4-HDDE-modified proteins and establish its application for ELISA and immunohistochemical analysis of cells and tissues and further expand lipid peroxidation research.
Collapse
Affiliation(s)
- Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bareket Daniel
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre "Zagreb", University of Zagreb School of Medicine, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute "Rudjer Boskovic", Zagreb, Croatia
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel.
| |
Collapse
|
27
|
Kim M, Kim M, Yoo HJ, Sun Y, Lee SH, Lee JH. PPARD rs7770619 polymorphism in a Korean population: Association with plasma malondialdehyde and impaired fasting glucose or newly diagnosed type 2 diabetes. Diab Vasc Dis Res 2018; 15:360-363. [PMID: 29776318 DOI: 10.1177/1479164118776414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Both the peroxisome proliferator-activated receptor delta gene ( PPARD) and malondialdehyde plasma concentrations may play a role in impaired glucose metabolism. The aim of this work was to determine whether PPARD is a candidate gene for impaired fasting glucose or type 2 diabetes and whether a particular genetic variant shows association with plasma malondialdehyde levels. Among the 10 single-nucleotide polymorphisms that were most strongly associated with malondialdehyde, the rs7770619 polymorphism in PPARD was analysed in 1798 subjects with normal fasting glucose, impaired fasting glucose and newly diagnosed type 2 diabetes. Our data demonstrate that the CT genotype of the rs7770619 is associated with a lower risk of impaired fasting glucose or type 2 diabetes together with lower plasma levels of malondialdehyde in both groups ( p < 0.05). Glucose levels and the rs7770619 are significantly associated in individuals with normal fasting glucose, and a trend towards an association between glucose levels and rs7770619 is also observed in individuals with impaired fasting glucose or type 2 diabetes. In conclusion, PPARD rs7770619 is a novel candidate variant for impaired fasting glucose and type 2 diabetes and shows association with malondialdehyde levels. Future work is required to understand the mechanisms for these associations and the clinical implications of our findings.
Collapse
Affiliation(s)
- Minjoo Kim
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Minkyung Kim
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Hye Jin Yoo
- 2 Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Yao Sun
- 3 Department of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Sang-Hyun Lee
- 4 Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Jong Ho Lee
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
- 2 Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
- 5 National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
28
|
Maulucci G, Di Giacinto F, De Angelis C, Cohen O, Daniel B, Ferreri C, De Spirito M, Sasson S. Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:783-793. [PMID: 29654826 DOI: 10.1016/j.bbalip.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Organisms store fatty acids in triacylglycerols in the form of lipid droplets, or hydrolyze triacylglycerols in response to energetic demands via activation of lipolytic or storage pathways. These pathways are complex sets of sequential reactions that are finely regulated in different cell types. Here we present a high spatial and temporal resolution-based method for the quantification of the turnover of fatty acids into triglycerides in live cells without introducing sample preparation artifacts. We performed confocal spectral imaging of intracellular micropolarity in cultured insulin secreting beta cells to detect micropolarity variations as they occur in time and at different pixels of microscope images. Acquired data are then analyzed in the framework of the spectral phasors technique. The method furnishes a metabolic parameter, which quantitatively assesses fatty acids - triacylglycerols turnover and the activation of lipolysis and storage pathways. Moreover, it provides a polarity profile, which represents the contribution of hyperpolar, polar and non-polar classes of lipids. These three different classes can be visualized on the image at a submicrometer resolution, revealing the spatial localization of lipids in cells under physiological and pathological settings. This new method allows for a fine-tuned, real-time visualization of the turnover of fatty acids into triglycerides in live cells with submicrometric resolution. It also detects imbalances between lipid storage and usage, which may lead to metabolic disorders within living cells and organisms.
Collapse
Affiliation(s)
- Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Flavio Di Giacinto
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Claudio De Angelis
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ofir Cohen
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Bareket Daniel
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
29
|
Lamichane S, Dahal Lamichane B, Kwon SM. Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis. Int J Mol Sci 2018; 19:ijms19040949. [PMID: 29565812 PMCID: PMC5979443 DOI: 10.3390/ijms19040949] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor superfamily, are important in whole-body energy metabolism. PPARs are classified into three isoforms, namely, PPARα, β/δ, and γ. They are collectively involved in fatty acid oxidation, as well as glucose and lipid metabolism throughout the body. Importantly, the three isoforms of PPARs have complementary and distinct metabolic activities for energy balance at a cellular and whole-body level. PPARs also act with other co-regulators to maintain energy homeostasis. When endogenous ligands bind with these receptors, they regulate the transcription of genes involved in energy homeostasis. However, the exact molecular mechanism of PPARs in energy metabolism remains unclear. In this review, we summarize the importance of PPAR signals in multiple organs and focus on the pivotal roles of PPAR signals in cellular and whole-body energy homeostasis.
Collapse
Affiliation(s)
- Shreekrishna Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Babita Dahal Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
30
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
A Novel Phenylchromane Derivative Increases the Rate of Glucose Uptake in L6 Myotubes and Augments Insulin Secretion from Pancreatic Beta-Cells by Activating AMPK. Pharm Res 2017; 34:2873-2890. [DOI: 10.1007/s11095-017-2271-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/24/2017] [Indexed: 01/04/2023]
|
32
|
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 2017; 111:102-109. [PMID: 27600453 DOI: 10.1016/j.freeradbiomed.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
Since the landmark discovery of α,β-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,β-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli.
Collapse
Affiliation(s)
- Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Hebrew University Faculty of Medicine, Jerusalem 9112001, Israel.
| |
Collapse
|
33
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
34
|
Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, Spyridonidis A, Pani G, De Spirito M, Chatgilialoglu C, Ferreri C, Kypreos KE, Sasson S. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res 2016; 50:S40-S50. [PMID: 27593084 DOI: 10.1080/10715762.2016.1231403] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolic homeostasis of fatty acids is complex and well-regulated in all organisms. The biosynthesis of saturated fatty acids (SFA) in mammals provides substrates for β-oxidation and ATP production. Monounsaturated fatty acids (MUFA) are products of desaturases that introduce a methylene group in cis geometry in SFA. Polyunsaturated fatty acids (n-6 and n-3 PUFA) are products of elongation and desaturation of the essential linoleic acid and α-linolenic acid, respectively. The liver processes dietary fatty acids and exports them in lipoproteins for distribution and storage in peripheral tissues. The three types of fatty acids are integrated in membrane phospholipids and determine their biophysical properties and functions. This study was aimed at investigating effects of fatty acids on membrane biophysical properties under varying nutritional and pathological conditions, by integrating lipidomic analysis of membrane phospholipids with functional two-photon microscopy (fTPM) of cellular membranes. This approach was applied to two case studies: first, pancreatic beta-cells, to investigate hormetic and detrimental effects of lipids. Second, red blood cells extracted from a genetic mouse model defective in lipoproteins, to understand the role of lipids in hepatic diseases and metabolic syndrome and their effect on circulating cells.
Collapse
Affiliation(s)
- G Maulucci
- a Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - O Cohen
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| | - B Daniel
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| | - A Sansone
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - P I Petropoulou
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - S Filou
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - A Spyridonidis
- e Hematology Department , University of Patras Medical School , Rio , Greece
| | - G Pani
- f Institute of General Pathology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - M De Spirito
- a Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - C Chatgilialoglu
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - C Ferreri
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - K E Kypreos
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - S Sasson
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| |
Collapse
|
35
|
Ferreri C, Golding BT, Jahn U, Ravanat JL. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines. Free Radic Res 2016; 50:S112-S128. [PMID: 27750460 DOI: 10.1080/10715762.2016.1248961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The COST Action CM1201 "Biomimetic Radical Chemistry" has been active since December 2012 for 4 years, developing research topics organized into four working groups: WG1 - Radical Enzymes, WG2 - Models of DNA damage and consequences, WG3 - Membrane stress, signalling and defenses, and WG4 - Bio-inspired synthetic strategies. International collaborations have been established among the participating 80 research groups with brilliant interdisciplinary achievements. Free radical research with a biomimetic approach has been realized in the COST Action and are summarized in this overview by the four WG leaders.
Collapse
Affiliation(s)
- Carla Ferreri
- a ISOF, Consiglio Nazionale delle Ricerche, BioFreeRadicals Group , Bologna , Italy
| | - Bernard T Golding
- b School of Chemistry, Bedson Building, Newcastle University , Newcastle-upon-Tyne , UK
| | - Ullrich Jahn
- c Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Prague , Czech Republic
| | - Jean-Luc Ravanat
- d INAC-SCIB & CEA, INAC-SyMMES Laboratoire des Lésions des Acides Nucléiques , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
36
|
4-Hydroxyalkenal-activated PPARδ mediates hormetic interactions in diabetes. Biochimie 2016; 136:85-89. [PMID: 27768859 DOI: 10.1016/j.biochi.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Activated peroxisome proliferator-activated receptor-δ (PPARδ) induces the expression of genes encoding enzymes that metabolize fatty acids and carbohydrate. Attempts to identify cellular activators of PPARδ produced large lists of various fatty acids and their metabolic derivatives; however, there is no consensus on specific and selective binding interactions of natural ligands with PPARδ. Most models on binding interactions within the ligand binding domain (LBD) of PPARδ have been derived from analyses of PPARδ-LBD crystals formed with synthetic low molecular weight ligands. Nonetheless, crystals of the whole receptor with natural ligands or of its heterodimer with its cognate retinoid X receptor (RXR) are not yet available for analysis. We have found that 4-hydroxyalkenals, non-enzymatic peroxidation products of polyunsaturated fatty acids (PUFA), namely, 4-hydroxy-2E,6Z-dodecadienal (4-HDDE) and 4-hydroxy-2E-nonenal (4-HNE), activate PPARδ in vascular endothelial cells and insulin-secreting beta cells, respectively. In both cases activated PPARδ induced adaptive responses that allowed the cells to adjust to ambient stressful metabolic conditions. This review article addresses the interactions of 4-hydroxyalkenals with PPARδ and the resulting hormetic interactions in cells exposed to nutrient overload conditions.
Collapse
|
37
|
Zhang SS, Huang ZW, Li LX, Fu JJ, Xiao B. Identification of CD200+ colorectal cancer stem cells and their gene expression profile. Oncol Rep 2016; 36:2252-60. [DOI: 10.3892/or.2016.5039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
38
|
Vázquez-Carrera M. Unraveling the Effects of PPARβ/δ on Insulin Resistance and Cardiovascular Disease. Trends Endocrinol Metab 2016; 27:319-334. [PMID: 27005447 DOI: 10.1016/j.tem.2016.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
Abstract
Insulin resistance precedes dyslipidemia and type 2 diabetes mellitus (T2DM) development. Preclinical evidence suggests that peroxisome proliferator-activated receptor (PPAR) β/δ activators may prevent and treat obesity-induced insulin resistance and T2DM, while clinical trials highlight their potential utility in dyslipidemia. This review summarizes recent mechanistic insights into the antidiabetic effects of PPARβ/δ activators, including their anti-inflammatory actions, their ability to inhibit endoplasmic reticulum (ER) stress and hepatic lipogenesis, and to improve atherogenesis and insulin sensitivity, as well as their capacity to activate pathways that are also stimulated by exercise. Findings from clinical trials are also examined. Dissecting the effects of PPARβ/δ ligands on insulin sensitivity and atherogenesis may provide a basis for the development of therapies for the prevention and treatment of T2DM and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
39
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
40
|
Cort A, Ozben T, Melchiorre M, Chatgilialoglu C, Ferreri C, Sansone A. Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:434-41. [PMID: 26656160 DOI: 10.1016/j.bbamem.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Bleomycin is used in chemotherapy regimens for the treatment of patients having testicular germ-cell tumor (TGCT). There is no study in the literature investigating the effects of bleomycin on membrane lipid profile in testicular cancer cells. We investigated membrane fatty acid (FA) profiles isolated, derivatized and analyzed by gas chromatography of NTera-2 testicular cancer cells incubated with bleomycin (Bleo) for 24 h in the absence and presence of N-Acetyl-L-Cysteine (NAC) and curcumin (Cur) as commonly used antioxidant adjuvants. At the same time the MAPK pathway and EGFR levels were followed up. Bleomycin treatment increased significantly saturated fatty acids (SFA) of phospholipids at the expense of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Bleomycin also led to a significant increase in the trans lipid isomers of oleic and arachidonic acids due to its free radical producing effect. Incubation with bleomycin increased the p38 MAPK and JNK levels and downregulated EGFR pathway. Coincubation of bleomycin with NAC reversed effects caused by bleomycin. Our results highlight the important role of membrane fatty acid remodeling occurring during the use of bleomycin and its concurrent use with antioxidants which can adjuvate the cytotoxic effects of the chemotherapeutic agents.
Collapse
Affiliation(s)
- A Cort
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences SANKO University, Gaziantep, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences SANKO University, Gaziantep, Turkey; Institute for the Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy; Akdeniz University, Medical Faculty, Department of Biochemistry, Antalya, Turkey
| | - T Ozben
- Akdeniz University, Medical Faculty, Department of Biochemistry, Antalya, Turkey.
| | - M Melchiorre
- Institute for the Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - C Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, Athens, Greece
| | - C Ferreri
- Institute for the Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - A Sansone
- Institute for the Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
41
|
Rector JL, Thomas GN, Burns VE, Dowd JB, Herr RM, Moss PA, Jarczok MN, Hoffman K, Fischer JE, Bosch JA. Elevated HbA(1c) levels and the accumulation of differentiated T cells in CMV(+) individuals. Diabetologia 2015; 58:2596-605. [PMID: 26290049 PMCID: PMC4589544 DOI: 10.1007/s00125-015-3731-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Biological ageing of the immune system, or immunosenescence, predicts poor health and increased mortality. A hallmark of immunosenescence is the accumulation of differentiated cytotoxic T cells (CD27(-)CD45RA(+/-); or dCTLs), partially driven by infection with the cytomegalovirus (CMV). Immune impairments reminiscent of immunosenescence are also observed in hyperglycaemia, and in vitro studies have illustrated mechanisms by which elevated glucose can lead to increased dCTLs. This study explored associations between glucose dysregulation and markers of immunosenescence in CMV(+) and CMV(-) individuals. METHODS A cross-sectional sample of participants from an occupational cohort study (n = 1,103, mean age 40 years, 88% male) were assessed for HbA(1c) and fasting glucose levels, diabetes, cardiovascular risk factors (e.g. lipids), numbers of circulating effector memory (EM; CD27(-)CD45RA(-)) and CD45RA re-expressing effector memory (EMRA; CD27(-)CD45RA(+)) T cells, and CMV infection status. Self-report and physical examination assessed anthropometric, sociodemographic and lifestyle factors. RESULTS Among CMV(+) individuals (n = 400), elevated HbA(1c) was associated with increased numbers of EM (B = 2.75, p < 0.01) and EMRA (B = 2.90, p < 0.01) T cells, which was robust to adjustment for age, sex, sociodemographic variables and lifestyle factors. Elevated EM T cells were also positively associated with total cholesterol (B = 0.04, p < 0.05) after applying similar adjustments. No associations were observed in CMV(-) individuals. CONCLUSIONS/INTERPRETATION The present study identified consistent associations of unfavourable glucose and lipid profiles with accumulation of dCTLs in CMV(+) individuals. These results provide evidence that the impact of metabolic risk factors on immunity and health can be co-determined by infectious factors, and provide a novel pathway linking metabolic risk factors with accelerated immunosenescence.
Collapse
Affiliation(s)
- Jerrald L Rector
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - G Neil Thomas
- School of Health and Population Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria E Burns
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jennifer B Dowd
- CUNY School of Public Health, New York, NY, USA
- CUNY Institute for Demographic Research, New York, NY, USA
| | - Raphael M Herr
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Paul A Moss
- Cancer Research UK Centre, University of Birmingham, Birmingham, UK
| | - Marc N Jarczok
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Kristina Hoffman
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Joachim E Fischer
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Jos A Bosch
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.
- Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5:358-366. [PMID: 26133261 PMCID: PMC4501559 DOI: 10.1016/j.redox.2015.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. Nox is a unique class of enzymes whose sole function is the generation of ROS. Nox-derived ROS play a major role in cell physiology. Enhanced expression and activation of Nox has been reported in numerous pathologies. Nox expression is regulated via complex transcription factor-epigenetic mechanisms. Understanding of Nox regulation is essential to counteract ROS-induced cell damage.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Shlomo Sasson
- The Institute for Drug Research, Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
43
|
Metabolomics applied to the pancreatic islet. Arch Biochem Biophys 2015; 589:120-30. [PMID: 26116790 DOI: 10.1016/j.abb.2015.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/18/2023]
Abstract
Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies.
Collapse
|
44
|
Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 2015; 58:1333-43. [PMID: 25810039 DOI: 10.1007/s00125-015-3566-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Membrane phospholipids are the major intracellular source for fatty acid-derived mediators, which regulate myriad cell functions. We showed previously that high glucose levels triggered the hydrolysis of polyunsaturated fatty acids from beta cell phospholipids. These fatty acids were subjected to free radical-catalysed peroxidation to generate the bioactive aldehyde 4-hydroxy-2E-nonenal (4-HNE). The latter activated the nuclear peroxisome proliferator-activated receptor-δ (PPARδ), which in turn augmented glucose-stimulated insulin secretion. The present study aimed at investigating the combined effects of glucose and fatty acid overload on phospholipid turnover and the subsequent generation of lipid mediators, which affect insulin secretion and beta cell viability. METHODS INS-1E cells were incubated with increasing glucose concentrations (5-25 mmol/l) without or with palmitic acid (PA; 50-500 μmol/l) and taken for fatty acid-based lipidomic analysis and functional assays. Rat isolated islets of Langerhans were used similarly. RESULTS PA was incorporated into membrane phospholipids in a concentration- and time-dependent manner; incorporation was highest at 25 mmol/l glucose. This was coupled to a rapid exchange with saturated, mono-unsaturated and polyunsaturated fatty acids. Importantly, released arachidonic acid and linoleic acid were subjected to peroxidation, resulting in the generation of 4-HNE, which further augmented insulin secretion by activating PPARδ in beta cells. However, this adaptive increase in insulin secretion was abolished at high glucose and PA levels, which induced endoplasmic reticulum stress, apoptosis and cell death. CONCLUSIONS/INTERPRETATION These findings highlight a key role for phospholipid remodelling and fatty acid peroxidation in mediating adaptive and cytotoxic interactions induced by nutrient overload in beta cells.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem, 9112102, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Riahi Y, Kaiser N, Cohen G, Abd-Elrahman I, Blum G, Shapira OM, Koler T, Simionescu M, Sima AV, Zarkovic N, Zarkovic K, Orioli M, Aldini G, Cerasi E, Leibowitz G, Sasson S. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner. J Cell Mol Med 2015; 19:1887-99. [PMID: 25754218 PMCID: PMC4549039 DOI: 10.1111/jcmm.12561] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated β-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.
Collapse
Affiliation(s)
- Yael Riahi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.,Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Guy Cohen
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ihab Abd-Elrahman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Galia Blum
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oz M Shapira
- Department of Cardiothoracic Surgery, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Tomer Koler
- Department of Cardiothoracic Surgery, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology N. Simionescu of The Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Institute of Cellular Biology and Pathology N. Simionescu of The Romanian Academy, Bucharest, Romania
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Kamelija Zarkovic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marica Orioli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Erol Cerasi
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Shlomo Sasson
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
46
|
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are a subgroup of fatty acids with broad health benefits, such as lowering blood triglycerides and decreasing the risk of some types of cancer. A beneficial effect of n-3 PUFAs in diabetes is indicated by results from some studies. Defective insulin secretion is a fundamental pathophysiological change in both types 1 and 2 diabetes. Emerging studies have provided evidence of a connection between n-3 PUFAs and improved insulin secretion from pancreatic β-cells. This review summarizes the recent findings in this regard and discusses the potential mechanisms by which n-3 PUFAs influence insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Catherine B Chan
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| |
Collapse
|
47
|
Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARα and PPARβ/δ. Cell Tissue Res 2015; 361:593-604. [PMID: 25722086 DOI: 10.1007/s00441-015-2120-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/29/2014] [Indexed: 01/04/2023]
Abstract
High glucose induces vascular smooth muscle cell (SMC) dysfunction by generating oxidative stress attributable, in part, to the up-regulated NADPH oxidases (Nox). We have attempted to elucidate the high-glucose-generated molecular signals that mediate this effect and hypothesize that products of high-glucose-induced lipid peroxidation regulate Nox by activating peroxisome proliferator-activated receptors (PPARs). Human aortic SMCs were exposed to glucose (5.5-25 mM) or 4-hydroxynonenal (1-25 μM, 4-HNE). Lucigenin assay, real-time polymerase chain reaction, western blot, and promoter analyses were employed to investigate Nox. We found that high glucose generated an increase in Nox activity and expression. It also promoted oxidative stress that consequently induced lipid peroxidation, which resulted in the production of 4-HNE. Pharmacological inhibition of Nox activity significantly reduced the formation of high-glucose-induced 4-HNE. Exposure of SMCs to non-cytotoxic concentrations (1-10 μM) of 4-HNE alone mimicked the effect of high glucose incubation, whereas scavenging of 4-HNE by N-acetyl L-cysteine completely abolished both the effects of high glucose and 4-HNE. The latter exerted its effect by activating PPARα and PPARβ/δ, but not PPARγ, as assessed pharmacologically by the inhibitory effect of selective antagonists and following the silencing of the expression of these receptors. These new data indicate that 4-HNE, generated following Nox activation, functions as an endogenous activator of PPARα and PPARβ/δ. The newly discovered "lipid peroxidation products-PPARs-Nox axis" represents a novel mechanism of Nox regulation and an additional therapeutic target for oxidative stress in diabetes.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu Street, 050568, Bucharest, Romania,
| | | | | | | | | | | | | |
Collapse
|
48
|
Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Activation of PPARδ: from computer modelling to biological effects. Br J Pharmacol 2015; 172:754-70. [PMID: 25255770 PMCID: PMC4301687 DOI: 10.1111/bph.12950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022] Open
Abstract
PPARδ is a ligand-activated receptor that dimerizes with another nuclear receptor of the retinoic acid receptor family. The dimers interact with other co-activator proteins and form active complexes that bind to PPAR response elements and promote transcription of genes involved in lipid metabolism. It appears that various natural fatty acids and their metabolites serve as endogenous activators of PPARδ; however, there is no consensus in the literature on the nature of the prime activators of the receptor. In vitro and cell-based assays of PPARδ activation by fatty acids and their derivatives often produce conflicting results. The search for synthetic and selective PPARδ agonists, which may be pharmacologically useful, is intense. Current rational modelling used to obtain such compounds relies mostly on crystal structures of synthetic PPARδ ligands with the recombinant ligand binding domain (LBD) of the receptor. Here, we introduce an original computational prediction model for ligand binding to PPARδ LBD. The model was built based on EC50 data of 16 ligands with available crystal structures and validated by calculating binding probabilities of 82 different natural and synthetic compounds from the literature. These compounds were independently tested in cell-free and cell-based assays for their capacity to bind or activate PPARδ, leading to prediction accuracy of between 70% and 93% (depending on ligand type). This new computational tool could therefore be used in the search for natural and synthetic agonists of the receptor.
Collapse
Affiliation(s)
- Shirin Kahremany
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Ariela Livne
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| | - Arie Gruzman
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Hanoch Senderowitz
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
49
|
Hahn D, Chin J, Kim H, Yang I, Won DH, Ekins M, Choi H, Nam SJ, Kang H. Sesquiterpenoids with PPARδ agonistic effect from a Korean marine sponge Ircinia sp. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|