1
|
Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and pathology: Tracing the path of neuregulin 4. Genes Dis 2024; 11:687-700. [PMID: 37692526 PMCID: PMC10491916 DOI: 10.1016/j.gendis.2023.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neuregulin 4 (Nrg4), an epidermal growth factor (EGF) family member, can bind to and activate the ErbB4 receptor tyrosine kinase. Nrg4 has five different isoforms by alternative splicing and performs a wide variety of functions. Nrg4 is involved in a spectrum of physiological processes including neurobiogenesis, lipid metabolism, glucose metabolism, thermogenesis, and angiogenesis. In pathological processes, Nrg4 inhibits inflammatory factor levels and suppresses apoptosis in inflammatory diseases. In addition, Nrg4 could ameliorate obesity, insulin resistance, and cardiovascular diseases. Furthermore, Nrg4 improves non-alcoholic fatty liver disease (NAFLD) by promoting autophagy, improving lipid metabolism, and inhibiting cell death of hepatocytes. Besides, Nrg4 is closely related to the development of cancer, hyperthyroidism, and some other diseases. Therefore, elucidation of the functional role and mechanisms of Nrg4 will provide a clearer view of the therapeutic potential and possible risks of Nrg4.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jieying Zhu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Hongyang Luo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wangjing Mu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Itkonen A, Hakkola J, Rysä J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch Toxicol 2023; 97:2861-2877. [PMID: 37642746 PMCID: PMC10504106 DOI: 10.1007/s00204-023-03575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by collecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome (AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via activation of sterol regulatory element binding protein 2-pathway.
Collapse
Affiliation(s)
- Anna Itkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
3
|
Robinson E. Veganism and body weight: An N of 1 self-experiment. Physiol Behav 2023; 270:114301. [PMID: 37474086 DOI: 10.1016/j.physbeh.2023.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The causal effect that veganism has on body weight has not been scientifically examined. An N of 1 self-experiment was conducted in which blinded body weight and additional behavioural and psychological measures were assessed during two phases of vegan vs. non-vegan lifestyle adherence. In study phase 1, body weight change was -0.8 kg over 1 month of veganism (vs. +0.5 kg non-vegan month). In study phase 2, weight change was -1.2 kg over two veganism months (vs. +1.6 kg non-vegan months). Behavioural and psychological measures were similar during vegan vs. non-vegan periods. Veganism appeared to reduce body weight in this N of 1 self-experiment.
Collapse
Affiliation(s)
- Eric Robinson
- Institute of Population Health, University of Liverpool, L69 7ZA, United Kingdom.
| |
Collapse
|
4
|
Sohn P, McLaughlin MR, Krishnan P, Wu W, Slak Rupnik M, Takasu A, Senda T, Lee CC, Kono T, Evans-Molina C. Stromal Interaction Molecule 1 Maintains β-Cell Identity and Function in Female Mice Through Preservation of G-Protein-Coupled Estrogen Receptor 1 Signaling. Diabetes 2023; 72:1433-1445. [PMID: 37478155 DOI: 10.2337/db22-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Altered endoplasmic reticulum (ER) Ca2+ signaling has been linked with β-cell dysfunction and diabetes development. Store-operated Ca2+ entry replenishes ER Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). For characterization of the in vivo impact of STIM1 loss, mice with β-cell-specific STIM1 deletion (STIM1Δβ mice) were generated and challenged with high-fat diet. Interestingly, β-cell dysfunction was observed in female, but not male, mice. Female STIM1Δβ mice displayed reductions in β-cell mass, a concomitant increase in α-cell mass, and reduced expression of markers of β-cell maturity, including MafA and UCN3. Consistent with these findings, STIM1 expression was inversely correlated with HbA1c levels in islets from female, but not male, human organ donors. Mechanistic assays demonstrated that the sexually dimorphic phenotype observed in STIM1Δβ mice was due, in part, to loss of signaling through the noncanonical 17-β estradiol receptor (GPER1), as GPER1 knockdown and inhibition led to a similar loss of expression of β-cell maturity genes in INS-1 cells. Together, these data suggest that STIM1 orchestrates pancreatic β-cell function and identity through GPER1-mediated estradiol signaling. ARTICLE HIGHLIGHTS Store-operated Ca2+ entry replenishes endoplasmic reticulum (ER) Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). β-Cell-specific deletion of STIM1 results in a sexually dimorphic phenotype, with β-cell dysfunction and loss of identity in female but not male mice. Expression of the noncanonical 17-β estradiol receptor (GPER1) is decreased in islets of female STIM1Δβ mice, and modulation of GPER1 levels leads to alterations in expression of β-cell maturity genes in INS-1 cells.
Collapse
Affiliation(s)
- Paul Sohn
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Madeline R McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Akira Takasu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki, Japan
| | - Chih-Chun Lee
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
| | - Carmella Evans-Molina
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Mehlig K, Foraita R, Nagrani R, Wright MN, De Henauw S, Molnár D, Moreno LA, Russo P, Tornaritis M, Veidebaum T, Lissner L, Kaprio J, Pigeot I. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I.Family children's cohort. Diabetologia 2023; 66:1914-1924. [PMID: 37420130 PMCID: PMC10473990 DOI: 10.1007/s00125-023-05957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 07/09/2023]
Abstract
AIMS/HYPOTHESIS There is increasing evidence for the existence of shared genetic predictors of metabolic traits and neurodegenerative disease. We previously observed a U-shaped association between fasting insulin in middle-aged women and dementia up to 34 years later. In the present study, we performed genome-wide association (GWA) analyses for fasting serum insulin in European children with a focus on variants associated with the tails of the insulin distribution. METHODS Genotyping was successful in 2825 children aged 2-14 years at the time of insulin measurement. Because insulin levels vary during childhood, GWA analyses were based on age- and sex-specific z scores. Five percentile ranks of z-insulin were selected and modelled using logistic regression, i.e. the 15th, 25th, 50th, 75th and 85th percentile ranks (P15-P85). Additive genetic models were adjusted for age, sex, BMI, survey year, survey country and principal components derived from genetic data to account for ethnic heterogeneity. Quantile regression was used to determine whether associations with variants identified by GWA analyses differed across quantiles of log-insulin. RESULTS A variant in the SLC28A1 gene (rs2122859) was associated with the 85th percentile rank of the insulin z score (P85, p value=3×10-8). Two variants associated with low z-insulin (P15, p value <5×10-6) were located on the RBFOX1 and SH3RF3 genes. These genes have previously been associated with both metabolic traits and dementia phenotypes. While variants associated with P50 showed stable associations across the insulin spectrum, we found that associations with variants identified through GWA analyses of P15 and P85 varied across quantiles of log-insulin. CONCLUSIONS/INTERPRETATION The above results support the notion of a shared genetic architecture for dementia and metabolic traits. Our approach identified genetic variants that were associated with the tails of the insulin spectrum only. Because traditional heritability estimates assume that genetic effects are constant throughout the phenotype distribution, the new findings may have implications for understanding the discrepancy in heritability estimates from GWA and family studies and for the study of U-shaped biomarker-disease associations.
Collapse
Affiliation(s)
- Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Rajini Nagrani
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Marvin N Wright
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | | | - Lauren Lissner
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Iris Pigeot
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Chen P, Song XJ. Vitamins in neuropathy: pathophysiological and therapeutic roles. Curr Opin Neurol 2023; 36:388-393. [PMID: 37639435 DOI: 10.1097/wco.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Vitamin deficiency is a risk factor in the development of peripheral neuropathy, which leads to complex and severe diseases. This review provides an update overview of the literature on the roles of vitamins in peripheral neuropathy, highlighting their pathophysiological and therapeutic roles. RECENT FINDINGS The importance and clinical manifestations and implications of the vitamins and vitamin deficiencies are further demonstrated in peripheral neuropathy and the associated diseases. Vitamin deficiency is common in various severe and complex diseases such as diabetes, chemotherapy, acute nutritional axonal neuropathy, dermatitis, complex regional pain syndrome, postherpetic neuralgia, carpal tunnel syndrome, and so forth and some rare clinical case reports. There is evidence that deficiencies of almost all vitamins are associated with diabetic neuropathy. Vitamin supplementation may serve as an effective therapeutic strategy. SUMMARY The vitamins play critical roles in maintaining physiological functions, and vitamin deficiencies cause peripheral neuropathy with various severe and complex diseases. The therapeutic benefits of vitamins and further understanding of the mechanisms for vitamin treatment effects should be emphasized and highlighted. More clinical trials are needed to establish optimal treatment strategies for vitamins in the various neuropathies. A large range of people/patients screening for vitamin deficiencies may be considered in order to provide early diagnosis and timely medical assistance.
Collapse
Affiliation(s)
- Peng Chen
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | | |
Collapse
|
7
|
Liu D, Wang S, Liu Y, Luo Y, Wen B, Wu W, Zeng H, Huang J, Liu Z. Fuzhuan brick tea ameliorates hepatic steatosis and steatohepatitis through gut microbiota-derived aryl hydrocarbon receptor ligands in high-fat diet-induced obese mice. Food Funct 2023; 14:8351-8368. [PMID: 37606634 DOI: 10.1039/d3fo01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
High-fat diet (HFD) induced obesity and its associated conditions, such as hepatic steatosis and steatohepatitis, are major health concerns worldwide. Previous studies have reported the excellent efficiency of Fuzhuan brick tea (FBT) in attenuating HFD-induced obesity and metabolic disorders. In this study, we investigated the effects of FBT on hepatic steatosis and simple steatohepatitis in HFD-induced obese mice, as well as the metabolic function of the gut microbiome using metagenomics and metabolomics. The results showed that FBT ameliorated dyslipidemia, hepatic steatosis and steatohepatitis in HFD-induced obese mice by normalizing the gut microbiota structure and tryptophan metabolism. FBT increased the cecal abundance of aryl hydrocarbon receptor (AhR)-ligand producing bacteria such as Lactobacillus_reuteri and Lactobacillus_johnsonii, at the expense of AhR-ligand consuming bacteria, such as Faecalibaculum_rodentium and Escherichia_coli, and elevated the cecal contents of AhR-ligands such as IAA, IPA, and KYNA. Furthermore, FBT regulated the expressions of AhR and its targeted lipometabolic genes such as Pemt, Fasn, and SREBP-1c, as well as other inflammatory genes including TNF-α, IL-6, and IL-1β in the liver of mice. Overall, these findings highlight the beneficial effects of FBT on obesity-related hepatic steatosis and steatohepatitis via microbiota-derived AhR signaling.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yaqing Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
8
|
Ding YY, Lan J, Fang Y, Pan Y, Gu Z, Xue J, Yang Y, Jiang M, Ge Y, Shen Q. Dityrosine Aggravates Hepatic Insulin Resistance in Obese Mice by Altering Gut Microbiota and the LPS/TLR4/NF-κB Inflammatory Pathway. Mol Nutr Food Res 2023:e2300373. [PMID: 37726250 DOI: 10.1002/mnfr.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 09/21/2023]
Abstract
SCOPE Dityrosine is the main product of protein oxidation, which has been proved to be a threat to human health. This study aims to investigate whether dityrosine exacerbates insulin resistance by inducing gut flora disturbance and associated inflammatory responses. METHODS AND RESULTS Mice fed with normal diet or high-fat diet (HFD) received daily gavage of dityrosine (320 µg kg-1 BW) or saline for consecutive 13 weeks. The effects of dityrosine on gut microbiota are verified by in vitro fermentation using fecal microbiota from db/m mice and db/db mice. As a result, dityrosine causes the insulin resistance in mice fed normal diet, and aggravates the effects of HFD on insulin sensitivity. Dityrosine increases the levels of lipopolysaccharide (LPS), lipopolysaccharide-binding protein (LBP), toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) but decreases levels of interleukin-10 (IL-10) in the plasma of CON and HFD-fed mice. The changes of gut flora composition caused by dityrosine are significantly correlated with the changes of inflammatory biomarkers. CONCLUSION The effects of dityrosine on insulin resistance may be attributed to the reshaping of the gut microbiota composition and promoting the activity of the LPS/TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jinchi Lan
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yumeng Fang
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxiang Pan
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhenyu Gu
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing Xue
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengqi Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujun Ge
- Central blood station of Jiaxing, Jiaxing, 314000, China
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Zou H, Yu J, Li Z, Liu Y, Wang T, Li T, Lv C, Zhang J. In vitro, in vivo, and in silico evaluation of the glucocorticoid receptor antagonist activity of 3,6-dibromocarbazole. Food Chem Toxicol 2023:114048. [PMID: 37734465 DOI: 10.1016/j.fct.2023.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
3,6-Dibromocarbazole is a novel environmental contaminant which is currently detected in several environmental media worldwide. This work aims to investigate the anti-glucocorticoid potency and endocrine disrupting effects of 3,6-dibromocarbazole. In vitro experiments indicated that 3,6-dibromocarbazole possessed glucocorticoid receptor (GR) antagonistic activity and inhibited dexamethasone-induced GR nuclear translocation. 3,6-Dibromocarbazole reduced the expression levels of glucocorticoid responsive genes including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), fatty acid synthase (FAS), and tyrosine aminotransferase (TAT), and further disrupted the protein expression of two key enzymes PEPCK and FAS in gluconeogenesis. In vivo experiments showed that 3,6-dibromocarbazole induced abnormal development of zebrafish embryos and disrupted the major neurohormones involved in activation of hypothalamic-pituitary-adrenocortical (HPA) axis in zebrafish larvae. The results of molecular docking and molecular dynamics simulation contributed to explain the antagonistic effect of 3,6-dibromocarbazole. Taken together, this work identified 3,6-dibromocarbazole as a GR antagonist, which might exert endocrine disrupting effects by interfering the pathway of gluconeogenesis.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tuoyi Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023:108531. [PMID: 37717739 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
11
|
Yoo HS, Moss KO, Cockrum MA, Woo W, Napoli JL. Energy status regulates levels of the RAR/RXR ligand 9-cis-retinoic acid in mammalian tissues: glucose reduces its synthesis in β-cells. J Biol Chem 2023:105255. [PMID: 37714463 DOI: 10.1016/j.jbc.2023.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by LC/MS/MS becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas β-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the β-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue-specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristin Obrochta Moss
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Michael A Cockrum
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wonsik Woo
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|
12
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
13
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
14
|
Udell M, Delgado M, Ekenstedt K, Shoveller AK, Croney C. CATastrophic Myths Part 2: Common misconceptions about the environmental, nutritional, and genetic management of domestic cats and their welfare implications. Vet J 2023:106029. [PMID: 37683762 DOI: 10.1016/j.tvjl.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Despite the cat's popularity as a companion species, many owners and practitioners lack high quality information about important aspects of their behavior and management. Myths, anecdotes, and narratives of cats as 'low maintenance, self-sufficient' animals are pervasive, and the degree to which these may underlie complacency about fully meeting cats' needs is unknown. Several studies suggest that cat welfare and the human-cat bond may benefit from improved education about how to optimize the domestic cat's management and husbandry needs in homes and elsewhere. This paper is the second of a two-part series addressing common myths about cats. The purpose of this paper is to review and debunk common misconceptions about optimal cat care, feeding behavior, genetics, and training. Replacing these misconceptions with scientifically generated information could have a significant impact on the behavioral management of cats, positively influencing their physical health, mental stimulation, and well-being, and reducing stress for both cats and the people caring for them. Areas where further research is required to address ambiguities, and to better meet cats' needs in homes and other environments, are also identified.
Collapse
|