1
|
Ma X, Chen Z, Chen W, Chen Z, Meng X. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024; 893:147905. [PMID: 37844851 DOI: 10.1016/j.gene.2023.147905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells. Exosomes mediate intercellular communication by releasing their bioactive contents (e.g., DNAs, RNAs, lipids, proteins, and metabolites). The components of exosomes are regulated by the producing cells of exosomes. Due to their diverse origins, exosomes are highly heterogeneous in size, content, and function. Depending on these characteristics, exosomes can be divided into multiple subpopulations which have different functions. Efficient enrichment of specific subpopulations of exosomes helps to investigate their biological functions. Accordingly, numerous techniques have been developed to isolate specific subpopulations of exosomes. This review systematically introduces emerging new technologies for the isolation of different exosome subpopulations and summarizes the critical role of specific exosome subpopulations in diseases, especially in tumor occurrence and progression.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China.
| |
Collapse
|
2
|
Ge F, Zeng C, Wang J, Liu X, Zheng C, Zhang H, Yang L, Yang B, Zhu H, He Q. Cancer-associated fibroblasts drive early pancreatic cancer cell invasion via the SOX4/MMP11 signalling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166852. [PMID: 37633471 DOI: 10.1016/j.bbadis.2023.166852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant cancer-associated fibroblasts (CAFs), early perineural invasion (PNI) and microvascular invasion (MVI). However, the differentiation trajectories and underlying molecular mechanisms of CAFs in PDAC early invasion have not been fully elucidated. In this study, we integrated and reanalysed single-cell data from the National Geoscience Data Centre (NGDC) database and confirmed that myofibroblast-like CAFs (myCAFs) mediated epithelial-mesenchymal transformation (EMT) and enhanced the invasion abilities of PDAC cells by secreting regulators of angiogenesis and metastasis. Furthermore, we constructed a differentiation trajectory of CAFs and revealed that reprogramming from iCAFs to myCAFs was associated with poor prognosis. Mechanistically, SOX4 was aberrantly activated in myCAFs, which promoted the secretion of MMP11 and eventually induced early cancer cell invasion. Together, our results provide a comprehensive transcriptomic overview of PDAC patients with early invasion and reveal the intercellular crosstalk between myCAFs and cancer cells, which suggests potential targets for early invasion PDAC therapy.
Collapse
Affiliation(s)
- Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenming Zeng
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Jiaer Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongyu Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Pang J, Zhuang B, Zhang LM. A co-carrier for plasmid DNA and curcumin delivery to treat pancreatic cancer via dendritic poly(l-lysine) modified amylose. Int J Biol Macromol 2023; 253:127467. [PMID: 37863141 DOI: 10.1016/j.ijbiomac.2023.127467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies in the world and remains one of the leading causes of cancer related death. For its treatment, a lot of investigations have dealt not only with individual chemotherapy by using polymeric carriers to deliver anticancer drugs, but also with individual gene therapy by using polymeric carriers to deliver nucleic acids such as small interfering RNA (siRNA) and plasmid DNA. However, relatively few studies have been focused on the co-delivery of gene and anticancer drug by multifunctional polymeric carriers for its synergistic therapy. In this work, a DPLL-functionalized amylose (ADP) was prepared by the click reaction between azidized amylose and propargyl focal point poly(l-lysine) dendrons, and then used to co-deliver plasmid pIRES2-EGFP-TNFα and curcumin for pancreatic cancer treatment. Due to the internal hydrophobic cavity of amylose component, ADP could load efficiently curcumin with anticancer activity and showed a sustained release behavior. Moreover, the curcumin-loaded ADP could form colloidally stable nanocomplexes with plasmid DNA in aqueous system due to the existence of cationic poly(l-lysine) dendrons and exhibited high gene transfection efficiency. The in vitro and in vivo tests confirmed the effectiveness of using ADP to co-deliver plasmid pIRES2-EGFP-TNFα and curcumin for synergistic therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Jiadong Pang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Medical Intelligence and Innovation Academy, South University of Science and Technology Hospital, Shenzhen 518000, China
| | - Baoxiong Zhuang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Usman OH, Kumar S, Walker RR, Xie G, Sumajit HC, Jalil AR, Ramakrishnan S, Dooling LJ, Wang YJ, Irianto J. Differential modulation of cellular phenotype and drug sensitivity by extracellular matrix proteins in primary and metastatic pancreatic cancer cells. Mol Biol Cell 2023; 34:ar130. [PMID: 37903222 DOI: 10.1091/mbc.e23-02-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is reported to be the third highest cause of cancer-related deaths in the United States. PDAC is known for its high proportion of stroma, which accounts for 90% of the tumor mass. The stroma is made up of extracellular matrix (ECM) and nonmalignant cells such as inflammatory cells, cancer-associated fibroblasts, and lymphatic and blood vessels. Here, we decoupled the effects of the ECM on PDAC cell lines by culturing cells on surfaces coated with different ECM proteins. Our data show that the primary tumor-derived cell lines have different morphology depending on the ECM proteins on which they are cultured, while metastatic lesion-derived PDAC lines' morphology does not change with respect to the different ECM proteins. Similarly, ECM proteins modulate the proliferation rate and the gemcitabine sensitivity of the primary tumor PDAC cell lines, but not the metastatic PDAC lines. Lastly, transcriptomics analysis of the primary tumor PDAC cells cultured on different ECM proteins reveals the regulation of various pathways, such as cell cycle, cell-adhesion molecules, and focal adhesion, including the regulation of several integrin genes that are essential for ECM recognition.
Collapse
Affiliation(s)
- Olalekan H Usman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Sampath Kumar
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Reddick R Walker
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Hyeje C Sumajit
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - AbdelAziz R Jalil
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310
| | - Lawrence J Dooling
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Yue Julia Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
5
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Grierson PM, Suresh R, Tan B, Pedersen KS, Amin M, Park H, Trikalinos NA, Liu J, Boice N, Brown A, Bansod S, Wang-Gillam A, Lim KH. A Pilot Study of Paricalcitol plus Nanoliposomal Irinotecan and 5-FU/LV in Advanced Pancreatic Cancer Patients after Progression on Gemcitabine-Based Therapy. Clin Cancer Res 2023; 29:4733-4739. [PMID: 37801295 DOI: 10.1158/1078-0432.ccr-23-1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Vitamin D analogues remodel the desmoplastic stroma, and improve vascularity and efficacy of chemotherapy in preclinical pancreas cancer models. PATIENTS AND METHODS We conducted a pilot study to evaluate the safety and preliminary efficacy of the vitamin D analogue paricalcitol in combination with nanoliposomal irinotecan (Nal-iri) plus 5-fluorouracil/leucovorin (5-FU/LV) in patients with advanced pancreatic cancer who had progressed on gemcitabine-based therapy. Two dose levels (DL) of paricalcitol were tested: fixed dose weekly (75 mcg, DL1) and weight-based weekly (7 mcg/kg, /DL2). The primary endpoint was safety, and secondary endpoints included overall response rate, progression-free survival (PFS), and overall survival (OS). Correlative objectives aimed to identify molecular predictors of response and alterations in the tumor stroma. RESULTS Twenty patients (10 each in DL1 and DL2) enrolled between March 2019 and May 2021. No grade 3/4 adverse events related to paricalcitol were observed. The most common toxicities were nausea, diarrhea and fatigue, which were similar in both cohorts. Three patients discontinued study after one cycle and were not radiographically evaluable. Of the remaining 17 evaluable patients, 2 had partial response and 12 had stable disease. The median PFS for response-evaluable patients in DL1 was 4.14 months, for DL2 was 4.83 months. Intent-to-treat median OS was 6.15 and 6.66 months for DL1 and DL2, respectively. Correlative studies showed increased tumor vascularity in posttreatment samples in patients receiving the higher dose of paricalcitol (DL2). CONCLUSIONS Paricalcitol at 7 mcg/kg/week in combination with Nal-iri/ 5-FU/LV is safely tolerated, may increase tumor vascularity and warrants further investigation.
Collapse
Affiliation(s)
- Patrick M Grierson
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Rama Suresh
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Benjamin Tan
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Katrina S Pedersen
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Manik Amin
- Section of Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Haeseong Park
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Nikolaos A Trikalinos
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, Missouri
| | - Nicholas Boice
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Amberly Brown
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Sapana Bansod
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, Missouri
| |
Collapse
|
7
|
Hu D, Lin Z, Li P, Zhang Z, Jiang J, Yang C. Investigation of Potential Crucial Genes and Key Pathways in Keratoconus: An Analysis of Gene Expression Omnibus Data. Biochem Genet 2023; 61:2724-2740. [PMID: 37233843 DOI: 10.1007/s10528-023-10398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Keratoconus is one of the most common causes leading to visual impairment in young adult population. The pathogenesis of keratoconus remains poorly understood. The aim of this study was to identify the potential key genes and pathways associated with keratoconus and to further analyze its molecular mechanism. Two RNA-sequencing datasets of keratoconus and paired normal corneal tissues from the Gene Expression Omnibus database were obtained. Differentially expressed genes (DEGs) were identified, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. The protein-protein interaction (PPI) network of the DEGs was established, and the hub genes and significant gene modules of PPI were further constructed. Lastly, the GO and KEGG analyses of the hub gene were performed. In total, 548 common DEGs were identified. GO enrichment analysis showed that the DEGs were primarily associated with regulation of cell adhesion, the response to molecule of bacterial origin, lipopolysaccharide and biotic stimulus, collagen-containing extracellular matrix, extracellular matrix, and structure organization. KEGG pathway analysis showed that these DEGs were mainly involved in the TNF signaling pathway, IL-17 signaling pathway, Rheumatoid arthritis, Cytokine-cytokine receptor interaction. The PPI network was constructed with 146 nodes and 276 edges, and 3 significant modules are selected. Finally, top 10 hub genes were identified from the PPI network. The results revealed that extracellular matrix remodeling and immune inflammatory response could be the key links of keratoconus, TNF, IL6, IL1A, IL1B, CCL3, MMP3, MMP9, MMP1, and TGFB1 may be potential crucial genes, and TNF signaling pathway and IL-17 signaling pathway were the potential pathways accounting for pathogenesis and development of keratoconus.
Collapse
Affiliation(s)
- Di Hu
- Department of Ophthalmology, Children's Hospital of Fudan University, No.399 Wanyuan Road, Shanghai, 201102, China
| | - Zenan Lin
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Pan Li
- Department of Ophthalmology, First Hospital of Xi'an, Institute of Ophthalmology, Key Lab of Ophthalmology, Clinical Center for Ophthalmology, Xi'an, 710002, China
| | - Zhehuan Zhang
- Department of Ophthalmology, Children's Hospital of Fudan University, No.399 Wanyuan Road, Shanghai, 201102, China
| | - Junhong Jiang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, China.
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, No.399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
8
|
Xu Q, Fu X, Xiu Z, Yang H, Men X, Liu M, Xu C, Li B, Zhao S, Xu H. Interleukin‑22 alleviates arginine‑induced pancreatic acinar cell injury via the regulation of intracellular vesicle transport system: Evidence from proteomic analysis. Exp Ther Med 2023; 26:578. [PMID: 38023358 PMCID: PMC10655043 DOI: 10.3892/etm.2023.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition characterized by the activation of pancreatic enzymes within acinar cells, leading to tissue damage and inflammation. Interleukin (IL)-22 is a potential therapeutic agent for AP owing to its anti-inflammatory properties and ability to promote tissue repair. The present study evaluated the differentially expressed proteins in arginine-induced pancreatic acinar cell injury following treatment with IL-22, and the possible mechanisms involved in IL-22-mediated alleviation of AP. AR42J cells were stimulated using L-arginine to establish an acinar cell injury model in vitro and the damaged cells were subsequently treated with IL-22. The characteristics of the model and the potential therapeutic effects of IL-22 were examined by CCK-8 assay, flow cytometry, TUNEL assay, transmission electron microscopy and ELISA. Differentially expressed proteins in cells induced by arginine and treated with IL-22 were assessed using liquid chromatography-mass spectrometry. The identified proteins were further subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to elucidate their functional roles. The present study demonstrated that arginine-stimulated cells showed significant pathological changes resembling those in AP, which were alleviated after IL-22 treatment. Proteomic analysis then demonstrated that in IL-22-treated cells, proteins related to the formation and fusion of autophagosomes with lysosomes were significantly downregulated, whereas endocytosis related proteins were enriched in the upregulated proteins. After IL-22 treatment, western blotting demonstrated reduced expression of autophagy-associated proteins. In conclusion, by inhibiting the formation and fusion of autophagosomes with lysosomes, IL-22 may have mitigated premature trypsinogen activation, subsequently minimizing acinar cell injury induced by L-arginine. This was accompanied by concurrent upregulation of endocytosis, which serves a pivotal role in sustaining regular cellular material transport and signal propagation. This research underscored the potential of IL-22 in mitigating arginine-induced AR42J injury, which could be valuable in refining treatment strategies for AP.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Gastroenterology Center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, P.R. China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoxiao Men
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mingyue Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Stefanos SS, Davis L, Panwala A, Gelfand MS, Animalu CN, Cutshall BT. Prolonged course of eravacycline leading to acute pancreatitis. Am J Med Sci 2023; 366:464-467. [PMID: 37716601 DOI: 10.1016/j.amjms.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Eravacycline is the newest member of the broad-spectrum class of tetracycline antimicrobials. Pancreatitis has been previously associated with the tetracycline class of antibiotics, but, to our knowledge, we believe that this is the first reported case of eravacycline-induced pancreatitis. We describe a 46-year-old male who received eravacycline for treatment of a perirectal abscess. While the patient had slightly elevated lipase levels at baseline post-cardiopulmonary arrest, he developed abdominal pain and a further increase in lipase levels following 10 days of eravacycline, consistent with pancreatitis. Based on the Naranjo adverse drug reaction probability scale, eravacycline was the probable etiology of acute pancreatitis given improvement immediately after discontinuation. Clinicians should be aware of this potential adverse effect of eravacycline and should not initiate eravacycline in those with risk factors for acute pancreatic injury. However, acute pancreatitis should be suspected in all patients complaining of symptoms followed by immediate discontinuation of eravacycline.
Collapse
Affiliation(s)
- Sylvia S Stefanos
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA.
| | - Lyndsey Davis
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
| | - Amruta Panwala
- Department of Internal Medicine, Methodist University Hospital, Memphis, TN, USA
| | - Michael S Gelfand
- Department of Infectious Diseases, Methodist University Hospital, Memphis, TN, USA; Division of Infectious Diseases - University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chinelo N Animalu
- Department of Infectious Diseases, Methodist University Hospital, Memphis, TN, USA; Division of Infectious Diseases - University of Tennessee Health Science Center, Memphis, TN, USA
| | - B Tate Cutshall
- Department of Pharmacy, Methodist University Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Lu Y, Li B, Wei M, Zhu Q, Gao L, Ma N, Ma X, Yang Q, Tong Z, Lu G, Li W. HDL inhibits pancreatic acinar cell NLRP3 inflammasome activation and protect against acinar cell pyroptosis in acute pancreatitis. Int Immunopharmacol 2023; 125:110950. [PMID: 37890377 DOI: 10.1016/j.intimp.2023.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND PURPOSE Recent clinical studies have shown that serum high-density lipoprotein (HDL) levels are correlated with acute pancreatitis (AP) severity. We aimed to investigate the role of HDL in pancreatic necrosis in AP. EXPERIMENTAL APPROACH ApoA-I is the main constitution and function component of HDL. The roles of healthy human-derived HDL and apoA-I mimic peptide D4F were demonstrated in AP models in vivo and in vitro. Constitutive Apoa1 genetic inhibition on AP severity, especially pancreatic necrosis was assessed in both caerulein and sodium taurocholate induced mouse AP models. In addition, constitutive (Casp1-/-) and acinar cell conditional (Pdx1CreNlrp3Δ/Δ and Pdx1CreGsdmdΔ/Δ) mice were used to explore the effects of HDL on acinar cell pyroptosis in AP. KEY RESULTS Apoa1 knockout dramatically aggravated pancreatic necrosis. Human-derived HDL protected against acinar cell death in vivo and in vitro. We found that mimic peptide D4F also protected against AP very well. Constitutive Casp1 or acinar cell-conditional Nlrp3 and Gsdmd genetic inhibition could counteract the protective effects of HDL, implying HDL may exert beneficial effects on AP through inhibiting acinar cell pyroptosis. CONCLUSION AND IMPLICATIONS This work demonstrates the protective role of HDL and apoA-I in AP pathology, potentially driven by the inhibition of NLRP3 inflammasome signaling and acinar cell pyroptosis. Mimic peptides have promise as specific therapies for AP.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Southeast University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Mei Wei
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Media Road, Yangzhou, 225000 Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Media Road, Yangzhou, 225000 Jiangsu, China
| | - Lin Gao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Nan Ma
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Xiaojie Ma
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Qi Yang
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China.
| | - Guotao Lu
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China; Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Media Road, Yangzhou, 225000 Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Media Road, Yangzhou, 225000 Jiangsu, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Southeast University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China; Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu, China.
| |
Collapse
|
13
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2023:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Yu H, Sercel ZP, Rezgui SP, Farhi J, Virgil SC, Stoltz BM. Total Synthesis of Aleutianamine. J Am Chem Soc 2023; 145:25533-25537. [PMID: 37967164 PMCID: PMC10690800 DOI: 10.1021/jacs.3c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Aleutianamine is a recently isolated pyrroloiminoquinone natural product that displays potent and selective biological activity toward human pancreatic cancer cells with an IC50 of 25 nM against PANC-1, making it a potential candidate for therapeutic development. We report a synthetic approach to aleutianamine wherein the unique [3.3.1] ring system and tertiary sulfide of this alkaloid were constructed via a novel palladium-catalyzed dearomative thiophene functionalization. Other highlights of the synthesis include a palladium-catalyzed decarboxylative pinacol-type rearrangement of an allylic carbonate to install a ketone and a late-stage oxidative amination. This concise and convergent strategy will enable access to analogues of aleutianamine and further investigation of the biological activity of this unique natural product.
Collapse
Affiliation(s)
| | | | - Samir P. Rezgui
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan Farhi
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Scott C. Virgil
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | |
|