1
|
Qian B, Hu J, Dai L, Zhou Y, Xu H. Anti-inflammatory effect of Plantago asiatica crude extract in rat gout arthritis model. J Immunotoxicol 2025; 22:2453156. [PMID: 39895261 DOI: 10.1080/1547691x.2025.2453156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Plantago asiatica L., a perennial herb in the family Plantaginaceae, has been shown to impart several pharmacologic activities, including anti-oxidative, anti-inflammatory, and diuretic effects. In the study here, the anti-gout(y) arthritis (GA) effects of a crude extract from P. asiatica L. (PAE) were investigated in a rat GA model. For this, PAE was prepared by ethanol extraction and analyzed for phytochemicals by RP-HPLC and Q-TOF-MS. Thereafter, potential therapeutic effects of the PAE were investigated in rats; Wistar rats (male, 8 wk-of-age) were randomly allocated into four groups (n = 9/group) and intra-articularly injected with 3 mg monosodium urate (MSU) in saline solution to establish a GA model. For the study, rats received oral dosings of 0.3 mg colchicine/kg or 1 g PAE/kg (w/w) before and after gout was established. At fixed times after the treatments, assessment of joint swelling ratios and pathological changes in the joints, as well as of select cytokine expression in the blood, was done. RP-HPLC results showed the PAE contained at least 8 'active' ingredients, with plantamajoside, verbascoside, and cymaroside being the most abundant. In comparison to in control rats, MSU induced joint space narrowing, ankle joint swelling, and increased levels of pro-inflammatory interleukin (IL)-1β, IL-17a, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and reductions in anti-inflammatory IL-10 in the blood. PAE treatment significantly reversed patho- genic joint space narrowing and swelling, reversed the MSU-induced changes in inflammatory factors, and in general imparted effects very similar to those seen with colchicine (COL; known non-steroidal anti-inflammatory drug for clinical treatment of GA). Collectively, these findings provide experimental evidence supporting the potential applicability of PAE to treat gouty arthritis.
Collapse
Affiliation(s)
- Bingjun Qian
- Department of Preventive Medicine, Institute of Biomedical Technology, Jiangsu Medical College, Yancheng, Jiangsu, China
| | - Jun Hu
- Department of Preventive Medicine, Institute of Biomedical Technology, Jiangsu Medical College, Yancheng, Jiangsu, China
| | - Li Dai
- Department of Preventive Medicine, Institute of Biomedical Technology, Jiangsu Medical College, Yancheng, Jiangsu, China
| | - Yue Zhou
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haixia Xu
- Suzhou Catch Bio-Science and Technology Co. Ltd, Zhangjiagang, Jiangsu, China
| |
Collapse
|
2
|
Zhang L, Hu Y, Zhai M, Sun G. A novel quality evaluation strategy for natural medicines integrated with HPLC Euclidean quantitative fingerprinting, UV total fingerprint dissolution and in vitro antioxidant activity: A case study of Gegen Qinlian tablet. Talanta 2025; 292:127960. [PMID: 40132407 DOI: 10.1016/j.talanta.2025.127960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
A reliable quality control system is essential for ensuring the clinical efficacy and safety of medicines. However, past work on quality control of natural medicines has been focused mainly on the quantification of indicator components and the characteristic chemical fingerprint which provide qualitative information only and rarely provide quantitative information. Herein, a fusion of the Comprehensive Euclidean quantitative fingerprinting method (CEQFM) and multi-component quantification, on-line UV total dissolution methods based on the Dissolution-systematically quantitative fingerprint method (DSQFM) were developed for quality control of Gegen Qinlian tablets (GQTs). Furthermore, DPPH• was used to evaluate the antioxidant activity of GQTs and construct the spectrum-effect relationship. Based on these strategies, the 22 batches of GQTs were classified into six grades by CEQFM (0.898 ≤ Sm ≤ 0.986, 74.4 % ≤ PE ≤ 149.7 %) and seven grades by DSQFM (0.978 ≤ Sm ≤ 1.000, 50.64 % ≤ Pm ≤ 142.3 %), and 8 active ingredients were quantified simultaneously, with the total contents of all the 8 components spanned from 66.47 to 120.40 mg/g. In the in vitro dissolution test, the dissolution curves of 10 batches of GQTs were very similar (Sm > 0.9, 70 %< Pm<130 %, f2>50). Furthermore, the spectrum-effect relationship was applied to screen out the potential antioxidant active components, such as puerarin, baicalein, baicalin, berberine hydrochloride, palmatine chloride, etc. This method can quickly evaluate the quality of GQTs from the aspects of quantitative fingerprinting, dissolution, multi-component, and antioxidant efficacy. The study provides a new approach to quality control and quality consistency evaluation of natural medicines.
Collapse
Affiliation(s)
- Liuwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yanlei Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Manhuayun Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
3
|
Wu H, Liu Z, Li Y. Intestinal microbiota and respiratory system diseases: Relationships with three common respiratory virus infections. Microb Pathog 2025; 203:107500. [PMID: 40139334 DOI: 10.1016/j.micpath.2025.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the role of the intestinal microbiota in regulating host health and immune balance has attracted widespread attention. This study provides an in-depth analysis of the close relationship between the intestinal microbiota and respiratory system diseases, with a focus on three common respiratory virus infections, including respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza virus. The research indicates that during RSV infection, there is a significant decrease in intestinal microbial diversity, suggesting the impact of the virus on the intestinal ecosystem. In SARS-CoV-2 infection, there are evident alterations in the intestinal microbiota, which are positively correlated with the severity of the disease. Similarly, influenza virus infection is associated with dysbiosis of the intestinal microbiota, and studies have shown that the application of specific probiotics exhibits beneficial effects against influenza virus infection. Further research indicates that the intestinal microbiota exerts a wide and profound impact on the occurrence and development of respiratory system diseases through various mechanisms, including modulation of the immune system and production of short-chain fatty acids (SCFAs). This article comprehensively analyzes these research advances, providing new perspectives and potential strategies for the prevention and treatment of future respiratory system diseases. This study not only deepens our understanding of the relationship between the intestinal microbiota and respiratory system diseases but also offers valuable insights for further exploring the role of host-microbiota interactions in the development of diseases.
Collapse
Affiliation(s)
- Haonan Wu
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- The First Hospital of Jilin University, Changchun, China.
| | - Yanan Li
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Liu M, Tian S, Liu X, Zhang H, Tang Z, Teng Z, Liu F. Analysis of differentially expressed genes in schizophrenia based on bioinformatics and corresponding mRNA expression levels. Schizophr Res 2025; 280:22-29. [PMID: 40209528 DOI: 10.1016/j.schres.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE This study aimed to use bioinformatics analysis to identify differentially expressed genes (DEGs) involved in the pathogenesis of schizophrenia and validate their mRNA expression levels through real-time quantitative PCR (qPCR). MATERIAL/METHODS Datasets from the publicly available Gene Expression Omnibus (GEO) database were analyzed using R software to identify DEGs. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, were conducted. A protein-protein interaction (PPI) network was constructed using Cytoscape software to identify key genes with notable expression changes. The expression levels of these key genes were subsequently validated in schizophrenia patients using qPCR to assess potential susceptibility genes. RESULTS In total, 813 DEGs were identified, with six key genes highlighted through GO analysis and PPI network screening. Among these, HDAC1, UBA52, and FYN demonstrated statistically significant differences in mRNA expression between schizophrenia patients and healthy controls (P < 0.05). CONCLUSIONS This study identified several DEGs potentially linked to the pathogenesis of schizophrenia, suggesting that HDAC1, UBA52, and FYN could serve as candidate susceptibility genes and diagnostic biomarkers. These findings provide new insights and directions for future schizophrenia research.
Collapse
Affiliation(s)
- Meiting Liu
- The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Shiqi Tian
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Xiaoying Liu
- Yuxi Third People's Hospital, Yuxi, Yunnan 653100, China
| | - Huaxia Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Zhiwei Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Zhaowei Teng
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Fang Liu
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China.
| |
Collapse
|
5
|
Chen H, Zhang Z, Lu C, Ding Y, Huang Z, Li M, Zhu L. Urolithin a attenuates rheumatoid arthritis by inhibiting inflammation and pyroptosis in fibroblasts via the AMPK/ NF-κB signaling pathway. Int Immunopharmacol 2025; 155:114604. [PMID: 40215775 DOI: 10.1016/j.intimp.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Urolithin A (UA), a metabolite of natural polyphenols produced by the gut microbiota, alleviates the symptoms of rheumatoid arthritis (RA) by inhibiting the inflammatory response. UA alleviates the clinical symptoms of RA by inhibiting the occurrence of an inflammatory response, but the specific regulatory mechanism remains unclear. In this study, we established a CIA model in 8-week-old DBA mice and chose LPS-stimulated NIH/3 T3 cells to explore the effects of UA and attempted to elucidate its potential mechanisms. Our results showed UA significantly reduced arthritis scores, and inhibited inflammation, pannus formation, and cartilage and bone destruction of inflamed joints in CIA mice. In vitro, UA inhibited LPS-induced migration and proliferation, and alleviated NLRP3-mediated pyroptosis, significantly inhibiting the protein expression levels of NLRP3, N-terminal gasdermin D, interleukin-1β, caspase-1, and ASC in NIH/3T3 cells. A mechanistic investigation revealed that LPS enhanced phosphorylation of NF-κB and downregulated that of AMPK, which were categorically counteracted by UA treatment. Therefore, UA represents a new class of promising RA treatments targeting fibroblasts, widening the therapeutic options for RA.
Collapse
Affiliation(s)
- Hao Chen
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Zhen Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Congcong Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Yi Ding
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Zhengao Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Maoqiang Li
- Department of Orthopedic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| | - Liulong Zhu
- Department of Orthopedic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| |
Collapse
|
6
|
Badea A, Mahzarnia A, Reddy D, Dong Z, Anderson RJ, Moon HS, Stout JA, Williams J, Hirschler L, Barbier EL, Williams CL. Neuroimaging biomarkers of neuroprotection: Impact of voluntary versus enforced exercise in Alzheimer's disease models. Magn Reson Imaging 2025:110406. [PMID: 40324544 DOI: 10.1016/j.mri.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Exercise is a promising strategy for preventing or delaying Alzheimer's disease (AD), yet its mechanisms remain unclear. We investigated how exercise influences brain structure, function, and behavior in a familial AD model. Mice underwent voluntary, voluntary plus enforced exercise, or remained sedentary. Neuroimaging included in vivo manganese-enhanced MRI (MEMRI). perfusion, and ex vivo diffusion MRI to assess morphometry, activity, cerebral blood flow (CBF), microstructural integrity and connectivity. Both exercise regimens induced structural and functional brain adaptations while reducing anhedonia. Voluntary exercise increased cortical and limbic volumes, particularly in the hippocampus, cingulate, and entorhinal cortex, supporting cognitive and emotional regulation. Adding enforced exercise influenced subcortical and sensory regions, including visual, motor and associative areas, supporting sensory-motor integration. MEMRI revealed increased activity in sensorimotor, limbic, and associative cortices, with voluntary exercise enhancing limbic and associative regions, and enforced exercise strengthening sensorimotor and subcortical circuits. White matter integrity improved in memory-associate pathways such as the corpus callosum, cingulum, and hippocampal commissure. Synaptic remodeling was observed in the cingulate cortex, anterior thalamic nuclei, and amygdala. Voluntary exercise enhanced CBF in the motor cortex and hippocampus, while enforced exercise limited these increases. Connectivity analyses revealed exercise-responsive networks spanning the cingulate cortex, entorhinal cortex, anterior thalamic nuclei, and basolateral amygdala, and associated tracts. Graph analyses linked running distance with increased thalamic, brainstem, and cerebellar connectivity, associating exercise intensity with plasticity. These findings highlight the ability of chronic exercise to modulate neuroimaging biomarkers through distinct but complementary pathways, reinforcing its potential as a neuroprotective intervention for AD.
Collapse
Affiliation(s)
- Alexandra Badea
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Neurology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States of America; Biomedical Engineering Department, Pratt School of Engineering, Duke University, Durham, NC 27710, United States of America.
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Pediatrics Department, Stanford Medical School, Stanford, CA 94305, United States of America
| | - Divya Reddy
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Zijian Dong
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Robert J Anderson
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Hae Sol Moon
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Biomedical Engineering Department, Pratt School of Engineering, Duke University, Durham, NC 27710, United States of America
| | - Jacques A Stout
- Quantitative Imaging and Analysis Labs, Radiology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Neurology Department, Duke University Medical Center, Durham, NC 27710, United States of America; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Janai Williams
- Psychology & Neuroscience Department, Trinity College of Arts & Sciences, Durham, NC 27710, United States of America
| | - Lydianne Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden 2333, ZA, the Netherlands
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christina L Williams
- Psychology & Neuroscience Department, Trinity College of Arts & Sciences, Durham, NC 27710, United States of America
| |
Collapse
|
7
|
Chaves LS, Oliveira ACP, Oliveira AP, Lopes ALF, Araujo AKS, Pacheco G, Silva KC, Martins FEC, Gomes IAB, Ramos SVS, Viana HTMC, Batista AVF, Oliveira BC, Nicolau LAD, Ribeiro FOS, Castro AV, de Araujo-Nobre AR, Silva DA, Cordeiro LMC, Góis MB, Medeiros JVR. Cashew gum fractions protect intestinal mucosa against shiga toxin-producing Escherichia coli infection: Characterization and insights into microbiota modulation. Int J Biol Macromol 2025; 311:143916. [PMID: 40324507 DOI: 10.1016/j.ijbiomac.2025.143916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Diarrheal diseases remain a major public health concern, particularly in regions with poor sanitation. Polysaccharides extracted from natural gums have been investigated as functional agents for intestinal health, and their fractionation enables the production of oligosaccharides with potential prebiotic activity. This study aimed to produce cashew gum (CG) fractions through Smith degradation (CGD48) and partial hydrolysis (CGD24) and to evaluate their ability to modulate and protect the intestinal microbiota. Balb/c mice were administered CG (1200 mg/kg), CGD24 (800 mg/kg), or CGD48 (800 mg/kg) for 10 and 26 days, followed by infection with Shiga toxin-producing Escherichia coli (STEC) (5 × 1010 CFU/mL) for three days. Characterization assays confirmed the fragmentation of CG. Both CGD24 and CGD48 promoted the growth of beneficial bacteria with and without infection and reduced STEC colonization. Furthermore, they preserved mucin levels in the cecum and large intestine and maintained baseline levels of superoxide dismutase (SOD), suggesting protection of the intestinal mucosa. These findings indicate that CG fractions exhibit microbiota-modulating and protective effects against STEC, highlighting their therapeutic potential and the need for further studies to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Letícia S Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antonio C P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - André L F Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Andreza K S Araujo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Katriane C Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Francisco E C Martins
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isaac A B Gomes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Sabrine V S Ramos
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Hémilly T M C Viana
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana V F Batista
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Beatriz C Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucas A D Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Auricélia V Castro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araujo-Nobre
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo B Góis
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Jand V R Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
8
|
Liu S, Yang X, Zheng S, Chen C, Qi L, Xu X, Zhang D. Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis 2025; 12:101451. [PMID: 40070365 PMCID: PMC11894312 DOI: 10.1016/j.gendis.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/28/2024] [Accepted: 08/25/2024] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation. It is distinguished from other forms of cell death by its unique morphological changes and characteristic fine-tuned regulatory gene network. Since its pivotal involvement in the pathogenesis and therapeutic interventions of various diseases, such as malignant tumors, cardiovascular and cerebrovascular diseases, and traumatic disorders, has been well-established, ferroptosis has garnered significant attention in contemporary physiological and pathological research. For the advantage of alleviating the clinical symptoms and improving life quality, traditional Chinese medicine (TCM) holds a significant position in the treatment of these ailments. Moreover, increasing studies revealed that TCM compounds and monomers showed evident therapeutic efficacy by regulating ferroptosis via signaling pathways that tightly regulate redox reactions, iron ion homeostasis, lipid peroxidation, and glutathione metabolism. In this paper, we summarized the current knowledge of TCM compounds and monomers in regulating ferroptosis, aiming to provide a comprehensive review of disease management by TCM decoction, Chinese patent medicine, and natural products deriving from TCM through ferroptosis modulation. The formulation composition, chemical structure, and possible targets or mechanisms presented here offer valuable insights into the advancement of TCM exploration.
Collapse
Affiliation(s)
- Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Sanxia Zheng
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Changjing Chen
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Lei Qi
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| |
Collapse
|
9
|
Xiao W, Yike W, Gongwen L, Youjia X. Ferroptosis-mediated immune responses in osteoporosis. J Orthop Translat 2025; 52:116-125. [PMID: 40271049 PMCID: PMC12017889 DOI: 10.1016/j.jot.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Osteoporosis is a common systemic metabolic disease, characterized by decreased bone mass and susceptibility to fragility fractures, often associated with aging, menopause, genetics, and immunity. Ferroptosis plays an underestimated yet crucial role in the further impact of immune function changes on osteoporosis. Cell ferroptosis can induce alterations in immune function, subsequently influencing bone metabolism. In this context, this review summarizes several mechanisms of ferroptosis and introduces the latest insights on how ferroptosis regulates immune responses, exploring the interactions between ferroptosis and other mechanisms such as oxidative stress, inflammation, etc. This review elucidates potential treatment strategies for osteoporosis, emphasizing the promising potential of ferroptosis as an emerging target in the treatment of osteoporosis. In conclusion, preparations related to ferroptosis exhibit substantial clinical promise for enhancing bone mass restoration. The translational potential of this article: This review elucidates a nuanced conversation between the immune system and osteoporosis, with ferroptosis serving as the connecting link. These findings underscore the potential of ferroptosis inhibition as a therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Yike
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Gongwen
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xu Youjia
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
11
|
Mao Q, Luo Q, Ma SM, Teng M, Luo J. Critical role of ferroptosis in viral infection and host responses. Virology 2025; 606:110485. [PMID: 40086206 DOI: 10.1016/j.virol.2025.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death that plays a crucial role in regulating intracellular redox homeostasis and lipid metabolism, and in combating viral infections. Viruses have persistently evolved and adapted synergistically with their hosts over a long period and, to some extent, have been able to utilize ferroptosis to promote viral replication. Herein, we summarize the characteristics, mechanisms, and regulatory networks of ferroptosis and provide an overview of the key regulatory steps of ferroptosis involved in viral infection, together with the changes in host indicators and key regulatory signaling pathways. This study intends to deepen our understanding of the critical role of ferroptosis in viral infection, which will be meaningful for further revealing the mechanisms underlying the occurrence and progression of virus diseases, as well as for the future exploration of anti-viral strategies.
Collapse
Affiliation(s)
- Qian Mao
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| | - Qin Luo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, People's Republic of China
| | - Sheng-Min Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| |
Collapse
|
12
|
Lu J, Liu Z, Li Z, Su J, Zhen H, Qu Y, Herdewijn P, Liu H, Liu Y, Wang Z. A review-plant medicine and its extraction components inhibit influenza virus. Bioorg Med Chem Lett 2025; 120:130151. [PMID: 39988014 DOI: 10.1016/j.bmcl.2025.130151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Influenza is a highly prevalent and highly contagious lung disease caused by influenza viruses. The main anti-influenza strategies are vaccination and antiviral drugs. Vaccination is an effective means of prevention, but the time lag in research and development makes it difficult to respond immediately to an outbreak. Approved drugs are mainly inhibitors of neuraminidase and M2 ion channels, but, due to the variability of influenza viruses, resistance to these drugs may emerge. Botanicals and their extracts have shown unique advantages in influenza treatment and are widely used in clinics across China. However, there are few reviews on the prevention and treatment of influenza with herbal medicines. We undertook a review of relevant literature in recent years to analyze the research progress of various botanicals and their extracts in the prevention and treatment of influenza. Our review provides theoretical support for the prevention and treatment of influenza by plant-based medicines, as well as new ideas for the development of novel low-toxicity and multi-target drugs.
Collapse
Affiliation(s)
- Jiejie Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ziyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Su
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Qu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Piet Herdewijn
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi, China; XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
14
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4779-4801. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
15
|
Li X, Chen M, Chen T, Xie L, Luo Q, Fan X, Yin Y, Meng S, Jin Z, He Y, Wen Y. The intricate interplay among microbiota, mucosal immunity, and viral infection in the respiratory tract. J Transl Med 2025; 23:488. [PMID: 40301955 PMCID: PMC12042608 DOI: 10.1186/s12967-025-06433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
The mucosal system serves as the primary barrier against respiratory diseases and plays a crucial role in combating viral infections through mucosal immunity. The resident microbial community constitutes the main component of the mucosal system and exerts a significant inhibitory impact on the invasion of exogenous agents. However, the precise relationship between resident microbiota, mucosal immunity, and viral infections remains incomplete. This review aims to summarize the regulatory interactions between the resident microbiota of the mucosal system and innate immune components such as mucosal immunity and trained immunity. By clarifying these complex relationships, this review seeks to identify potential targets for augmenting respiratory disease prevention strategies and developing novel vaccine formulations. Furthermore, we propose the possibility of integrating the fields of microbiome-based therapeutics and vaccine development to create multifunctional vaccine formulations capable of targeting mucosal immunity induction. Such an approach holds great potential in offering novel pathways and strategies for the prevention and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Xinyue Li
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Maohua Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Chen
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Lingxin Xie
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Luo
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Fan
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Yin
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Siqin Meng
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhixing Jin
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Yao Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, PR China.
| |
Collapse
|
16
|
Ye F, Li L, Wang J, Yang H. Advances in gut-lung axis research: clinical perspectives on pneumonia prevention and treatment. Front Immunol 2025; 16:1576141. [PMID: 40330490 PMCID: PMC12052896 DOI: 10.3389/fimmu.2025.1576141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, the study of the interaction between gut microbiota and distant organs such as the heart, lungs, brain, and liver has become a hot topic in the field of gut microbiology. With a deeper understanding of its immune regulation and mechanisms of action, these findings have increasingly highlighted their guiding value in clinical practice. The gut is not only the largest digestive organ in the human body but also the habitat for most microorganisms. Imbalances in gut microbial communities have been associated with various lung diseases, such as allergic asthma and cystic fibrosis. Furthermore, gut microbial communities have significant impacts on metabolic function and immune responses. Their metabolites not only regulate gastrointestinal immune systems but may also affect distant organs such as the lungs and brain. As one of the most common types of respiratory system diseases worldwide, pulmonary infections have high morbidity and mortality rates. Pulmonary infections caused by immune dysfunction can lead to gastrointestinal problems like diarrhea, further resulting in imbalances within complex interactions that are associated with abnormal manifestations under disequilibrium conditions. Meanwhile, clinical interventions can significantly modulate the composition of gut microbiota, and alteration in gut microbiota may subsequently indicate susceptibility to pulmonary infections and even contribute to the prevention or regulation of their progression. This review delves into the interaction between gut microbiota and pulmonary infections, elucidating the latest advancements in gut-lung axis research and providing a fresh perspective for the treatment and prevention of pneumonia.
Collapse
Affiliation(s)
| | | | | | - Hongfeng Yang
- Department of Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Niu J, Ran Y, Hu Q, Yang N, Yang L, Zhao H, Yang B, Tang D, Tian M. Phytochemical analysis and anti-lung cancer effects in vitro and in vivo of Eomecon chionantha root. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119847. [PMID: 40274030 DOI: 10.1016/j.jep.2025.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eomeconchionantha, a traditional Chinese medicine, is a perennial herb widely cultivated for its medical properties and has been used to treat cancer. However, there are few studies on its anticancer properties. AIM OF THE STUDY This work aimed to identify the chemical composition of E. chionantha root and firstly assess its anti-lung cancer effects in vitro and in vivo. MATERIALS AND METHODS E. chionantha root was extracted by reflux using different solvents in sequence to prepare petroleum ether extract (PEE), ethyl acetate extract (EAE), n-butanol extract (NBE), and water extract (WE). Phytoconstituent analysis of E. chionantha root WE was performed by UHPLC-Q-Orbitrap-MS. In in vitro assays, cytotoxicity of four samples from E. chionantha root on non-cancerous MRC-5 cell line and A549 lung cancer cell line was done by MTT. The impact of E. chionantha root WE on A549 cell proliferation was tested by colony formation assay, and flow cytometry with PI staining was utilized for evaluating its influence on the cell cycle. We performed morphological observations, AO/EB staining, Hoechst 33258 staining, and Annexin V-FITC/PI staining assays to investigate the capacity of E. chionantha root WE to induce A549 cell apoptosis. Wound healing and transwell invasion tests assessed its potential to inhibit A549 cell migratory and invasive abilities. Western blot was used to determine its effect on protein levels associated with proliferation, apoptosis, and metastasis in A549 cells. To further validate its in vivo anticancer efficiency, we established an A549 cell xenograft tumor nude mouse model, recorded tumor volume and weight, and conducted histopathological changes using H&E staining and TUNEL assay. RESULTS Sixty-one constituents were identified from E. chionantha root WE. For in vitro anticancer properties, E. chionantha root WE displayed selective cytotoxicity against A549 cells (IC50 = 5.39 ± 0.18 μg/mL) and lower toxicity to MRC-5 cells (IC50 = 11.75 ± 1.10 μg/mL). E. chionantha root WE triggered G1 phase arrest via up-regulating p21 levels and down-regulating CDK4, CDK6, and cyclin D3 levels, which markedly suppressed A549 cell proliferation. It induced A549 cell apoptosis via a mitochondria-mediated pathway, leading to Bax up-regulation, ΔΨm down-regulation, Cyt C release, activation of caspase 9 and caspase 3, and PARP cleavage. In addition, it repressed the migratory and invasive abilities of A549 cells through lowering MMP-2 and N-cadherin levels. Regarding in vivo antitumor activity, E. chionantha root WE effectively inhibited A549 xenograft tumor growth and induced cell apoptosis in nude mice. Hence, E. chionantha root WE repressed A549 cell proliferation, induced apoptosis, and inhibited the migratory and invasive abilities in vitro and suppressed tumor growth by inducing apoptosis in vivo. CONCLUSIONS E. chionantha root WE exhibited pronounced anti-lung cancer efficiency in vivo and in vitro and can be considered a novel source of anticancer agents with great value for development in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jingming Niu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; School of Health Care and Nursing, Fuyang Vocational and Technical College, Fuyang, 236031, China
| | - Yuanquan Ran
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qiong Hu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Nian Yang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Lanlan Yang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Huan Zhao
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Bing Yang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| | - Minyi Tian
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Luo D, Xu R, Jiang L, Zhu Y, Li H, Cao Y, Su Z, Chen Y. Unraveling the protective mechanisms and bioactive components of litchi polysaccharides in intestinal health. Int J Biol Macromol 2025; 310:143383. [PMID: 40268031 DOI: 10.1016/j.ijbiomac.2025.143383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
In recent years, the rise in intestinal disease has driven the hunt for safer, cost-effective alternatives to traditional, side-effect-laden medications. Litchi polysaccharide (LP), derived from litchi pulp, has emerged as a potential intestinal protector, but its efficacy has not been well-established. Our study have demonstrated LP significantly preserves the integrity of the intestinal barrier in both Caenorhabditis elegans model and antibiotic-exposed mice. Furthermore, LP regulates the gut microbiota, promoting the dominance of beneficial bacteria such as Anaerostipes and Lachnoclostridium in antibiotic-exposed mice and elevating the levels of short-chain fatty acids (SCFAs). LP2-a, a key component making up 11.13 % of LP and with a molecular weight of 72,477 Da, has been isolated and identified as the main active agent. Its molecular structure, featuring galactose and arabinose and possessing a main chain composed of specific sugar units and side chains, is crucial for its protective effects. In C. elegans, LP2-a regulates the expression of intestinal structure-related genes, including up-regulating the expression of act-5 and down-regulating the levels of ajm-1, erm-1, and zoo-1, protecting the integrity of the intestinal barrier. This study provides a theoretical foundation for the potential use of LP, particularly LP2-a, in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Danxian Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Ruina Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Li Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Huangbo Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
19
|
Li X, Yan C, Li S, Shen L, Huo L. Mechanism of LncRNA CBR3-AS1 in regulating pyroptosis of intestinal epithelial cells in ulcerative colitis. J Bioenerg Biomembr 2025:10.1007/s10863-025-10060-3. [PMID: 40257734 DOI: 10.1007/s10863-025-10060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Ulcerative colitis (UC) is a common chronic relapsing inflammatory disease that threatens human life. This study aims to explore the mechanism of LncRNA CBR3-AS1 in pyroptosis of intestinal epithelial cells in UC. The levels of CBR3-AS1, KLF2, and SUGT1 in UC cells were detected. After downregulating CBR3-AS1 expression, cell viability and pyroptosis were measured, followed by the detection of SOD and MDA levels. The binding of CBR3-AS1 to EZH2, enrichment of EZH2 and H3K27me3 on the KLF2 promoter, and binding of KLF2 to the SUGT1 promoter were assayed. The role of CBR3-AS1 in pyroptosis was validated in animal models. We found that CBR3-AS1 and SUGT1 were increased in UC cells, and KLF2 was decreased. After downregulation of CBR3-AS1, cell viability was increased and pyroptosis was alleviated. CBR3-AS1 recruited EZH2 to occupy the KLF2 promoter, leading to increased H3K27me3 levels and suppressed KLF2 expression, reducing the enrichment of KLF2 on the SUGT1 promoter, finally promoting SUGT1 expression. SUGT1 overexpression or KLF2 downregulation alleviated the protective effect of silencing CBR3-AS1 on pyroptosis in UC cells. CBR3-AS1 downregulation alleviates cell pyroptosis in colonic tissues. In conclusion, CBR3-AS1 exacerbated pyroptosis of intestinal epithelial cells in UC via the KLF2/SUGT1 pathway.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Caiwen Yan
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Suxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
| | - Lujun Shen
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Lijuan Huo
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China.
| |
Collapse
|
20
|
Bao Y, Li Y, Gu J, Shen C, Zhang Y, Deng X, Han L, Ran J. Urban heat island impacts on mental health in middle-aged and older adults. ENVIRONMENT INTERNATIONAL 2025; 199:109470. [PMID: 40286554 DOI: 10.1016/j.envint.2025.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Urban heat island (UHI), attributed to rapid urbanization, might be a latent modifiable risk factor for human health, yet little is known about whether UHI puts a strain on public mental health. This study aimed to assess the effect of the summer UHI on mental health. METHODS Leveraging 338,363 urban residents from the UK Biobank, this study estimated the associations of summer UHI effect with incidence risks of mental disorders, substance use disorder, depressive disorder, and anxiety disorder using both time-independent and time-dependent Cox regression models with full adjustment for possible confounders. Furthermore, the effect of UHI on related psychiatric symptoms and brain microstructure were explored through logistic regression models and multiple linear regression models, respectively. RESULTS In this study, summer UHI was significantly associated with the elevated risks of psychiatric disorders. The hazard ratio with a 95% confidence interval (CI) from the time-dependent Cox model was 1.04 (95% CI, 1.03-1.05) for mental disorders, 1.12 (1.11-1.14) for substance use disorder, 1.08 (1.06-1.10) for depressive disorder, and 1.06 (1.04-1.08) for anxiety disorder per standard deviation of UHI intensity, respectively. Subgroup analyses showed that females and individuals with hypertension or coronary artery disease were more vulnerable to the UHI effect on mental health. The detrimental effects on psychiatric symptoms and white matter microstructure were also observed. CONCLUSION The study suggested UHI could be an environmental stressor and induce a heavier burden on mental health. The effective mitigation of urban heat stress could benefit both public health and sustainable development.
Collapse
Affiliation(s)
- Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Gu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | | | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Meng R, Zhang Z. Gallic Acid Inhibits the Proliferation and Migration of Ovarian Cancer Cells via Inhibition of the PI3K-AKT Pathway and Promoting M1-Like Macrophage Polarization. Anal Cell Pathol (Amst) 2025; 2025:3880719. [PMID: 40270598 PMCID: PMC12017941 DOI: 10.1155/ancp/3880719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025] Open
Abstract
Ovarian cancer is one of the leading malignant women tumors that causes higher mortality, and immunotherapy has shown high potential in the treatment of advanced ovarian cancer patients by activating and mobilizing the human immune system, which can improve patient prognosis and survival. Natural compounds are a big resource for screening and finding effective lead compounds to treat diseases. Gallic acid (GA) is a natural organic acid with broad-spectrum antibacterial, antiviral, and antitumor effects. In the current study, we aim to explore the effect of GA on ovarian cancer and its underlying mechanisms. The CCK-8 assay was employed to study its anti-proliferation effect and wound healing, and transwell assay was utilized to test the GA effect on cell migration and invasion. The xenograft tumor model was used to evaluate the GA anticancer effect in vivo. The results demonstrated that GA significantly suppresses the proliferation of ovarian cancer cells both in vitro and in vivo, reduces their migration and invasion capability, and enhances macrophage cytotoxicity in the murine ID8 xenograft tumor microenvironment (TME). The mechanism study demonstrated that its anticancer effect and enhancing immunity is stem from inhibiting the PI3k-AKT pathway. In conclusion, GA plays an anticancer effect via blockage of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Ran Meng
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, China
| |
Collapse
|
22
|
Wang X, Chao X, Zhang W, Zhang X, Wu J, Ye C, Ma X, Fan Z, Liu M, Fang C, Luo Q. Heat Stress Influences Immunity Through DUSP1 and HSPA5 Mediated Antigen Presentation in Chickens. Animals (Basel) 2025; 15:1141. [PMID: 40281975 PMCID: PMC12024107 DOI: 10.3390/ani15081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
The objective of this study was to elucidate the immune system response to heat stress in chickens. In this study, mRNA-seq was conducted on the spleen and bursa of experimental chickens, six differentially expressed genes associated with immunity were present in the spleen following immunization. Following exposure to heat stress, 15 differentially expressed genes related to immune and heat shock proteins were identified. Furthermore, the expression levels of DUSP1 and HSPA5 were significantly lower in the non-stressed group. With regard to the mechanism, overexpression of DUSP1 or HSPA5 resulted in no significant difference in MHC-I, MHC-II, and CD80 mRNA expression. However, following stimulation with LPS, mRNA expression of MHC-II, CD80, CD86, CD1C, IL1B, and TLR4 was significantly increased. Furthermore, the enhancement was observed to occur at an earlier stage than when LPS was stimulated alone, thereby facilitating the recognition of LPS by HD11. Following the inhibition of DUSP1 or HSPA5 and the stimulation of LPS, no significant alterations were detected. However, CD1C expression was notably diminished. In conclusion, DUSP1 and HSPA5 have been demonstrated to play important roles in immunity to heat stress by affecting antigen presentation. The present study provides a theoretical basis for the regulation mechanism of disease resistance in poultry.
Collapse
Affiliation(s)
- Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
| | - Wenwu Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiongwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuerong Ma
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Manqing Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Zhang Y, Shi S, Lin C, Zeng Q, Che L, Li Y, Lin W. Thiolutin, a novel NLRP3 inflammasome inhibitor, mitigates IgA nephropathy in mice. Int Immunopharmacol 2025; 152:114440. [PMID: 40086055 DOI: 10.1016/j.intimp.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
NLRP3 inflammasome plays a key role in IgA Nephropathy (IgAN) pathogenesis. Thiolutin (THL) is an NLRP3 inflammasome inhibitor with anti-inflammatory effects, but its role in IgAN is unclear. This study aimed to evaluate the protective efficacy of THL in IgAN mice, alongside assessing its inhibitory mechanisms. IgAN was induced by administration of bovine serum albumin combined with Staphylococcal Enterotoxin B in mice, followed by THL treatment. Kidney injury biomarkers, inflammatory cytokines, histological changes and the NLRP3 inflammasome pathway were assessed. The effect of THL on pyroptosis and action site on inflammasome was examined in J774A.1 cells, and co-immunoprecipitation was used to study specific protein interactions. In IgAN mice, THL treatment significantly reduced renal dysfunctional markers and histological injury without affecting hepatic function, accompanied by decreased serum IgA levels, renal IgA deposition and pro-inflammatory cytokine accumulation via regulating the mRNA and protein expression of key inflammasome components. It also attenuated pyroptosis and NLRP3 inflammasome activation instead of priming in macrophages, via disturbing the combination of NLRP3 with apoptosis-associated speck-like protein and NIMA-Related Kinase 7. THL has significant anti-inflammatory and renal protective effects in IgAN via inhibiting the NLRP3 inflammasome pathway. Its selective impact on the activation and assembly of the inflammasome, without affecting priming, highlights its potential as a targeted therapeutic agent in IgAN management.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Shuhan Shi
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Changda Lin
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Quanzuan Zeng
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Lishuang Che
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yuangen Li
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Weiyuan Lin
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
24
|
Lu B, Pan S, He J, Li B, Cao N, Fu X, Liu W, Huang Y, Tian Y, Xu D, Li W. Protective effects of polysaccharide of Atractylodes macrocephala Koidz and Jiawei Si-jun-zi Decoction on gut health and immune function in cyclophosphamide-treated chicks. Poult Sci 2025; 104:105160. [PMID: 40267565 DOI: 10.1016/j.psj.2025.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
The gut serves not only as digestive but also as critical immune organ, playing a vital role in maintaining the growth performance and immune function of poultry. Atractylodes macrocephala Koidz (AMK) is known for its antioxidant, anti-inflammatory and immunomodulatory properties. This study utilized a Cyclophosphamide (CTX)-induced gut injury model to explore the effects of Polysaccharide of Atractylodes macrocephala Koidz (PAMK) and the Jiawei Si-jun-zi Decoction (JSD) on alleviating gut injury and modulating immune function. The experimental results demonstrated that CTX significantly reduced the average daily gain (ADG) and antioxidant capacity of broiler chicks, disrupted intestinal barrier function, and induced gut microbiota dysbiosis. However, supplementation with PAMK and JSD significantly improved ADG, enhanced antioxidant enzyme activity, alleviated oxidative stress, and upregulated the expression of barrier-related genes such as ZO-1 and Occludin. Additionally, PAMK and JSD significantly increased anti-inflammatory cytokines, including IL-10 and TGF-β, improved gut microbiota diversity, enriched beneficial microbial populations, and restored the microbiota balance disrupted by CTX. These findings suggest that PAMK and JSD effectively mitigate CTX-induced intestinal injury by regulating the antioxidant system, strengthening intestinal barrier function, and restoring gut microbiota structure. This study provides a scientific basis for the development of safe and effective feed additives and proposes a novel strategy to reduce antibiotic use in poultry farming.
Collapse
Affiliation(s)
- Baili Lu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shirou Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiayu He
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
25
|
Gofron KK, Wasilewski A, Małgorzewicz S. Effects of GLP-1 Analogues and Agonists on the Gut Microbiota: A Systematic Review. Nutrients 2025; 17:1303. [PMID: 40284168 PMCID: PMC12029897 DOI: 10.3390/nu17081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND GLP-1 analogues are a relatively new class of medications that form the cornerstone of diabetes treatment. They possess invaluable glucose-lowering properties without hypoglycemic effects as well as strong cardioprotective effects. The gut microbiome has become the focus of numerous studies, demonstrating its influence not only on the gut but also on the overall well-being of the entire body. However, the effects of GLP-1 analogs on gut microbiota remain uncertain. SCOPE OF REVIEW Our systematic review (based on PRISMA guidelines) aimed to gather knowledge on the effects of GLP-1 analogue medications on the composition, richness, and abundance of gut microbiota in both animal and human models. CONCLUSIONS Thirty-eight studies were included in this systematic review. GLP-1 analogues have demonstrated a notable impact on the composition, richness, and diversity of gut microbiota. We can conclude, following the obtained research results of our study, that liraglutide promotes the growth of beneficial genera relevant for beneficial metabolic functions. Exenatide and exendin-4 administration showed various effects on the microbiome composition in animal and human studies. In animal models, it increased genera associated with improved metabolism; however, in human models, genera linked to better metabolic functions and escalated inflammation increased. Following dulaglutide administration, increases in Bacteroides, Akkermansia, and Ruminococcus, genera connected to an improved metabolic model, were significant. Finally, varied results were obtained after semaglutide treatment, in which A. muciniphila, known for its positive metabolic functions, increased; however, microbial diversity decreased. Semaglutide treatment provided various results indicating many confounding factors in semaglutide's impact on the gut microbiota. Results varied due to dissimilarities in the studied populations and the duration of the studies. Further research is essential to confirm these findings and to better recognize their implications for the clinical outcomes of patients.
Collapse
Affiliation(s)
- Krzysztof Ksawery Gofron
- Student Scientific Circle at Department of Clinical Nutrition, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Andrzej Wasilewski
- Student Scientific Association of Medical Chemistry and Immunochemistry, Wroclaw Medical University, Marii Skłodowskiej-Curie 48/50, 59-369 Wroclaw, Poland;
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland;
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| |
Collapse
|
26
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
27
|
Liu L, Li X, Yang H, Xu F, Dong X. Bioinformatic Analysis of Apoptosis-Related Genes in Preeclampsia Using Public Transcriptomic and Single-Cell RNA Sequencing Datasets. J Inflamm Res 2025; 18:4785-4812. [PMID: 40224388 PMCID: PMC11992479 DOI: 10.2147/jir.s507660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Purpose Apoptosis, which is crucial in preeclampsia (PE), affects trophoblast survival and placental function. We used transcriptomics and single-cell RNA sequencing (scRNA-seq) to explore apoptosis-related genes (ARGs) and their cellular mechanisms as potential PE biomarkers. Patients and Methods All the data included in this study were sourced from public databases. We used scRNA-seq and differential expression analysis, combined with five algorithms from the CytoHubba plugin, to identify ARGs as PE biomarkers. These were integrated into diagnostic nomograms. Mechanistic studies involved enrichment analysis and immune profiling. Biomarker expression was examined at the single-cell level, and verified in clinical samples by RT-qPCR. Results Cluster of Differentiation 44 (CD44), Macrophage migration inhibitory factor (MIF), PIK3R1, and Toll-like receptor 4 (TLR4) were identified as PE biomarkers. CD44 and TLR4 were down-regulated, while MIF and PIK3R1 were up-regulated. When integrated into the diagnostic nomogram, they showed clinical utility and affected cell functions. In the immune profile of PE, monocytes decreased, resting NK cells increased, and the activities of APC, checkpoint, T-cell co-stimulation, and MHC class I pathways reduced. ScRNA-seq identified 11 cell types, 10 of which were significantly different. Endothelial cell communication with other cell types decreased, while the interaction between common myeloid progenitors (CMP) and villous cytotrophoblasts (VCT) enhanced. The expression levels of CD44, MIF, and PIK3R1 in VCT were significantly different and key to PE. Their decrease in early PE and increase in late PE reflected the placenta's adaptation to adverse pregnancy conditions. Conclusion Four ARGs, CD44, MIF, PIK3R1, and TLR4, identified through comprehensive analyses, served as significant biomarkers for PE and offered insights into PE's cellular mechanisms of PE, providing valuable references for further research.
Collapse
Affiliation(s)
- Lingyan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Xiuling Li
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Hongfen Yang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Fei Xu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Department of Pain Management, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Xudong Dong
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| |
Collapse
|
28
|
Ge Y, Tang G, Fu Y, Deng P, Yao R. The impact of environmental factors on respiratory tract microbiome and respiratory system diseases. Eur J Med Res 2025; 30:236. [PMID: 40186246 PMCID: PMC11970004 DOI: 10.1186/s40001-025-02517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
The respiratory tract microbiome, a complex ecosystem of microorganisms colonizing the respiratory mucous layers and epithelial surfaces along with their associated microenvironment, plays a vital role in maintaining respiratory function and promoting the maturation of the respiratory immune system. Current research suggests that environmental changes can disrupt the respiratory microbiota, potentially leading to disease. This review summarizes existing research on the impact of environmental factors on the respiratory microbiome and associated diseases, aiming to offer new insights into the prevention and treatment of respiratory disease.
Collapse
Affiliation(s)
- Yutao Ge
- Emergency Department of West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Guo Tang
- Emergency Department of West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yawen Fu
- Emergency Department of West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Peng Deng
- Emergency Department of West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Rong Yao
- Emergency Department of West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Badea A, Mahzarnia A, Reddy D, Dong Z, Anderson RJ, Moon HS, Stout JA, Williams J, Hirschler L, Barbier EL, Williams CL. Neuroimaging Biomarkers of Neuroprotection: Impact of Voluntary versus Enforced Exercise in Alzheimer's Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646015. [PMID: 40236037 PMCID: PMC11996325 DOI: 10.1101/2025.03.28.646015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Exercise is a promising strategy for preventing or delaying Alzheimer's disease (AD), yet its mechanisms remain unclear. We investigated how exercise influences brain structure, function, and behavior in a familial AD model. Mice underwent voluntary, voluntary plus enforced exercise, or remained sedentary. Neuroimaging included in vivo manganese-enhanced MRI (MEMRI). perfusion, and ex vivo diffusion MRI to assess morphometry, activity, cerebral blood flow (CBF), microstructural integrity and connectivity. Both exercise regimens induced structural and functional brain adaptations while reducing anhedonia. Voluntary exercise increased cortical and limbic volumes, particularly in the hippocampus, cingulate, and entorhinal cortex, supporting cognitive and emotional regulation. Adding enforced exercise influenced subcortical and sensory regions, including visual, motor and associative areas, supporting sensory-motor integration. MEMRI revealed increased activity in sensorimotor, limbic, and associative cortices, with voluntary exercise enhancing limbic and associative regions, and enforced exercise strengthening sensorimotor and subcortical circuits. White matter integrity improved in memory-associate pathways such as the corpus callosum, cingulum, and hippocampal commissure. Synaptic remodeling was observed in the cingulate cortex, anterior thalamic nuclei, and amygdala. Voluntary exercise enhanced CBF in the motor cortex and hippocampus, while enforced exercise limited these increases. Connectivity analyses revealed exercise-responsive networks spanning the cingulate cortex, entorhinal cortex, anterior thalamic nuclei, and basolateral amygdala, and associated tracts. Graph analyses linked running distance with increased thalamic, brainstem, and cerebellar connectivity, associating exercise intensity with plasticity. These findings highlight the ability of chronic exercise to modulate neuroimaging biomarkers through distinct but complementary pathways, reinforcing its potential as a neuroprotective intervention for AD. Highlights Exercise alters MRI biomarkers via distinct and partially overlapping mechanisms.Voluntary exercise boosts cortical and limbic regions for emotion and cognition.Enforced exercise strengthens subcortical and sensory areas for motor control.FA increases suggest memory tract reinforcement and grey matter remodelling.Graph analysis reveals plasticity in memory, emotion, and reward circuits.
Collapse
|
30
|
Xiao T, Huang F, Guo Z, Cheng X, Duan J, Dai W, Yang B, Zhang Y, Tao L, Shen X. Black Raspberry Polyphenols Shape Metabolic Dysregulation and Perturbation in Gut Microbiota to Promote Lipid Metabolism and Liver Regeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7833-7856. [PMID: 40130403 DOI: 10.1021/acs.jafc.5c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Black raspberry as a functional food is a potential modulator of human metabolic disease. However, the role of black raspberry polyphenols (HSM) in shaping metabolic dysregulation and perturbation in gut microbiota (GM) to promote lipid metabolism and liver regeneration is unclear. In this work, the effects of HSM in mitigating metabolic disturbances and hepatic damage induced by a high-fat diet (HFD) and antibiotics (Abs) in mice were measured. HSM significantly alleviated HFD-induced obesity, insulin resistance, lipid and glucose metabolic dysregulation, as well as hepatic damage by activating the PI3K/AKT pathway and pregnane X receptor (PXR)-farnesoid X receptor (FXR) axis with improved GM, which was evidenced by short-chain fatty acids, 16S, and nontarget metabolism analysis. Excellent results were also evident in mice treated with Abs. Besides, HSM markedly inhibited key digestive enzymes associated with metabolic syndrome and also significantly enhanced antioxidant capacity after metabolized by GM. The discoveries underscored the potential of dietary HSM to manage lipid metabolism and liver regeneration within GM homeostasis.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The National Engineering Research Center of Miao's Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Guiyang 550008, China
| | - Feilong Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Zhenghong Guo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xingyan Cheng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Jinchang Duan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Weiyan Dai
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Bo Yang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Zhejiang Provincial Tongde Hospital, 234 Gucui Road, Hangzhou, Zhejiang 310013, China
| | - Yiquan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- Guizhou Hengba Pharmaceutical Co., Ltd., Jinyang Industry Knowledge Park, Guiyang National High-tech Industrial Development Zone, Guiyang 550008, China
| | - Ling Tao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Xiangchun Shen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| |
Collapse
|
31
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Lee K, Liu Z, Huang Q, Corrigan D, Kalsekar I, Jun T, Stolovitzky G, Oh WK, Rajaram R, Wang X. Decoding Recurrence in Early-Stage and Locoregionally Advanced Non-Small Cell Lung Cancer: Insights From Electronic Health Records and Natural Language Processing. JCO Clin Cancer Inform 2025; 9:e2400227. [PMID: 40249880 PMCID: PMC12011440 DOI: 10.1200/cci-24-00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025] Open
Abstract
PURPOSE Recurrences after curative resection in early-stage and locoregionally advanced non-small cell lung cancer (NSCLC) are common, necessitating a nuanced understanding of associated risk factors. This study aimed to establish a natural language processing (NLP) system to efficiently curate recurrence data in NSCLC and analyze risk factors longitudinally. PATIENTS AND METHODS Electronic health records of 6,351 patients with NSCLC with >700,000 notes were obtained from Mount Sinai's data sets. A deep learning-based customized NLP system was developed to identify cohorts experiencing recurrence. Recurrence types and rates over time were stratified by various clinical features. Cohort description analysis, Kaplan-Meier analysis for overall recurrence-free survival (RFS) and distant metastasis-free survival (DMFS), and Cox proportional hazards analysis were performed. RESULTS Of 1,295 patients with stage I-IIIA NSCLC with surgical resections, 336 patients (25.9%) experienced recurrence, as identified through NLP. The NLP system achieved a precision of 94.3%, a recall of 93%, and an F1 score of 93.5. Among 336 patients, 52.4% had local/regional recurrences, 44% distant metastases, and 3.6% unknown recurrence. RFS rates at years 1-5 were 93%, 81%, 73%, 67%, and 61%, respectively (96%, 89%, 84%, 80%, and 75% for distant metastasis). Stage-specific RFS rates at year 5 were 73% (IA), 62% (IB), 47% (IIA), 46% (IIB), and 20% (IIIA). Stage IB patients had a significantly higher likelihood of recurrence versus stage IA (adjusted hazard ratio [aHR], 1.63; P = .02). The RFS was lower in patients with clinically significant TP53 alteration (v TP53-negative or unknown significance), affecting overall RFS (aHR, 1.89; P = .007) and DMFS (aHR, 2.47; P = .009) among stage IA/IB patients. CONCLUSION Our scalable NLP system enabled us to generate real-world insights into NSCLC recurrences, paving the way for predictive models for preventing, diagnosing, and treating NSCLC recurrence.
Collapse
Affiliation(s)
| | | | - Qing Huang
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ
| | | | | | | | | | - William K. Oh
- GeneDx (Sema4), Stamford, CT
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ravi Rajaram
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
33
|
Chen Y, Gu Y, Gao Z. BAICALIN ALLEVIATES LPS-INDUCED CYTOTOXICITY IN ACUTE LUNG INJURY THROUGH MEDIATING METTL14/SOX6 AXIS. Shock 2025; 63:566-572. [PMID: 39617417 DOI: 10.1097/shk.0000000000002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
ABSTRACT Background : Baicalin (C 21 H 18 O 11 ) is a flavonoid component extracted from Scutellaria baicalensis with biological activity in various types of diseases, including acute lung injury (ALI). The relevant mechanism behind baicalin in ALI needs further investigation. Methods : ALI model in vitro was established by LPS in WI-38 cells (lung fibroblast). Cell growth was determined via MTT assay and EdU assay. Apoptosis was assessed using flow cytometry, caspase 3 assay, and TUNEL assay. Oxidative indicators and inflammatory cytokines were detected by commercial kits. Interaction between methyltransferase-like 14 (METTL14) and SRY-box transcription factor 6 (SOX6) was studied using methylated RNA immunoprecipitation and dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction and Western blot were applied for examining gene levels. Results : Baicalin enhanced cell growth and reduced apoptosis and oxidative stress; inflammation after ALI was induced by LPS. Downregulation of SOX6 weakened LPS-induced cytotoxicity in WI-38 cells. Baicalin prevented from LPS-induced lung cell injury via reducing SOX6 expression. SOX6 expression was stabilized by METTL14 through its methylation modification. METTL14/SOX6 axis was related to the regulation of baicalin in LPS-treated WI-38 cells. Conclusion : Therefore, baicalin played an important role to inhibit LPS-induced cytotoxicity in vitro via METTL14-mediated methylation of SOX6.
Collapse
Affiliation(s)
- Yuexuan Chen
- Department of Emergency, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang, China
| | - Yuhai Gu
- Department of Pneumology, Qinhai Provincial People's Hospital, Xining City, Qinghai, China
| | - Zhihan Gao
- Department of Clinical Psychology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou City, Zhejiang, China
| |
Collapse
|
34
|
Yao B, He B, Peng J, Song X, Zhao R, Sun Y, Zhang Y. The comprehensive review of eucalyptol: synthesis, metabolism, and therapeutic applications in disease treatment. Mol Biol Rep 2025; 52:346. [PMID: 40153080 DOI: 10.1007/s11033-025-10461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/20/2025] [Indexed: 03/30/2025]
Abstract
BACKGROUND Eucalyptol (1,8-cineole), a naturally occurring monoterpenoid compound, is ubiquitously distributed across plant, animal, and microbial organisms. This bioactive molecule demonstrates significant therapeutic potential for various neurological and respiratory disorders, including cancer, epilepsy, and tracheitis, attributable to its potent antioxidant, anti-inflammatory, and antimicrobial properties. SCOPE AND THRUST The present review systematically examines the biosynthetic pathways and metabolic routes of eucalyptol, while elucidating its molecular mechanisms underlying microbial inhibition. We comprehensively summarize its principal therapeutic pathways in major disease interventions, with particular emphasis on its multi-target pharmacological actions. Furthermore, this analysis addresses potential toxicological concerns associated with eucalyptol application and discusses emerging strategies utilizing biological agents for active enhancement. CONCLUSION AND SIGNIFICANCE This comprehensive evaluation not only enhances our understanding of eucalyptol's therapeutic mechanisms but also provides critical insights for its development as a promising phytopharmaceutical agent in clinical practice.
Collapse
Affiliation(s)
- Bin Yao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jiahua Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xin Song
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Rui Zhao
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yu Sun
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yanfang Zhang
- Shaoxing Seventh People's Hospital, Shaoxing, 312000, China.
| |
Collapse
|
35
|
Sun M, Zhang X, Feng X, Liang L. PKM2 accelerated the progression of chronic fatigue syndrome via promoting the H4K12la/ NF-κB induced neuroinflammation and mitochondrial damage. Sci Rep 2025; 15:10772. [PMID: 40155479 PMCID: PMC11953386 DOI: 10.1038/s41598-025-93313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
This study aims to explore the effects and potential mechanisms of PKM2-mediated neuroinflammation leading to mitochondrial damage and its role in the progression of chronic fatigue syndrome (CFS). Bioinformatics methods were applied to predict and analyze PKM2 and downstream signaling factors. In vivo experiments were conducted with mice divided into four groups after different treatments: control group, model group, Model + PKM2-OE group, and Model + PKM2-KD group. Morris water maze and field tests were used to assess cognitive function, grip strength, and rotation tests to evaluate physical strength. HE and Nissl staining were used to observe cellular conditions in the CA1 region of the hippocampus. Immunohistochemistry was used to detect PKM2 levels in the CA1 region. Western blot was performed to assess protein expression, lactate assay kits measured serum and brain tissue lactate levels, and ELISA detected inflammatory factors in brain tissue. Bioinformatics analysis showed that PKM2 could promote the expression of glycolytic factors, leading to H4K12la histone lactylation modification, which enhances the expression of inflammatory factors such as NF-κB, resulting in mitochondrial damage. Compared to the control group, the cognitive function of the model group significantly declined, while the cognitive function of the Model + PKM2-OE group improved. However, cognitive function worsened in the Model + PKM2-KD group compared to the model group. The physical strength of the control group was normal, and no significant differences were observed in the model, Model + PKM2-OE, and Model + PKM2-KD groups. Cell quantity and arrangement in the control group were normal, while the model group showed fewer and disorganized cells. The Model + PKM2-OE group showed further deterioration compared to the model group, whereas the Model + PKM2-KD group showed improvement. Compared to the control group, the model group had increased expression of PKM2, H4K12la, H4, IL-1β, and TNFα. Compared to the model group, these markers were even higher in the Model + PKM2-OE group, but significantly reduced in the Model + PKM2-KD group. Serum lactate levels increased in the model group compared to the control group, but there was no significant difference between the Model + PKM2-OE and Model + PKM2-KD groups. Brain tissue lactate levels increased in the model group, further elevated in the Model + PKM2-OE group, but decreased in the Model + PKM2-KD group. PKM2 in hippocampal cells enhances glycolysis, lactate accumulation, and H4K12la/NF-κB-mediated neuroinflammation, leading to mitochondrial damage and accelerating the progression of chronic fatigue syndrome.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional vascular Surgery, Affiliated Hospital of Hebei University, B aoding 071000, Baoding City, Hebei, China
| | - Xinwen Zhang
- Department of Integrative Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China
| | - Xinli Feng
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| | - Lu Liang
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
36
|
Dong W, Mou Y, Li Q, Li M, Su H, Jiang L, Zhou J, Tu K, Yang X, Huang Y, Xu C, Zhang L, Huang Y. DIA-based quantitative proteomics explores the mechanism of amelioration of APAP-induced liver injury by anoectochilus roxburghii (Wall.) Lindl. Front Pharmacol 2025; 16:1508290. [PMID: 40206085 PMCID: PMC11979217 DOI: 10.3389/fphar.2025.1508290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Background Drug-induced liver injury (DILI) is the most common cause of acute liver injury. Anoectochilus roxburghii (Wall.) Lindl. (AR) and its polysaccharide fractions (ARPs) have been shown to have effective therapeutic effects with minimal side effects on a wide range of diseases including hepatopathy. This study aims to determine the therapeutic effects of ARPs on acetaminophen (APAP)-induced liver injury and to explore the mechanistic pathways involved. Methods C57BL/6J male mice at 8 weeks were used to construct a model of APAP-induced liver injury. The acute hepatic injury was induced by oral administration of APAP (300 mg/kg) before 16 h fasting. For therapeutic experiment, mice were gavaged with the water extract of AR (AR.WE) or the purified ARPs before and after APAP administration. Biochemical analyses, ELISA analyses, H&E staining, RT-PCR, and Quantitative proteomic analysis were used to investigate the effects and mechanisms of AR on DILI. Results Both AR.WE. and the purified ARPs treatment reduced APAP-induced liver injury, decreased hepatic glutathione and TNF-α levels, alleviated oxidative stress and inflammation. Quantitative proteomic analysis revealed that ARPs downregulated the protein levels involved in apoptosis, inflammation, oxidative stress, necroptosis, while upregulated the protein levels involved in autophagy. These protective effects of ARPs are possibly related to the downregulation of vATPase activity and thus participating in the autophagic process and ferroptosis. Conclusion ARPs can protect mice against APAP-induced liver injury, alleviate oxidative stress and inflammation. Our study reveals a potential therapeutic effect for ARPs in protecting APAP-induced liver injury.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yao Mou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qiuyu Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Min Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hao Su
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Kun Tu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuexi Huang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Liaoyun Zhang
- Department of Pharmacy, Sichuan Provincial Woman’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Li Z, Guan K, Deng H, Ye S, Deng J, Yao D, Yan Y, Chen H, Lu C, Yu J. Chinese herbal medicine (Guben Qushi Huayu formula) combined with Ixekizumab in reducing psoriasis vulgaris relapse: Protocol for a mixed-methods research study. Front Pharmacol 2025; 16:1551001. [PMID: 40191426 PMCID: PMC11968370 DOI: 10.3389/fphar.2025.1551001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Psoriasis vulgaris (PV) is an inflammatory, chronically relapsing dermatological disease associated with significant comorbidities. Ixekizumab is recommended as the first-line therapy for severe PV, but encounters persistent challenges with relapse after treatment discontinuation. In clinical practice, Chinese herbal medicine (CHM) including Guben Qushi Huayu formula (GQHF) has been demonstrated effective in reducing PV relapse. However, there remains a scarcity of high-level evidence-based study in this respect. Therefore, this study aims to preliminarily evaluate the feasibility and acceptability of Ixekizumab combined with GQHF in reducing PV relapse. Methods and analysis This study employs a mixed-method research (MMR) design, encompassing both quantitative and qualitative studies. The quantitative study consists of a randomized controlled trial involving 50 participants with severe PV, who will be randomly allocated to the intervention group (Ixekizumab plus GQHF) and the control group (Ixekizumab plus GQHF placebo) in a 1:1 ratio. Relapse rate is the primary endpoint. The qualitative study involves semi-structured interviews to concurrently explore the acceptability of the application of Ixekizumab combined with GQHF among the enrolled participants. Discussion This pilot study utilizes MMR to investigate the effect of Ixekizumab combined with GQHF in reducing PV relapse. The findings are expected to provide valuable clinical evidence and a novel therapeutic option for PV. Moreover, it is our intention to conduct a larger MMR trial to further strengthen the clinical evidence and broaden the application of Ixekizumab in combination with GQHF. Clinical Trial Registration https://www.chictr.org.cn/index.html, identifier ChiCTR2100054950.
Collapse
Affiliation(s)
- Ziqing Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kewen Guan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shuyan Ye
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingwen Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Danni Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yuhong Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Haiming Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou, China
| | - Jingjie Yu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
38
|
Wang Z, Yan W, Lin X, Qin G, Li K, Jiang L, Li X, Xiao X, Luo T, Hou Y. Forsythiaside A Alleviates Ulcerative Colitis and Inhibits Neutrophil Extracellular Traps Formation in the Mice. Phytother Res 2025. [PMID: 40099671 DOI: 10.1002/ptr.8440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 03/20/2025]
Abstract
Forsythiaside A (FA), the primary compound found in Forsythia suspensa (Thunb.) Vahl, has demonstrated various pharmacological effects, but its impact on ulcerative colitis (UC) is underexplored. Our study examined the distribution of FA in different parts of the gastrointestinal tracts and its therapeutic effects on UC, along with the underlying mechanisms. The levels of FA in gastrointestinal tracts and plasma were analyzed by high-performance liquid chromatography; mice were given dextran sulfate sodium in drinking water to develop the UC model. The UC mice were treated with FA (15, 30, and 60 mg/kg) for 10 days. FA showed relatively high concentration retention in the colon within 4 h. The treatment of FA improved body weight loss, diarrhea, rectal bleeding, colon shortening, and histological damage in UC mice. It also increased the expression of the tight junction protein and decreased inflammatory cytokines in the colon. The microbiota analysis using 16S rRNA sequencing revealed that FA could alleviate gut dysbiosis in colitis mice. Of importance, we found FA resulted in a reduction of neutrophil extracellular traps formation (NETosis) and inhibited peptidyl arginine deiminase 4 (PAD4) in colon tissue of colitis mice. In cultured neutrophils, FA pretreatment led to a suppression of PAD4 expression and NETosis induced by PMA. These findings suggest that FA can be retained in the colon and may alleviate UC by inhibiting NETs formation, indicating its potential for preventing or treating UC.
Collapse
Affiliation(s)
- Zhuyun Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Yan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kemeng Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincheng Jiang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingwang Li
- Laboratory of Traditional Chinese Medicine, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Hou
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Traditional Chinese Medicine, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Chiang XH, Wei CF, Lin CC, Lin MW, Chiang CJ, Lee WC, Chen JS, Chen PC. Segmentectomy Versus Wedge Resection for Stage IA Lung Adenocarcinoma-A Population-Based Study. Cancers (Basel) 2025; 17:936. [PMID: 40149272 PMCID: PMC11940408 DOI: 10.3390/cancers17060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Sublobar resection (SLR), including segmentectomy and wedge resection (WR), is an alternative to lobectomy for early-stage lung cancer due to its potential benefits in preserving lung function. However, the comparative outcomes between segmentectomy and WR for stage IA lung adenocarcinoma are equivocal. This population-based study aimed to compare overall survival between segmentectomy and WR. METHODS Data on patients with clinical stage IA lung adenocarcinoma were collected from the Taiwan Cancer Registry between 2011 and 2018. The primary endpoint was overall survival. Further subgroup survival analyses were conducted based on tumor size. Propensity score matching (PSM) was used to balance baseline differences such as age and tumor stage between the two groups. Predictors of survival other than the surgical procedure were analyzed using a Cox regression model. RESULTS In total, 6598 patients with stage IA lung adenocarcinoma undergoing SLR between 2011 and 2018 were enrolled, including 2061 and 4537 receiving segmentectomy and WR, respectively. The mean age was 60.3 ± 11.7 years, 66.2% were female, and 81.5% never smoked. After PSM, segmentectomy was associated with significantly better overall survival than WR (p = 0.019), especially for tumors larger than 2 cm (p < 0.001). Aside from segmentectomy, age ≤ 75 years, well-differentiated tumors, small tumor size, and the absence of nodal metastasis were associated with better overall survival. CONCLUSIONS Segmentectomy offered superior overall survival for patients with tumors larger than 2 cm. For tumors smaller than 2 cm, the outcomes of segmentectomy and WR were comparable, offering flexibility in surgical decision-making. These findings highlight the need for individualized surgical approaches based on tumor characteristics.
Collapse
Affiliation(s)
- Xu-Heng Chiang
- Department of Medical Education, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chih-Fu Wei
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan;
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University Hospital, Taipei 100025, Taiwan;
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University Hospital, Taipei 100025, Taiwan;
| | - Mong-Wei Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 106319, Taiwan; (C.-J.C.); (W.-C.L.)
- Taiwan Cancer Registry, Taipei 10055, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 106319, Taiwan; (C.-J.C.); (W.-C.L.)
- Taiwan Cancer Registry, Taipei 10055, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei 106319, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University Hospital, Taipei 100025, Taiwan;
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100233, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
40
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Lai Y, Lan X, Chen Z, Lou G, Li Y, Liu C, Feng J, Li X, Wang Y. The Role of Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. Polysaccharides in Regulating the Gut Microbiota and Its Health Benefits. Molecules 2025; 30:1193. [PMID: 40141970 PMCID: PMC11944627 DOI: 10.3390/molecules30061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. is a widely used herb in China, belonging to the large fungi of the family Polyporaceae. P. cocos; it consists of a variety of biologically active ingredients such as polysaccharides, triterpenes, and sterols, and is considered a treasure in traditional Chinese medicine (TCM). Notably, P. cocos polysaccharides, as the most prominent constituent, are of interest for their superior anti-obesity, anti-tumor, anti-inflammatory, antioxidant, and immunomodulatory activities. P. cocos polysaccharides can be divided into water-soluble polysaccharides and water-insoluble polysaccharides, which may contribute to their diverse biological functions. Numerous scholars have focused on the extraction process, structural identification, and classical pharmacological pathways of P. cocos polysaccharides, but there are few systematic reviews on P. cocos polysaccharides regulating the gut microbiota. Natural products and their active ingredients are closely related to intestinal health, and further exploration of these mechanisms is warranted. This review summarizes the recent cases of P. cocos polysaccharides regulating the gut microbiota to promote health and discusses their relationship with bioactive functions. It aims to provide a basis for exploring the new mechanisms of P. cocos polysaccharides in promoting intestinal health and offers a new vision for the further development of functional products.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Zhicheng Chen
- School of Clinic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Guanhua Lou
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Ying Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Chang Liu
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Yu Wang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| |
Collapse
|
42
|
Xie C, Lu C, Lv N, Kong W, Liu Y. Identification and analysis of oxidative stress-related genes in endometriosis. Front Immunol 2025; 16:1515490. [PMID: 40124382 PMCID: PMC11925871 DOI: 10.3389/fimmu.2025.1515490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Background Early diagnosis and treatment of endometriosis (EM) remain challenging because of the lack of knowledge about EM development. While oxidative stress (OS) has been associated with EM, the link is unclear. We explored OS-related genes (OSRGs) and their role in EM pathogenesis. Material and methods We combined two ectopic endometrium (EC) and eutopic endometrium (EU) datasets (GSE11691 and GSE25628) into a dataset for analysis. Bioinformatic analyses were used to identify differentially expressed genes (DEGs), OS-related genes (OSRGs), enriched pathways, competitive endogenous RNA network, and immune cell infiltration. Finally, real time-quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB) were used to validate the expression of key OSRGs in clinical patient samples. Results Bioinformatic analysis identified 459 DEGs between EC and EU samples, including 67 OSRGs. A ceRNA network was established, encompassing 28 DE-OSRGs, 32 miRNAs, and 53 lncRNAs. Four key OSRGs (CYP17A1, NR3C1, ENO2, and NGF) were selected from protein-protein interaction network analysis. The RT-qPCR and WB analysis showed that these genes' abnormal changes in RNA and protein levels were consistent with data in public databases. Weighted gene co-expression network analysis identified three immune-related OSRGs (CYP17A1, NR3C1, and NGF) and 20 lncRNAs that may regulate NR3C1 through 10 miRNAs. Conclusion The key OSRGs may function via multilayered networks in EM. We provide insights into EM and underscore the potential significance of OSRGs and the immune environment for diagnostic and prognosis evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
43
|
Al-Kuraishy HM, Al-Gareeb AI, Zekry SH, Alruwaili M, Alexiou A, Papadakis M, Batiha GES. The possible role of cerebrolysin in the management of vascular dementia: Leveraging concepts. Neuroscience 2025; 568:202-208. [PMID: 39832667 DOI: 10.1016/j.neuroscience.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Cerebrolysin (CBL) is a combination of neurotrophic peptides and amino acids derived from pig brains. CBL can cross the blood-brain barrier (BBB) and its biological effect is similar to the effect of endogenous neurotrophic effects. The mechanism of action of CBL is related to the induction of neurogenesis, neuroplasticity, neuroprotection, and neurotrophicity. Therefore, CBL may be effective against the development and progression of neurodegenerative diseases such as Alzheimer disease (AD) and cerebrovascular disorders such as vascular dementia (VD). Moreover, many studies highlighted that CBL is effective in the improvement of cognitive impairment in patients with neurodegenerative diseases. However, the underlying neuroprotective effects of CBL against the VD neuropathology were not fully elucidated. Thus, this review aims to discuss the possible therapeutic efficacy of CBL in the management of VD. In conclusion, CBL could be effective therapeutic strategy in preventing and treating VD by targeting neuroinflammation, BBB injury, and chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine College of Medicine Mustansiriyah University Baghdad Iraq.
| | - Ali I Al-Gareeb
- FRCP Jabir ibn Hayyan Medical University Al-Ameer Qu./Najaf - Iraq Po. Box (13) Kufa Iraq.
| | - Salwa H Zekry
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511 Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke 42283 Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511 AlBeheira, Egypt
| |
Collapse
|
44
|
Li Y, Zhou J, Wei Z, Liang L, Xu H, Lv C, Liu G, Li W, Wu X, Xiao Y, Sunzi K. Efficacy and Safety of Acupuncture for Post-COVID-19 Insomnia: Protocol for a Systematic Review and Meta-Analysis. JMIR Res Protoc 2025; 14:e69417. [PMID: 40053784 PMCID: PMC11914848 DOI: 10.2196/69417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a profound global impact, leading to a range of persistent sequelae referred to as post-COVID-19 condition or "long COVID" that continue to affect patients worldwide. Among these sequelae, post-COVID-19 insomnia (PCI) has emerged as a significant issue. Conventional treatments, including cognitive behavioral therapy and pharmacological interventions, face limitations such as variable efficacy, potential side effects, and substantial costs. Recently, acupuncture has gained traction due to its efficacy, cost-effectiveness, and safety profile. OBJECTIVE This study aims to conduct a meta-analysis and systematic review evaluating the efficacy and safety of acupuncture for the treatment of PCI to delineate the optimal modality, intervention frequency, and duration for achieving the most beneficial outcomes, thereby providing a comprehensive understanding of acupuncture's role in managing PCI, contributing to evidence-based clinical practice, and informing clinical decision-making. METHODS Electronic searches will be performed in 12 databases from inception to October 2024 without language restrictions. This includes both English databases (PubMed, Cochrane Library, Web of Science, Embase, OVID and Scopus), as well as Chinese databases (China National Knowledge Infrastructure, Wan-Fang Data, Chinese Biomedical Literature Database, Chinese Scientific Journal Database, Duxiu Database and the Chinese Clinical Trial Registry Center). Randomized controlled trials on acupuncture for PCI will be included. Primary outcomes will include the response rate and insomnia severity; secondary outcomes will include the Traditional Chinese Medicine Symptom Scale (TCMSS) and adverse event rates. Data synthesis will use risk ratios for dichotomous data and mean differences for continuous data. Study selection, data extraction, and quality assessment will be conducted independently by 2 reviewers. Methodological quality of eligible studies will be evaluated following the Cochrane Handbook for Systematic Reviews of Interventions (version 6.3). Meta-analysis will be performed with RevMan 5.3. RESULTS Based on the data on response rate, insomnia severity, TCMSS score, and adverse event rates, this study will provide an evidence-based review of the efficacy and safety of acupuncture for PCI treatment. CONCLUSIONS This systematic review will present the current evidence for acupuncture for PCI, aiming to inform clinical practices and decision-making and to enhance the understanding of acupuncture's role in managing PCI. Furthermore, it will identify research gaps and suggest potential areas for future investigation. TRIAL REGISTRATION PROSPERO CRD42024499284; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=499284. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/69417.
Collapse
Affiliation(s)
- Yadi Li
- Deyang People's Hospital, Deyang, China
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianlong Zhou
- Department of Endocrinology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng Wei
- Deyang People's Hospital, Deyang, China
| | | | | | | | - Gang Liu
- Deyang People's Hospital, Deyang, China
| | - Wenlin Li
- Deyang People's Hospital, Deyang, China
| | - Xin Wu
- Deyang People's Hospital, Deyang, China
| | | | | |
Collapse
|
45
|
Ren JL, Zhang XL, Zhao LJ, Wen GY, Liu JF, Meng QY, Yang Z, Song LL, Zhang YJ. Unveiling the neuroprotective mystery of Kaixinsan: identifying and validating the neuroprotective ingredients under the perspective of gut - brain axis regulation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-18. [PMID: 40029107 DOI: 10.1080/10286020.2025.2468310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Kaixinsan (KXS) shows potential in treating cognitive dysfunction and can regulate the gut-brain axis. However, its effective components remain unclear. In this study, the components of KXS extract distributed in serum, brain, heart, liver, lung, kidney, and ileum were detected. By analyzing the number and the concentration of identified components distributed in different tissues, potential active components of KXS were obtained. Then, the screened components were confirmed by evaluating their ability to inhibit Aβ25-35-induced neuronal apoptosis in SH-SY5Y cells. Finally, Ginsenoside Rg1, Ginsenoside Ro, α-asarone, 2,4,5-trimethoxybenzoic acid, and 3',6-disinapoylsucrose were found to be the potential active ingredients of KXS.
Collapse
Affiliation(s)
- Jia-Le Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Xiao-Li Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Li-Juan Zhao
- Taicang Hospital of Traditional Chinese Medicine, Suzhou215400, China
| | - Gui-Ying Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Jia-Fan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Qing-Yu Meng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Li-Li Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Yan-Jun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin300381, China
| |
Collapse
|
46
|
Xiong Q, Li Z, Yang D, Liu X, Pu W, Yue X, Jia K, Wan X, Zou Y. Progress in the study of bioactivity, chemical composition and pharmacological mechanism of action in Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front Pharmacol 2025; 16:1521235. [PMID: 40098611 PMCID: PMC11911342 DOI: 10.3389/fphar.2025.1521235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The Latin name of Wolfiporia cocos is Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb, it a medicinal and edible mushroom belonging to the family Polyporaceae. Traditional Chinese medicine believes that it can strengthen the spleen, diuretic, tranquillise the mind and dispel dampness. So far, the chemical and active metabolites isolated and extracted from Wolfiporia cocos are mainly polysaccharides, triterpenoids, and sterols. Modern pharmacology has found that these chemical and active metabolites have a wide range of pharmacological effects, including antitumour, antioxidation, anti-inflammatory, immunomodulation, regulation of intestinal flora, regulation of glycolipid metabolism, and improvement of organ function. By applying Poria cocos, Poria, Wolfiporia cocos, Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb as search terms, we searched all the relevant studies on Poria cocos from Web of Science and PubMed databases and classified these categories of chemical and active metabolites according to the main research content of each literature and summarized its mechanism of action, updated its latest research results, and discussed the direction of further research in the future to provide a better reference for future clinical applications with better therapeutic effects and potential medicinal value.
Collapse
Affiliation(s)
- Qi Xiong
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuoran Li
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Defeng Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wanxu Pu
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Xitao Yue
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Kaikai Jia
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Jilin Aodong Pharmaceutial Group Co., Ltd., Post-Doctoral Research Center, Yanji, China
| | - Yuanjun Zou
- School of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
47
|
Dehghani S, Rezvani A, Shahriarirad R, Rajabian MS, Ziaian B, Fallahi MJ, Mardani P, Amirian A. Evaluation of Surgical Cases of Lung Cancer Admitted in Shiraz Referral Hospitals, Southern Iran in 2009-2022. Cancer Rep (Hoboken) 2025; 8:e70108. [PMID: 40071520 PMCID: PMC11897805 DOI: 10.1002/cnr2.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/02/2024] [Accepted: 12/18/2024] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION Globally, lung cancer is one of the most commonly diagnosed cancers and continues to take the lead in cancer-related mortality rates. This study aims to provide the latest statistics on the clinical, histopathological, and epidemiological features of lung cancer patients who underwent surgical resection in referral hospitals in Southern Iran. METHOD In this retrospective study, records of all patients with operable primary and secondary lung cancer who underwent surgical resection of the lung in Shiraz hospitals, located in Southern Iran from November 2009 to May 2022 were screened. Data on demographic, clinical, surgical, and pathological characteristics were analyzed by SPSS software. RESULTS A total of 232 patients with operable lung cancer, including 150 (64.7%) primary cases and 82 (35.3%) secondary cases, underwent 249 operations. The mean age of primary and secondary lung cancer patients was 56.70 ± 13.99 and 45.56 ± 18.88, respectively (p < 0.001). Males accounted for 54.0% and 58.5% of primary and secondary lung cancer patients, respectively. Adenocarcinoma was the most frequent primary pathology, while sarcomas were the most common metastatic lesions. The predominant presenting symptoms were cough (n = 75, 75.0%) and dyspnea (n = 31, 59.7%) in primary and secondary cases, respectively. Involvement of the right lung was more frequent in both groups (65.5% and 53.1% for primary and secondary cases respectively). The most commonly performed surgeries were lobectomy (69.9%) and limited resection (69.8%) for primary and secondary lesions, respectively. Cigarette smoking and extensive resection had a significant association with the in-hospital mortality rate (p = 0.012 and 0.009 respectively). The overall in-hospital mortality rate was 3.6% (n = 9). CONCLUSION Surgical interventions were mostly performed in men and histopathologic subtypes of primary lung adenocarcinoma, metastatic soft tissue sarcoma, and metastatic colon cancer. Smoking and extensive resection accompany a higher risk of short-term postoperative mortality.
Collapse
Affiliation(s)
- Sara Dehghani
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Alireza Rezvani
- Bone Marrow Transplantation Center, Nemazi HospitalShiraz University of Medical SciencesShirazIran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Mohammad Sadegh Rajabian
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Department of SurgeryShiraz University of Medical SciencesShirazIran
| | - Bizhan Ziaian
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Department of SurgeryShiraz University of Medical SciencesShirazIran
| | - Mohammad Javad Fallahi
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Department of Internal MedicineShiraz University of Medical SciencesShirazIran
| | - Parviz Mardani
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Department of SurgeryShiraz University of Medical SciencesShirazIran
| | - Armin Amirian
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical ScienceShirazIran
- Department of SurgeryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
48
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
49
|
Ungurianu A, Margină D, Mihai DP, Nicolae AC, Drăgoi CM, Grădinaru D, Zanfirescu A. Caloric restriction mimetics: Pinostilbene versus resveratrol regarding SIRT1 and SIRT6 interaction. Adv Med Sci 2025; 70:44-50. [PMID: 39617052 DOI: 10.1016/j.advms.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 12/08/2024]
Abstract
PURPOSE Caloric restriction (CR), the permanent or periodic reduction of caloric intake, is a dietary strategy that promotes longevity and healthspan, yielding multiple beneficial effects, such as improved insulin sensitivity and mitochondrial function, decreased body weight, and mitigation of cardiometabolic risk factors. The purpose of our study was the in silico and in vitro assessment of the effects exerted by pinostilbene on SIRT1 and SIRT6 compared to those of resveratrol, a known activator of these enzymes. MATERIALS AND METHODS Molecular docking was carried out to determine the interactions with SIRT1 and SIRT6 and, further, the effect of pinostilbene on their activity was tested in vitro to evaluate if it parallels resveratrol's effects regarding SIRT activation. RESULTS Molecular docking indicates that resveratrol and pinostilbene bind similarly to SIRT6, while pinostilbene may be able to activate SIRT1 more efficiently than resveratrol. In vitro activity assays showed that while both resveratrol and pinostilbene activate SIRT1 and SIRT6, the concentration-dependent effects differ. For resveratrol, a greater effect was observed at the medium concentration (25 μM), whereas pinostilbene showed a more pronounced activation at the lowest concentration (5 μM). CONCLUSIONS Our results offer a glimpse into the structural features and interactions of pinostilbene and resveratrol with SIRT1 and SIRT6, contributing to understanding their potential roles in various cellular processes regulated by SIRT.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Dragoș P Mihai
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina C Nicolae
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina M Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
50
|
Wang M, Yang T, Xiang Y, Pang J, Wang Y, Sun D. Coix Seed Extract Attenuates Glycolipid Metabolism Disorder in Hyperlipidemia Mice Through PPAR Signaling Pathway Based on Metabolomics and Network Pharmacology. Foods 2025; 14:770. [PMID: 40077474 PMCID: PMC11899454 DOI: 10.3390/foods14050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Hyperlipidemia is characterized by a high level of blood lipid which poses a serious threat to human health. Coix seed is a traditional crop of medicine and food homology with a wide range of pharmacological actions. To make clear the attenuation effect of coix seed against hyperlipidemia, low and high doses of coix seed extract (CSE) were orally administered to hyperlipidemia model mice developed by high-fat diet (HFD). Our results showed that CSE notably improved liver pathological injury, and oxidative stress, and declined the levels of glucose and lipid in hyperlipidemia mice. Liver metabolomics showed that lipid-related metabolites notably decreased, and pathways of glycolipid metabolism were seriously affected by CSE intervention. Moreover, 16S rRNA sequencing revealed that CSE treatment notably increased the diversity of gut microbiota. Meanwhile, the microbiota with the function of regulating intestinal balance as well as relieving obesity and nervous diseases significantly enhanced while harmful flora notably decreased after CSE intervention. The results of network pharmacology and molecular docking indicated that the PPAR signaling pathway may be the core path of anti-hyperlipidemia for coix seeds. RT-qPCR further verified that the expression levels of genes from the PPAR pathway notably changed by CSE treatment with fat synthesis genes significantly decreased while lipolysis genes notably enhanced. Therefore, coix seed might be a potential candidate for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (M.W.); (T.Y.); (Y.X.); (Y.W.)
| | - Tianming Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (M.W.); (T.Y.); (Y.X.); (Y.W.)
| | - Yongjing Xiang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (M.W.); (T.Y.); (Y.X.); (Y.W.)
| | - Junxiao Pang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China;
| | - Yao Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (M.W.); (T.Y.); (Y.X.); (Y.W.)
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (M.W.); (T.Y.); (Y.X.); (Y.W.)
| |
Collapse
|