451
|
Zhang Y, Wang R, Tan H, Wu K, Hu Y, Diao H, Wang D, Tang X, Leng M, Li X, Cai Z, Luo D, Shao X, Yan M, Chen Y, Rong X, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m 6A modification of SIRT3 mRNA. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116766. [PMID: 37343655 DOI: 10.1016/j.jep.2023.116766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu TiaoZhi (FTZ), a Chinese medicinal decoction, has continuously been used to treat metabolic syndrome. Atherosclerosis is the main pathological basis of cardiovascular disease. The N6 methyladenosine (m6A) modification is a highly dynamic and reversible process involving a variety of important biological processes. AIM OF THE STUDY Here, we investigated the therapeutic effects and mechanism of FTZ in diabetes-accelerated atherosclerosis. MATERIALS AND METHODS Doppler ultrasonography was used to examine the carotid intima-media thickness and plaque area in diabetic atherosclerosis patients. HFD mice were injected with streptozotocin to induce diabetes. HE and Oil red O staining were used to assess the effect of FTZ on lipid deposition. HUVECs were induced with HG/ox-LDL as a model of diabetic atherosclerosis. Furthermore, application of m6A methylation level kit, qRT-PCR, Western blot, tunel staining, reactive oxygen species staining and mPTP staining were performed to analyze the detailed mechanism. RESULTS Clinical trials of FTZ have shown obvious effect of lowering blood glucose and blood lipids. These effects were reversed after FTZ intervention. Compared with the control, lipid deposition decreased significantly after FTZ administration. FTZ reduced endothelial cell apoptosis. At the same time, we found that FTZ reversed the increase of methylation reader YTHDF2 caused by ox-LDL treatment. Subsequently, we discovered that YTHDF2 degraded SIRT3 mRNA, leading to endothelial cell apoptosis and oxidative stress. CONCLUSION FTZ attenuated diabetes-accelerated atherosclerosis by decreasing blood glucose and serum lipids levels, and increased endothelial cell antioxidant capacity, inhibited endothelial cell apoptosis via inhibiting YTHDF2-mediated m6A modification of SIRT3 mRNA, which reduced mRNA degradation.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ruonan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Huiling Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Kaili Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yaju Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Mingyang Leng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zhenlu Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yingyu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
452
|
Liu L, Chen P, Xiao N, Liu Q, Zhu X. Interleukin-8 predicts short-term mortality in acute-on-chronic liver failure patients with hepatitis B-related-related cirrhosis background. Ann Med 2023; 55:2287708. [PMID: 38052052 PMCID: PMC10836280 DOI: 10.1080/07853890.2023.2287708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a distinctive and severe syndrome, marked by an excessive systemic inflammatory response. In vivo, interleukin 8 (IL-8) is an essential pro-inflammatory cytokine. We aimed to investigate the value of serum IL-8 levels in predicting mortality in ACLF patients in the background of hepatitis B virus-related cirrhosis. METHODS In this study, we conducted a retrospective analysis of the clinical baseline characteristics of 276 patients with ACLF in the context of HBV-related cirrhosis. Logistic regression analysis was employed to identify independent risk factors for short-, intermediate-, and long-term mortality. Using these independent risk factors, we developed a nomogram model, which was subsequently validated. To assess the clinical usefulness of the nomogram model, we performed decision curve analysis (DCA). RESULTS Out of the 276 patients with ACLF, 98 (35.5%), 113 (40.9%), and 128 (46.4%) died within 28, 90, and 180 days, respectively. Serum IL-8 levels were only an independent predictor of 28-day mortality and could simply classify ACLF patients. Conversely, mean arterial pressure (MAP), HBV-DNA, and COSHACLF IIs were independent predictors of mortality across all three observation periods. We constructed a nomogram based on IL-8 that was able to visualise and predict 28-day mortality with a C-index of 0.901 (95% CI: 0.862-0.940). Our calibration curves, Predicted Probability of Death & Actual Survival Status plot, and Confusion Matrix demonstrated the nomogram model's strong predictive power. DCA indicated the nomogram's promising clinical utility in predicting 28-day mortality in ACLF patients. CONCLUSION Serum IL-8 levels predict short-term mortality in ACLF patients in the background of HBV-associated cirrhosis, and the developed Nomogram model has strong predictive power and good clinical utility.
Collapse
Affiliation(s)
- Linxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Nanxi Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Qi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
453
|
Shi XJ, Du Y, Chen L, Chen YY, Luo M, Cheng Y. Treatment of polycystic ovary syndrome and its associated psychiatric symptoms with the Mongolian medicine Nuangong Qiwei Pill and macelignan. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116812. [PMID: 37343651 DOI: 10.1016/j.jep.2023.116812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mongolian medicine Nuangong Qiwei Pill (NGQW) is a folk prescription with a long history of use by the Mongolian people. NGQW comprises seven Mongolian medicines, which have the effects of regulating and nourishing blood, warming the uterus, dispelling cold and relieving pain. For a long time, it has been used as a good remedy for gynecological diseases, with remarkable curative effects, favored by the majority of patients and recommended by doctors. Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disorder that can lead to menstrual disorders or infertility. In the gynecological classification of Mongolian medicine, polycystic ovary syndrome has not been distinguished in detail, and the mechanism of NGQW in the treatment of polycystic ovary syndrome has not been scientifically studied and standardized. AIM OF THE STUDY The aim of this study was to clarify the mechanism of action of NGQW and macelignan in the treatment of PCOS and to provide a reference for the clinical application of these drugs. MATERIALS AND METHODS The effect of intragastric administration of NGQW and macelignan on PCOS model mice was observed. The mental status of mice was examined behaviorally, and serum hormone levels and oxidative stress parameters were measured by ELISA. Giemsa staining was used to detect the reproductive cycle, and HE staining was used to observe the ovarian status. Immunofluorescence staining was performed to observe the proliferation and apoptosis of ovarian granulosa cells. qRT‒PCR was conducted to measure the expression of IL-6, BAX, BCL-2, and estrogen synthesis-related genes in ovarian tissue and particle cells. RESULTS In the dehydroepiandrosterone (DHEA)-induced PCOS model mice, both NGQW and macelignan improved the estrous cycle; increased the estradiol (E2) content; lowered testosterone (T), progesterone (P) and luteinizing hormone (LH) levels; reduced the number of polycystic follicles; promoted granulosa cell proliferation; reduced granulosa cell apoptosis; and alleviated depression and anxiety. In addition, Nuangong Qiwei Pill and macelignan reduced the mRNA levels of the ovarian inflammatory factor IL-6; improved the disordered levels of the antioxidant indicators GSH, MDA, and SOD; and activated the TGF-β3 signaling pathway to increase the transcription of Cyp19a1, which increases estrogen secretion. CONCLUSION NGQW and macelignan can treat PCOS through the TGF-β3/Smad/Cyp19a1 signaling pathway to regulate the secretion ability of ovarian granulosa cells. Our research justifies the traditional use of NGQW to treat PCOS and enriches the scope of action of macelignan.
Collapse
Affiliation(s)
- Xiao-Jie Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuan-Yuan Chen
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China
| | - Man Luo
- Reproductive Medicine Center, Hunan Provincial Maternal and Child Health Hospital (Hunan Provincial Reproductive Medicine Institution), Changsha, Hunan, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
454
|
Li L, Jia Q, Wang X, Wang Y, Wu C, Cong J, Ling J. Chaihu Shugan San promotes gastric motility in rats with functional dyspepsia by regulating Drp-1-mediated ICC mitophagy. PHARMACEUTICAL BIOLOGY 2023; 61:249-258. [PMID: 36655341 PMCID: PMC9858526 DOI: 10.1080/13880209.2023.2166966] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Chaihu Shugan San (CHSGS) was effective in the treatment of functional dyspepsia (FD). OBJECTIVE To investigate the mechanism of CHSGS in FD through dynamin-related protein 1 (Drp-1)-mediated interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS Forty Sprague-Dawley (SD) rats were randomly divided into control, model, mdivi-1, mdivi-1 + CHSGS and CHSGS groups. Tail-clamping stimulation was used to establish the FD model. Mdivi-1 + CHSGS and CHSGS groups were given CHSGS aqueous solution (4.8 g/kg) by gavage twice a day. Mdivi-1 (25 mg/kg) was injected intraperitoneally once every other week for 4 w. Mitochondrial damage was observed by corresponding kits and related protein expressions were assessed by Immunofluorescence and (or) Western Blot. RESULTS Compared with the mean value of the control group, superoxide dismutase (SOD) and citrate synthase (CS) in the model group were decreased by 11% and 35%; malondialdehyde (MDA) and reactive oxygen species (ROS) were increased by 1.2- and 2.8-times; ckit fluorescence and protein expressions were decreased by 85% and 51%, co-localization expression of LC3 and voltage dependent anion channel 1 (VDAC1), Drp-1 and translocase of the outer mitochondrial membrane 20 (Tom20) were increased by 10.1- and 5.4-times; protein expressions of Drp-1, Beclin-1, and LC3 were increased by 0.5-, 1.4-, and 2.5-times whereas p62 was decreased by 43%. After mdivi-1 and (or) CHSGS intervention, the above situation has been improved. DISCUSSION AND CONCLUSION CHSGS could improve mitochondrial damage and promote gastric motility in FD rats by regulating Drp-1-mediated ICC mitophagy.
Collapse
Affiliation(s)
- Li Li
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangxiang Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chenheng Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Cong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianghong Ling
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- CONTACT Jianghong Ling Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai200021, People’s Republic of China
| |
Collapse
|
455
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
456
|
Girigoswami K, Pallavi P, Girigoswami A. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Deliv 2023; 30:2284684. [PMID: 37990530 PMCID: PMC10987057 DOI: 10.1080/10717544.2023.2284684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
It is evident that site-specific systemic drug delivery can reduce side effects, systemic toxicity, and minimal dosage requirements predominantly by delivering drugs to particular pathological sites, cells, and even subcellular structures. The endoplasmic reticulum (ER) and associated cell organelles play a vital role in several essential cellular functions and activities, such as the synthesis of lipids, steroids, membrane-associated proteins along with intracellular transport, signaling of Ca2+, and specific response to stress. Therefore, the dysfunction of ER is correlated with numerous diseases where cancer, neurodegenerative disorders, diabetes mellitus, hepatic disorder, etc., are very common. To achieve satisfactory therapeutic results in certain diseases, it is essential to engineer delivery systems that can effectively enter the cells and target ER. Nanoparticles are highly biocompatible, contain a variety of cargos or payloads, and can be modified in a pliable manner to achieve therapeutic effectiveness at the subcellular level when delivered to specific organelles. Passive targeting drug delivery vehicles, or active targeting drug delivery systems, reduce the nonselective accumulation of drugs while reducing side effects by modifying them with small molecular compounds, antibodies, polypeptides, or isolated bio-membranes. The targeting of ER and closely associated organelles in cells using nanoparticles, however, is still unsymmetrically understood. Therefore, here we summarized the pathophysiological prospect of ER stress, involvement of ER and mitochondrial response, disease related to ER dysfunctions, essential therapeutics, and nanoenabled modulation of their delivery to optimize therapy.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| |
Collapse
|
457
|
Qin T, Hu S, de Vos P. A composite capsule strategy to support longevity of microencapsulated pancreatic β cells. BIOMATERIALS ADVANCES 2023; 155:213678. [PMID: 37944447 DOI: 10.1016/j.bioadv.2023.213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic islet microencapsulation allows transplantation of insulin producing cells in absence of systemic immunosuppression, but graft survival is still limited. In vivo studies have demonstrated that many islet-cells die in the immediate period after transplantation. Here we test whether intracapsular inclusion of ECM components (collagen IV and RGD) with necrostatin-1 (Nec-1), as well as amino acids (AA) have protective effects on islet survival. Also, the inclusion of pectin was tested as it enhances the mitochondrial health of β-cells. To enhance the longevity of encapsulated islets, we studied the impact of the incorporation of the mentioned components into the alginate-based microcapsules in vitro. The efficacy of the different composite microcapsules on MIN6 β-cell or human islet-cell survival and function, as well as suppression of DAMP-induced immune activation, were determined. Finally, we examined the mitochondrial dynamic genes. This was done in the absence and presence of a cytokine cocktail. Here, we found that composite microcapsules of APENAA improved insulin secretion and enhanced the mitochondrial activity of β-cells. Under cytokine exposure, they prevented the cytokine-induced decrease of mitochondrial activity as well as viability till day 5. The rescuing effects of the composite capsules were accompanied by alleviated mitochondrial dynamic gene expression. The composite capsule strategy of APENAA might support the longevity of microencapsulated β-cells by lowering susceptibility to inflammatory stress. Our data demonstrate that combining strategies to support β-cells by changing the intracapsular microenvironment might be an effective way to preserve islet graft longevity in the immediate period after transplantation.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands; Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
458
|
Xiang Y, Wang H, Ding H, Xu T, Liu X, Huang Z, Wu H, Ge H. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol 2023; 125:111141. [PMID: 37918087 DOI: 10.1016/j.intimp.2023.111141] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hyperandrogenemia and persistent chronic inflammation, two main striking features of polycystic ovary syndrome (PCOS), have been proven involved in follicular dysgenesis in PCOS. However, the association between hyperandrogenism and inflammation activation in PCOS is not fully understood. Excess testosterone(T) induces inflammation and pyroptosis activation in a mouse model of PCOS, leading to ovarian dysfunction and fibrosis. Excessive endoplasmic reticulum (ER) stress is present in ovarian granulosa cells (GCs), testosterone-induced PCOS mouse and cellular models. This study found higher levels of interleukin (IL)-1β, IL-8, IL-17, and IL-18 in the follicular fluid of PCOS patients with hyperandrogenemia undergoing IVF treatment. In addition, pyroptosis in GCs was demonstrated, which was significantly elevated in PCOS patients. To clarify the association of hyperandrogenism, inflammation, and pyroptosis activation in PCOS, dehydroepiandrosterone(DHEA)-treated mouse PCOS model and T-treated KGN cell line were explored for PCOS mechanism. Markers of inflammatory activation and pyroptosis were significantly increased after DHEA treatment in mice and T treatment in KGN cells. In addition, ER stress sensor proteins were increased simultaneously. However, suppression of inflammation by genipin(GP) led to decreased pyroptosis in KGN cells but no variation in ER stress sensor proteins. In contrast, when treated with tauroursodeoxycholic acid(TUDCA) to attenuate ER stress, the markers of inflammatory factors were significantly reduced, accompanied by a reduction in pyroptosis. Our results suggest that persistent hyperandrogenemia of PCOS promotes local inflammatory activation of the ovary, and the imbalanced inflammatory microenvironment leads to pyroptosis of GCs, which is mediated by ER stress activation.
Collapse
Affiliation(s)
- Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Hua Wang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Third Clinical Medical College, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Huimin Ding
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Tianyue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Xiu Liu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Zichao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Honghui Wu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Hongshan Ge
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China; Graduate School, Dalian Medical University, Liaoning, China.
| |
Collapse
|
459
|
Wang ZJ, Li XR, Chai SF, Li WR, Li S, Hou M, Li JL, Ye YC, Cai HY, Hölscher C, Wu MN. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer's disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology 2023; 240:109716. [PMID: 37730113 DOI: 10.1016/j.neuropharm.2023.109716] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Disorders of brain glucose metabolism is known to affect brain activity in neurodegenerative diseases including Alzheimer's disease (AD). Furthermore, recent evidence has shown an association between AD and type 2 diabetes. Numerous reports have found that glucagon-like peptide-1 (GLP-1) receptor agonists improve the cognitive behavior and pathological features in AD patients and animals, which may be related to the improvement of glucose metabolism in the brain. However, the mechanism by which GLP-1 agonists improve the brain glucose metabolism in AD patients remains unclear. In this study, we found that SIRT1 is closely related to expression of GLP-1R in hippocampus of 3xTg mice. Therefore, we used semaglutide, a novel GLP-1R agonist currently undergoing two phase 3 clinical trials in AD patients, to observe the effect of SIRT1 after semaglutide treatment in 3XTg mice and HT22 cells, and to explore the mechanism of SIRT1 in the glucose metabolism disorders of AD. The mice were injected with semaglutide on alternate days for 30 days, followed by behavioral experiments including open field test, new object recognition test, and Y-maze. The content of glucose in the brain was also measured by using 18FDG-PET-CT scans. We measured the expression of Aβ and tau in the hippocampus, observed the expression of GLUT4 which is downstream of SIRT1, and tested the Glucose oxidase assay (GOD-POD) and Hexokinase (HK) in HT22 cells. Here, we found in the 3xTg mouse model of AD and in cultured HT22 mouse neurons that SIRT1 signaling is involved in the impairment of glucose metabolism in AD. Semaglutide can increased the expression levels of SIRT1 and GLUT4 in the hippocampus of 3xTg mice, accompanied by an improvement in learning and memory, decreased in Aβ plaques and neurofibrillary tangles. In addition, we further demonstrated that semaglutide improved glucose metabolism in the brain of 3xTg mice in vitro, semaglutide promoted glycolysis and improved glycolytic disorders, and increased the membrane translocation of GLUT4 in cultured HT22 cells. These effects were blocked by the SIRT1 inhibitor (EX527). These findings indicate that semaglutide can regulate the expression of GLUT4 to mediate glucose transport through SIRT1, thereby improving glucose metabolism dysfunction in AD mice and cells. The present study suggests that SIRT1/GLUT4 signaling pathway may be an important mechanism for GLP-1R to promote glucose metabolism in the brain, providing a reliable strategy for effective therapy of AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China; Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Xin-Ru Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Shi-Fan Chai
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Wei-Ran Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Shuo Li
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Yu-Cai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China.
| |
Collapse
|
460
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
461
|
González-Domínguez Á, Belmonte T, González-Domínguez R. Childhood obesity, metabolic syndrome, and oxidative stress: microRNAs go on stage. Rev Endocr Metab Disord 2023; 24:1147-1164. [PMID: 37672200 PMCID: PMC10698091 DOI: 10.1007/s11154-023-09834-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
The incidence of childhood obesity and metabolic syndrome has grown notably in the last years, becoming major public health burdens in developed countries. Nowadays, oxidative stress is well-recognized to be closely associated with the onset and progression of several obesity-related complications within the framework of a complex crosstalk involving other intertwined pathogenic events, such as inflammation, insulin disturbances, and dyslipidemia. Thus, understanding the molecular basis behind these oxidative dysregulations could provide new approaches for the diagnosis, prevention, and treatment of childhood obesity and associated disorders. In this respect, the transcriptomic characterization of miRNAs bares great potential because of their involvement in post-transcriptional modulation of genetic expression. Herein, we provide a comprehensive literature revision gathering state-of-the-art research into the association between childhood obesity, metabolic syndrome, and miRNAs. We put special emphasis on the potential role of miRNAs in modulating obesity-related pathogenic events, with particular focus on oxidative stress.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
| |
Collapse
|
462
|
Kim JY, Kong CH, Kim DY, Min JW, Park K, Jeon M, Kang WC, Jung SY, Ryu JH. Effect of D-pinitol on MK-801-induced schizophrenia-like behaviors in mice. Phytother Res 2023; 37:5904-5915. [PMID: 37654104 DOI: 10.1002/ptr.8002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.
Collapse
Affiliation(s)
- Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
463
|
Hu M, Jiang W, Ye C, Hu T, Yu Q, Meng M, Sun L, Liang J, Chen Y. Honokiol attenuates high glucose-induced peripheral neuropathy via inhibiting ferroptosis and activating AMPK/SIRT1/PGC-1α pathway in Schwann cells. Phytother Res 2023; 37:5787-5802. [PMID: 37580045 DOI: 10.1002/ptr.7984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.
Collapse
Affiliation(s)
- Man Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Jiang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chen Ye
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qingqing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Moran Meng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lijuan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
464
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
465
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
466
|
Yang X, Zhang Z, Shen X, Xu J, Weng Y, Wang W, Xue J. Clostridium butyricum and its metabolite butyrate promote ferroptosis susceptibility in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2023; 46:1645-1658. [PMID: 37261698 DOI: 10.1007/s13402-023-00831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited therapeutic options. The diversity and composition of the intratumoral microbiota are associated with PDAC outcomes, and modulating the tumor microbiota has the potential to influence tumor growth and the host immune response. Here, we explore whether intervention with butyrate-producing probiotics can limit PDAC progression. METHODS Based on the TCGA (PAAD) database, we analyzed the differential communities of intratumoral microbiota in PDAC patients with long survival and short survival and explored the relevant mechanisms of Clostridium butyricum and its metabolite butyrate in the treatment of PDAC. Treatment with Clostridium butyricum or butyrate in combination with the ferroptosis inducer RSL3 in a PDAC mouse model has an inhibitory effect on PDAC progression. The potential molecular mechanisms were verified by flow cytometry, RNA-seq, Western blotting, qRT‒PCR and immunofluorescence. RESULTS We found that the tumoral butyrate-producing microbiota was linked to a better prognosis and less aggressive features of PDAC. Intervention with Clostridium butyricum or its metabolite butyrate triggered superoxidative stress and intracellular lipid accumulation, which enhanced ferroptosis susceptibility in PDAC. CONCLUSION Our study reveals a novel antitumor mechanism of butyrate and suggests the therapeutic potential of butyrate-producing probiotics in PDAC.
Collapse
Affiliation(s)
- Xiaotong Yang
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Wei Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No 100, Haining Road, Shanghai, 200080, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer , Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
467
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
468
|
Rabah HM, Mohamed DA, Mariah RA, Abd El-Khalik SR, Khattab HA, AbuoHashish NA, Abdelsattar AM, Raslan MA, Farghal EE, Eltokhy AK. Novel insights into the synergistic effects of selenium nanoparticles and metformin treatment of letrozole - induced polycystic ovarian syndrome: targeting PI3K/Akt signalling pathway, redox status and mitochondrial dysfunction in ovarian tissue. Redox Rep 2023; 28:2160569. [PMID: 36661246 PMCID: PMC9870018 DOI: 10.1080/13510002.2022.2160569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) has a series of reproductive and metabolic consequences. Although the link between PCOS, IR, and obesity, their impact on the pathogenesis of PCOS has yet to be determined. Dysfunction of PI3K/AKT pathway has been reported as the main cause of IR in PCOS. This study purposed to explore the effects of selenium nanoparticles (SeNPs) alone and combined with metformin (MET) in a PCOS-IR rat model. METHODS After 3 weeks of treatment with SeNPs and/or MET, biochemical analysis of glycemic & lipid profiles, and serum reproductive hormones was performed. Inflammatory, oxidative stress, and mitochondrial dysfunction markers were determined colormetrically. The expression of PI3K and Akt genes were evaluated by Real-time PCR. Histopathological examination and Immunohistochemical analysis of Ki-67 expression were performed. RESULTS The results showed that treatment with SeNPs and/or MET significantly attenuated insulin sensitivity, lipid profile, sex hormones levels, inflammatory, oxidative stress and mitochondrial functions markers. Additionally, PI3K and Akt genes expression were significantly upregulated with improved ovarian histopathological changes. CONCLUSION Combined SeNPs and MET therapy could be potential therapeutic agent for PCOS-IR model via modulation of the PI3K/Akt pathway, enhancing anti-inflammatory and anti-oxidant properties and altered mitochondrial functions. HighlightsThe strong relationship between obesity, insulin resistance, and polycystic ovarian syndrome.Disturbance of the PI3K/Akt signaling pathway is involved in the progression of polycystic ovary syndrome-insulin resistance (PCOS-IR).In PCOS-IR rats, combined SeNPs and metformin therapy considerably alleviated IR by acting on the PI3K/Akt signaling pathway.The combination of SeNPs and metformin clearly repaired ovarian polycystic pathogenesis and improved hormonal imbalance in PCOS-IR rats.
Collapse
Affiliation(s)
- Hanem M. Rabah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Darin A. Mohamed
- Histopathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham A. Mariah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Haidy A. Khattab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Mohamed A. Raslan
- Gynecology and Obstetrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E. Farghal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K. Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt, Amira K. Eltokhy ; Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| |
Collapse
|
469
|
Bendotti G, Montefusco L, Pastore I, Lazzaroni E, Lunati ME, Fiorina P. The anti-inflammatory and immunological properties of SGLT-2 inhibitors. J Endocrinol Invest 2023; 46:2445-2452. [PMID: 37535237 DOI: 10.1007/s40618-023-02162-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic oral drugs that act on proximal renal tubules promoting renal glucose excretion. Although SGLT-2i belong to the class of hypoglycemic agents, in the last years great interest has emerged in studying their pleiotropic effects, beyond their ability to lower glucose levels. PURPOSE In this review we are describing the anti-inflammatory and immunological properties of SGLT-2i; furthermore, we are addressing how the mechanisms associated with the aforementioned anti-inflammatory properties may contribute to the beneficial effects of SGLT-2i in diabetes. METHODS A systematic search was undertaken for studies related the properties of SGLT-2i in reducing the inflammatory milieu of acute and chronic disease by acting on the immune system, independently by glycemia. RESULTS Recently, some data described the anti-inflammatory and immunological properties of SGLT-2 in both pre-clinical and clinical studies. Numerous data confirmed the cardio- and -renal protective effects of SGLT-2i in patients with heart failure and kidney diseases, with or without diabetes. CONCLUSIONS SGLT-2i are promising drugs with anti-inflammatory and immunological properties. Despite the mechanism of action of SGLT-2i is not fully understood, these drugs demonstrated anti-inflammatory effects, which may help in keeping under control the variety of complications associated with diabetes.
Collapse
Affiliation(s)
- G Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Endocrinology and Metabolic Diseases Unit, AO S.S. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - L Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - I Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - E Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - M E Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - P Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. Enders Building 5th floor En511, Boston, MA, 02115, USA.
| |
Collapse
|
470
|
Romano MZ, Boccella S, Venditti M, Maione S, Minucci S. Morphological and molecular changes in the Harderian gland of streptozotocin-induced diabetic rats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:915-924. [PMID: 37522474 DOI: 10.1002/jez.2741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic β-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3β-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.
Collapse
Affiliation(s)
- Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Serena Boccella
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
471
|
Pinilla L, Benítez ID, Gracia-Lavedan E, Torres G, Mínguez O, Vaca R, Jové M, Sol J, Pamplona R, Barbé F, Sánchez-de-la-Torre M. Metabolipidomic Analysis in Patients with Obstructive Sleep Apnea Discloses a Circulating Metabotype of Non-Dipping Blood Pressure. Antioxidants (Basel) 2023; 12:2047. [PMID: 38136167 PMCID: PMC10741016 DOI: 10.3390/antiox12122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
A non-dipping blood pressure (BP) pattern, which is frequently present in patients with obstructive sleep apnea (OSA), confers high cardiovascular risk. The mechanisms connecting these two conditions remain unclear. In the present study we performed a comprehensive analysis of the blood metabolipidome that aims to provide new insights into the molecular link between OSA and the dysregulation of circadian BP rhythmicity. This was an observational prospective longitudinal study involving adults with suspected OSA who were subjected to full polysomnography (PSG). Patients with an apnea-hypopnea index ≥ 5 events/h were included. Fasting plasma samples were obtained the morning after PSG. Based on the dipping ratio (DR; ratio of night/day BP values) measured via 24 h ambulatory BP monitoring, two groups were established: dippers (DR ≤ 0.9) and non-dippers (DR > 0.9). Treatment recommendations for OSA followed the clinical guidelines. Untargeted metabolomic and lipidomic analyses were performed in plasma samples via liquid chromatography-tandem mass spectrometry. Non-dipper patients represented 53.7% of the cohort (88/164 patients). A set of 31 metabolic species and 13 lipidic species were differentially detected between OSA patients who present a physiologic nocturnal BP decrease and those with abnormal BP dipping. Among the 44 differentially abundant plasma compounds, 25 were putatively identified, notably glycerophospholipids, glycolipids, sterols, and fatty acid derivates. Multivariate analysis defined a specific metabotype of non-dipping BP, which showed a significant dose-response relationship with PSG parameters of OSA severity, and with BP dipping changes after 6 months of OSA treatment with continuous positive airway pressure (CPAP). Bioinformatic analyses revealed that the identified metabolipidomic profile was found to be implicated in multiple systemic biological pathways, with potential physiopathologic implications for the circadian control of BP among individuals with OSA.
Collapse
Affiliation(s)
- Lucía Pinilla
- Precision Medicine in Chronic Diseases Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, IRBLleida, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Iván D. Benítez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Esther Gracia-Lavedan
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Gerard Torres
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Olga Mínguez
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
- Institut Català de la Salut, Atenció Primària, 25198 Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25198 Lleida, Spain
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Translational Research in Respiratory Medicine Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRBLleida, 25198 Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Precision Medicine in Chronic Diseases Group, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, IRBLleida, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
472
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
473
|
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med 2023; 15:eadf9382. [PMID: 37992150 PMCID: PMC10847980 DOI: 10.1126/scitranslmed.adf9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gitanjali Srivastava
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
| | - Anna B. Bradley
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
474
|
李 静, 殷 丽, 张 敏, 夏 勇, 左 芦, 刘 牧, 胡 建. [Construction of a fecal protein Luminex liquid chip detection system for early diagnosis of colorectal tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1874-1880. [PMID: 38081604 PMCID: PMC10713475 DOI: 10.12122/j.issn.1673-4254.2023.11.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To construct a stool-based human protein diagnostic system using the Luminex liquid chip system for early diagnosis of colorectal tumors. METHODS From January, 2021 to January, 2023, 70 patients with colorectal cancer (CRC), 42 patients with colorectal adenoma (CRA), and 38 healthy individuals were recruited from our hospital for detecting fecal protein levels of matrix metalloproteinase-9 (MMP-9), retinol-binding protein 4 (RBP4), chitinase-3-like protein 1 (CHI3L1), and complement component 3a (C3a) using Luminex liquid chip technology and serum levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) using chemiluminescence assay. Receiver-operating characteristic (ROC) curve analysis was used for assessing the diagnostic efficacy of the combination of MMP-9, RBP4, CHI3L1 and C3a and the combination of CEA and CA19-9 for colorectal tumors. RESULTS The fecal contents of MMP-9, RBP4, CHI3L1, and C3a were significantly higher in CRC patients than in healthy individuals (P < 0.05). Fecal MMP-9 and CHI3L1 levels were significantly higher in CRC than in CRA patients (P < 0.05), but RBP4 and C3a levels did not differ significantly (P>0.05). CRC patients had significantly higher serum CEA and CA19-9 levels than healthy individuals and CRA patients (P < 0.05), but the differences were not significant between the latter two groups (P>0.05). ROC analysis showed that the sensitivity and specificity of the combination of MMP-9, RBP4, CHI3L1, and C3a was 91.4% and 100.0%, for diagnosing CRC, 81.0% and 89.5% for diagnosing CRA, and 83.9% and 97.4% for a combined diagnosis of CRC and CRA, respectively. Z-test analysis indicated that fecal MMP-9, RBP4, CHI3L1, and C3a contents had a greater diagnostic efficacy than serum tumor markers CEA and CA19-9 for a combined diagnosis of colorectal tumors (P < 0.05). CONCLUSION The Luminex liquid chip detection system for detecting decal RBP4, MMP-9, CHI3L1, and C3a provides an effective means for early diagnosis of colorectal tumors with a greater diagnostic efficacy than serum CEA and CA19-9 levels.
Collapse
Affiliation(s)
- 静 李
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 丽霞 殷
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 敏 张
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 勇生 夏
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 芦根 左
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 牧林 刘
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 建国 胡
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
475
|
Chang W, Li W, Li P. The anti-diabetic effects of metformin are mediated by regulating long non-coding RNA. Front Pharmacol 2023; 14:1256705. [PMID: 38053839 PMCID: PMC10694297 DOI: 10.3389/fphar.2023.1256705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with complex etiology and mechanisms. Long non-coding ribonucleic acid (LncRNA) is a novel class of functional long RNA molecules that regulate multiple biological functions through various mechanisms. Studies in the past decade have shown that lncRNAs may play an important role in regulating insulin resistance and the progression of T2D. As a widely used biguanide drug, metformin has been used for glucose lowering effects in clinical practice for more than 60 years. For diabetic therapy, metformin reduces glucose absorption from the intestines, lowers hepatic gluconeogenesis, reduces inflammation, and improves insulin sensitivity. However, despite being widely used as the first-line oral antidiabetic drug, its mechanism of action remains largely elusive. Currently, an increasing number of studies have demonstrated that the anti-diabetic effects of metformin were mediated by the regulation of lncRNAs. Metformin-regulated lncRNAs have been shown to participate in the inhibition of gluconeogenesis, regulation of lipid metabolism, and be anti-inflammatory. Thus, this review focuses on the mechanisms of action of metformin in regulating lncRNAs in diabetes, including pathways altered by metformin via targeting lncRNAs, and the potential targets of metformin through modulation of lncRNAs. Knowledge of the mechanisms of lncRNA modulation by metformin in diabetes will aid the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
476
|
Chen J, Wang Q, Li R, Li Z, Jiang Q, Yan F, Ye J. The role of sirtuins in the regulatin of oxidative stress during the progress and therapy of type 2 diabetes mellitus. Life Sci 2023; 333:122187. [PMID: 37858715 DOI: 10.1016/j.lfs.2023.122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defense systems, plays a significant role in the development and progression of T2DM. The sirtuin family, particularly Sirt1, Sirt3, and Sirt6, have emerged as key regulators of oxidative stress in various cellular processes. This review aims to explore the role of the sirtuin family in oxidative stress during the progression of T2DM and their potential as therapeutic targets. We discussed the mechanisms through which sirtuins modulate oxidative stress, their impact on insulin sensitivity, and beta-cell function involved in T2DM. Furthermore, we highlight drugs targeting sirtuin activation and related complications in T2DM. This review summarizes the role as well as mechanism of sirtuins in the regulation of oxidative stress in T2DM and available drugs targeting sirtuins in clinic, which may provide novel insights into the mechanism and therapy of T2DM.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China; State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
477
|
Boukari O, Khemissi W, Ghodhbane S, Lahbib A, Tebourbi O, Rhouma KB, Sakly M, Hallegue D. Effects of testosterone replacement on lipid profile, hepatotoxicity, oxidative stress, and cognitive performance in castrated wistar rats. Arch Ital Urol Androl 2023; 95:11593. [PMID: 38193231 DOI: 10.4081/aiua.2023.11593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Androgen deficiency is associated with multiple biochemical and behavioral disorders. This study investigated the effects of testosterone replacement and Spirulina Platensis association on testosterone deficiency-induced metabolic disorders and memory impairment. METHODS Adult male rats were randomly and equally divided into four groups and received the following treatments for 20 consecutive days. CONTROL GROUP non-castrated rats received distilled water. Castrated group received distilled water. Testosterone treated group: castrated rats received 0.20 mg of testosterone dissolved in corn oil by subcutaneous injection (i.p.). Spirulina co-treated group: castrated rats received 0.20 mg of testosterone (i.p.) dissolved in corn oil followed by 1000 mg/kg of Spirulina per os. RESULTS Data showed that castration induced an increase in plasma ALT, AST, alkaline phosphatase (PAL), cholesterol, and triglycerides level. Castrated rats showed a great elevation in SOD and CAT activities and MDA and H2O2 levels in the prostate, seminal vesicles, and brain. Testosterone deficiency was also associated with alteration of the spatial memory and exploratory behaviour. Testosterone replacement either alone or with Spirulina combination efficiently improved most of these biochemical parameters and ameliorated cognitive abilities in castrated rats. CONCLUSIONS Testosterone replacement either alone or in combination with Spirulina improved castration-induced metabolic, oxidative, and cognitive alterations.
Collapse
Affiliation(s)
- Oumayma Boukari
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Wahid Khemissi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Soumaya Ghodhbane
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Aida Lahbib
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Dorsaf Hallegue
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| |
Collapse
|
478
|
Noah AA, El-Mezayen NS, El-Ganainy SO, Darwish IE, Afify EA. Reversal of fibrosis and portal hypertension by Empagliflozin treatment of CCl 4-induced liver fibrosis: Emphasis on gal-1/NRP-1/TGF-β and gal-1/NRP-1/VEGFR2 pathways. Eur J Pharmacol 2023; 959:176066. [PMID: 37769984 DOI: 10.1016/j.ejphar.2023.176066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
To date, liver fibrosis has no clinically approved treatment. Empagliflozin (EMPA), a highly selective sodium-glucose-cotransporter-2 (SGLT2) inhibitor, has shown ameliorative potential in liver diseases without revealing its full mechanisms. Neuropilin-1 (NRP-1) is a novel regulator of profibrogenic signaling pathways related to hepatic stellate cells (HSCs) and hepatic sinusoidal endothelial cells (HSECs) that modulates intrahepatic profibrogenic and angiogenic pathways. Herein, EMPA's antifibrotic potentials and effects on galactin-1 (Gal-1)/NRP-1 signaling pathways have been evaluated in an experimental liver fibrosis rat model by testing different EMPA dose regimens. EMPA treatment brought a dose-dependent decrease in Gal-1/NRP-1 hepatic expression. This was coupled with suppression of major HSCs pro-fibrotic pathways; transforming growth factor-β (TGF-β)/TGF-βRI/Smad2 and platelet-derived growth factor-beta (PDGF-β) with a diminution of hepatic Col 1A1 level. In addition, EMPA prompted a protuberant suppression of the angiogenic pathway; vascular endothelial growth factor (VEGF)/VEGF-receptor-2 (VEGFR-2)/SH2-Domain Containing Adaptor Protein-B (Shb), and reversal of altered portal hypertension (PHT) markers; endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS). The amelioration of liver fibrosis was coupled with a remarkable improvement in liver aminotransferases and histologic hepatic fibrosis Ishak scores. The highest EMPA dose showed a good safety profile with minimal changes in renal function and glycemic control. Thus, the current study brought about novel findings for a potential liver fibrosis treatment modality via targeting NRP-1 signaling pathways by EMPA.
Collapse
Affiliation(s)
- Ashraf A Noah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Clinical Research Administration, Alexandria Directorate of Health Affairs, Egyptian Ministry of Health and Population, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
479
|
Greco M, Munir A, Musarò D, Coppola C, Maffia M. Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson's disease. Front Neurosci 2023; 17:1244022. [PMID: 38027497 PMCID: PMC10654753 DOI: 10.3389/fnins.2023.1244022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.
Collapse
Affiliation(s)
- Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Anas Munir
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Chiara Coppola
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
480
|
Spezani R, Marcondes-de-Castro IA, Marinho TS, Reis-Barbosa PH, Cardoso LEM, Aguila MB, Mandarim-de-Lacerda CA. Cotadutide improves brown adipose tissue thermogenesis in obese mice. Biochem Pharmacol 2023; 217:115852. [PMID: 37832793 DOI: 10.1016/j.bcp.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
We studied the effect of cotadutide, a dual agonist glucagon-like peptide 1 (GLP1)/Glucagon, on interscapular brown adipose tissue (iBAT) remodeling and thermogenesis of obese mice. Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Then, animals were redivided, adding cotadutide treatment: C, CC, HF, and HFC for four additional weeks. The multilocular brown adipocyte structure showed fat conversion (whitening), hypertrophy, and structural disarray in the HF group, which was reverted in cotadutide-treated animals. Cotadutide enhances the body temperature, thermogenesis, and sympathetic innervation (peroxisome proliferator-activated receptor-α, β3 adrenergic receptor, interleukin 6, and uncoupled protein 1), reduces pro-inflammatory markers (disintegrin and metallopeptidase domain, morphogenetic protein 8a, and neuregulin 4), and improves angiogenesis (vascular endothelial growth factor A, and perlecan). In addition, cotadutide enhances lipolysis (perilipin and cell death-inducing DNA fragmentation factor α), mitochondrial biogenesis (nuclear respiratory factor 1, transcription factor A mitochondrial, mitochondrial dynamin-like GTPase, and peroxisome proliferator-activated receptor gamma coactivator 1α), and mitochondrial fusion/fission (dynamin-related protein 1, mitochondrial fission protein 1, and parkin RBR E3 ubiquitin protein ligase). Cotadutide reduces endoplasmic reticulum stress (activating transcription factor 4, C/EBP homologous protein, and growth arrest and DNA-damage inducible), and extracellular matrix markers (lysyl oxidase, collagen type I α1, collagen type VI α3, matrix metallopeptidases 2 and 9, and hyaluronan synthases 1 and 2). In conclusion, the experimental evidence is compelling in demonstrating cotadutide's thermogenic effect on obese mice's iBAT, contributing to unraveling its action mechanisms and the possible translational benefits.
Collapse
Affiliation(s)
- Renata Spezani
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilitch A Marcondes-de-Castro
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany S Marinho
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E M Cardoso
- Extracellular Matrix Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
481
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
482
|
Khan H, Verma Y, Rana SVS. Combined Effects of Fluoride and Arsenic on Mitochondrial Function in the Liver of Rat. Appl Biochem Biotechnol 2023; 195:6856-6866. [PMID: 36947368 DOI: 10.1007/s12010-023-04401-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Biochemical and/or molecular mechanisms of arsenic or fluoride toxicity in experimental animals have been widely investigated in the recent past. However, their combined effects on target cells/organelle are poorly understood. The present study was executed to delineate their combined effects on mitochondrial function in the liver of rat. Female Wistar rats (140 ± 20 g) were force fed individually or in combination with sodium arsenate (4 mg/kg body weight) and sodium fluoride (4 mg/kg body weight) for 90 days. Thereafter, established markers of mitochondrial function viz. mitochondrial lipid peroxidation, oxidative phosphorylation, ATPase, succinic dehydrogenase, and caspase-3 activity were determined. Cytochrome C release and oxidative DNA damage were also estimated in the liver of respective groups of rats. The study showed significant differences in these results amongst the three groups. Observations on parameters viz. LPO, cytochrome-C, caspase-3, and 8-OHdG suggested an antagonistic relationship between these two elements. Results on ATPase, SDH, and ADP:O ratio indicated synergism. It is concluded that AsIII + F in combination may express differential effects on signalling pathways and proapoptotic/antiapoptotic proteins/genes that contribute to liver cell death. Interaction of As and F with mitochondria.
Collapse
Affiliation(s)
- Huma Khan
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
483
|
Deng X, Xu H, Pan C, Hao X, Liu J, Shang X, Chi R, Hou W, Xu T. Moderate mechanical strain and exercise reduce inflammation and excessive autophagy in osteoarthritis by downregulating mitofusin 2. Life Sci 2023; 332:122020. [PMID: 37579836 DOI: 10.1016/j.lfs.2023.122020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
AIMS The major pathological mechanisms of osteoarthritis (OA) progression include inflammation, autophagy, and apoptosis, etc. Moderate mechanical strain and exercise effectively improve chondrocyte degeneration by reducing these adverse factors. Mitofusin 2 (MFN2) is a crucial regulatory factor associated with inflammation, autophagy and apoptosis, and its expression is regulated by exercise. This study aims to elucidate the effects of moderate mechanical strain and exercise on MFN2 expression and its influence on OA progression. MAIN METHODS Destabilization of the medial meniscus (DMM) surgery was performed on rats to induce an OA rat model. Subsequently, adeno-associated virus (overexpression/knockdown) intra-articular injection or moderate treadmill exercise was administered to evaluate the effects of these treatments on MFN2 expression and OA progression. Overexpressed plasmids and siRNA vectors were used to regulate MFN2 expression in chondrocytes. An inflammatory degeneration cell model was generated by IL-1β stimulation. Moderate mechanical strain was applied to MFN2-overexpressing cells to explore their interactions. KEY FINDINGS MFN2 overexpression aggravated inflammation by activating the NF-κB and P38 pathways and induced excessive autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby causing chondrocyte apoptosis and metabolic disorder. Moderate mechanical strain partially reversed these adverse effects. In the DMM rat model, MFN2 overexpression in articular cartilage exacerbated OA progression, whereas MFN2 knockdown and treadmill exercise alleviated cartilage degeneration, inflammation, and mechanical pain. SIGNIFICANCE MFN2 is a critical factor mediating the association between inflammation and excessive autophagy in OA progression. Moderate mechanical strain and treadmill exercise may improve OA through downregulating MFN2 expression. This study may provide a theoretical basis for exercise therapy in OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
484
|
Liu M, Lu J, Chen Y, Zhang S, Guo J, Guan S. Sodium Sulfite-Triggered Hepatocyte Ferroptosis via mtROS/Lysosomal Membrane Permeabilization-Mediated Lysosome Iron Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16310-16322. [PMID: 37871339 DOI: 10.1021/acs.jafc.3c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sodium sulfite is a widely used preservative in the food industry. Ferroptosis has been a newly discovered form of iron-dependent oxidative cell death in recent years. However, the potential connection between sodium sulfite and ferroptosis has not been explored. In our study, we observed the abnormal expression of ferroptosis marker protein in vivo, suggesting that sodium sulfite caused ferroptosis in vivo. Next, our study revealed that sodium sulfite caused the overproduction of mitochondrial reactive oxygen species (mtROS) in the AML-12 cells. It is well established that reactive oxygen species (ROS) can induce lysosomal membrane permeabilization. After lysosomal membrane permeabilization occurs, the outflow of Fe2+ in lysosomes triggers the Fenton reaction and subsequently results in the increase of intracellular ROS level, which is closely related to ferroptosis. As speculated, acridine orange (AO) staining and LysoTracker red staining showed that sodium sulfite-induced lysosomal membrane permeabilization could be alleviated by mtROS scavenger TEMPO. In addition, TEMPO, lysosomal stabilizer mannose, and lysosomal iron chelator deferoxamine (DFO) inhibited sodium sulfite-induced ferroptosis. Overall, the results showed that sodium sulfite induced lysosomal iron efflux through the mtROS-lysosomal membrane permeabilization pathway and eventually led to ferroptosis. Our study might provide a new mechanism for the hepatotoxicity of sodium sulfite and a theoretical basis for the risk assessment of sodium sulfite as a food additive.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
485
|
Sher EK, Džidić-Krivić A, Karahmet A, Beća-Zećo M, Farhat EK, Softić A, Sher F. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy - A review. Diabetes Metab Syndr 2023; 17:102901. [PMID: 37951098 DOI: 10.1016/j.dsx.2023.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Neuropathy is among the most often reported consequences of diabetes and the biggest cause of morbidity and mortality in people suffering from this life-long disease. Although different therapeutic methods are available for diabetic neuropathy, it is still the leading cause of limb amputations, and it significantly decreases patients' quality of life. AIM This study investigates potential novel therapeutic options that could ameliorate symptoms of DN. METHODOLOGY Research and review papers from the last 10 years were taken into consideration. RESULTS There are various traditional drugs and non-pharmacological methods used to treat this health condition. However, the research in the area of pathogenic-oriented drugs in the treatment of DN showed no recent breakthroughs, mostly due to the limited evidence about their effectiveness and safety obtained through clinical trials. Consequently, there is an urgent demand for the development of novel therapeutic options for diabetic neuropathy. CONCLUSION Some of the latest novel diagnostic methods for diagnosing diabetic neuropathy are discussed as well as the new therapeutic approaches, such as the fusion of neuronal cells with stem cells, targeting gene delivery and novel drugs.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Neurology, Clinical Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Pharmacy, Faculty of Health Sciences, Victoria International University, Mostar, 88000, Bosnia and Herzegovina
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
| | - Adaleta Softić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, 75000, Bosnia and Herzegovina
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
486
|
Shan Cassandra Chong W, Tilbrook D, Pereira G, Dykes GA, George N, Coorey R. Antioxidant activities, phenolic compounds, and mineral composition of seed from Acacia retinodes, A. Provincialis and A. Tenuissima. Food Res Int 2023; 173:113452. [PMID: 37803777 DOI: 10.1016/j.foodres.2023.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Seeds of the species Acacia retinodes, A. provincialis, and A. tenuissima) from different growing locations were analysed for their mineral composition, free and bound polyphenols, and flavonoids. Previous research has studied these compounds in only a limited number of Acacia species, and only one study reports significant differences between three species. All species were rich in potassium (353 - 427 mg/100 g), sodium (14 - 240 mg/100 g) and iron (7 - 8 mg/100 g). The free polyphenol extracts of all species had higher total phenolic content, total flavonoid content and antioxidant activities than their bound counterparts, indicating the possibility of higher bioavailability than the bound polyphenol extracts. The predominant phenolic compounds found in the Acacia polyphenol seed extracts were 6-Hydroxy-2-methylindole and 2,2'-Methylenebis(6-tert-butyl-methylphenol), though no phenolic compounds were identified in the bound extracts of A. retinodes Grampians and A. provincialis Tarrington. Other compounds identified in the seed extracts include sucrose, d-fructofuranose and d-pinitol.
Collapse
Affiliation(s)
- Wei Shan Cassandra Chong
- School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia; Food Agility CRC Ltd, 81 Broadway, Ultimo, New South Wales 2007, Australia
| | - Dale Tilbrook
- School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Bentley, Perth, Western Australia 6102, Australia; enAble Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Gary A Dykes
- School of Agriculture and Food Sustainability, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Nicholas George
- School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia.
| |
Collapse
|
487
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
488
|
Hu Z, Wang X, Hu Q, Chen X. Exploring the protective effects of herbal monomers against diabetic retinopathy based on the regulation of autophagy and apoptosis: A review. Medicine (Baltimore) 2023; 102:e35541. [PMID: 37904448 PMCID: PMC10615407 DOI: 10.1097/md.0000000000035541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Diabetic retinopathy (DR) has become one of the top 3 blinding eye diseases in the world. In spite of recent therapeutic breakthroughs, it is not yet possible to cure DR through pharmacotherapy. Cell death is thought to play a key role in the pathogenesis of DR. Moderate modulation of cellular autophagy and inhibition of apoptosis have been identified as effective targets for the treatment of DR. Numerous phytochemicals have emerged as potential new drugs for the treatment of DR. We collected basic DR research on herbal monomers through keywords such as autophagy and apoptosis, and conducted a systematic search for relevant research articles published in the PubMed database. This review provides the effects and reports of herbal monomers on various DR cellular and animal models in vivo and in vitro in the available literature, and emphasizes the importance of cellular autophagy and apoptosis as current DR therapeutic targets. Based on our review, we believe that herbal monomers that modulate autophagy and inhibit apoptosis may be potentially effective candidates for the development of new drugs in the treatment of DR. It provides a strategy for further development and application of herbal medicines for DR treatment.
Collapse
Affiliation(s)
- Zhuoyu Hu
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xuan Wang
- Graduate School of Hunan University of Chinese Medicine, Changsha, Changsha, People’s Republic of China
| | - Qi Hu
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xiangdong Chen
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
489
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
490
|
Liu Y, Cui H, Mei C, Cui M, He Q, Wang Q, Li D, Song Y, Li J, Chen S, Zhu C. Sirtuin4 alleviates severe acute pancreatitis by regulating HIF-1α/HO-1 mediated ferroptosis. Cell Death Dis 2023; 14:694. [PMID: 37865653 PMCID: PMC10590376 DOI: 10.1038/s41419-023-06216-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Acute pancreatitis (AP) is a common emergency of the digestive system and serious cases can develop into severe acute pancreatitis (SAP), which ortality rates up to 30%. Sirtuin4 (SIRT4) is a member of the sirtuin family, and plays a key role in inflammation and oxidative stress. However, the potential role of SIRT4 in SAP has yet to be elucidated. In the present study, we found that the expression level of SIRT4 in human AP was downregulated by screening a public database, suggesting that SIRT4 may play a role in AP. Subsequently, we used L-arginine (L-Arg) to induce SAP in SIRT4 knockout (SIRT4_KO) and SIRT4 overexpression (AAV_SIRT4) mice. The results showed that the pancreatic tissue injury and related lung and kidney injury were serious in SIRT4_KO mice after SAP induction, but were significantly reduced in AAV_SIRT4 mice. More importantly, we found that the levels of antioxidant factors GSH and SOD were decreased in SIRT4_KO mice, and the production of oxidative products and lipid peroxidation markers was increased, suggesting that SIRT4 was involved in inflammation and oxidative stress during SAP. Further studies showed that the absence or overexpression of SIRT4 affected the expression level of Hypoxia-inducible factor-1α (HIF-1α) after SAP induction, and regulated the expression of ferroptosis related proteins by mediating HIF-1α/HO-1 pathway. Collectively, our study revealed that SIRT4 plays a protective role in SAP by regulating the HIF-1α/HO-1 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Huning Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chaopeng Mei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengwei Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian He
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Dejian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Sanyang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
491
|
Kang B, Wang X, An X, Ji C, Ling W, Qi Y, Li S, Jiang D. Polyamines in Ovarian Aging and Disease. Int J Mol Sci 2023; 24:15330. [PMID: 37895010 PMCID: PMC10607840 DOI: 10.3390/ijms242015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian aging and disease-related decline in fertility are challenging medical and economic issues with an increasing prevalence. Polyamines are a class of polycationic alkylamines widely distributed in mammals. They are small molecules essential for cell growth and development. Polyamines alleviate ovarian aging through various biological processes, including reproductive hormone synthesis, cell metabolism, programmed cell death, etc. However, an abnormal increase in polyamine levels can lead to ovarian damage and promote the development of ovarian disease. Therefore, polyamines have long been considered potential therapeutic targets for aging and disease, but their regulatory roles in the ovary deserve further investigation. This review discusses the mechanisms by which polyamines ameliorate human ovarian aging and disease through different biological processes, such as autophagy and oxidative stress, to develop safe and effective polyamine targeted therapy strategies for ovarian aging and the diseases.
Collapse
Affiliation(s)
- Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
492
|
Vamvini M, Nigro P, Caputo T, Stanford KI, Hirshman MF, Middelbeek RJ, Goodyear LJ. Exercise Training and Cold Exposure Trigger Distinct Molecular Adaptations to Inguinal White Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562635. [PMID: 37905018 PMCID: PMC10614850 DOI: 10.1101/2023.10.16.562635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well-established. We tested the hypothesis that adaptations to inguinal white adipose tissue (iWAT) are critical for these beneficial effects by determining the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improved glucose tolerance, while cold-exposed iWAT transplantation showed no such benefit. Compared to training, cold led to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting iWAT's thermogenic capacity. In contrast, only training increased extracellular space and vesicle transport proteins, and only training upregulated proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.
Collapse
Affiliation(s)
- Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kristin I. Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Physiology and Cell Biology, Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael F. Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Roeland J.W. Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
493
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
494
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
495
|
Ding Z, Wei Y, Peng J, Wang S, Chen G, Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023; 11:2711. [PMID: 37893085 PMCID: PMC10603830 DOI: 10.3390/biomedicines11102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic-dysfunction-associated fatty liver disease (MASLD), is liver-metabolism-associated steatohepatitis caused by nonalcoholic factors. NAFLD/MASLD is currently the most prevalent liver disease in the world, affecting one-fourth of the global population, and its prevalence increases with age. Current treatments are limited; one important reason hindering drug development is the insufficient understanding of the onset and pathogenesis of NAFLD/MASLD. C-reactive protein (CRP), a marker of inflammation, has been linked to NAFLD and aging in recent studies. As a conserved acute-phase protein, CRP is widely characterized for its host defense functions, but the link between CRP and NAFLD/MASLD remains unclear. Herein, we discuss the currently available evidence for the involvement of CRP in MASLD to identify areas where further research is needed. We hope this review can provide new insights into the development of aging-associated NAFLD biomarkers and suggest that modulation of CRP signaling is a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
496
|
Shah W, Zhao Q, Wang S, Zhang M, Ma H, Guan Y, Zhang Y, Liu Y, Zhu C, Wang S, Zhang X, Dong J, Ma H. Polydatin improves vascular endothelial function by maintaining mitochondrial homeostasis under high glucose conditions. Sci Rep 2023; 13:16550. [PMID: 37783713 PMCID: PMC10545827 DOI: 10.1038/s41598-023-43786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Previous studies have shown that polydatin (Poly) confer cardioprotective effects. However, its underlying mechanisms remain elusive. This study showed that Poly (10 µM) treatment reversed the high glucose (HG)-induced decrease in acetylcholine-elicited vasodilation in aortas. Poly also improved the acetylcholine-induced vasodilation of aortic vessels isolated from diabetic rats. Meanwhile, Poly ameliorated the morphological damage of the thoracic aorta and improved the viability of HUVECs under HG conditions. Furthermore, analysis of the vasoprotective effect of Poly under HG conditions by transmission electron microscopy, Western blotting, and qPCR revealed that Poly improved endothelial pyroptosis through the NLRP3/Caspase/1-IL-1β pathway, enhanced dynamin-related protein 1-mediated mitochondrial fission, and increased the mitochondrial membrane potential under HG conditions. In conclusion, Poly restored acetylcholine-induced vasodilation impaired by HG incubation, which was associated with reduced oxidation, inflammation, and pyroptosis, the recovery of the mitochondrial membrane potential and maintenance of mitochondrial dynamic homeostasis of endothelial cells in the aortas.
Collapse
Affiliation(s)
- Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Miaomiao Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, Hebei, China
| | - Chunhua Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China.
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
497
|
Xie Y, Chen S, Guo Z, Tian Y, Hong X, Feng P, Xie Q, Yu Q. Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome. MedComm (Beijing) 2023; 4:e396. [PMID: 37817894 PMCID: PMC10560969 DOI: 10.1002/mco2.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent reproductive endocrine disorder, with metabolic abnormalities and ovulation disorders. The post-translational modifications (PTMs) are functionally relevant and strengthen the link between metabolism and cellular functions. Lysine crotonylation is a newly identified PTM, the function of which in PCOS has not yet been reported. To explore the molecular mechanisms of crotonylation involved in the abnormalities of metabolic homeostasis and oocyte maturation in PCOS, by using liquid chromatography-tandem mass spectrometry analysis, we constructed a comprehensive map of crotonylation modifications in ovarian tissue of PCOS-like mouse model established by dehydroepiandrosterone induction. The crotonylation levels of proteins involved in metabolic processes were significantly decreased in PCOS ovaries compared to control samples. Further investigation showed that decrotonylation of Lon protease 1 (LONP1) at lysine 390 was associated with mitochondrial dysfunction in PCOS. Moreover, LONP1 crotonylation levels in PCOS were correlated with ovarian tissue oxidative stress levels, androgen levels, and oocyte development. Consistently, down-regulation of LONP1 and LONP1 crotonylation levels were also observed in the blood samples of PCOS patients. Collectively, our study revealed a mechanism by which the decrotonylation of LONP1 may attenuate its activity and alter follicular microenvironment to affect oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Shuwen Chen
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Zaixin Guo
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Ying Tian
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Xinyu Hong
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Penghui Feng
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Qiu Xie
- Department of Medical Research CenterState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qi Yu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| |
Collapse
|
498
|
Guo Y, Jiang H, Wang M, Ma Y, Zhang J, Jing L. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem Biol Interact 2023; 384:110723. [PMID: 37741536 DOI: 10.1016/j.cbi.2023.110723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Stroke remains the main leading cause of death and disabilities worldwide, with diabetes mellitus being a significant independent risk factor for it. Metformin, as an efficient hypoglycemic drug in treating type 2 diabetes, has been reported to alleviate the risk of diabetes-related stroke. However, its underlying mechanisms remain unclear. This study aimed to investigate the role of mitophagy and its regulatory pathway in the neuroprotective mechanism of metformin against cerebral ischemia/reperfusion (I/R) injury aggravated by hyperglycemia. A hyperglycemic cerebral I/R animal model and a high glucose cultured oxygen-glucose deprivation/reperfusion (OGD/R) cell model were used in the experiment. The indexes of brain injury, cell activity, mitochondrial morphology and function, mitophagy, mitochondrial pathway apoptosis and the AMPK pathway were observed. In diabetic rats, metformin treatment decreased cerebral infarction volume and neuronal apoptosis, and improved neurological symptoms following I/R injury. Additionally, metformin induced activation of the AMPK/ULK1/PINK1/Parkin mitophagy pathway to have neuroprotective effects. In vitro, high glucose culture and OGD/R treatment impaired mitochondrial morphology and function, mitochondrial membrane potential, and induced apoptosis. However, metformin activated AMPK/ULK1/PINK1/Parkin mitophagy pathway, normalized mitochondrial injury. This protection was reversed by autophagy inhibitor 3-methyladenine (3MA) and AMPK inhibitor compound C. In conclusion, our present study validates the potential mechanism of metformin in alleviating hyperglycemia aggravated cerebral I/R injury by the activation of AMPK/ULK1/PINK1/Parkin mitophagy pathway.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
499
|
Omar HS, Ibrahim OA, Sayed MG, Faruk EM, Fouad H, Safwat M. Non-coding RNA genes modulate PI3K/AKT signaling pathway in polycystic ovary syndrome. Mol Biol Rep 2023; 50:8361-8372. [PMID: 37620736 DOI: 10.1007/s11033-023-08604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The PI3K protein kinase B (PI3K/AKT) signaling pathway has crucial roles in insulin signaling and other endocrine disorders. The purpose of this study is to validate the association of PCOS with PI3K/AKT pathway target genes, miRNA486-5p, and miRNA483-5p as well as to evaluate the outcome of metformin on the pathogenesis of PCOS. METHODS: This case-controlled study included 3 subject groups: twenty healthy females (control group), twenty PCOS females before treatment, and twenty PCOS females treated with metformin at a dose (500 mg 3 times per day for 3 months). The following gene expressions were assessed by real-time PCR: PI3K, AKT, ERK, GLUT4, miRNA486-5p, and miRNA483-5p in the whole blood. RESULTS There was a significant decrease in miRNA486-5p and miRNA483-5p in the PCOS group with a significant negative correlation between miRNA486-5p and PI3K and a significant negative correlation between miRNA483-5p and ERK. Metformin treatment resulted in significant elevation of the studied miRNA, significant downregulation of PI3K/AKT target genes, and significant amelioration of the gonadotrophic hormonal imbalance and insulin resistance markers: fasting blood glucose, HBA1C, fasting insulin, and GLUT4 gene expression. CONCLUSIONS miRNA486 and miRNA483 downregulation may contribute to the etiology of PCOS, influence glucose metabolism, and result in IR in PCOS. Metformin's upregulation of those miRNAs affects glucose metabolism by controlling the expression of GLUT4, ameliorates PCOS-related insulin resistance, and improves PCOS-related hormonal imbalance by controlling the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Heba S Omar
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
| | - Osama Ahmed Ibrahim
- Obstetrics and Gynecology Department, Faculty of Medicine, Minia University, Minya, Egypt
| | - Maha Gomaa Sayed
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Eman Mohammed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia.
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
- Faculty of Medicine, Galala University, POB 43711, Attaka, Egypt
| | - Miriam Safwat
- Medical Biochemistry and Molecular Biology Department, Kasr Al Ainy School of Medicine, Cairo University, Kasr Al Ainy St., El Manial, Cairo, 11562, Egypt
| |
Collapse
|
500
|
Luna-Marco C, de Marañon AM, Hermo-Argibay A, Rodriguez-Hernandez Y, Hermenejildo J, Fernandez-Reyes M, Apostolova N, Vila J, Sola E, Morillas C, Rovira-Llopis S, Rocha M, Victor VM. Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes. Redox Biol 2023; 66:102849. [PMID: 37591012 PMCID: PMC10457591 DOI: 10.1016/j.redox.2023.102849] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients. RESEARCH DESIGN AND METHODS Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis. RESULTS Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment. CONCLUSIONS GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Arantxa M de Marañon
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Cancer Research @UCC, College of Medicine and Health, University College Cork, Ireland.
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Yohaly Rodriguez-Hernandez
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Jonathan Hermenejildo
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Meylin Fernandez-Reyes
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Nadezda Apostolova
- Department of Pharmacology, University of Valencia, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Jose Vila
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Eva Sola
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| |
Collapse
|