451
|
Wadström BN, Pedersen KM, Wulff AB, Nordestgaard BG. Inflammation compared to low-density lipoprotein cholesterol: two different causes of atherosclerotic cardiovascular disease. Curr Opin Lipidol 2023; 34:96-104. [PMID: 36752631 DOI: 10.1097/mol.0000000000000867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW Inflammation is gaining attention as a target for prevention of atherosclerotic cardiovascular disease (ASCVD). The purpose of this review is to compare the evidence for inflammation with the evidence for low-density lipoprotein (LDL) cholesterol in ASCVD. RECENT FINDINGS Evidence from human genetic studies and randomized controlled trials implicate the inflammatory pathway from the inflammasome through interleukin (IL)-1 to IL-6 as a cause of ASCVD. Higher levels of IL-6 may lead to proportionally increased risk of ASCVD, and randomized controlled trials of IL-6 inhibitors are underway. The causal evidence for LDL cholesterol in ASCVD is overwhelming and recent important findings instead revolve around development of improved LDL cholesterol lowering therapy through RNA and DNA based therapeutics. Even though some lipid-lowering therapies lower IL-6, the IL-6 inflammatory pathway and LDL cholesterol are two separate causes of ASCVD. SUMMARY IL-6 mediated inflammation most likely causes ASCVD, in parallel with LDL cholesterol. However, fewer individuals in the general population are exposed to high IL-6 than high LDL cholesterol. For inflammation, future research should focus on improving efficacy and safety of anti-inflammatory therapy, and for LDL cholesterol, future research should focus on wider and more effective implementation of LDL cholesterol lowering therapy.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
452
|
Gu X, Dou M, Yuan M, Zhang W. Identifying novel proteins underlying loneliness by integrating GWAS summary data with human brain proteomes. Neuropsychopharmacology 2023; 48:1087-1097. [PMID: 36755143 PMCID: PMC10209215 DOI: 10.1038/s41386-023-01536-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Enduring loneliness is associated with mental disorders and physical diseases. Although genome-wide association studies (GWAS) have identified risk loci associated with loneliness, how these loci confer the risk remains largely unknown. In the current study, we aimed to investigate key proteins underlying loneliness in the brain by integrating human brain proteomes and transcriptomes with loneliness GWAS to perform a discovery proteome-wide association study (PWAS), followed by a confirmatory PWAS, transcriptome-wide association analysis (TWAS), Mendelian randomization (MR), Steigering filtering analysis and Bayesian colocalization analysis. Moreover, given the fact that loneliness is associated with mental disorders, we explored the shared genetic architecture between loneliness and mental disorders. Totally, we identified 18 genes to be associated with loneliness via their cis-regulated brain protein abundance. Eleven of the 18 genes (61.1%) were replicated in the confirmatory PWAS, and mRNA levels of 4 genes were further validated to be associated with loneliness.MR and genetic colocalization analysis further confirmed that the increased protein abundance of ALDH2 and ICA1L was protective against loneliness, while the increased protein abundance of GPX1 was a risk for developing loneliness. Furthermore, we found genetic correlations, bidirectional causal associations and overlapping phenotype-associated protein profiles between loneliness and mental disorders including major depression and schizophrenia. In summary, our findings provided clues about the brain-related molecular basis underlying loneliness, which warrants further investigation.
Collapse
Affiliation(s)
- Xiaojing Gu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Meng Dou
- Chengdu institute of computer application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| |
Collapse
|
453
|
Faber BG, Frysz M, Hartley AE, Ebsim R, Boer CG, Saunders FR, Gregory JS, Aspden RM, Harvey NC, Southam L, Giles W, Le Maitre CL, Wilkinson JM, van Meurs JBJ, Zeggini E, Cootes T, Lindner C, Kemp JP, Davey Smith G, Tobias JH. A Genome-Wide Association Study Meta-Analysis of Alpha Angle Suggests Cam-Type Morphology May Be a Specific Feature of Hip Osteoarthritis in Older Adults. Arthritis Rheumatol 2023; 75:900-909. [PMID: 36662418 PMCID: PMC10374163 DOI: 10.1002/art.42451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To examine the genetic architecture of cam morphology using alpha angle (AA) as a proxy measure and conduct an AA genome-wide association study (GWAS) followed by Mendelian randomization (MR) to evaluate its causal relationship with hip osteoarthritis (OA). METHODS Observational analyses examined associations between AA measurements derived from hip dual x-ray absorptiometry (DXA) scans from the UK Biobank study and radiographic hip OA outcomes and subsequent total hip replacement. Following these analyses, an AA GWAS meta-analysis was performed (N = 44,214) using AA measurements previously derived in the Rotterdam Study. Linkage disequilibrium score regression assessed the genetic correlation between AA and hip OA. Genetic associations considered significant (P < 5 × 10-8 ) were used as AA genetic instrument for 2-sample MR analysis. RESULTS DXA-derived AA showed expected associations between AA and radiographic hip OA (adjusted odds ratio [OR] 1.63 [95% confidence interval (95% CI) 1.58, 1.67]) and between AA and total hip replacement (adjusted hazard ratio 1.45 [95% CI 1.33, 1.59]) in the UK Biobank study cohort. The heritability of AA was 10%, and AA had a moderate genetic correlation with hip OA (rg = 0.26 [95% CI 0.10, 0.43]). Eight independent genetic signals were associated with AA. Two-sample MR provided weak evidence of causal effects of AA on hip OA risk (inverse variance weighted OR 1.84 [95% CI 1.14, 2.96], P = 0.01). In contrast, genetic predisposition for hip OA had stronger evidence of a causal effect on increased AA (inverse variance weighted β = 0.09 [95% CI 0.04, 0.13], P = 4.58 × 10-5 ). CONCLUSION Expected observational associations between AA and related clinical outcomes provided face validity for the DXA-derived AA measurements. Evidence of bidirectional associations between AA and hip OA, particularly for risk of hip OA on AA, suggests that hip shape modeling secondary to a genetic predisposition to hip OA contributes to the well-established relationship between hip OA and cam morphology in older adults.
Collapse
Affiliation(s)
- Benjamin G. Faber
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolUK
| | - Monika Frysz
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolUK
| | - April E. Hartley
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolUK
| | - Raja Ebsim
- Division of Informatics, Imaging and Data ScienceThe University of ManchesterUK
| | - Cindy G. Boer
- Department of Internal Medicine, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Fiona R. Saunders
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenUK
| | | | - Richard M. Aspden
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenUK
| | - Nicholas C. Harvey
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, UK, and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental HealthNeuherbergGermany
| | - William Giles
- Department of Oncology and MetabolismThe University of SheffieldUK
| | | | | | - Joyce B. J. van Meurs
- Department of Internal Medicine and Department of Orthopaedics & Sports Medicine, Erasmus MCRotterdamThe Netherlands
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany, and TUM School of MedicineTechnical University of Munich and Klinikum Rechts der IsarGermany
| | - Timothy Cootes
- Division of Informatics, Imaging and Data ScienceThe University of ManchesterUK
| | - Claudia Lindner
- Division of Informatics, Imaging and Data ScienceThe University of ManchesterUK
| | - John P. Kemp
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, UK, and The University of Queensland Diamantina Institute and Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolUK
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolUK
| |
Collapse
|
454
|
Zhang H. Pros and cons of Mendelian randomization. Fertil Steril 2023; 119:913-916. [PMID: 36990264 PMCID: PMC10234673 DOI: 10.1016/j.fertnstert.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut.
| |
Collapse
|
455
|
Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, Jamroziak K, Theodoropoulos G, Pasquali C, Greenhalf W, Arcidiacono PG, Uzunoglu F, Pezzilli R, Luchini C, Puzzono M, Loos M, Giaccherini M, Katzke V, Mambrini A, Kiudeliene E, Federico KE, Johansen J, Hussein T, Mohelnikova-Duchonova B, van Eijck CHJ, Brenner H, Farinella R, Pérez JS, Lovecek M, Büchler MW, Hlavac V, Izbicki JR, Hackert T, Chammas R, Zerbi A, Lawlor R, Felici A, Götz M, Capurso G, Ginocchi L, Gazouli M, Kupcinskas J, Cavestro GM, Vodicka P, Moz S, Neoptolemos JP, Kunovsky L, Bojesen SE, Carrara S, Gioffreda D, Morkunas E, Abian O, Bunduc S, Basso D, Boggi U, Wlodarczyk B, Szentesi A, Vanella G, Chen I, Bijlsma MF, Kiudelis V, Landi S, Schöttker B, Corradi C, Giese N, Kaaks R, Peduzzi G, Hegyi P, Morelli L, Furbetta N, Soucek P, Latiano A, Talar-Wojnarowska R, Lindgaard SC, Dijk F, Milanetto AC, Tavano F, Cervena K, Erőss B, Testoni SG, Verhagen-Oldenampsen JHE, Małecka-Wojciesko E, Costello E, Salvia R, Maiello E, Ermini S, Sperti C, Holleczek B, Perri F, Skieceviciene J, Archibugi L, Lucchesi M, Rizzato C, Canzian F. The PANcreatic Disease ReseArch (PANDoRA) consortium: Ten years' experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol 2023; 186:104020. [PMID: 37164172 DOI: 10.1016/j.critrevonc.2023.104020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer has an incidence that almost matches its mortality. Only a small number of risk factors and 33 susceptibility loci have been identified. so Moreover, the relative rarity of pancreatic cancer poses significant hurdles for research aimed at increasing our knowledge of the genetic mechanisms contributing to the disease. Additionally, the inability to adequately power research questions prevents small monocentric studies from being successful. Several consortia have been established to pursue a better understanding of the genetic architecture of pancreatic cancers. The Pancreatic disease research (PANDoRA) consortium is the largest in Europe. PANDoRA is spread across 12 European countries, Brazil and Japan, bringing together 29 basic and clinical research groups. In the last ten years, PANDoRA has contributed to the discovery of 25 susceptibility loci, a feat that will be instrumental in stratifying the population by risk and optimizing preventive strategies.
Collapse
Affiliation(s)
- Daniele Campa
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy.
| | - Manuel Gentiluomo
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudio Pasquali
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | - Faik Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mambrini
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Edita Kiudeliene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Julia Johansen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Tamás Hussein
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juan Sainz Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Complejo Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain; Department of Immunology, University of Granada, Granada, Spain
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rita Lawlor
- ARC-Net Research Center, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Alessio Felici
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Laura Ginocchi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Juozas Kupcinskas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Stefania Moz
- Azienda Ospedale-Università di Padova Medicina di Laboratorio, Padova, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lumir Kunovsky
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Stig E Bojesen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Egidijus Morkunas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olga Abian
- Instituto BIFI-Universidad de Zaragoza, Zaragoza, Spain
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Insitute, Bucharest, Romania
| | - Daniela Basso
- Dept. of Medicine, University of Padova Medicina di Laboratorio, Padova, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Barbara Wlodarczyk
- Dept of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Inna Chen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vytautas Kiudelis
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Landi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Corradi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giulia Peduzzi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Szeged, Hungary
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Sidsel C Lindgaard
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Frederike Dijk
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Caterina Milanetto
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bálint Erőss
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sabrina G Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Cosimo Sperti
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 1, Padova, Italy
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Saarland Cancer Registry, Saarbrücken, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Jurgita Skieceviciene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Maurizio Lucchesi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
456
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
457
|
Au Yeung SL, Gill D. Standardizing the reporting of Mendelian randomization studies. BMC Med 2023; 21:187. [PMID: 37198682 PMCID: PMC10193619 DOI: 10.1186/s12916-023-02894-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Shiu Lun Au Yeung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
458
|
Yarmolinsky J, Robinson JW, Mariosa D, Karhunen V, Huang J, Dimou N, Murphy N, Burrows K, Bouras E, Smith-Byrne K, Lewis SJ, Galesloot TE, Kiemeney LA, Vermeulen S, Martin P, Albanes D, Hou L, Newcomb PA, White E, Wolk A, Wu AH, Marchand LL, Phipps AI, Buchanan DD, Zhao SS, Gill D, Chanock SJ, Purdue MP, Smith GD, Brennan P, Herzig KH, Jarvelin MR, Dehghan A, Johansson M, Gunter MJ, Tsilidis KK, Martin RM. Association between circulating inflammatory markers and adult cancer risk: a Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.04.23289196. [PMID: 37205426 PMCID: PMC10187459 DOI: 10.1101/2023.05.04.23289196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Tumour-promoting inflammation is a "hallmark" of cancer and conventional epidemiological studies have reported links between various inflammatory markers and cancer risk. The causal nature of these relationships and, thus, the suitability of these markers as intervention targets for cancer prevention is unclear. Methods We meta-analysed 6 genome-wide association studies of circulating inflammatory markers comprising 59,969 participants of European ancestry. We then used combined cis-Mendelian randomization and colocalisation analysis to evaluate the causal role of 66 circulating inflammatory markers in risk of 30 adult cancers in 338,162 cancer cases and up to 824,556 controls. Genetic instruments for inflammatory markers were constructed using genome-wide significant (P < 5.0 x 10-8) cis-acting SNPs (i.e. in or ±250 kb from the gene encoding the relevant protein) in weak linkage disequilibrium (LD, r2 < 0.10). Effect estimates were generated using inverse-variance weighted random-effects models and standard errors were inflated to account for weak LD between variants with reference to the 1000 Genomes Phase 3 CEU panel. A false discovery rate (FDR)-corrected P-value ("q-value") < 0.05 was used as a threshold to define "strong evidence" to support associations and 0.05 ≤ q-value < 0.20 to define "suggestive evidence". A colocalisation posterior probability (PPH4) > 70% was employed to indicate support for shared causal variants across inflammatory markers and cancer outcomes. Results We found strong evidence to support an association of genetically-proxied circulating pro-adrenomedullin concentrations with increased breast cancer risk (OR 1.19, 95% CI 1.10-1.29, q-value=0.033, PPH4=84.3%) and suggestive evidence to support associations of interleukin-23 receptor concentrations with increased pancreatic cancer risk (OR 1.42, 95% CI 1.20-1.69, q-value=0.055, PPH4=73.9%), prothrombin concentrations with decreased basal cell carcinoma risk (OR 0.66, 95% CI 0.53-0.81, q-value=0.067, PPH4=81.8%), macrophage migration inhibitory factor concentrations with increased bladder cancer risk (OR 1.14, 95% CI 1.05-1.23, q-value=0.072, PPH4=76.1%), and interleukin-1 receptor-like 1 concentrations with decreased triple-negative breast cancer risk (OR 0.92, 95% CI 0.88-0.97, q-value=0.15), PPH4=85.6%). For 22 of 30 cancer outcomes examined, there was little evidence (q-value ≥ 0.20) that any of the 66 circulating inflammatory markers examined were associated with cancer risk. Conclusion Our comprehensive joint Mendelian randomization and colocalisation analysis of the role of circulating inflammatory markers in cancer risk identified potential roles for 5 circulating inflammatory markers in risk of 5 site-specific cancers. Contrary to reports from some prior conventional epidemiological studies, we found little evidence of association of circulating inflammatory markers with the majority of site-specific cancers evaluated.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Karl Smith-Byrne
- The Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Sita Vermeulen
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA 22
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomic Group, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, Victoria, Australia
- Genetic Medicine and Family Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Faculty of Biological Medicine and Health, University of Manchester, Manchester, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center and Oulu University Hospital, University of Oulu, Finland
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marjo-Riitta Jarvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Dementia Research Institute, Imperial College London, London, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| |
Collapse
|
459
|
Lin Z, Xue H, Pan W. Combining Mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data. PLoS Genet 2023; 19:e1010762. [PMID: 37200398 PMCID: PMC10231771 DOI: 10.1371/journal.pgen.1010762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Mendelian randomization (MR) has been increasingly applied for causal inference with observational data by using genetic variants as instrumental variables (IVs). However, the current practice of MR has been largely restricted to investigating the total causal effect between two traits, while it would be useful to infer the direct causal effect between any two of many traits (by accounting for indirect or mediating effects through other traits). For this purpose we propose a two-step approach: we first apply an extended MR method to infer (i.e. both estimate and test) a causal network of total effects among multiple traits, then we modify a graph deconvolution algorithm to infer the corresponding network of direct effects. Simulation studies showed much better performance of our proposed method than existing ones. We applied the method to 17 large-scale GWAS summary datasets (with median N = 256879 and median #IVs = 48) to infer the causal networks of both total and direct effects among 11 common cardiometabolic risk factors, 4 cardiometabolic diseases (coronary artery disease, stroke, type 2 diabetes, atrial fibrillation), Alzheimer's disease and asthma, identifying some interesting causal pathways. We also provide an R Shiny app (https://zhaotongl.shinyapps.io/cMLgraph/) for users to explore any subset of the 17 traits of interest.
Collapse
Affiliation(s)
- Zhaotong Lin
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Haoran Xue
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
460
|
Hartwig FP, Wang L, Davey Smith G, Davies NM. Average Causal Effect Estimation Via Instrumental Variables: the No Simultaneous Heterogeneity Assumption. Epidemiology 2023; 34:325-332. [PMID: 36709456 DOI: 10.1097/ede.0000000000001596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Instrumental variables (IVs) can be used to provide evidence as to whether a treatment has a causal effect on an outcome . Even if the instrument satisfies the three core IV assumptions of relevance, independence, and exclusion restriction, further assumptions are required to identify the average causal effect (ACE) of on . Sufficient assumptions for this include homogeneity in the causal effect of on ; homogeneity in the association of with ; and no effect modification. METHODS We describe the no simultaneous heterogeneity assumption, which requires the heterogeneity in the - causal effect to be mean independent of (i.e., uncorrelated with) both and heterogeneity in the - association. This happens, for example, if there are no common modifiers of the - effect and the - association, and the - effect is additive linear. We illustrate the assumption of no simultaneous heterogeneity using simulations and by re-examining selected published studies. RESULTS Under no simultaneous heterogeneity, the Wald estimand equals the ACE even if both homogeneity assumptions and no effect modification (which we demonstrate to be special cases of-and therefore stronger than-no simultaneous heterogeneity) are violated. CONCLUSIONS The assumption of no simultaneous heterogeneity is sufficient for identifying the ACE using IVs. Since this assumption is weaker than existing assumptions for ACE identification, doing so may be more plausible than previously anticipated.
Collapse
Affiliation(s)
- Fernando Pires Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Linbo Wang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Neil Martin Davies
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Norway
| |
Collapse
|
461
|
Granata A, Harshfield EL, Moxon JV. Cerebrovascular Disorders. BMC Cardiovasc Disord 2023; 23:212. [PMID: 37118671 PMCID: PMC10148443 DOI: 10.1186/s12872-023-03225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023] Open
Abstract
Cerebrovascular disorders pose a global health concern. Advances in basic and clinical research, including induced pluripotent stem cell models and multi-omic approaches, have improved our understanding and management of these disorders. However, gaps in our knowledge remain. BMC Cardiovascular Disorders invites authors to submit articles investigating what drives and affects Cerebrovascular disorders to improve patient care.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Eric L Harshfield
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Joseph V Moxon
- College of Medicine and Dentistry, James Cook University, Townsville, Australia.
| |
Collapse
|
462
|
Cortez Cardoso Penha R, Smith-Byrne K, Atkins JR, Haycock PC, Kar S, Codd V, Samani NJ, Nelson C, Milojevic M, Gabriel AAG, Amos C, Brennan P, Hung RJ, Kachuri L, Mckay JD. Common genetic variations in telomere length genes and lung cancer: a Mendelian randomisation study and its novel application in lung tumour transcriptome. eLife 2023; 12:e83118. [PMID: 37079368 PMCID: PMC10118386 DOI: 10.7554/elife.83118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours. Methods We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343). Results Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity. Conclusions This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas. Funding Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09).
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, University of OxfordOxfordUnited Kingdom
| | - Joshua R Atkins
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Christopher Nelson
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Maja Milojevic
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Aurélie AG Gabriel
- Ludwig Lausanne Branch, Faculty of Biology and MedicineLausanneSwitzerland
| | - Christopher Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonUnited States
| | - Paul Brennan
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | - Linda Kachuri
- Departament of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - James D Mckay
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| |
Collapse
|
463
|
Barry CJ, Carslake D, Wade KH, Sanderson E, Davey Smith G. Comparison of intergenerational instrumental variable analyses of body mass index and mortality in UK Biobank. Int J Epidemiol 2023; 52:545-561. [PMID: 35947758 PMCID: PMC10114047 DOI: 10.1093/ije/dyac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND An increasing proportion of people have a body mass index (BMI) classified as overweight or obese and published studies disagree whether this will be beneficial or detrimental to health. We applied and evaluated two intergenerational instrumental variable methods to estimate the average causal effect of BMI on mortality in a cohort with many deaths: the parents of UK Biobank participants. METHODS In Cox regression models, parental BMI was instrumented by offspring BMI using an 'offspring as instrument' (OAI) estimation and by offspring BMI-related genetic variants in a 'proxy-genotype Mendelian randomization' (PGMR) estimation. RESULTS Complete-case analyses were performed in parents of 233 361 UK Biobank participants with full phenotypic, genotypic and covariate data. The PGMR method suggested that higher BMI increased mortality with hazard ratios per kg/m2 of 1.02 (95% CI: 1.01, 1.04) for mothers and 1.04 (95% CI: 1.02, 1.05) for fathers. The OAI method gave considerably higher estimates, which varied according to the parent-offspring pairing between 1.08 (95% CI: 1.06, 1.10; mother-son) and 1.23 (95% CI: 1.16, 1.29; father-daughter). CONCLUSION Both methods supported a causal role of higher BMI increasing mortality, although caution is required regarding the immediate causal interpretation of these exact values. Evidence of instrument invalidity from measured covariates was limited for the OAI method and minimal for the PGMR method. The methods are complementary for interrogating the average putative causal effects because the biases are expected to differ between them.
Collapse
Affiliation(s)
- Ciarrah-Jane Barry
- Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - David Carslake
- Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Kaitlin H Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Eleanor Sanderson
- Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
464
|
Sallis HM, Palmer T, Tilling K, Davey Smith G, Munafò MR. Using allele scores to identify confounding by reverse causation: studies of alcohol consumption as an exemplar. Int J Epidemiol 2023; 52:536-544. [PMID: 35980022 PMCID: PMC10114122 DOI: 10.1093/ije/dyac165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mendelian randomization (MR) is a form of instrumental variable analysis used to investigate causality using observational data. Another important, although less frequently applied, use of this technique is to investigate confounding due to reverse causality. METHODS We used a form of reverse MR and data from UK Biobank in a proof-of-principle study to investigate confounding due to reverse causation. Here we focus on the association between alcohol consumption (exposure) and outcomes including educational attainment, and physical and mental health. First, we examined the observational relationship between alcohol consumption and these outcomes. Allele scores were then derived for educational attainment, and physical and mental health, and the association with alcohol consumption (as the outcome) was explored. Sample sizes ranged from 114 941-336 473 in observational analyses and 142 093-336 818 in genetic analyses. RESULTS Conventional observational analyses indicated associations between alcohol consumption and a number of outcomes (e.g. neuroticism, body mass index, educational attainment). Analyses using allele scores suggested evidence of reverse causation for several of these relationships (in particular physical health and educational attainment). CONCLUSION Allele scores allow us to investigate reverse causation in observational studies. Our findings suggest that observed associations implying beneficial effects of alcohol consumption may be due to confounding by reverse causation in many cases.
Collapse
Affiliation(s)
- Hannah M Sallis
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Tom Palmer
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| |
Collapse
|
465
|
Gormley M, Dudding T, Thomas SJ, Tyrrell J, Ness AR, Pring M, Legge D, Davey Smith G, Richmond RC, Vincent EE, Bull C. Evaluating the effect of metabolic traits on oral and oropharyngeal cancer risk using Mendelian randomization. eLife 2023; 12:e82674. [PMID: 37042641 PMCID: PMC10147379 DOI: 10.7554/elife.82674] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
A recent World Health Organization report states that at least 40% of all cancer cases may be preventable, with smoking, alcohol consumption, and obesity identified as three of the most important modifiable lifestyle factors. Given the significant decline in smoking rates, particularly within developed countries, other potentially modifiable risk factors for head and neck cancer warrant investigation. Obesity and related metabolic disorders such as type 2 diabetes (T2D) and hypertension have been associated with head and neck cancer risk in multiple observational studies. However, adiposity has also been correlated with smoking, with bias, confounding or reverse causality possibly explaining these findings. To overcome the challenges of observational studies, we conducted two-sample Mendelian randomization (inverse variance weighted [IVW] method) using genetic variants which were robustly associated with adiposity, glycaemic and blood pressure traits in genome-wide association studies (GWAS). Outcome data were taken from the largest available GWAS of 6034 oral and oropharyngeal cases, with 6585 controls. We found limited evidence of a causal effect of genetically proxied body mass index (BMI; OR IVW = 0.89, 95% CI 0.72-1.09, p = 0.26 per 1 standard deviation in BMI [4.81kg/m2]) on oral and oropharyngeal cancer risk. Similarly, there was limited evidence for related traits including T2D and hypertension. Small effects cannot be excluded given the lack of power to detect them in currently available GWAS.
Collapse
Affiliation(s)
- Mark Gormley
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Bristol Dental Hospital and School, University of BristolBristolUnited Kingdom
| | - Tom Dudding
- Bristol Dental Hospital and School, University of BristolBristolUnited Kingdom
| | - Steven J Thomas
- Bristol Dental Hospital and School, University of BristolBristolUnited Kingdom
| | - Jessica Tyrrell
- University of Exeter Medical School, RILD Building, RD&E HospitalExeterUnited Kingdom
| | - Andrew R Ness
- University Hospitals Bristol and Weston NHS Foundation Trust National Institute for Health Research Bristol Biomedical Research Centre, University of BristolBristolUnited Kingdom
| | - Miranda Pring
- Bristol Dental Hospital and School, University of BristolBristolUnited Kingdom
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Caroline Bull
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| |
Collapse
|
466
|
Hamilton F, Mentzer AJ, Parks T, Baillie JK, Smith GD, Ghazal P, Timpson NJ. Variation in ERAP2 has opposing effects on severe respiratory infection and autoimmune disease. Am J Hum Genet 2023; 110:691-702. [PMID: 36889308 PMCID: PMC10119032 DOI: 10.1016/j.ajhg.2023.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
ERAP2 is an aminopeptidase involved in immunological antigen presentation. Genotype data in human samples from before and after the Black Death, an epidemic due to Yersinia pestis, have marked changes in allele frequency of the single-nucleotide polymorphism (SNP) rs2549794, with the T allele suggested to be deleterious during this period, while ERAP2 is also implicated in autoimmune diseases. This study explored the association between variation at ERAP2 and (1) infection, (2) autoimmune disease, and (3) parental longevity. Genome-wide association studies (GWASs) of these outcomes were identified in contemporary cohorts (UK Biobank, FinnGen, and GenOMICC). Effect estimates were extracted for rs2549794 and rs2248374, a haplotype tagging SNP. Additionally, cis expression and protein quantitative trait loci (QTLs) for ERAP2 were used in Mendelian randomization (MR) analyses. Consistent with decreased survival in the Black Death, the T allele of rs2549794 showed evidence of association with respiratory infection (odds ratio; OR for pneumonia 1.03; 95% CI 1.01-1.05). Effect estimates were larger for more severe phenotypes (OR for critical care admission with pneumonia 1.08; 95% CI 1.02-1.14). In contrast, opposing effects were identified for Crohn disease (OR 0.86; 95% CI 0.82-0.90). This allele was shown to associate with decreased ERAP2 expression and protein levels, independent of haplotype. MR analyses suggest that ERAP2 expression may be mediating disease associations. Decreased ERAP2 expression is associated with severe respiratory infection with an opposing association with autoimmune diseases. These data support the hypothesis of balancing selection at this locus driven by autoimmune and infectious disease.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Infection Science, North Bristol NHS Trust, Bristol, UK.
| | | | - Tom Parks
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, UK; Department of Infectious Disease, Imperial College London, London, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK; Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
467
|
Jain P, Yates M, de Celis CR, Drineas P, Jahanshad N, Thompson P, Paschou P. Multiomic approach and Mendelian randomization analysis identify causal associations between blood biomarkers and subcortical brain structure volumes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287968. [PMID: 37066330 PMCID: PMC10104218 DOI: 10.1101/2023.03.30.23287968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2,994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes. We found causal associations between amygdala volume and granzyme A as well as association between accumbens volume and plasma protease c1 inhibitor. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.
Collapse
Affiliation(s)
- Pritesh Jain
- Department of Biological Sciences, Purdue University
| | - Madison Yates
- Department of Biological Sciences, Purdue University
| | | | | | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of South California
| | - Paul Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of South California
| | | |
Collapse
|
468
|
Mallard TT, Grotzinger AD, Smoller JW. Examining the shared etiology of psychopathology with genome-wide association studies. Physiol Rev 2023; 103:1645-1665. [PMID: 36634217 PMCID: PMC9988537 DOI: 10.1152/physrev.00016.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWASs) have ushered in a new era of reproducible discovery in psychiatric genetics. The field has now identified hundreds of common genetic variants that are associated with mental disorders, and many of them influence more than one disorder. By advancing the understanding of causal biology underlying psychopathology, GWAS results are poised to inform the development of novel therapeutics, stratification of at-risk patients, and perhaps even the revision of top-down classification systems in psychiatry. Here, we provide a concise review of GWAS findings with an emphasis on findings that have elucidated the shared genetic etiology of psychopathology, summarizing insights at three levels of analysis: 1) genome-wide architecture; 2) networks, pathways, and gene sets; and 3) individual variants/genes. Three themes emerge from these efforts. First, all psychiatric phenotypes are heritable, highly polygenic, and influenced by many pleiotropic variants with incomplete penetrance. Second, GWAS results highlight the broad etiological roles of neuronal biology, system-wide effects over localized effects, and early neurodevelopment as a critical period. Third, many loci that are robustly associated with multiple forms of psychopathology harbor genes that are involved in synaptic structure and function. Finally, we conclude our review by discussing the implications that GWAS results hold for the field of psychiatry, as well as expected challenges and future directions in the next stage of psychiatric genetics.
Collapse
Affiliation(s)
- Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, United States
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, United States
| |
Collapse
|
469
|
Foley ÉM, Khandaker GM. Cytokines in psychosis: from mechanism towards treatment and prediction. Lancet Psychiatry 2023; 10:237-239. [PMID: 36863382 DOI: 10.1016/s2215-0366(23)00056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Éimear M Foley
- Medical Research Council Integrative Epidemiology Unit and Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Golam M Khandaker
- Medical Research Council Integrative Epidemiology Unit and Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; National Institute for Health and Care Research, Bristol Biomedical Research Centre, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK.
| |
Collapse
|
470
|
Hamilton F, Mitchell RE, Constantinescu A, Hughes D, Cunnington A, Ghazal P, Timpson NJ. The effect of interleukin-6 signaling on severe malaria: A Mendelian randomization analysis. Int J Infect Dis 2023; 129:251-259. [PMID: 36801374 PMCID: PMC10728776 DOI: 10.1016/j.ijid.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVES Severe malaria remains a deadly disease for many young children in low- and middle-income countries. Levels of interleukin (IL)-6 have been shown to identify cases of severe malaria and associate with severity, but it is unknown if this association is causal. METHODS A single nucleotide polymorphism (SNP; rs2228145) in the IL-6 receptor was chosen as a genetic variant that is known to alter IL-6 signaling. We tested this, then took this forward as an instrument to perform Mendelian randomization (MR) in MalariaGEN, a large cohort study of patients with severe malaria at 11 worldwide sites. RESULTS In MR analyses using rs2228145, we did not identify an effect of decreased IL-6 signaling on severe malaria (odds ratio 1.14, 95% confidence interval 0.56-2.34, P = 0.713). The estimates of the association with any severe malaria subphenotype were similarly null, although with some imprecision. Further analyses using other MR approaches had similar results. CONCLUSION These analyses do not support a causal role for IL-6 signaling in the development of severe malaria. This result suggests IL-6 may not be causal for severe outcomes in malaria, and that therapeutic manipulation of IL-6 is unlikely to be a suitable treatment for severe malaria.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Infection Sciences, North Bristol NHS Trust, Bristol, UK.
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - David Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | | |
Collapse
|
471
|
Guo X, Tang P, Zhang L, Li R. Tobacco and alcohol consumption and the risk of frailty and falling: a Mendelian randomisation study. J Epidemiol Community Health 2023; 77:349-354. [PMID: 37001985 DOI: 10.1136/jech-2022-219855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
BackgroundEpidemiological data have suggested that tobacco and alcohol consumption were associated with the risk of frailty and falling, but it is yet unclear whether these associations are of a causal nature. Thus, we conducted two-sample Mendelian randomisation analysis using genetic instruments to determine the causal associations of tobacco and alcohol consumption on frailty and falls.MethodsIndependent instrumental variables strongly (p<5E–09) associated with tobacco and alcohol consumption were obtained from the genome-wide association study (GWAS) and Sequencing Consortium of Alcohol and Nicotine use (up to 2 669 029 participants). Summary statistics of the frailty index (FI, N=175 226) and falling risk (N=451 179) were from the two latest published GWAS datasets on FI and falling risk.ResultsUsing the inverse-variance weighted method, our results showed that genetically determined initiation of smoking was significantly associated with an increased FI (β=0.34, 95% CI=0.29 to 0.40, p=5.48E–33) and risk of falling (OR=1.39, 95% CI=1.30 to 1.50, p=1.01E–20). In addition, the age of initiation of smoking and cigarettes consumption per day was negatively and positively associated with both FI and falls, respectively. Current smokers were prone to having a higher FI and falling risk than individuals who quit smoking. There was no significant causal association between alcohol use and the risk of frailty and falling. Similar results were obtained using other statistical approaches with good stability.ConclusionsOur findings demonstrate that tobacco use, but not alcohol drinking, significantly increases the risk of frailty and falling. Future studies are warranted to clarify the underlying physiopathological mechanisms.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, China
| | - Lina Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
472
|
Zhou W, Cai J, Li Z, Lin Y. Association of atopic dermatitis with autoimmune diseases: A bidirectional and multivariable two-sample mendelian randomization study. Front Immunol 2023; 14:1132719. [PMID: 37063839 PMCID: PMC10098361 DOI: 10.3389/fimmu.2023.1132719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Background Observational studies have suggested the association between atopic dermatitis (AD) and the risks of autoimmune diseases. It is still unclear, however, whether or in which direction causal relationships exist, because these associations could be confounded. Objectives Our study seeks to assess the possibility of AD as a cause of autoimmune diseases, and to estimate the magnitude of the causal effect. Methods Two-sample mendelian randomization (MR) analyses were performed using genome-wide association study (GWAS) summary-level statistics. Specifically, bidirectional MR analyses were conducted to examine the direction of association of AD with autoimmune diseases; multivariable MR analyses (MVMR1) were used to test the independence of causal association of AD with autoimmune diseases after controlling other atopic disorders (asthma and allergic rhinitis), while MVMR2 analyses were conducted to account for potential confounding factors such as smoking, drinking, and obesity. Genetic instruments for AD (Ncases=22 474) were from the latest GWAS meta-analysis. The GWAS summary data for asthma and allergic rhinitis were obtained from UK Biobank. The GWAS summary data for smoking, alcohol consumption, obesity and autoimmune diseases (alopecia areata, vitiligo, systemic lupus erythematosus, ankylosing spondylitis, rheumatoid arthritis, and type 1 diabetes) were selected from the largest GWASs available. Causal estimates were derived by the inverse-variance weighted method and verified through a series of sensitivity analyses. Results Genetically predicted AD linked to higher risks of rheumatoid arthritis (OR, 1.28; P=0.0068) (ORMVMR1, 1.65; P=0.0020) (ORMVMR2, 1.36; P<0.001), type 1 diabetes (OR, 1.37; P=0.0084) (ORMVMR1, 1.42; P=0.0155) (ORMVMR2, 1.45; P=0.002), and alopecia areata (OR, 1.98; P=0.0059) (ORMVMR1, 2.55; P<0.001) (ORMVMR2, 1.99; P=0.003) in both univariable and multivariable MR. These causal relationships were supported by sensitivity analyses. No causal effect of AD was identified in relation to systemic lupus erythematosus, vitiligo, and ankylosing spondylitis. Concerning the reverse directions, no significant association was noted. Conclusion The results of this MR study provide evidence to support the idea that AD causes a greater risk of rheumatoid arthritis, type 1 diabetes and alopecia areata. Further replication in larger samples is needed to validate our findings, and experimental studies are needed to explore the underlying mechanisms of these causal effects.
Collapse
Affiliation(s)
- Weixin Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifan Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
473
|
Baumeister SE, Reckelkamm SL, Grabe HJ, Nauck M, Klinger-König J, Völzke H, Kocher T, Friedrich N, Holtfreter B. Cortisol and periodontitis: Prospective observational and Mendelian randomization studies. Front Endocrinol (Lausanne) 2023; 14:1100985. [PMID: 37008927 PMCID: PMC10050732 DOI: 10.3389/fendo.2023.1100985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose Cortisol has obesogenic, hyperglycemic and immunomodulating effects. Preclinical and observational research suggested that it is associated with periodontitis but the evidence for potential causality in humans is sparse. We triangulated results from prospective observational and Mendelian randomization (MR) analyses to further explore this. Methods Using pooled data from 3,388 participants of two population cohort studies embedded in the Study of Health in Pomerania (SHIP) project, we associated serum cortisol levels with periodontal outcomes measured after a median follow-up time of 6.9 years, adjusting for confounding and selection bias using propensity score weighting and multiple imputation. We further examined the effect of genetically proxied plasma morning cortisol levels on periodontitis using two-sample MR of 17,353 cases and 28,210 controls. Results In SHIP, we found that cortisol levels were positively associated with follow-up levels of mean clinical attachment level (CAL), deep interdental CAL and bleeding on probing but were unrelated to mean probing pocket depth and deep periodontal pockets. In MR analysis, cortisol was not associated with periodontitis. Conclusion The observational study revealed a prospective association of spot cortisol with makers of periodontitis. Contrary to observational studies, genetically instrumented, long-term cortisol was unrelated to periodontitis. Our results find no univocal evidence that cortisol plays a role in periodontitis pathology, casting doubt on cortisol-related pathways.
Collapse
Affiliation(s)
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
474
|
Woolf B, Sallis HM, Munafò MR. Exploring the Lifetime Effect of Children on Wellbeing Using Two-Sample Mendelian Randomisation. Genes (Basel) 2023; 14:716. [PMID: 36980988 PMCID: PMC10048211 DOI: 10.3390/genes14030716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Observational research implies a negative effect of having children on wellbeing. OBJECTIVES To provide Mendelian randomisation evidence of the effect of having children on parental wellbeing. DESIGN Two-sample Mendelian randomisation. SETTING Non-clinical European ancestry participants. PARTICIPANTS We used the UK Biobank (460,654 male and female European ancestry participants) as a source of genotype-exposure associations, the Social Science Genetics Consortia (SSGAC) (298,420 male and female European ancestry participants), and the Within-Family Consortia (effective sample of 22,656 male and female European ancestry participants) as sources of genotype-outcome associations. INTERVENTIONS The lifetime effect of an increase in the genetic liability to having children. PRIMARY AND SECONDARY OUTCOME MEASURES The primary analysis was an inverse variance weighed analysis of subjective wellbeing measured in the 2016 SSGAC Genome Wide Association Study (GWAS). Secondary outcomes included pleiotropy robust estimators applied in the SSGAC and an analysis using the Within-Family consortia GWAS. RESULTS We did not find strong evidence of a negative (standard deviation) change in wellbeing (β = 0.153 (95% CI: -0.210 to 0.516) per child parented. Secondary outcomes were generally slightly deflated (e.g., -0.049 [95% CI: -0.533 to 0.435] for the Within-Family Consortia and 0.090 [95% CI: -0.167 to 0.347] for weighted median), implying the presence of some residual confounding and pleiotropy. CONCLUSIONS Contrary to the existing literature, our results are not compatible with a measurable negative effect of number of children on the average wellbeing of a parent over their life course. However, we were unable to explore non-linearities, interactions, or time-varying effects.
Collapse
Affiliation(s)
- Benjamin Woolf
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 1TN, UK
| | - Hannah M. Sallis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Marcus R. Munafò
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
475
|
Man S, Chen B, Zhang Y, Xu H, Liu Y, Gao Y, Chen Y, Chen Q, Zhang M. The Associations Between Cataracts and Alzheimer's Disease: A Bidirectional Two-Sample Mendelian Randomization Study. J Alzheimers Dis 2023; 92:1451-1458. [PMID: 36911941 DOI: 10.3233/jad-221137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND The relationship between cataracts and Alzheimer's disease (AD) has been reported in recent observational studies. However, it is still unclear whether a causal effect of cataracts on AD or reverse causation exists. OBJECTIVE To explore the association between cataracts and AD genetically, we performed a bidirectional two-sample Mendelian randomization study. METHODS We obtained genetic instrumental variables related to cataracts and AD from recently published genome-wide association studies (GWASs). SNP-outcome associations for AD were obtained from a GWAS with 111,326 cases and 677,663 controls. SNP-outcome associations for cataracts were drawn from two sources: a GWAS with 67,844 cases and 517,399 controls and the FinnGen consortium (42,843 cases and 262,698 controls). Inverse variance weighted (IVW) was used as the primary method for Mendelian randomization (MR) analyses. RESULTS No genetic evidence suggested that cataracts were associated with the risk of AD (IVW odds ratio =1.04, 95% confidence interval: 0.98-1.10, p=0.199). In contrast, an effect of genetically determined AD on a decreased risk of cataract was observed with suggestive evidence (IVW odds ratio =0.96, 95% confidence interval: 0.93-0.99, p=0.004). However, this result might be distorted by survival bias. CONCLUSION Genetically determined cataracts were not related to AD, as demonstrated by our study. In contrast, there was suggestive evidence that AD might prevent cataract development, but there might be potential survival bias. To define the exact association between the two diseases, more prospective research and studies on the pathogenesis are needed.
Collapse
Affiliation(s)
- Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
476
|
Abstract
Expanding a statistical approach called Mendelian randomization to include multiple variables may help researchers to identify new molecular causes of specific traits.
Collapse
Affiliation(s)
- Matthias Weith
- Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, and the Institute for Biochemistry, University of CologneCologneGermany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, the Faculty of Medicine and University Hospital of Cologne, the Center for Molecular Medicine Cologne, and the Institute for Genetics, University of CologneCologneGermany
| |
Collapse
|
477
|
Ejima K, Liu N, Mestre LM, de los Campos G, Allison DB. Conditioning on parental mating types can reduce necessary assumptions for Mendelian randomization. Front Genet 2023; 14:1014014. [PMID: 36950138 PMCID: PMC10025466 DOI: 10.3389/fgene.2023.1014014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Mendelian randomization (MR) has become a common tool used in epidemiological studies. However, when confounding variables are correlated with the instrumental variable (in this case, a genetic/variant/marker), the estimation can remain biased even with MR. We propose conditioning on parental mating types (a function of parental genotypes) in MR to eliminate the need for one set of assumptions, thereby plausibly reducing such bias. We illustrate a situation in which the instrumental variable and confounding variables are correlated using two unlinked diallelic genetic loci: one, an instrumental variable and the other, a confounding variable. Assortative mating or population admixture can create an association between the two unlinked loci, which can violate one of the necessary assumptions for MR. We simulated datasets involving assortative mating and population admixture and analyzed them using three different methods: 1) conventional MR, 2) MR conditioning on parental genotypes, and 3) MR conditioning on parental mating types. We demonstrated that conventional MR leads to type I error rate inflation and biased estimates for cases with assortative mating or population admixtures. In the presence of non-additive effects, MR with an adjustment for parental genotypes only partially reduced the type I error rate inflation and bias. In contrast, conditioning on parental mating types in MR eliminated the type I error inflation and bias under these circumstances. Conditioning on parental mating types is a useful strategy to reduce the burden of assumptions and the potential bias in MR when the correlation between the instrument variable and confounders is due to assortative mating or population stratification but not linkage.
Collapse
Affiliation(s)
- Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Luis Miguel Mestre
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| |
Collapse
|
478
|
Deng Z, Wang H, Huang K, Li Y, Ran Y, Chen Y, Zhou L. Association between vascular risk factors and idiopathic normal pressure hydrocephalus: a Mendelian randomization study. J Neurol 2023; 270:2724-2733. [PMID: 36773060 DOI: 10.1007/s00415-023-11604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH. METHODS We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum likelihood, and MR Egger regression methods for sensitivity analyses. RESULTS We found that genetically predicting essential hypertension (OR = 1.608 (1.330-1.944), p = 0.013) and increased sleep duration (OR = 16.395 (5.624-47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes (OR = 0.869 (0.828-0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evidence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 diabetes were significantly associated with iNPH. CONCLUSION In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.
Collapse
Affiliation(s)
- Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Ran
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
479
|
Alayash Z, Baumeister SE, Holtfreter B, Kocher T, Baurecht H, Ehmke B, Reckelkamm SL, Nolde M. Inhibition of tumor necrosis factor receptor 1 and the risk of periodontitis. Front Immunol 2023; 14:1094175. [PMID: 36845132 PMCID: PMC9949605 DOI: 10.3389/fimmu.2023.1094175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Aim To investigate the effect of genetically proxied inhibition of tumor necrosis factor receptor 1 (TNFR1) on the risk of periodontitis. Materials and methods Genetic instruments were selected from the vicinity of TNFR superfamily member 1A (TNFRSF1A) gene (chromosome 12; base pairs 6,437,923-6,451,280 as per GRCh37 assembly) based on their association with C-reactive protein (N= 575,531). Summary statistics of these variants were obtained from a genome-wide association study (GWAS) of 17,353 periodontitis cases and 28,210 controls to estimate the effect of TNFR1 inhibition on periodontitis using a fixed-effects inverse method. Results Considering rs1800693 as an instrument, we found no effect of TNFR1 inhibition on periodontitis risk (Odds ratio (OR) scaled per standard deviation increment in CRP: 1.57, 95% confidence interval (CI): 0.38;6.46). Similar results were derived from a secondary analysis that used three variants (rs767455, rs4149570, and rs4149577) to index TNFR1 inhibition. Conclusions We found no evidence of a potential efficacy of TNFR1 inhibition on periodontitis risk.
Collapse
Affiliation(s)
- Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | | | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
480
|
Spiga F, Gibson M, Dawson S, Tilling K, Davey Smith G, Munafò MR, Higgins JPT. Tools for assessing quality and risk of bias in Mendelian randomization studies: a systematic review. Int J Epidemiol 2023; 52:227-249. [PMID: 35900265 PMCID: PMC9908059 DOI: 10.1093/ije/dyac149] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The use of Mendelian randomization (MR) in epidemiology has increased considerably in recent years, with a subsequent increase in systematic reviews of MR studies. We conducted a systematic review of tools designed for assessing risk of bias and/or quality of evidence in MR studies and a review of systematic reviews of MR studies. METHODS We systematically searched MEDLINE, Embase, the Web of Science, preprints servers and Google Scholar for articles containing tools for assessing, conducting and/or reporting MR studies. We also searched for systematic reviews and protocols of systematic reviews of MR studies. From eligible articles we collected data on tool characteristics and content, as well as details of narrative description of bias assessment. RESULTS Our searches retrieved 2464 records to screen, from which 14 tools, 35 systematic reviews and 38 protocols were included in our review. Seven tools were designed for assessing risk of bias/quality of evidence in MR studies and evaluation of their content revealed that all seven tools addressed the three core assumptions of instrumental variable analysis, violation of which can potentially introduce bias in MR analysis estimates. CONCLUSION We present an overview of tools and methods to assess risk of bias/quality of evidence in MR analysis. Issues commonly addressed relate to the three standard assumptions of instrumental variables analyses, the choice of genetic instrument(s) and features of the population(s) from which the data are collected (particularly in two-sample MR), in addition to more traditional non-MR-specific epidemiological biases. The identified tools should be tested and validated for general use before recommendations can be made on their widespread use. Our findings should raise awareness about the importance of bias related to MR analysis and provide information that is useful for assessment of MR studies in the context of systematic reviews.
Collapse
Affiliation(s)
- Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Mark Gibson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
481
|
Huang J, Su B, Karhunen V, Gill D, Zuber V, Ahola-Olli A, Palaniswamy S, Auvinen J, Herzig KH, Keinänen-Kiukaanniemi S, Salmi M, Jalkanen S, Lehtimäki T, Salomaa V, Raitakari OT, Matthews PM, Elliott P, Tsilidis KK, Jarvelin MR, Tzoulaki I, Dehghan A. Inflammatory Diseases, Inflammatory Biomarkers, and Alzheimer Disease: An Observational Analysis and Mendelian Randomization. Neurology 2023; 100:e568-e581. [PMID: 36384659 PMCID: PMC9946179 DOI: 10.1212/wnl.0000000000201489] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Whether chronic autoimmune inflammatory diseases causally affect the risk of Alzheimer disease (AD) is controversial. We characterized the relationship between inflammatory diseases and risk of AD and explored the role of circulating inflammatory biomarkers in the relationships between inflammatory diseases and AD. METHODS We performed observational analyses for chronic autoimmune inflammatory diseases and risk of AD using data from 2,047,513 participants identified in the UK Clinical Practice Research Datalink (CPRD). Using data of a total of more than 1,100,000 individuals from 15 large-scale genome-wide association study data sets, we performed 2-sample Mendelian randomizations (MRs) to investigate the relationships between chronic autoimmune inflammatory diseases, circulating inflammatory biomarker levels, and risk of AD. RESULTS Cox regression models using CPRD data showed that the overall incidence of AD was higher among patients with inflammatory bowel disease (hazard ratio [HR] 1.17; 95% CI 1.15-1.19; p = 2.1 × 10-4), other inflammatory polyarthropathies and systematic connective tissue disorders (HR 1.13; 95% CI 1.12-1.14; p = 8.6 × 10-5), psoriasis (HR 1.13; 95% CI 1.10-1.16; p = 2.6 × 10-4), rheumatoid arthritis (HR 1.08; 95% CI 1.06-1.11; p = 4.0 × 10-4), and multiple sclerosis (HR 1.06; 95% CI 1.04-1.07; p = 2.8 × 10-4) compared with the age (±5 years) and sex-matched comparison groups free from all inflammatory diseases under investigation. Bidirectional MR analysis identified relationships between chronic autoimmune inflammatory diseases and circulating inflammatory biomarkers. Particularly, circulating monokine induced by gamma interferon (MIG) level was suggestively associated with a higher risk of AD (odds ratio from inverse variance weighted [ORIVW] 1.23; 95% CI 1.06-1.42; p IVW = 0.007) and lower risk of Crohn disease (ORIVW 0.73; 95% CI -0.62 to 0.86; p IVW = 1.3 × 10-4). Colocalization supported a common causal single nucleotide polymorphism for MIG and Crohn disease (posterior probability = 0.74), but not AD (posterior probability = 0.03). Using a 2-sample MR approach, genetically predicted risks of inflammatory diseases were not associated with higher AD risk. DISCUSSION Our data suggest that the association between inflammatory diseases and risk of AD is unlikely to be causal and may be a result of confounding. In support, although inflammatory biomarkers showed evidence for causal associations with inflammatory diseases, evidence was weak that they affected both inflammatory disease and AD.
Collapse
Affiliation(s)
- Jian Huang
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Bowen Su
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Ville Karhunen
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Dipender Gill
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Verena Zuber
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Ari Ahola-Olli
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Saranya Palaniswamy
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Juha Auvinen
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Karl-Heinz Herzig
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Sirkka Keinänen-Kiukaanniemi
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Marko Salmi
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Sirpa Jalkanen
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Terho Lehtimäki
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Veikko Salomaa
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Olli T Raitakari
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Paul M Matthews
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Paul Elliott
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Konstantinos K Tsilidis
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Marjo-Riitta Jarvelin
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Ioanna Tzoulaki
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom
| | - Abbas Dehghan
- From the Department of Epidemiology and Biostatistics (J.H., B.S., V.K., D.G., V.Z., S.P., P.E., K.K.T., M.-r.J., A.D.), School of Public Health, Imperial College London, United Kingdom; Singapore Institute for Clinical Sciences (SICS) (J.H.), Agency for Science, Technology and Research (A*STAR); Center for Life Course Health Research (V.K., S.P., J.A., S.K.-K., M.-r.J.), Faculty of Medicine, Research Unit of Mathematical Sciences (V.K.), University of Oulu, Finland; The Stanley Center for Psychiatric Research (A.A.-O.), Broad Institute of MIT and Harvard, Cambridge, MA; Analytical and Translational Genetics Unit (A.A.-O.), Massachusetts General Hospital, Boston; Institute for Molecular Medicine Finland (A.A.-O.), University of Helsinki; Research Unit of Biomedicine (K.-H.H.), Medical Research Center (MRC), University of Oulu, University Hospital, Finland; Department of Gastroenterology and Metabolism (K.-H.H.), Poznan University of Medical Sciences, Poland; Unit of Primary Care (S.K.-K., M.-r.J.), Oulu University Hospital; Healthcare and Social Services of Selänne (S.K.-K., I.T.), Pyhäjärvi, Finland and City of Oulu; MediCity and Institute of Biomedicine (M.S., S.J.), University of Turku; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University; Finnish Institute for Health and Welfare (V.S.), Helsinki; Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R.), University of Turku; Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital; Centre for Population Health Research (O.T.R.), University of Turku and Turku University Hospital, Finland; Department of Brain Sciences (P.M.M.), Faculty of Medicine, Imperial College London; UK Dementia Research Institute at Imperial College London (P.M.M., P.E.); MRC Centre for Environment and Health (P.E., M.-r.J.), School of Public Health, Imperial College London, United Kingdom; Department of Hygiene and Epidemiology (K.K.T.), University of Ioannina Medical School, Greece; Biocenter Oulu (M.-r.J.), University of Oulu, Finland; and Department of Life Sciences (M.-r.J.), College of Health and Life Sciences, Brunel University London, United Kingdom.
| |
Collapse
|
482
|
Au Yeung SL, Luo S, Kwok KO. Actionable targets to reduce COVID-19 severity. Nat Metab 2023; 5:195-196. [PMID: 36805565 DOI: 10.1038/s42255-023-00743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Shiu Lun Au Yeung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Shan Luo
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin On Kwok
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Asia-Pacific Studies, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
483
|
Taylor K, Wootton RE, Yang Q, Oddie S, Wright J, Yang TC, Magnus M, Andreassen OA, Borges MC, Caputo M, Lawlor DA. The effect of maternal BMI, smoking and alcohol on congenital heart diseases: a Mendelian randomisation study. BMC Med 2023; 21:35. [PMID: 36721200 PMCID: PMC9890815 DOI: 10.1186/s12916-023-02731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Congenital heart diseases (CHDs) remain a significant cause of infant morbidity and mortality. Epidemiological studies have explored maternal risk factors for offspring CHDs, but few have used genetic epidemiology methods to improve causal inference. METHODS Three birth cohorts, including 65,510 mother/offspring pairs (N = 562 CHD cases) were included. We used Mendelian randomisation (MR) analyses to explore the effects of genetically predicted maternal body mass index (BMI), smoking and alcohol on offspring CHDs. We generated genetic risk scores (GRS) using summary data from large-scale genome-wide association studies (GWAS) and validated the strength and relevance of the genetic instrument for exposure levels during pregnancy. Logistic regression was used to estimate the odds ratio (OR) of CHD per 1 standard deviation (SD) higher GRS. Results for the three cohorts were combined using random-effects meta-analyses. We performed several sensitivity analyses including multivariable MR to check the robustness of our findings. RESULTS The GRSs associated with the exposures during pregnancy in all three cohorts. The associations of the GRS for maternal BMI with offspring CHD (pooled OR (95% confidence interval) per 1SD higher GRS: 0.95 (0.88, 1.03)), lifetime smoking (pooled OR: 1.01 (0.93, 1.09)) and alcoholic drinks per week (pooled OR: 1.06 (0.98, 1.15)) were close to the null. Sensitivity analyses yielded similar results. CONCLUSIONS Our results do not provide robust evidence of an effect of maternal BMI, smoking or alcohol on offspring CHDs. However, results were imprecise. Our findings need to be replicated, and highlight the need for more and larger studies with maternal and offspring genotype and offspring CHD data.
Collapse
Affiliation(s)
- Kurt Taylor
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.
| | - Robyn E Wootton
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Qian Yang
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Sam Oddie
- University of York, Heslington, York, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maria Magnus
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, Oslo University Hospital and Institute of Clinical Medicine, Oslo, Norway
| | - Maria Carolina Borges
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Massimo Caputo
- Bristol Medical School, Translational Science, Bristol, UK
| | - Deborah A Lawlor
- Bristol Medical School, Population Health Science, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Bristol Medical School, Translational Science, Bristol, UK
| |
Collapse
|
484
|
Schooling CM, Zhao JV. Insights into Causal Cardiovascular Risk Factors from Mendelian Randomization. Curr Cardiol Rep 2023; 25:67-76. [PMID: 36640254 DOI: 10.1007/s11886-022-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes major insights into causal risk factors for cardiovascular disease (CVD) by using Mendelian randomization (MR) to obtain unconfounded estimates, contextualized within its strengths and weaknesses. RECENT FINDINGS MR studies have confirmed the role of major CVD risk factors, including alcohol, smoking, adiposity, blood pressure, type 2 diabetes, lipids, and possibly inflammation, but added that the relation with alcohol is likely linear, confirmed the role of diastolic blood pressure, identified apolipoprotein B as the major target lipid, and foreshadowed results of some trials concerning anti-inflammatories. Identifying a healthy diet and the role of early life influences, such as birth weight, has proved more difficult. Use of MR has winnowed empirically driven hypotheses about CVD into a set of genetically validated targets of intervention. Greater inclusion of global diversity in genetic studies and the use of an overarching framework would enable even more informative MR studies.
Collapse
Affiliation(s)
- C M Schooling
- School of Public Health and Health Policy, City University of New York, 55 West 125th St, NY, 10027, New York, USA. .,School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - J V Zhao
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
485
|
Julian TH, Cooper-Knock J, MacGregor S, Guo H, Aslam T, Sanderson E, Black GCM, Sergouniotis PI. Phenome-wide Mendelian randomisation analysis identifies causal factors for age-related macular degeneration. eLife 2023; 12:e82546. [PMID: 36705323 PMCID: PMC9883012 DOI: 10.7554/elife.82546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of blindness in the industrialised world and is projected to affect >280 million people worldwide by 2040. Aiming to identify causal factors and potential therapeutic targets for this common condition, we designed and undertook a phenome-wide Mendelian randomisation (MR) study. Methods We evaluated the effect of 4591 exposure traits on early AMD using univariable MR. Statistically significant results were explored further using: validation in an advanced AMD cohort; MR Bayesian model averaging (MR-BMA); and multivariable MR. Results Overall, 44 traits were found to be putatively causal for early AMD in univariable analysis. Serum proteins that were found to have significant relationships with AMD included S100-A5 (odds ratio [OR] = 1.07, p-value = 6.80E-06), cathepsin F (OR = 1.10, p-value = 7.16E-05), and serine palmitoyltransferase 2 (OR = 0.86, p-value = 1.00E-03). Univariable MR analysis also supported roles for complement and immune cell traits. Although numerous lipid traits were found to be significantly related to AMD, MR-BMA suggested a driving causal role for serum sphingomyelin (marginal inclusion probability [MIP] = 0.76; model-averaged causal estimate [MACE] = 0.29). Conclusions The results of this MR study support several putative causal factors for AMD and highlight avenues for future translational research. Funding This project was funded by the Wellcome Trust (224643/Z/21/Z; 200990/Z/16/Z); the University of Manchester's Wellcome Institutional Strategic Support Fund (Wellcome ISSF) grant (204796/Z/16/Z); the UK National Institute for Health Research (NIHR) Academic Clinical Fellow and Clinical Lecturer Programmes; Retina UK and Fight for Sight (GR586); the Australian National Health and Medical Research Council (NHMRC) (1150144).
Collapse
Affiliation(s)
- Thomas H Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of SheffieldSheffieldUnited Kingdom
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Hui Guo
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Tariq Aslam
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, University of ManchesterManchesterUnited Kingdom
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Graeme CM Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| |
Collapse
|
486
|
Abstract
Aging is associated with increased mutational burden in every tissue studied. Occasionally, fitness-increasing mutations will arise, leading to stem cell clonal expansion. This process occurs in several tissues but has been best studied in blood. Clonal hematopoiesis is associated with an increased risk of blood cancers, such as acute myeloid leukemia, which result if additional cooperating mutations occur. Surprisingly, it is also associated with an increased risk of nonmalignant diseases, such as atherosclerotic cardiovascular disease. This may be due to enhanced inflammation in mutated innate immune cells, which could be targeted clinically with anti-inflammatory drugs. Recent studies have uncovered other factors that predict poor outcomes in patients with clonal hematopoiesis, such as size of the mutant clone, mutated driver genes, and epigenetic aging. Though clonality is inevitable and largely a function of time, recent work has shown that inherited genetic variation can also influence this process. Clonal hematopoiesis provides a paradigm for understanding how age-related changes in tissue stem cell composition and function influence human health.
Collapse
Affiliation(s)
- Herra Ahmad
- Department of Pathology, Stanford University, Stanford, California, USA; .,Department of Cardiology, Charité Universitätsmedizin, Berlin, Germany
| | - Nikolaus Jahn
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, California, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
487
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
488
|
Fang S, Yarmolinsky J, Gill D, Bull CJ, Perks CM, Davey Smith G, Gaunt TR, Richardson TG. Association between genetically proxied PCSK9 inhibition and prostate cancer risk: A Mendelian randomisation study. PLoS Med 2023; 20:e1003988. [PMID: 36595504 PMCID: PMC9810198 DOI: 10.1371/journal.pmed.1003988] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prostate cancer (PrCa) is the second most prevalent malignancy in men worldwide. Observational studies have linked the use of low-density lipoprotein cholesterol (LDL-c) lowering therapies with reduced risk of PrCa, which may potentially be attributable to confounding factors. In this study, we performed a drug target Mendelian randomisation (MR) analysis to evaluate the association of genetically proxied inhibition of LDL-c-lowering drug targets on risk of PrCa. METHODS AND FINDINGS Single-nucleotide polymorphisms (SNPs) associated with LDL-c (P < 5 × 10-8) from the Global Lipids Genetics Consortium genome-wide association study (GWAS) (N = 1,320,016) and located in and around the HMGCR, NPC1L1, and PCSK9 genes were used to proxy the therapeutic inhibition of these targets. Summary-level data regarding the risk of total, advanced, and early-onset PrCa were obtained from the PRACTICAL consortium. Validation analyses were performed using genetic instruments from an LDL-c GWAS conducted on male UK Biobank participants of European ancestry (N = 201,678), as well as instruments selected based on liver-derived gene expression and circulation plasma levels of targets. We also investigated whether putative mediators may play a role in findings for traits previously implicated in PrCa risk (i.e., lipoprotein a (Lp(a)), body mass index (BMI), and testosterone). Applying two-sample MR using the inverse-variance weighted approach provided strong evidence supporting an effect of genetically proxied inhibition of PCSK9 (equivalent to a standard deviation (SD) reduction in LDL-c) on lower risk of total PrCa (odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76 to 0.96, P = 9.15 × 10-3) and early-onset PrCa (OR = 0.70, 95% CI = 0.52 to 0.95, P = 0.023). Genetically proxied HMGCR inhibition provided a similar central effect estimate on PrCa risk, although with a wider 95% CI (OR = 0.83, 95% CI = 0.62 to 1.13, P = 0.244), whereas genetically proxied NPC1L1 inhibition had an effect on higher PrCa risk with a 95% CI that likewise included the null (OR = 1.34, 95% CI = 0.87 to 2.04, P = 0.180). Analyses using male-stratified instruments provided consistent results. Secondary MR analyses supported a genetically proxied effect of liver-specific PCSK9 expression (OR = 0.90 per SD reduction in PCSK9 expression, 95% CI = 0.86 to 0.95, P = 5.50 × 10-5) and circulating plasma levels of PCSK9 (OR = 0.93 per SD reduction in PCSK9 protein levels, 95% CI = 0.87 to 0.997, P = 0.04) on PrCa risk. Colocalization analyses identified strong evidence (posterior probability (PPA) = 81.3%) of a shared genetic variant (rs553741) between liver-derived PCSK9 expression and PrCa risk, whereas weak evidence was found for HMGCR (PPA = 0.33%) and NPC1L1 expression (PPA = 0.38%). Moreover, genetically proxied PCSK9 inhibition was strongly associated with Lp(a) levels (Beta = -0.08, 95% CI = -0.12 to -0.05, P = 1.00 × 10-5), but not BMI or testosterone, indicating a possible role for Lp(a) in the biological mechanism underlying the association between PCSK9 and PrCa. Notably, we emphasise that our estimates are based on a lifelong exposure that makes direct comparisons with trial results challenging. CONCLUSIONS Our study supports a strong association between genetically proxied inhibition of PCSK9 and a lower risk of total and early-onset PrCa, potentially through an alternative mechanism other than the on-target effect on LDL-c. Further evidence from clinical studies is needed to confirm this finding as well as the putative mediatory role of Lp(a).
Collapse
Affiliation(s)
- Si Fang
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
| | - James Yarmolinsky
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
| | - Dipender Gill
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Caroline J. Bull
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom
| | - Claire M. Perks
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom
| | | | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
| | - Tom R. Gaunt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
| | - Tom G. Richardson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
| |
Collapse
|
489
|
Hamilton FW, Thomas M, Arnold D, Palmer T, Moran E, Mentzer AJ, Maskell N, Baillie K, Summers C, Hingorani A, MacGowan A, Khandaker GM, Mitchell R, Davey Smith G, Ghazal P, Timpson NJ. Therapeutic potential of IL6R blockade for the treatment of sepsis and sepsis-related death: A Mendelian randomisation study. PLoS Med 2023; 20:e1004174. [PMID: 36716318 PMCID: PMC9925069 DOI: 10.1371/journal.pmed.1004174] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/13/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.
Collapse
Affiliation(s)
- Fergus W. Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Matt Thomas
- Intensive Care Unit, North Bristol NHS Trust, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Tom Palmer
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ed Moran
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Alexander J. Mentzer
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aroon Hingorani
- UCL Institute for Cardiovascular Science, University College London, London, United Kingdom
- UCL BHF Research Accelerator, University College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | | | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Peter Ghazal
- Project Sepsis, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
490
|
Abstract
Research examining associations between frequent cannabis use in adolescence and brain-behavior outcomes has increased substantially over the past 2 decades. This review attempts to synthesize the state of evidence in this area of research while acknowledging challenges in interpretation. Although there is converging evidence that ongoing, frequent cannabis use in adolescence is associated with small reductions in cognitive functioning, there is still significant debate regarding the persistence of reductions after a period of abstinence. Similarly, there is controversy regarding the replicability of structural and functional neuroimaging findings related to frequent cannabis use in adolescence. Larger studies with informative designs are needed.
Collapse
Affiliation(s)
- J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, 5th Floor, Philadelphia, PA 19104, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
491
|
Yuan C, Xiang L, Jian Z, Liao B. Vitamin D Levels and Risk of Male Factor Infertility: A Mendelian Randomization Study. World J Mens Health 2023:41.e5. [PMID: 36593707 DOI: 10.5534/wjmh.220109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE No consensus exists about the causal relationship between vitamin D (VD) and male factor infertility due to heterogeneity and confounding factors even in randomized controlled trials (RCTs). This study aimed to investigate the causal association between 25 hydroxyvitamin D (25OHD) levels and male factor infertility through Mendelian randomization (MR) and provide complementary information for optimization of future RCTs. MATERIALS AND METHODS Two-sample MR analyses with four steps were performed. Single-nucleotide polymorphisms (SNPs) for VD were extracted from 417,580 Europeans in the UK Biobank, and the summary-level data of male factor infertility (825 cases and 85,722 controls) were extracted from the FinnGen. RESULTS Totally 99 SNPs robustly associated with the 25OHD were included, and a 1-unit increase in genetically predicted natural-log transformed 25OHD levels was associated with decreased risk of male factor infertility (odds ratio [OR], 0.62; 95% confidence interval [CI], 0.44-0.89; p=0.010), which was consistent in all three sensitivity analyses (MR-Egger, weighted median, and weighted mode methods). The conclusion still stands after removing SNPs which explained more variation in the male factor infertility than the 25OHD (OR, 0.61; 95% CI, 0.42-0.88; p=0.009; n=62), and which were associated with confounders (body mass index, type 2 diabetes, smoking, and coronary artery diseases) of male factor infertility (OR, 0.58; 95% CI, 0.39-0.85; p=0.005; n=55). CONCLUSIONS VD supplement to increase serum 25OHD levels may be clinically beneficial for male factor infertility in the general population. The well-designed RCTs should be performed in priority to address this question.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Department of Clinical Research Management, West China Hospital, Chengdu, Sichuan, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, Chengdu, Sichuan, China.
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
492
|
Park KW, Hwang YS, Lee SH, Jo S, Chung SJ. The Effect of Blood Lipids, Type 2 Diabetes, and Body Mass Index on Parkinson's Disease: A Korean Mendelian Randomization Study. J Mov Disord 2023; 16:79-85. [PMID: 36628424 PMCID: PMC9978253 DOI: 10.14802/jmd.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Associations between various metabolic conditions and Parkinson's disease (PD) have been previously identified in epidemiological studies. We aimed to investigate the causal effect of lipid levels, type 2 diabetes mellitus (T2DM), and body mass index (BMI) on PD in a Korean population via Mendelian randomization (MR). METHODS Two-sample MR analyses were performed with inverse-variance weighted (IVW), weighted median, and MR-Egger regression approaches. We identified genetic variants associated with lipid concentrations, T2DM, and BMI in publicly available summary statistics, which were either collected from genome-wide association studies (GWASs) or from meta-analyses of GWAS that targeted only Korean individuals or East Asian individuals, including Korean individuals. The outcome dataset was a GWAS on PD performed in a Korean population. RESULTS From previous GWASs and meta-analyses, we selected single nucleotide polymorphisms as the instrumental variables. Variants associated with serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides, as well as with T2DM and BMI, were selected (n = 11, 19, 17, 89, and 9, respectively). There were no statistically significant causal associations observed between the five exposures and PD using either the IVW, weighted median, or MR-Egger methods (p-values of the IVW method: 0.332, 0.610, 0.634, 0.275, and 0.860, respectively). CONCLUSION This study does not support a clinically relevant causal effect of lipid levels, T2DM, and BMI on PD risk in a Korean population.
Collapse
Affiliation(s)
- Kye Won Park
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Yun Su Hwang
- Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
493
|
Baumeister SE, Holtfreter B, Reckelkamm SL, Kocher T, Alayash Z, Ehmke B, Baurecht H, Nolde M. Genotype-driven NPC1L1 and PCSK9 inhibition and reduced risk of periodontitis. J Clin Periodontol 2023; 50:114-120. [PMID: 36054135 DOI: 10.1111/jcpe.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
AIM Epidemiological and pre-clinical studies suggest a chemoprotective role of lipid-lowering agents in periodontitis. We tested the association of genetically proxied inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1) and proprotein convertase subtilisin/kexin type 9 (PCSK9) with periodontitis. MATERIALS AND METHODS Genetic variants in HMGCR, NCP1L1 and PCSK9 associated with low-density lipoprotein (LDL) cholesterol in a genome-wide association study (GWAS) meta-analysis (N = 188,578) were used to proxy therapeutic inhibition of HMGCR, NPC1L1 and PCSK9. For these genetic variants, associations with periodontitis were obtained from GWAS of 17,353 cases and 28,210 controls in the GeneLifestyle Interactions in Dental Endpoints consortium. Generalized weighted least squares analysis accounted for linkage disequilibrium of genotypes to derive pooled estimates. RESULTS While genetically proxied HMGCR inhibition equivalent to 1 mmol/L reduction in LDL was not associated with odds of periodontitis (odds ratio [OR] = 0.92 [95% confidence interval [CI]: 0.73; 1.16]; p = .4905; false discovery rate [FDR] = 0.4905), genetically proxied NPC1L1 (OR = 0.53 [95% CI: 0.35; 0.81]; p = .0038; FDR = 0.0077) and PCSK9 (OR = 0.84 [95% CI: 0.74; 0.95]; p = .0051; FDR = 0.0077) inhibition lowered the odds of periodontitis. CONCLUSIONS Genetically proxied inhibition of NCP1L1 and PCSK9 was associated with lower odds of periodontitis.
Collapse
Affiliation(s)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
494
|
Smith GD. Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol 2023; 11:14. [PMID: 36528345 DOI: 10.1016/s2213-8587(22)00345-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
495
|
Huang J, Huffman JE, Huang Y, Do Valle Í, Assimes TL, Raghavan S, Voight BF, Liu C, Barabási AL, Huang RDL, Hui Q, Nguyen XMT, Ho YL, Djousse L, Lynch JA, Vujkovic M, Tcheandjieu C, Tang H, Damrauer SM, Reaven PD, Miller D, Phillips LS, Ng MCY, Graff M, Haiman CA, Loos RJF, North KE, Yengo L, Smith GD, Saleheen D, Gaziano JM, Rader DJ, Tsao PS, Cho K, Chang KM, Wilson PWF, Sun YV, O'Donnell CJ. Genomics and phenomics of body mass index reveals a complex disease network. Nat Commun 2022; 13:7973. [PMID: 36581621 PMCID: PMC9798356 DOI: 10.1038/s41467-022-35553-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Elevated body mass index (BMI) is heritable and associated with many health conditions that impact morbidity and mortality. The study of the genetic association of BMI across a broad range of common disease conditions offers the opportunity to extend current knowledge regarding the breadth and depth of adiposity-related diseases. We identify 906 (364 novel) and 41 (6 novel) genome-wide significant loci for BMI among participants of European (N~1.1 million) and African (N~100,000) ancestry, respectively. Using a BMI genetic risk score including 2446 variants, 316 diagnoses are associated in the Million Veteran Program, with 96.5% showing increased risk. A co-morbidity network analysis reveals seven disease communities containing multiple interconnected diseases associated with BMI as well as extensive connections across communities. Mendelian randomization analysis confirms numerous phenotypes across a breadth of organ systems, including conditions of the circulatory (heart failure, ischemic heart disease, atrial fibrillation), genitourinary (chronic renal failure), respiratory (respiratory failure, asthma), musculoskeletal and dermatologic systems that are deeply interconnected within and across the disease communities. This work shows that the complex genetic architecture of BMI associates with a broad range of major health conditions, supporting the need for comprehensive approaches to prevent and treat obesity.
Collapse
Affiliation(s)
- Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jennifer E Huffman
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Ítalo Do Valle
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
- Division of Population Health and Data Science, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sridharan Raghavan
- VA Eastern Colorado Healthcare System, Aurora, CO, USA
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Rose D L Huang
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Xuan-Mai T Nguyen
- Carle Illinois College of Medicine, Champaign, IL, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Luc Djousse
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie A Lynch
- VA Salt Lake City Healthcare, Salt Lake City, UT, USA
- University of Massachusetts, Boston, MA, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hua Tang
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Donald Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Medical Center, Bedford, MA, USA
| | - Lawrence S Phillips
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Endocrinology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariaelisa Graff
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari E North
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Medicine; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter W F Wilson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
- Atlanta VA Health Care System, Decatur, GA, USA.
| | - Christopher J O'Donnell
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Cardiology Section, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
496
|
Sethi A, Melamud E. Joint inference of physiological network and survival analysis identifies factors associated with aging rate. CELL REPORTS METHODS 2022; 2:100356. [PMID: 36590696 PMCID: PMC9795372 DOI: 10.1016/j.crmeth.2022.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
We describe methodology for joint reconstruction of physiological-survival networks from observational data capable of identifying key survival-associated variables, inferring a minimal physiological network structure, and bridging this network to the Gompertzian survival layer. Using synthetic network structures, we show that the method is capable of identifying aging variables in cohorts as small as 5,000 participants. Applying the methodology to the observational human cohort, we find that interleukin-6, vascular calcification, and red-blood distribution width are strong predictors of baseline fitness. More important, we find that red blood cell counts, kidney function, and phosphate level are directly linked to the Gompertzian aging rate. Our model therefore enables discovery of processes directly linked to the aging rate of our species. We further show that this epidemiological framework can be applied as a causal inference engine to simulate the effects of interventions on physiology and longevity.
Collapse
Affiliation(s)
- Anurag Sethi
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Eugene Melamud
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
497
|
Fujii R, Pattaro C. Genetically-instrumented public health: facing obesity to prevent chronic kidney disease. Cardiovasc Res 2022; 118:3013-3015. [PMID: 36305100 DOI: 10.1093/cvr/cvac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryosuke Fujii
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano/Bozen, Italy.,Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan.,Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Cristian Pattaro
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano/Bozen, Italy
| |
Collapse
|
498
|
Lazareva TE, Barbitoff YA, Changalidis AI, Tkachenko AA, Maksiutenko EM, Nasykhova YA, Glotov AS. Biobanking as a Tool for Genomic Research: From Allele Frequencies to Cross-Ancestry Association Studies. J Pers Med 2022; 12:2040. [PMID: 36556260 PMCID: PMC9783756 DOI: 10.3390/jpm12122040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, great advances have been made in the field of collection, storage, and analysis of biological samples. Large collections of samples, biobanks, have been established in many countries. Biobanks typically collect large amounts of biological samples and associated clinical information; the largest collections include over a million samples. In this review, we summarize the main directions in which biobanks aid medical genetics and genomic research, from providing reference allele frequency information to allowing large-scale cross-ancestry meta-analyses. The largest biobanks greatly vary in the size of the collection, and the amount of available phenotype and genotype data. Nevertheless, all of them are extensively used in genomics, providing a rich resource for genome-wide association analysis, genetic epidemiology, and statistical research into the structure, function, and evolution of the human genome. Recently, multiple research efforts were based on trans-biobank data integration, which increases sample size and allows for the identification of robust genetic associations. We provide prominent examples of such data integration and discuss important caveats which have to be taken into account in trans-biobank research.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton I. Changalidis
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Faculty of Software Engineering and Computer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Alexander A. Tkachenko
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
499
|
Brenowitz WD, Yaffe K. Observational studies in Alzheimer disease: bridging preclinical studies and clinical trials. Nat Rev Neurol 2022; 18:747-757. [PMID: 36316487 PMCID: PMC9894623 DOI: 10.1038/s41582-022-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Recent high-profile failures of Alzheimer disease treatments at the clinical trial stage have led to renewed efforts to identify and test novel interventions for Alzheimer disease and related dementias (ADRD). In this Perspective, we highlight the importance of including well-designed observational studies as part of these efforts. Observational research is an important cornerstone for gathering evidence on risk factors and causes of ADRD; this evidence can then be combined with data from preclinical studies and randomized controlled trials to inform the development of effective interventions. Observational study designs can be particularly beneficial for hypothesis generation, posing questions that are unethical or impractical for a trial setting, studying life-course associations, research in populations typically not included in trials, and public health surveillance. Here, we discuss each of these situations in the specific context of ADRD research. We also highlight novel approaches to enhance causal inference and provide a timely discussion on how observational epidemiological studies help provide a bridge between preclinical studies and successful interventions for ADRD.
Collapse
Affiliation(s)
- Willa D Brenowitz
- Departments of Psychiatry and Behavioral Sciences, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Kristine Yaffe
- Departments of Psychiatry and Behavioral Sciences, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- San Francisco VA Medical Center, San Francisco, CA, USA.
| |
Collapse
|
500
|
Arega Y, Shao Y. Heart failure and late-onset Alzheimer's disease: A Mendelian randomization study. Front Genet 2022; 13:1015674. [PMID: 36523758 PMCID: PMC9745072 DOI: 10.3389/fgene.2022.1015674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Some observational studies suggested that heart failure (HF) is associated with increased risk of late-onset Alzheimer's disease (AD). On the other hand, a recently published Two-Sample Mendelian Randomization (2SMR) study was reported as inconclusive but the estimated odds ratios (ORs) were less than one indicating a potential causal association between genetically predicted HF and lowered risk of AD. Both HF and AD are quite common among elderly persons and frequently occur together resulting in a series of severe medical challenges and increased financial burden on healthcare. It is of great medical and financial interest to further investigate the statistical significance of the potential causal associations between genetically predicted HF and lowered risk of AD using large independent cohorts. To fill this important knowledge gap, the present study used the 2SMR method based on summary data from a recently published large genome-wide association study (GWAS) for AD on subjects with European ancestry. The 2SMR analysis provided statistically significant evidence of an association with ORs less than one between genetically predicted HF and late-onset AD (Inverse Variance Weighted, OR = 0.752, p = 0.004; MR Egger, OR = 0.546, p = 0.100; Weighted Median, OR = 0.757, p = 0.014). Further investigations of the significant associations between HF and late-onset AD, including specific genes related to the potential protective effect of HF-related medications on cognitive decline, are warranted.
Collapse
Affiliation(s)
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|