501
|
Abstract
There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.
Collapse
Affiliation(s)
- Michael E Symonds
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , ,
| | | | | |
Collapse
|
502
|
McGlashon JM, Gorecki MC, Kozlowski AE, Thirnbeck CK, Markan KR, Leslie KL, Kotas ME, Potthoff MJ, Richerson GB, Gillum MP. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metab 2015; 21:692-705. [PMID: 25955206 PMCID: PMC4565052 DOI: 10.1016/j.cmet.2015.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/10/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023]
Abstract
Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes.
Collapse
Affiliation(s)
- Jacob M McGlashon
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Institute of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michelle C Gorecki
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Institute of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Amanda E Kozlowski
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Caitlin K Thirnbeck
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kathleen R Markan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kirstie L Leslie
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maya E Kotas
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Matthew J Potthoff
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - George B Richerson
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Matthew P Gillum
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Institute of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
503
|
Hsiao WC, Shia KS, Wang YT, Yeh YN, Chang CP, Lin Y, Chen PH, Wu CH, Chao YS, Hung MS. A novel peripheral cannabinoid receptor 1 antagonist, BPR0912, reduces weight independently of food intake and modulates thermogenesis. Diabetes Obes Metab 2015; 17:495-504. [PMID: 25656402 DOI: 10.1111/dom.12447] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/29/2022]
Abstract
AIM To investigate the in vivo metabolic effects of treatment with BPR0912, a novel and potent peripheral cannabinoid receptor 1 (CB1R) antagonist, on both normal mice and diet-induced obese (DIO) mice. METHODS The acute peripheral effects of BPR0912 administration on gastrointestinal transit and energy metabolism in normal mice were investigated. The effects of chronic BPR0912 treatment were compared with those of rimonabant using DIO mice. Alterations to body weight and biochemical and metabolic variables were determined. RESULTS Acute treatment with BPR0912 did not alter food intake or energy metabolism, but efficiently reversed CB1R-mediated gastrointestinal delay. Chronic treatment of DIO mice with BPR0912 showed that BPR0912 exerts a food intake-independent mechanism, which contributes to weight loss. Genes involved in β-oxidation and thermogenesis were upregulated in white adipose tissue (WAT) in addition to increased lipolytic activity, whereas Ucp1 expression was induced in brown adipose tissue (BAT) and body temperature was elevated. Expression of the β2-adrenoceptor was specifically elevated in both WAT and BAT in a manner dependent on the BPR0912 dose. Lastly, chronic BPR0912 treatment was more efficacious than rimonabant in reducing hepatic triglycerides in DIO mice. CONCLUSION BPR0912 exhibits significant in vivo efficacy in inducing food intake-independent weight loss in DIO mice, while tending to reduce their hepatic steatosis. The thermogenic effects of BPR0912, as well as its modulation of protein and gene expression patterns in WAT and BAT, may enhance its efficacy as an anti-obesity agent. The results of the present study support the benefits of the use of peripheral CB1R antagonists to combat metabolic disorders.
Collapse
Affiliation(s)
- W-C Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Guennoun A, Kazantzis M, Thomas R, Wabitsch M, Tews D, Seetharama Sastry K, Abdelkarim M, Zilberfarb V, Strosberg AD, Chouchane L. Comprehensive molecular characterization of human adipocytes reveals a transient brown phenotype. J Transl Med 2015; 13:135. [PMID: 25925588 PMCID: PMC4438513 DOI: 10.1186/s12967-015-0480-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Functional brown adipose tissue (BAT), involved in energy expenditure, has recently been detected in substantial amounts in adults. Formerly overlooked BAT has now become an attractive anti-obesity target. Methods and results Molecular characterization of human brown and white adipocytes, using a myriad of techniques including high-throughput RNA sequencing and functional assays, showed that PAZ6 and SW872 cells exhibit classical molecular and phenotypic markers of brown and white adipocytes, respectively. However, the pre-adipocyte cell line SGBS presents a versatile phenotype. A transit expression of classical brown markers such as UCP1 and PPARγ peaked and declined at day 28 post-differentiation initiation. Conversely, white adipocyte markers, including Tcf21, showed reciprocal behavior. Interestingly, leptin levels peaked at day 28 whereas the highest adiponectin mRNA levels were detected at day 14 of differentiation. Phenotypic analysis of the abundance and shape of lipid droplets were consistent with the molecular patterns. Accordingly, the oxidative capacity of SGBS adipocytes peaked on differentiation day 14 and declined progressively towards differentiation day 28. Conclusions Our studies have unveiled a new phenotype of human adipocytes, providing a tool to identify molecular gene expression patterns and pathways involved in the conversion between white and brown adipocytes. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0480-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Guennoun
- Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Doha, Qatar.
| | - Melissa Kazantzis
- Center for Diabetes and Metabolic Diseases, The Scripps Research Institute, Florida, USA.
| | - Remy Thomas
- Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Doha, Qatar.
| | - Martin Wabitsch
- Department of Paediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetology, Ulm, Germany.
| | - Daniel Tews
- Department of Paediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetology, Ulm, Germany.
| | - Konduru Seetharama Sastry
- Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Doha, Qatar.
| | | | - Vladimir Zilberfarb
- Institut Cochin INSERM U1016, Université Paris 7-Denis-Diderot, Paris, France.
| | | | - Lotfi Chouchane
- Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
505
|
Lundström E, Strand R, Johansson L, Bergsten P, Ahlström H, Kullberg J. Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS One 2015; 10:e0126705. [PMID: 25928226 PMCID: PMC4415932 DOI: 10.1371/journal.pone.0126705] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/06/2015] [Indexed: 12/17/2022] Open
Abstract
Objectives To evaluate whether a water-fat magnetic resonance imaging (MRI) cooling-reheating protocol could be used to detect changes in lipid content and perfusion in the main human brown adipose tissue (BAT) depot after a three-hour long mild cold exposure. Materials and Methods Nine volunteers were investigated with chemical-shift-encoded water-fat MRI at baseline, after a three-hour long cold exposure and after subsequent short reheating. Changes in fat fraction (FF) and R2*, related to ambient temperature, were quantified within cervical-supraclavicular adipose tissue (considered as suspected BAT, denoted sBAT) after semi-automatic segmentation. In addition, FF and R2* were quantified fully automatically in subcutaneous adipose tissue (not considered as suspected BAT, denoted SAT) for comparison. By assuming different time scales for the regulation of lipid turnover and perfusion in BAT, the changes were determined as resulting from either altered absolute fat content (lipid-related) or altered absolute water content (perfusion-related). Results sBAT-FF decreased after cold exposure (mean change in percentage points = -1.94 pp, P = 0.021) whereas no change was observed in SAT-FF (mean = 0.23 pp, P = 0.314). sBAT-R2* tended to increase (mean = 0.65 s-1, P = 0.051) and SAT-R2* increased (mean = 0.40 s-1, P = 0.038) after cold exposure. sBAT-FF remained decreased after reheating (mean = -1.92 pp, P = 0.008, compared to baseline) whereas SAT-FF decreased (mean = -0.79 pp, P = 0.008, compared to after cold exposure). Conclusions The sustained low sBAT-FF after reheating suggests lipid consumption, rather than altered perfusion, as the main cause to the decreased sBAT-FF. The results obtained demonstrate the use of the cooling-reheating protocol for detecting changes in the cervical-supraclavicular fat depot, being the main human brown adipose tissue depot, in terms of lipid content and perfusion.
Collapse
Affiliation(s)
- Elin Lundström
- Department of Radiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Robin Strand
- Department of Radiology, Uppsala University, Uppsala, Sweden
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
506
|
Chang MR, He Y, Khan TM, Kuruvilla DS, Garcia-Ordonez R, Corzo CA, Unger TJ, White DW, Khan S, Lin L, Cameron MD, Kamenecka TM, Griffin PR. Antiobesity Effect of a Small Molecule Repressor of RORγ. Mol Pharmacol 2015; 88:48-56. [PMID: 25904554 DOI: 10.1124/mol.114.097485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
The orphan nuclear receptor RORγ is a key regulator for T helper 17 (TH17) cell differentiation, which regulates metabolic and circadian rhythm genes in peripheral tissues. Previously, it was shown that the small molecule inverse agonist of RORγ SR1555 [1-(4-((4'-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)piperazin-1-yl) ethanone] suppressed TH17 differentiation and stimulated induced T regulatory (iTreg) cells. Here, we show that treatment of cultured pre-adipocyctes with SR1555 represses the expression of RORγ while leading to increased expression of FGF21 and adipoQ. Chronic administration of SR1555 to obese diabetic mice resulted in a modest reduction in food intake accompanied with significant reduction in fat mass, resulting in reduced body weight and improved insulin sensitivity. Analysis ex vivo of treated mice demonstrates that SR1555 induced expression of the thermogenic gene program in fat depots. Further studies in cultured cells showed that SR1555 inhibited activation of hormone-sensitive lipase and increased fatty acid oxidation. Combined, these results suggest that pharmacological repression of RORγ may represent a strategy for treatment of obesity by increasing thermogenesis and fatty acid oxidation, while inhibition of hormone-sensitive lipase activity results in a reduction of serum free fatty acids, leading to improved peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Mi Ra Chang
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Yuanjun He
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Tanya M Khan
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Dana S Kuruvilla
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Ruben Garcia-Ordonez
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Cesar A Corzo
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Thaddeus J Unger
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - David W White
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Susan Khan
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Li Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida (M.R.C., Y.H., T.M.K., D.S.K., R.G.-O., C.A.C., S.K., L.L., M.D.C., Th.M.K., P.R.G.); and Ember Therapeutics, Watertown, Massachusetts (T.J.U., D.W.W.)
| |
Collapse
|
507
|
Abstract
The biogenesis of beige fat is poorly understood. In recent issues of Nature and Cell, Brestoff et al. (2014) and Lee et al. (2015) demonstrate that resident innate lymphoid cells in subcutaneous fat generate and activate beige adipocytes, producing thermogenesis.
Collapse
|
508
|
Ortega-Molina A, Lopez-Guadamillas E, Mattison JA, Mitchell SJ, Muñoz-Martin M, Iglesias G, Gutierrez VM, Vaughan KL, Szarowicz MD, González-García I, López M, Cebrián D, Martinez S, Pastor J, de Cabo R, Serrano M. Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metab 2015; 21:558-70. [PMID: 25817535 PMCID: PMC5867518 DOI: 10.1016/j.cmet.2015.02.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/30/2015] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
Abstract
Genetic inhibition of PI3K signaling increases energy expenditure, protects from obesity and metabolic syndrome, and extends longevity. Here, we show that two pharmacological inhibitors of PI3K, CNIO-PI3Ki and GDC-0941, decrease the adiposity of obese mice without affecting their lean mass. Long-term treatment of obese mice with low doses of CNIO-PI3Ki reduces body weight until reaching a balance that is stable for months as long as the treatment continues. CNIO-PI3Ki treatment also ameliorates liver steatosis and decreases glucose serum levels. The above observations have been recapitulated in independent laboratories and using different oral formulations of CNIO-PI3Ki. Finally, daily oral treatment of obese rhesus monkeys for 3 months with low doses of CNIO-PI3Ki decreased their adiposity and lowered their serum glucose levels, in the absence of detectable toxicities. Therefore, pharmacological inhibition of PI3K is an effective and safe anti-obesity intervention that could reverse the negative effects of metabolic syndrome in humans.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Elena Lopez-Guadamillas
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Julie A Mattison
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Maribel Muñoz-Martin
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Gema Iglesias
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vincent M Gutierrez
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA; SoBran, Inc., Burtonsville, MD 20866, USA
| | - Mark D Szarowicz
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA; SoBran, Inc., Burtonsville, MD 20866, USA
| | - Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15782, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15782, Spain
| | - David Cebrián
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sonia Martinez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Joaquin Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
509
|
Abstract
In mammals, a thermogenic mechanism exists that increases heat production and consumes energy. Recent work has shed light on the cellular and physiological mechanisms that control this thermogenic circuit. Thermogenically active adipocytes, namely brown and closely related beige adipocytes, differentiate from progenitor cells that commit to the thermogenic lineage but can arise from different cellular origins. Thermogenic differentiation shares some features with general adipogenesis, highlighting the critical role that common transcription factors may play in progenitors with divergent fates. However, thermogenic differentiation is also discrete from the common adipogenic program and, excitingly, cells with distinct origins possess thermogenic competency that allows them to differentiate into thermogenically active mature adipocytes. An understanding of this thermogenic differentiation program and the factors that can activate it has led to the development of assays that are able to measure thermogenic activity both indirectly and directly. By combining these assays with appropriate cell models, novel therapeutic approaches to combat obesity and its related metabolic disorders by enhancing the thermogenic circuit can be developed.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
510
|
Grefhorst A, van den Beukel JC, van Houten ELA, Steenbergen J, Visser JA, Themmen AP. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice. Biol Sex Differ 2015; 6:7. [PMID: 25866617 PMCID: PMC4392498 DOI: 10.1186/s13293-015-0025-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FGFs in BAT of male and female C57BL/6J mice upon gonadectomy, cold exposure, and exposure to sex steroids. Results Of the FGF family, BAT Fgf1, Fgf9, Fgf18, and Fgf21 expression was induced upon cold exposure, but only Fgf1 expression was obviously different between the sexes: females had 2.5-fold lower BAT Fgf1 than males. Cold exposure induced BAT Bmp4 and Bmp8b expression, but only Bmp8b differed between the sexes: females had 35-fold higher BAT Bmp8b than males. Ovariectomy almost completely blunted BAT Bmp8b expression, while orchidectomy had no effect. Male mice and ovariectomized female mice treated with diethylstilbestrol (DES) had approximately 350-fold and approximately 36-fold higher BAT Bmp8b expression, respectively. Ninety-day and 7-day treatment of female mice with dihydrotestosterone (DHT) decreased BAT Bmp8b expression by approximately fivefold and approximately fourfold, respectively. Finally, treatment of primary murine brown adipocytes with DES did not result in changes in Bmp8b expression. Conclusions BAT Bmp8b expression in mice is positively regulated by presence of ovaries and estrogens such as DES.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Johanna C van den Beukel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - E Leonie Af van Houten
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Axel Pn Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
511
|
Sae-Tan S, Rogers CJ, Lambert JD. Decaffeinated Green Tea and Voluntary Exercise Induce Gene Changes Related to Beige Adipocyte Formation in High Fat-Fed Obese Mice. J Funct Foods 2015; 14:210-214. [PMID: 25844091 DOI: 10.1016/j.jff.2015.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have previously reported that decaffeinated green tea extract (GTE) in combination with voluntary exercise (Ex) reduces metabolic syndrome in high fat-fed C57BL/6J mice. Here, we examined for the first time the effect of treatment with 77 mg/g GTE, Ex, or both (GTE + Ex) on genes related to the conversion of white adipose tissue (WAT) to brown fat-like adipose tissue (BLAT) in this model. GTE+Ex induced genes related to lipolysis (hormone sensitive lipase [3.0-fold] and patatin-like phospholipase domain-containing protein 2 [2-fold]), mitochondrial β-oxidation (NADH dehydrogenase 5 [2.3-fold], cytochrome B [2.0-fold], and cytochrome C oxidase III [1.9-fold increase]), and adipose tissue browning (peroxisome proliferator-activated receptor-γ coactivator-1α [1.8-fold], bone morphogenetic protein 4 [2.6-fold], and phosphatase and tensin homolog [2.6-fold]) in visceral WAT compared to HF-fed mice. These results suggest that GTE+Ex function in part by inducing the conversion of WAT to BLAT and provides novel mechanistic insight into this combination.
Collapse
Affiliation(s)
- Sudathip Sae-Tan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802 ; Center For Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
512
|
López M, Diéguez C, Nogueiras R. Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte 2015; 4:141-5. [PMID: 26167417 DOI: 10.4161/21623945.2014.983752] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. Since the discovery that BAT and brite/beige cells are functional in adult humans, many studies have been focusing on the physiology and functionality of this organ. The brain is controlling the maintenance of body temperature through a complex neuronal network. One of the candidates to modulate thermogenesis at central level is glucagon-like peptide-1 (GLP-1), with GLP-1 receptors widely expressed throughout the brain. Our group has recently reported that stimulation of brain GLP-1 receptors in the ventromedial nucleus of the hypothalamus is essential for the activation not only of BAT thermogenesis, but also browning of white fat. Notably, both actions are mediated by specific inhibition of the energy sensor AMP-activated protein kinase (AMPK). In this commentary, we summarize the latest results on this topic, as well as the potential clinical relevance of the brain GLP-1 system to treat obesity.
Collapse
|
513
|
Hu X, Luo P, Peng X, Song T, Zhou Y, Wei H, Peng J, Jiang S. Molecular cloning, expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation. Gen Comp Endocrinol 2015; 214:77-86. [PMID: 25626122 DOI: 10.1016/j.ygcen.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/19/2022]
Abstract
Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Recent reports evidenced that retinoblastoma 1 (Rb1) gene plays an important role in fat development and adipogenesis in mice. Here, we cloned the partial cDNA sequences of the porcine Rb1 gene which contains the complete coding sequences (CDS) of 2820bp encoding a protein of 939 amino acids. Bioinformatic analysis revealed that the CDS of porcine Rb1 was highly identical with those of cattle, human and mice. The porcine Rb1 has three typical conserved structural domains, including Rb-A pocket domain, CYCLIN domain and C-terminus domain, and the phylogenetic tree indicates a closer genetic relationship with cattle and human. Tissue distribution analysis showed that Rb1 expression appeared to be ubiquitously in various tissues, being higher in heart, liver, muscle, and stomach. Furthermore, significant downregulation of Rb1 was found at the initial stage of dedifferentiated fat (DFAT) cells adipogenic differentiation. With the knockdown of the Rb1 expression by siRNA, the number of DFAT cells recruited to white rather than brown adipogenesis was promoted, and mRNA levels of adipogenic markers, such as PPARγ, aP2, LPL and adiponectin and protein expression of PPARγ and adiponectin were increased after hormone stimulation. The underlying mechanisms may be that knockdown of Rb1 promotes the mitotic clonal expansion and PPARγ expression by derepressing the transcriptional activity of E2F so as to facilitate the first steps of adipogenesis. In summary, we cloned and characterized an important negative regulator in adipogenic commitment of porcine DFAT cells.
Collapse
Affiliation(s)
- Xiaoming Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China
| | - Pei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xuewu Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China.
| | - Siwen Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China.
| |
Collapse
|
514
|
|
515
|
Iida S, Chen W, Nakadai T, Ohkuma Y, Roeder RG. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1. Genes Dev 2015; 29:308-21. [PMID: 25644605 PMCID: PMC4318147 DOI: 10.1101/gad.252809.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PRDM16 induces expression of brown fat-specific genes in brown and beige adipocytes. Here, Iida et al. show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex and is recruited to the enhancer of the brown fat-specific Ucp1 gene through this interaction. This enhances thyroid hormone receptor-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex.
Collapse
Affiliation(s)
- Satoshi Iida
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Wei Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
516
|
Berbée JFP, Boon MR, Khedoe PPSJ, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LPJ, Gordts PLSM, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PCN. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 2015; 6:6356. [PMID: 25754609 PMCID: PMC4366535 DOI: 10.1038/ncomms7356] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/22/2015] [Indexed: 01/17/2023] Open
Abstract
Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by β3-adrenergic receptor stimulation protects from atherosclerosis in hyperlipidemic APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism that unlike hyperlipidemic Apoe−/− and Ldlr−/− mice expresses functional apoE and LDLR. BAT activation increases energy expenditure and decreases plasma triglyceride and cholesterol levels. Mechanistically, we demonstrate that BAT activation enhances the selective uptake of fatty acids from triglyceride-rich lipoproteins into BAT, subsequently accelerating the hepatic clearance of the cholesterol-enriched remnants. These effects depend on a functional hepatic apoE-LDLR clearance pathway as BAT activation in Apoe−/− and Ldlr−/− mice does not attenuate hypercholesterolaemia and atherosclerosis. We conclude that activation of BAT is a powerful therapeutic avenue to ameliorate hyperlipidaemia and protect from atherosclerosis. Brown adipose tissue (BAT) produces heat by burning lipid triglycerides. Here, Berbée et al. show that pharmacological BAT activation protects hyperlipidemic mice from atherosclerosis, provided mice retain the metabolic capacity to clear cholesterol-enriched lipoprotein remnants by the liver.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Mariëtte R Boon
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - P Padmini S J Khedoe
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [3] Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Alexander Bartelt
- 1] Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany [2] Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Sander Kooijman
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Geerte Hoeke
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Isabel M Mol
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Caroline Jung
- Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Nadia Vazirpanah
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Linda P J Brouwers
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Louis M Havekes
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [3] Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [4] Netherlands Organization for Applied Scientific Research-Metabolic Health Research, Gaubius Laboratory, Zernikedreef 9, Leiden 2333 CK, The Netherlands
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Patrick C N Rensen
- 1] Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands [2] Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
517
|
Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J, Horvath TL, Yang X. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 2015; 159:306-17. [PMID: 25303527 DOI: 10.1016/j.cell.2014.09.010] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/12/2014] [Accepted: 09/02/2014] [Indexed: 01/07/2023]
Abstract
Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here, we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 93042, Brazil
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Marcelo R Zimmer
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 93042, Brazil
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ruonan Yin
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
518
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
519
|
Sartini L, Frontini A. Potential novel therapeutic strategies from understanding adipocyte transdifferentiation mechanisms. Expert Rev Endocrinol Metab 2015; 10:143-152. [PMID: 30293508 DOI: 10.1586/17446651.2015.983474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brown adipocytes are located in discrete anatomical locations in both small mammals and in humans. 'Brown-like' adipocytes, also known as brite (brown in white) or beige adipocytes are found interspersed among white adipocytes in several fat depots. From a functional point of view, the activity of brown and brite cells is similar, that is, heat production mediated by uncoupling protein 1. The morphology and expression of 'thermogenic' genes is also very similar in these two cell types. The origin of brite adipocytes is under intense investigation because enhancing their presence and activity has the potential to promote a healthy metabolic profile. Transdifferentiation mechanisms as well as de novo recruitment have been investigated. The characterization of the mechanisms involved in the recruitment and activation of brown/brite adipocytes in adult humans, could open the avenue for promising therapeutic strategies to curb metabolic diseases.
Collapse
Affiliation(s)
- Loris Sartini
- a Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | |
Collapse
|
520
|
Abstract
Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermogenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. BAT thermogenesis is primarily dependent on the energy-dissipating activity of uncoupling protein 1 (UCP1). There are two types of UCP1-expressing adipocyte, classical brown and beige/brite adipocytes. Recent radionuclide studies have demonstrated the existence of metabolically active BAT composed of mainly beige/brite adipocytes in adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in EE. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy-dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased EE and decreased body fat. Moreover, possible contribution of BAT to glucose tolerance has been suggested. In addition to the sympathetic nervous system, some endocrine factors also have potential for activation/recruitment of BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Department of Anatomy, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | | |
Collapse
|
521
|
Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, Zhu Q, Lu Z, Wang J, Audouze K, Gupta R, Madsen L, Kristiansen K, Hansen JB. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2015; 308:E380-92. [PMID: 25516548 DOI: 10.1152/ajpendo.00277.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT.
Collapse
Affiliation(s)
- Qin Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rachita Yadav
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Astrid L Basse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sidsel Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Si B Sonne
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Qianhua Zhu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Zhike Lu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jun Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; Department of Medicine, University of Hong Kong, Hong Kong
| | - Karine Audouze
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Université Paris Diderot, Inserm UMR-S973, Paris, France; and
| | - Ramneek Gupta
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Nordnes, Bergen, Norway
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
522
|
Abstract
Evidence from rodents established an important role of brown adipose tissue (BAT) in energy expenditure. Moreover, to sustain thermogenesis, BAT has been shown to be a powerful sink for draining and oxidation of glucose and triglycerides from blood. The potential of BAT activity in protection against obesity and metabolic syndrome is recognized. Recently, an unexpected presence and activity of BAT has been found in adult humans. Here we review the most recent research in this field and, specifically, how new findings apply to humans. Moreover, we seek to clarify the underlying biological processes occurring beyond the burst of new nomenclature in the field. The cell type responsible for thermogenesis, the brown adipocyte, arises from complex developmental processes. In addition to 'classical' brown adipocytes, present in developmentally programmed BAT depots, there are brown adipocytes, named 'brite' (from 'brown-in-white') or 'beige', which appear in response to thermogenic stimuli in white fat due to the so-called 'browning' process. Beige/brite cells appear to be important components of BAT depots in adult humans. In addition to the known control of BAT activity by the sympathetic nervous system, metabolic and hormonal signals originating in muscle or liver (e.g. irisin, FGF21) are recognized as activators of BAT and beige/brite adipocytes.
Collapse
Affiliation(s)
- Rubén Cereijo
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición , Barcelona, Catalonia , Spain
| | | | | |
Collapse
|
523
|
Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice. J Nutr Biochem 2015; 26:616-25. [PMID: 25801353 DOI: 10.1016/j.jnutbio.2014.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/06/2014] [Accepted: 12/19/2014] [Indexed: 01/04/2023]
Abstract
The objective of this study was to determine the extent to which a low level of trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) decreases adiposity and increases browning in overweight mice, its dependence on inflammatory signaling and potential synergistic effects of daily exercise. Young, Sv129 male mice were fed a high-fat diet for 5 weeks to make them fat and glucose intolerant and then switch them to a low-fat diet with or without 0.1% 10,12 CLA, sodium salicylate or exercise for another 7 weeks. 10,12 CLA decreased white adipose tissue (WAT) and brown adipose tissue mass, and increased the messenger RNA and protein levels, and activities of enzymes associated with thermogenesis or fatty acid oxidation in WAT. Mice fed 10,12 CLA had lower body temperatures compared to controls during cold exposure, which coincided with decreased adiposity. Although sodium salicylate decreased 10,12 CLA-mediated increases in markers of inflammation in WAT, it did not affect other outcomes. Exercise had no further effect on the outcomes measured. Collectively, these data indicate that 10,12 CLA-mediated reduction of adiposity is independent of inflammatory signaling, and possibly due to up-regulation of fatty acid oxidation and heat production in order to regulate body temperature. Although this low level of 10,12 CLA reduced adiposity in overweight mice, hepatomegaly and inflammation are major health concerns.
Collapse
|
524
|
Busiello RA, Savarese S, Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 2015; 6:36. [PMID: 25713540 PMCID: PMC4322621 DOI: 10.3389/fphys.2015.00036] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the metabolic factors that contribute to energy metabolism (EM) is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate (RMR) and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1), which was the first in this family to be discovered, the reactions catalyzed by its homolog UCP3 and the physiological role remain under debate. This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.
Collapse
Affiliation(s)
- Rosa A Busiello
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio Benevento, Italy
| | - Sabrina Savarese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli Napoli, Italy
| |
Collapse
|
525
|
Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 2015; 125:478-86. [PMID: 25642708 DOI: 10.1172/jci78362] [Citation(s) in RCA: 487] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brown adipose tissue (BAT), a specialized fat that dissipates energy to produce heat, plays an important role in the regulation of energy balance. Two types of thermogenic adipocytes with distinct developmental and anatomical features exist in rodents and humans: classical brown adipocytes and beige (also referred to as brite) adipocytes. While classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants, beige adipocytes sporadically reside with white adipocytes and emerge in response to certain environmental cues, such as chronic cold exposure, a process often referred to as "browning" of white adipose tissue. Recent studies indicate the existence of beige adipocytes in adult humans, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, including type 2 diabetes. This Review aims to cover recent progress in our understanding of the anatomical, developmental, and functional characteristics of brown and beige adipocytes and discuss emerging questions, with a special emphasis on adult human BAT.
Collapse
|
526
|
Kong X, Yu J, Bi J, Qi H, Di W, Wu L, Wang L, Zha J, Lv S, Zhang F, Li Y, Hu F, Liu F, Zhou H, Liu J, Ding G. Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 2015; 64:393-404. [PMID: 25187367 PMCID: PMC4876791 DOI: 10.2337/db14-0395] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-term glucocorticoid (GC) treatment induces central fat accumulation and metabolic dysfunction. We demonstrate that microRNA-27b (miR-27b) plays a central role in the pathogenesis of GC-induced central fat accumulation. Overexpression of miR-27b had the same effects as dexamethasone (DEX) treatment on the inhibition of brown adipose differentiation and the energy expenditure of primary adipocytes. Conversely, antagonizing miR-27b function prevented DEX suppression of the expression of brown adipose tissue-specific genes. GCs transcriptionally regulate miR-27b expression through a GC receptor-mediated direct DNA-binding mechanism, and miR-27b suppresses browning of white adipose tissue (WAT) by targeting the three prime untranslated region of Prdm16. In vivo, antagonizing miR-27b function in DEX-treated mice resulted in the efficient induction of brown adipocytes within WAT and improved GC-induced central fat accumulation. Collectively, these results indicate that miR-27b functions as a central target of GC and as an upstream regulator of Prdm16 to control browning of WAT and, consequently, may represent a potential target in preventing obesity.
Collapse
Affiliation(s)
- Xiaocen Kong
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Yu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianhua Bi
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanmei Qi
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenjuan Di
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Lin Wu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Long Wang
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Juanmin Zha
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Shan Lv
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Zhang
- Department of General Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Li
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fang Hu
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Feng Liu
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Juan Liu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoxian Ding
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
527
|
Søndergaard E, Gormsen LC, Christensen MH, Pedersen SB, Christiansen P, Nielsen S, Poulsen PL, Jessen N. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet Med 2015; 32:e4-8. [PMID: 25252000 DOI: 10.1111/dme.12595] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recruitment of brown adipose tissue is a promising strategy to treat obesity and Type 2 diabetes, but the physiological effects of a large amount of metabolically active brown adipose tissue in humans are unknown. CASE REPORT In the present paper, we report a case of massive brown adipose tissue infiltration of the visceral adipose tissue depot in a person with Type 2 diabetes with a catecholamine-secreting paraganglioma. The patient was evaluated with [18F]-fludeoxyglucose positron emission tomography/computed tomography on three occasions: pre-therapy, during α-blockade and postoperatively. During surgery, biopsies of visceral and subcutaneous adipose tissue were obtained and evaluated for brown adipose tissue. At diagnosis, brown adipose tissue glucose uptake, assessed by [18F]-fludeoxyglucose-positron emission tomography, was massively increased. [18F]-fludeoxyglucose uptake was confined to known locations for brown adipose tissue, with additional uptake in the visceral adipose tissue. As a result of increased thermogenesis, resting energy expenditure was doubled. After surgical removal of the tumour, antidiabetic medicine was no longer needed, despite an 8.2-kg weight gain. CONCLUSION These results show that human visceral adipose tissue holds an unprecedented potential for brown adipogenic differentiation; however, a detrimental effect on glucose metabolism persisted despite massive brown adipose tissue activity, with a doubling of resting energy expenditure.
Collapse
Affiliation(s)
- E Søndergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; The Danish Diabetes Academy, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
528
|
Gospodarska E, Nowialis P, Kozak LP. Mitochondrial turnover: a phenotype distinguishing brown adipocytes from interscapular brown adipose tissue and white adipose tissue. J Biol Chem 2015; 290:8243-55. [PMID: 25645913 DOI: 10.1074/jbc.m115.637785] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the differences between brown adipocytes from interscapular brown tissue (iBAT) and those induced in white adipose tissue (WAT) with respect to their thermogenic capacity, we examined two essential characteristics: the dynamics of mitochondrial turnover during reversible transitions from 29 °C to 4 °C and the quantitative relationship between UCP1 and selected subunits of mitochondrial respiratory complex in the fully recruited state. To follow the kinetics of induction and involution of mitochondria, we determined the expression pattern of UCP1 and other mitochondrial proteins as well as analyzed mtDNA content after cold stimulation and reacclimation to thermoneutrality. We showed that UCP1 turnover is very different in iBAT and inguinal WAT (ingWAT); the former showed minimal changes in protein content, whereas the latter showed major changes. Similarly, in iBAT both mtDNA content and the expression of mitochondrial proteins were stable and expressed at similar levels during reversible transitions from 29 °C to 4 °C, whereas ingWAT revealed dynamic changes. Further analysis showed that in iBAT, the expression patterns for UCP1 and other mitochondrial proteins resembled each other, whereas in ingWAT, UCP1 varied ∼100-fold during the transition from cold to warmth, and no other mitochondrial proteins matched UCP1. In turn, quantitative analysis of thermogenic capacity determined by estimating the proportion of UCP1 to respiratory complex components showed no significant differences between brown and brite adipocytes, suggesting similar thermogenic potentiality. Our results indicate that dynamics of brown adipocytes turnover during reversible transition from warm to cold may determine the thermogenic capacity of an individual in a changing temperature environment.
Collapse
Affiliation(s)
- Emilia Gospodarska
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Pawel Nowialis
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Leslie P Kozak
- From the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
529
|
Mauer J, Denson JL, Brüning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 2015; 36:92-101. [PMID: 25616716 DOI: 10.1016/j.it.2014.12.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022]
Abstract
Owing to its abundance in inflammatory settings, interleukin IL-6 is frequently viewed as a proinflammatory cytokine, with functions that parallel those of tumor necrosis factor (TNF) and IL-1β in the context of inflammation. However, accumulating evidence points to a broader role for IL-6 in a variety of (patho)physiological conditions, including functions related to the resolution of inflammation. We review recent findings on the complex biological functions governed by IL-6 signaling, focusing on its role in inflammation-associated cancer and metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). We propose that the anti-inflammatory functions of IL-6 may extend to multiple settings and cell types, and suggest that these dimensions should be incorporated in therapeutic approaches to these diseases. Finally, we outline important areas of inquiry towards understanding this pleiotropic cytokine.
Collapse
Affiliation(s)
- Jan Mauer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Jesse L Denson
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| |
Collapse
|
530
|
Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. Proc Natl Acad Sci U S A 2015; 112:1607-12. [PMID: 25605929 DOI: 10.1073/pnas.1421419112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.
Collapse
|
531
|
Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight. Neurogenetics 2015; 16:133-44. [PMID: 25582322 DOI: 10.1007/s10048-014-0435-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.
Collapse
|
532
|
McDonald ME, Li C, Bian H, Smith BD, Layne MD, Farmer SR. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 2015; 160:105-18. [PMID: 25579684 DOI: 10.1016/j.cell.2014.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Adipose tissue is an essential regulator of metabolic homeostasis. In contrast with white adipose tissue, which stores excess energy in the form of triglycerides, brown adipose tissue is thermogenic, dissipating energy as heat via the unique expression of the mitochondrial uncoupling protein UCP1. A subset of UCP1+ adipocytes develops within white adipose tissue in response to physiological stimuli; however, the developmental origin of these "brite" or "beige" adipocytes is unclear. Here, we report the identification of a BMP7-ROCK signaling axis regulating beige adipocyte formation via control of the G-actin-regulated transcriptional coactivator myocardin-related transcription factor A, MRTFA. White adipose tissue from MRTFA(-/-) mice contains more multilocular adipocytes and expresses enhanced levels of brown-selective proteins, including UCP1. MRTFA(-/-) mice also show improved metabolic profiles and protection from diet-induced obesity and insulin resistance. Our study hence unravels a central pathway driving the development of physiologically functional beige adipocytes.
Collapse
Affiliation(s)
- Meghan E McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hejiao Bian
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara D Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
533
|
Qian S, Huang H, Tang Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med 2015; 9:162-72. [DOI: 10.1007/s11684-015-0382-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/16/2014] [Indexed: 12/27/2022]
|
534
|
Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mössenböck K, Bernhardt GA, Mayr T, Hildner F, Grillari J, Ailhaud G, Herzig S, Cinti S, Amri EZ, Scheideler M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 2015; 32:1578-90. [PMID: 24375761 DOI: 10.1002/stem.1603] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022]
Abstract
Adipose tissue contains thermogenic adipocytes (i.e., brown and brite/beige) that oxidize nutrients at exceptionally high rates via nonshivering thermogenesis. Its recent discovery in adult humans has opened up new avenues to fight obesity and related disorders such as diabetes. Here, we identified miR-26a and -26b as key regulators of human white and brite adipocyte differentiation. Both microRNAs are upregulated in early adipogenesis, and their inhibition prevented lipid accumulation while their overexpression accelerated it. Intriguingly, miR-26a significantly induced pathways related to energy dissipation, shifted mitochondrial morphology toward that seen in brown adipocytes, and promoted uncoupled respiration by markedly increasing the hallmark protein of brown fat, uncoupling protein 1. By combining in silico target prediction, transcriptomics, and an RNA interference screen, we identified the sheddase ADAM metallopeptidase domain 17 (ADAM17) as a direct target of miR-26 that mediated the observed effects on white and brite adipogenesis. These results point to a novel, critical role for the miR-26 family and its downstream effector ADAM17 in human adipocyte differentiation by promoting characteristics of energy-dissipating thermogenic adipocytes.
Collapse
Affiliation(s)
- Michael Karbiener
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Jiang C, Kuang L, Merkel MP, Yue F, Cano-Vega MA, Narayanan N, Kuang S, Deng M. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat. Front Endocrinol (Lausanne) 2015; 6:169. [PMID: 26617571 PMCID: PMC4639710 DOI: 10.3389/fendo.2015.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Liangju Kuang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Madeline P. Merkel
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Mario Alberto Cano-Vega
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- *Correspondence: Shihuan Kuang, ; Meng Deng,
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- *Correspondence: Shihuan Kuang, ; Meng Deng,
| |
Collapse
|
536
|
Dempersmier J, Sul HS. Shades of brown: a model for thermogenic fat. Front Endocrinol (Lausanne) 2015; 6:71. [PMID: 26005433 PMCID: PMC4424901 DOI: 10.3389/fendo.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine.
Collapse
Affiliation(s)
- Jon Dempersmier
- Comparative Biochemistry Program, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Hei Sook Sul
- Comparative Biochemistry Program, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Hei Sook Sul, Comparative Biochemistry Program, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA,
| |
Collapse
|
537
|
Wan Y, Xue R, Wang Y, Zhang Q, Huang S, Wu W, Ye H, Zhang Z, Li Y. The effect of neuropeptide Y on brown-like adipocyte's differentiation and activation. Peptides 2015; 63:126-33. [PMID: 25451330 DOI: 10.1016/j.peptides.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
Despite its wide distribution in the central nervous system, the presence of Neuropeptide Y (NPY) in peripheral tissues has been detected. White adipose tissue (WAT) is a new site of NPY synthesis and secretion. The development of brown-like adipocytes in WAT is controlled by hypothalamic NPY neurons through interaction with sympathetic nervous system (SNS). However, whether peripheral NPY has a direct effect on induction of the Uncoupling protein1 (UCP1)-positive adipocytes is unknown. We have used adipocytes derived from C3H10T1/2 stem cells as a model of brown-like adipocyte, and investigated the role of NPY in their differentiation and activation. In general, NPY had no effect on brown adipogenesis of C3H10T1/2 stem cell, but suppressed db-cAMP activation of brown-like adipocytes, which was due to blunting brown fat-relevant gene expression and mitochondrial function. NPY showed suppression in a receptor-dependent manner, inhibition of endogenous cAMP production and cAMP-PKA-dependent pathways p38 MAPK and CREB phosphorylation were involved in the downstream mechanisms. A novel role of NPY in the peripheral is presented, which may help decrease energy expenditure in WAT of obese subjects.
Collapse
Affiliation(s)
- Yun Wan
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Ruidan Xue
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Yi Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Shan Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College Fudan University, Shanghai 200040, China.
| |
Collapse
|
538
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
539
|
Jeanson Y, Carrière A, Casteilla L. A New Role for Browning as a Redox and Stress Adaptive Mechanism? Front Endocrinol (Lausanne) 2015; 6:158. [PMID: 26500607 PMCID: PMC4598589 DOI: 10.3389/fendo.2015.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 01/27/2023] Open
Abstract
The worldwide epidemic of obesity and metabolic disorders is focusing the attention of the scientific community on white adipose tissue (WAT) and its biology. This tissue is characterized not only by its capability to change in size and shape but also by its heterogeneity and versatility. WAT can be converted into brown fat-like tissue according to different physiological and pathophysiological situations. The expression of uncoupling protein-1 in brown-like adipocytes changes their function from energy storage to energy dissipation. This plasticity, named browning, was recently rediscovered and convergent recent accounts, including in humans, have revived the idea of using these oxidative cells to fight against metabolic diseases. Furthermore, recent reports suggest that, beside the increased energy dissipation and thermogenesis that may have adverse effects in situations such as cancer-associated cachexia and massive burns, browning could be also considered as an adaptive stress response to high redox pressure and to major stress that could help to maintain tissue homeostasis and integrity. The aim of this review is to summarize the current knowledge concerning brown adipocytes and the browning process and also to explore unexpected putative role(s) for these cells. While it is important to find new browning inducers to limit energy stores and metabolic diseases, it also appears crucial to develop new browning inhibitors to limit adverse energy dissipation in wasting-associated syndromes.
Collapse
Affiliation(s)
- Yannick Jeanson
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
- *Correspondence: Louis Casteilla,
| |
Collapse
|
540
|
El-Assaad W, El-Kouhen K, Mohammad AH, Yang J, Morita M, Gamache I, Mamer O, Avizonis D, Hermance N, Kersten S, Tremblay ML, Kelliher MA, Teodoro JG. Deletion of the gene encoding G0/G 1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice. Diabetologia 2015; 58:149-57. [PMID: 25381555 PMCID: PMC5001162 DOI: 10.1007/s00125-014-3429-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Obesity is a global epidemic resulting from increased energy intake, which alters energy homeostasis and results in an imbalance in fat storage and breakdown. G0/G1 switch gene 2 (G0s2) has been recently characterised in vitro as an inhibitor of adipose triglyceride lipase (ATGL), the rate-limiting step in fat catabolism. In the current study we aim to functionally characterise G0s2 within the physiological context of a mouse model. METHODS We generated a mouse model in which G0s2 was deleted. The homozygous G0s2 knockout (G0s2 (-/-)) mice were studied over a period of 22 weeks. Metabolic variables were measured including body weight and body composition, food intake, glucose and insulin tolerance tests, energy metabolism and thermogenesis. RESULTS We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo. G0s2 (-/-) mice are lean, resistant to weight gain induced by a high-fat diet and are glucose tolerant and insulin sensitive. The white adipose tissue of G0s2 (-/-) mice has enhanced lipase activity and adipocytes showed enhanced stimulated lipolysis. Energy metabolism in the G0s2 (-/-) mice is shifted towards enhanced lipid metabolism and increased thermogenesis. G0s2 (-/-) mice showed enhanced cold tolerance and increased expression of thermoregulatory and oxidation genes within white adipose tissue, suggesting enhanced 'browning' of the white adipose tissue. CONCLUSIONS/INTERPRETATION Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Karim El-Kouhen
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Amro H. Mohammad
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Jieyi Yang
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Masahiro Morita
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Isabelle Gamache
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Orval Mamer
- Metabolomics Core Facility, Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Daina Avizonis
- Metabolomics Core Facility, Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Nicole Hermance
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Michel L. Tremblay
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | | | - Jose G. Teodoro
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
541
|
Nam M, Cooper MP. Role of Energy Metabolism in the Brown Fat Gene Program. Front Endocrinol (Lausanne) 2015; 6:104. [PMID: 26175716 PMCID: PMC4485181 DOI: 10.3389/fendo.2015.00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat that safely metabolize fat, a feature that has great promise in the fight against obesity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond their conventional role as generators of heat. There is mounting evidence that impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and other BAT-selective genes, implying that mitochondria exert transcriptional control over the brown fat gene program. In this review, we discuss the current understanding of brown fat mitochondria, their potential role in transcriptional control of the brown fat gene program, and potential strategies to treat obesity in humans by leveraging thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Minwoo Nam
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcus P. Cooper
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- *Correspondence: Marcus P. Cooper, Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, 7th Floor West, AS7-1053, Worcester, MA 01605, USA,
| |
Collapse
|
542
|
Pyrżak B, Demkow U, Kucharska AM. Brown Adipose Tissue and Browning Agents: Irisin and FGF21 in the Development of Obesity in Children and Adolescents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 866:25-34. [PMID: 26022904 DOI: 10.1007/5584_2015_149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the pediatric population, especially in early infancy, the activity of brown adipose tissue (BAT) is the highest. Further in life BAT is more active in individuals with a lower body mass index and one can expect that BAT is protective against childhood obesity. The development of BAT throughout the whole life can be regulated by genetic, endocrine, and environmental factors. Three distinct adipose depots have been identified: white, brown, and beige adipocytes. The process by which BAT can become beige is still unclear and is an area of intensive research. The "browning agents" increase energy expenditure through the production of heat. Numerous factors known as "browning agents" have currently been described. In humans, recent studies justify a notion of a role of novel myokines: irisin and fibroblast growth factor 21 (FGF21) in the metabolism and development of obesity. This review describes a possible role of irisin and FGF21 in the pathogenesis of obesity in children.
Collapse
Affiliation(s)
- B Pyrżak
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 24 Marszalkowska St., 00-576, Warsaw, Poland,
| | | | | |
Collapse
|
543
|
Varlamov O, Chu M, Cornea A, Sampath H, Roberts CT. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology 2015; 156:80-9. [PMID: 25356825 PMCID: PMC4272393 DOI: 10.1210/en.2014-1699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic diversity may play an adaptive role by providing graded biological responses to fluctuations in environmental stimuli. We used single-cell imaging of the metabolizable fluorescent fatty acid analog 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-C12 and fluorescent 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) to explore cellular heterogeneity in nutrient uptake in white adipose tissue (WAT) explants of rhesus macaques. Surprisingly, WAT displayed a striking cell size-independent mosaic pattern, in that adjacent adipocytes varied with respect to insulin-stimulated BODIPY-C12 and 2-NBDG uptake. Relative free fatty acid (FFA) transport activity correlated with the cellular levels of FFA transporter protein-1 and the scavenger receptor CD36 in individual adipocytes. In vitro incubation of WAT explants for 24 hours caused partial desynchronization of cellular responses, suggesting that adipocytes may slowly alter their differential nutrient uptake activity. In vitro-differentiated human adipocytes also exhibited a mosaic pattern of BODIPY-C12 uptake. WAT from animals containing a homogeneous population of large adipocytes was nonmosaic, in that every adipocyte exhibited a similar level of BODIPY-C12 fluorescence, suggesting that the development of obesity is associated with the loss of heterogeneity in WAT. Hence, for the first time, we demonstrate an intrinsic heterogeneity in FFA and glucose transport activity in WAT.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science (O.V., C.T.R.), and Division of Neuroscience (A.C.), Oregon National Primate Research Center, Beaverton, Oregon 97006; and Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine (M.C., C.T.R.) and Center for Research Occupational and Environmental Toxicology (H.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | |
Collapse
|
544
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
545
|
Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 2014; 160:74-87. [PMID: 25543153 DOI: 10.1016/j.cell.2014.12.011] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/13/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP:
Collapse
Affiliation(s)
- Min-Woo Lee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA
| | - Justin I Odegaard
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA
| | - Lata Mukundan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA
| | - Yifu Qiu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0795, USA
| | - Jesse C Nussbaum
- Department of Medicine, University of California, San Francisco, CA 94143-0795, USA
| | - Karen Yun
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, CA 94143-0795, USA; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0795, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0795, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158-9001, USA; Departments of Physiology and Medicine, University of California San Francisco, San Francisco, CA 94158-9001, USA.
| |
Collapse
|
546
|
Park JW, Jung KH, Lee JH, Quach CHT, Moon SH, Cho YS, Lee KH. 18F-FDG PET/CT monitoring of β3 agonist-stimulated brown adipocyte recruitment in white adipose tissue. J Nucl Med 2014; 56:153-8. [PMID: 25525187 DOI: 10.2967/jnumed.114.147603] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED There is rising interest in recruitment of brown adipocytes into white adipose tissue (WAT) as a means to augment energy expenditure for weight reduction. We thus investigated the potential of (18)F-FDG uptake as an imaging biomarker that can monitor the process of WAT browning. METHODS C57BL/6 mice were treated daily with the β3 agonist CL316,243 (5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylic acid disodium salt), whereas controls received saline. (18)F-FDG small-animal PET/CT was serially performed at 1 h after CL316,243 injection. After sacrifice, interscapular brown adipose tissue (BAT) and WAT depots were extracted, weighed, and measured for (18)F-FDG uptake. Tissues underwent immunostaining, and UCP1 content was quantified by Western blotting. RESULTS PET/CT showed low (18)F-FDG uptake in both BAT and inguinal WAT at baseline. BAT uptake was substantially increased by a single stimulation with CL316,243. Uptake in inguinal WAT was only modestly elevated by the first stimulation uptake but gradually increased to BAT level by prolonged stimulation. Ex vivo measurements recapitulated the PET findings, and measured (18)F-FDG uptake in other WAT depots was similar to inguinal WAT. WAT browning by prolonged stimulation was confirmed by a substantial increase in uncoupling protein 1 (UCP1), cytochrome-c oxidase 4 (COX4), and PR domain containing 16 (PRDM16) staining as markers of brown adipocytes. UCP1 content, which served as a measure for extent of browning, was low in baseline inguinal WAT but linearly increased over 10 d of CL316,243 injection. Finally, image-based and ex vivo-measured (18)F-FDG uptake in inguinal WAT correlated well with UCP1 content. CONCLUSION (18)F-FDG PET/CT has the capacity to monitor brown adipocyte recruitment into WAT depots in vivo and may thus be useful for screening the efficacy of strategies to promote WAT browning.
Collapse
Affiliation(s)
- Jin Won Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cung Hoa Thien Quach
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
547
|
Komen JC, Thorburn DR. Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 2014; 171:1818-36. [PMID: 24102298 DOI: 10.1111/bph.12413] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well.
Collapse
Affiliation(s)
- J C Komen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | | |
Collapse
|
548
|
Kim HJ, Cho H, Alexander R, Patterson HC, Gu M, Lo KA, Xu D, Goh VJ, Nguyen LN, Chai X, Huang CX, Kovalik JP, Ghosh S, Trajkovski M, Silver DL, Lodish H, Sun L. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 2014; 63:4045-56. [PMID: 25008181 PMCID: PMC4238002 DOI: 10.2337/db14-0466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Hyunjii Cho
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Ryan Alexander
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Heide Christine Patterson
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Minxia Gu
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | | | - Dan Xu
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Vera J Goh
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Long N Nguyen
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Xiaoran Chai
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Cher X Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Mirko Trajkovski
- University of Geneva, Medical Faculty, Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - David L Silver
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Harvey Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
549
|
Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee RE, Westgate PM, Dupont-Versteegden EE. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 2014; 99:E2772-9. [PMID: 25299843 PMCID: PMC4255113 DOI: 10.1210/jc.2014-2440] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Although brown adipose tissue (BAT) activity is increased by a cold environment, little is known of the response of human white adipose tissue (WAT) to the cold. DESIGN We examined both abdominal and thigh subcutaneous (SC) WAT from 71 subjects who were biopsied in the summer or winter, and adipose expression was assessed after an acute cold stimulus applied to the thigh of physically active young subjects. RESULTS In winter, UCP1 and PGC1α mRNA were increased 4 to 10-fold (p < 0.05) and 1.5 to 2-fold, respectively, along with beige adipose markers, and UCP1 protein was 3-fold higher in the winter. The seasonal increase in abdominal SC WAT UCP1 mRNA was considerably diminished in subjects with a BMI > 30 kg/m(2), suggesting that dysfunctional WAT in obesity inhibits adipose thermogenesis. After applying an acute cold stimulus to the thigh of subjects for 30 min, PGC1α and UCP1 mRNA was stimulated 2.7-fold (p < 0.05) and 1.9-fold (p = 0.07), respectively. Acute cold also induced a 2 to 3-fold increase in PGC1α and UCP1 mRNA in human adipocytes in vitro, which was inhibited by macrophage-conditioned medium and by the addition of TNFα. CONCLUSION Human SC WAT increases thermogenic genes seasonally and acutely in response to a cold stimulus and this response is inhibited by obesity and inflammation.
Collapse
Affiliation(s)
- Philip A Kern
- Department of Medicine (P.A.K., B.S.F., B.Z.), Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky 40536; Division of Endocrinology (N.R.), University of Colorado Denver, Denver, Colorado 80220; Eastern Colorado Veterans Health Care System (N.R.), Denver, Colorado 80220; Department of Pediatrics (R.E.M.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; College of Public Health (P.M.W.) and College of Health Sciences (E.E.D-V.), University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | | | | | |
Collapse
|
550
|
Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc 2014; 90:1279-97. [PMID: 25424279 DOI: 10.1111/brv.12157] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.
Collapse
Affiliation(s)
- Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Naresh C Bal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|