501
|
Zhang C, Shinwari KI, Luo L, Zheng L. OsYSL13 Is Involved in Iron Distribution in Rice. Int J Mol Sci 2018; 19:E3537. [PMID: 30423990 PMCID: PMC6274735 DOI: 10.3390/ijms19113537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
The uptake and transport of iron (Fe) in plants are both important for plant growth and human health. However, little is known about the mechanism of Fe transport in plants, especially for crops. In the present study, the function of yellow stripe-like 13 (YSL13) in rice was analyzed. OsYSL13 was highly expressed in leaves, especially in leaf blades, whereas its expression was induced by Fe deficiency both in roots and shoots. Furthermore, the expression level of OsYSL13 was higher in older leaves than that in younger leaves. OsYSL13 was located in the plasma membrane. Metal measurement revealed that Fe concentrations were lower in the youngest leaf and higher in the older leaves of the osysl13 mutant under both Fe sufficiency and deficiency conditions, compared with the wild type and two complementation lines. Moreover, the Fe concentrations in the brown rice and seeds of the osysl13 mutant were also reduced. Opposite results were found in OsYSL13 overexpression lines. These results suggest that OsYSL13 is involved in Fe distribution in rice.
Collapse
Affiliation(s)
- Chang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | | | - Le Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
502
|
Cai C, Yuan W, Miao H, Deng M, Wang M, Lin J, Zeng W, Wang Q. Functional Characterization of BoaMYB51s as Central Regulators of Indole Glucosinolate Biosynthesis in Brassica oleracea var. alboglabra Bailey. FRONTIERS IN PLANT SCIENCE 2018; 9:1599. [PMID: 30459789 PMCID: PMC6232877 DOI: 10.3389/fpls.2018.01599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 05/26/2023]
Abstract
R2R3-MYB transcription factor MYB51 is known to control indole glucosinolate (indole GSL) biosynthesis in Arabidopsis. Here, two copies of BoaMYB51 have been isolated in Chinese kale (Brassica oleracea var. alboglabra Bailey), designated BoaMYB51.1 and BoaMYB51.2, which exhibit overlapping but distinct expression levels among different organs and respond to signaling molecules in a similar pattern. It has been demonstrated a structural and functional conservation between BoaMYB51s and AtMYB51 by phylogenetic analysis, complementation studies and transient expression assay. To further investigate the transcriptional mechanism, we identified the transcriptional activation domain (TAD) and putative interacting proteins of BoaMYB51s by means of yeast (Saccharomyces cerevisiae) two hybrid. Using tobacco (Nicotiana benthamiana) transient expression assay, we confirmed that the carboxy-end is required for transcriptional activation activity of BoaMYB51s. In addition, several BoaMYB51-interacting proteins have been identified by yeast two-hybrid screening. These results provide important insights into the molecular mechanisms by which MYB51 transcriptionally regulates indole GSL biosynthesis.
Collapse
Affiliation(s)
- Congxi Cai
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenxin Yuan
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Huiying Miao
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Mingdan Deng
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Mengyu Wang
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Jiayao Lin
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Wei Zeng
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Qiaomei Wang
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
503
|
Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. NATURE PLANTS 2018; 4:953-963. [PMID: 30323182 DOI: 10.1038/s41477-018-0266-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2018] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is an essential mineral nutrient that severely affects the growth, yield and nutritional quality of plants if not supplied in sufficient quantities. Here, we report that a short C-terminal amino-acid sequence consensus motif (IRON MAN; IMA) conserved across numerous, highly diverse peptides in angiosperms is essential for Fe uptake in plants. Overexpression of the IMA sequence in Arabidopsis induced Fe uptake genes in roots, causing accumulation of Fe and manganese in all plant parts including seeds. Silencing of all eight IMA genes harboured in the Arabidopsis genome abolished Fe uptake and caused severe chlorosis; increasing the Fe supply or expressing IMA1 restored the wild-type phenotype. IMA1 is predominantly expressed in the phloem, preferentially in leaves, and reciprocal grafting showed that IMA1 peptides in shoots positively regulate Fe uptake in roots. IMA homologues are highly responsive to the Fe status and functional when heterologously expressed across species. IMA constitutes a novel family of peptides that are critical for the acquisition and cellular homeostasis of Fe across land plants.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ping Lan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Girish Mokkapati
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Molecular Biology and Agricultural Sciences Program, Taiwan International Graduate program, Academia Sinica and National ChungHsing University, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
504
|
Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U. A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:2473-2487. [PMID: 30073738 PMCID: PMC6638074 DOI: 10.1111/mpp.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The type III secretion (T3S) system, an essential pathogenicity factor in most Gram-negative plant-pathogenic bacteria, injects bacterial effector proteins directly into the plant cell cytosol. Here, the type III effectors (T3Es) manipulate host cell processes to suppress defence and establish appropriate conditions for bacterial multiplication in the intercellular spaces of the plant tissue. T3E export depends on a secretion signal which is also present in 'non-effectors'. The latter are secreted extracellular components of the T3S apparatus, but are not translocated into the plant cell. How the T3S system discriminates between T3Es and non-effectors is still enigmatic. Previously, we have identified a putative translocation motif (TrM) in several T3Es from Xanthomonas campestris pv. vesicatoria (Xcv). Here, we analysed the TrM of the Xcv effector XopB in detail. Mutation studies showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB. Similar results were obtained for other effectors from Xcv. As the arginine residues of the TrM mediate specific binding of XopB to cardiolipin, one of the major lipid components in Xanthomonas membranes, we assume that the association of T3Es to the bacterial membrane prior to secretion supports type III-dependent export.
Collapse
Affiliation(s)
- Heike Prochaska
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sabine Thieme
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jan Grau
- Institute for Informatics, Department of BioinformaticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Cornelius Schmidtke
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Magnus Hallensleben
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Peter John
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Ulla Bonas
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
505
|
Shimada T, Kunieda T, Sumi S, Koumoto Y, Tamura K, Hatano K, Ueda H, Hara-Nishimura I. The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds. PLANT & CELL PHYSIOLOGY 2018; 59:2331-2338. [PMID: 30099531 DOI: 10.1093/pcp/pcy158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The adaptor protein (AP) complexes play crucial roles in vesicle formation in post-Golgi trafficking. Land plants have five types of AP complexes (AP-1 to AP-5), each of which consists of two large subunits, one medium subunit and one small subunit. Here, we show that the Arabidopsis AP-1 complex mediates the polarized secretion and accumulation of a pectic polysaccharide called mucilage in seed coat cells. Previously, a loss-of-function mutant of AP1M2, the medium subunit of AP-1, has been shown to display deleterious growth defects because of defective cytokinesis. To investigate the function of AP-1 in interphase, we generated transgenic Arabidopsis plants expressing AP1M2-GFP (green fluorescent protein) under the control of the cytokinesis-specific KNOLLE (KN) promoter in the ap1m2 background. These transgenic plants, designated pKN lines, successfully rescued the cytokinesis defect and dwarf phenotype of ap1m2. pKN lines showed reduced mucilage extrusion from the seed coat. Furthermore, abnormal accumulation of mucilage was found in the vacuoles of the outermost integument cells of pKN lines. During seed development, the accumulation of AP1M2-GFP was greatly reduced in the integument cells of pKN lines. These results suggest that trans-Golgi network (TGN)-localized AP-1 is involved in the trafficking of mucilage components to the outer surface of seed coat cells. Our study highlights an evolutionarily conserved function of AP-1 in polarized sorting in eukaryotic cells.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadashi Kunieda
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sakura Sumi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasuko Koumoto
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kyoko Hatano
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Haruko Ueda
- Department of Biology Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Ikuko Hara-Nishimura
- Department of Biology Faculty of Science and Engineering, Konan University, Kobe, Japan
| |
Collapse
|
506
|
Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:683-695. [PMID: 30146417 DOI: 10.1016/j.plaphy.2018.08.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 05/21/2023]
Abstract
ERF proteins are plant-specific transcription factors that play significant roles in plant defense against various stresses. However, only little information regarding stress-related ERF genes is available in tomato (Solanum lycopersicum, Sl). In this study, a tomato ERF gene, SlERF84, was cloned and functionally characterized. The nucleus localization of SlERF84-sGFP was confirmed through a transient expression assay. Transactivation assays in yeast demonstrated that SlERF84 functions as a transcriptional activator. Real-time PCR analysis revealed that SlERF84 could be markedly induced by drought, salt and by several phytohormones (ABA, MeJA and ACC). Overexpression of SlERF84 in Arabidopsis endows transgenic plants with ABA hypersensitivity and enhanced tolerance to drought and salt stress. Histochemical staining assay showed that SlERF84 renders transgenic plants better ROS-scavenging capability. Pathogen inoculation assay revealed that SlERF84 might negatively modulate plant defense response to Pseudomonas syringae pv. tomato DC3000. Moreover, the transcript levels of pathogenesis-related genes AtPR1 and AtPR3 were compromised in transgenic Arabidopsis, as compared to that in Col-0 plants when inoculated with Pseudomonas syringae pv. tomato DC3000. These results suggest that SlERF84 functions as a stress-responsive transcription factor in differentially modulation of abiotic and biotic stress tolerance, and may have applications in the engineering of economically important crops.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
507
|
Martínez-Cruz J, Romero D, De Vicente A, Pérez-García A. Transformation by growth onto agro-infiltrated tissues (TGAT), a simple and efficient alternative for transient transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii. MOLECULAR PLANT PATHOLOGY 2018; 19:2502-2515. [PMID: 30073764 PMCID: PMC6638186 DOI: 10.1111/mpp.12722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 05/30/2023]
Abstract
A major limitation of molecular studies in powdery mildew fungi (Erysiphales) is their genetic intractability. This is because they are obligate biotrophs. In these parasites, biotrophy is determined by the presence of haustoria, which are specialized structures of parasitism that play an essential role in the acquisition of nutrients and the deliverance of effectors. Podosphaera xanthii is the main causal agent of cucurbit powdery mildew and a major limitation for crop productivity. In a previous study using P. xanthii conidia, we showed, for the first time, the transformation of powdery mildew fungi by Agrobacterium tumefaciens. In this work, we hypothesized that the haustorium could also act as a natural route for the acquisition of DNA. To test our hypothesis, melon cotyledons were agro-infiltrated with A. tumefaciens that contained diverse transfer DNA (T-DNA) constructs harbouring different marker genes under the control of fungal promoters and, after elimination of the bacterium, the cotyledons were subsequently inoculated with P. xanthii conidia. Our results conclusively demonstrated the transfer of different T-DNAs from A. tumefaciens to P. xanthii, including two fungicide resistance markers (hph and tub2), a reporter gene (gfp) and a translational fusion (cfp-PxEC2). These results were further supported by the co-localization of translational fluorescent fusions of A. tumefaciens VirD2 and P. xanthii Rab5 proteins into small vesicles of haustorial and hyphal cells, suggesting endocytosis as the mechanism for T-DNA uptake, presumably by the haustorium. From our perspective, transformation by growth onto agro-infiltrated tissues (TGAT) is the easiest and most reliable method for the transient transformation of powdery mildew fungi.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Antonio De Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| |
Collapse
|
508
|
Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 2018; 13:e0205117. [PMID: 30379827 PMCID: PMC6209168 DOI: 10.1371/journal.pone.0205117] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/15/2018] [Indexed: 01/30/2023] Open
Abstract
Marchantia polymorpha is one of the model species of basal land plants. Although CRISPR/Cas9-based genome editing has already been demonstrated for this plant, the efficiency was too low to apply to functional analysis. In this study, we show the establishment of CRISPR/Cas9 genome editing vectors with high efficiency for both construction and genome editing. Codon optimization of Cas9 to Arabidopsis achieved over 70% genome editing efficiency at two loci tested. Systematic assessment revealed that guide sequences of 17 nt or shorter dramatically decreased this efficiency. We also demonstrated that a combinatorial use of this system and a floxed complementation construct enabled conditional analysis of a nearly essential gene. This study reports that simple, rapid, and efficient genome editing is feasible with the series of developed vectors.
Collapse
Affiliation(s)
- Shigeo S. Sugano
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | | | | | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoriko Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Tokushima, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
509
|
Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Dev Cell 2018; 47:306-318.e5. [PMID: 30415657 DOI: 10.1016/j.devcel.2018.09.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
Auxin is a major phytohormone that controls numerous aspects of plant development and coordinates plant responses to the environment. Morphogenic gradients of auxin govern cell fate decisions and underlie plant phenotypic plasticity. Polar auxin transport plays a central role in auxin maxima generation. The discovery of the exquisite spatiotemporal expression patterns of auxin biosynthesis genes of the WEI8/TAR and YUC families suggested that local auxin production may contribute to the formation of auxin maxima. Herein, we systematically addressed the role of local auxin biosynthesis in plant development and responses to the stress phytohormone ethylene by manipulating spatiotemporal patterns of WEI8. Our study revealed that local auxin biosynthesis and transport act synergistically and are individually dispensable for root meristem maintenance. In contrast, flower fertility and root responses to ethylene require local auxin production that cannot be fully compensated for by transport in the generation of morphogenic auxin maxima.
Collapse
|
510
|
Cui B, Pan Q, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan W, Jiang J, Loake GJ. S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nat Commun 2018; 9:4226. [PMID: 30315167 PMCID: PMC6185907 DOI: 10.1038/s41467-018-06578-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) orchestrates a plethora of incongruent plant immune responses, including the reprograming of global gene expression. However, the cognate molecular mechanisms remain largely unknown. Here we show a zinc finger transcription factor (ZF-TF), SRG1, is a central target of NO bioactivity during plant immunity, where it functions as a positive regulator. NO accumulation promotes SRG1 expression and subsequently SRG1 occupies a repeated canonical sequence within target promoters. An EAR domain enables SRG1 to recruit the corepressor TOPLESS, suppressing target gene expression. Sustained NO synthesis drives SRG1 S-nitrosylation predominantly at Cys87, relieving both SRG1 DNA binding and transcriptional repression activity. Accordingly, mutation of Cys87 compromises NO-mediated control of SRG1-dependent transcriptional suppression. Thus, the SRG1-SNO formation may contribute to a negative feedback loop that attenuates the plant immune response. SRG1 Cys87 is evolutionary conserved and thus may be a target for redox regulation of ZF-TF function across phylogenetic kingdoms.
Collapse
Affiliation(s)
- Beimi Cui
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Qiaona Pan
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | | - Saima Umbreen
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bo Yuan
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jihong Jiang
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
| | - Gary J Loake
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China.
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
511
|
Wang C, Aubé F, Quadrado M, Dargel-Graffin C, Mireau H. Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5131-5140. [PMID: 30053059 PMCID: PMC6184586 DOI: 10.1093/jxb/ery275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/16/2018] [Indexed: 05/23/2023]
Abstract
Group II introns are common features of most angiosperm mitochondrial genomes. Intron splicing is thus essential for the expression of mitochondrial genes and is facilitated by numerous nuclear-encoded proteins. However, the molecular mechanism and the protein cofactors involved in this complex process have not been fully elucidated. In this study, we characterized three new pentatricopeptide repeat (PPR) genes, called MISF26, MISF68, and MISF74, of Arabidopsis and showed they all function in group II intron splicing and plant development. The three PPR genes encode P-type PPR proteins that localize in the mitochondrion. Transcript analysis revealed that the splicing of a single intron is altered in misf26 mutants, while several mitochondrial intron splicing defects were detected in misf68 and misf74 mutants. To our knowledge, MISF68 and MISF74 are the first two PPR proteins implicated in the splicing of more than one intron in plant mitochondria, suggesting that they may facilitate splicing differently from other previously identified PPR splicing factors. The splicing defects in the misf mutants induce a significant decrease in complex I assembly and activity, and an overexpression of mRNAs of the alternative respiratory pathway. These results therefore reveal that nuclear encoded proteins MISF26, MISF68, and MISF74 are involved in splicing of a cohort of mitochondrial group II introns and thereby required for complex I biogenesis.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, Orsay Cedex, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| |
Collapse
|
512
|
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE. The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants. FRONTIERS IN PLANT SCIENCE 2018; 9:1331. [PMID: 30333839 PMCID: PMC6175978 DOI: 10.3389/fpls.2018.01331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (XPT) represents the fourth functional member of the phosphate translocator (PT) family residing in the plastid inner envelope membrane. In contrast to the other three members, little is known on the physiological role of the XPT. Based on its major transport substrates (i.e., pentose phosphates) the XPT has been proposed to act as a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway (OPPP). As the XPT is also capable of transporting triose phosphates, it might as well support the triose phosphate PT (TPT) in exporting photoassimilates from the chloroplast in the light ('day path of carbon') and hence in supplying the whole plant with carbohydrates. Two independent knockout mutant alleles of the XPT (xpt-1 and xpt-2) lacked any specific phenotype, suggesting that the XPT function is redundant. However, double mutants generated from crossings of xpt-1 to different mutant alleles of the TPT (tpt-1 and tpt-2) were severely retarded in size, exhibited a high chlorophyll fluorescence phenotype, and impaired photosynthetic electron transport rates. In the double mutant the export of triose phosphates from the chloroplasts is completely blocked. Hence, precursors for sucrose biosynthesis derive entirely from starch turnover ('night path of carbon'), which was accompanied by a marked accumulation of maltose as a starch breakdown product. Moreover, pentose phosphates produced by the extraplastidial branch of the OPPP also accumulated in the double mutants. Thus, an active XPT indeed retrieves excessive pentose phosphates from the extra-plastidial space and makes them available to the plastids. Further metabolic profiling revealed that phosphorylated intermediates remained largely unaffected, whereas fumarate and glycine contents were diminished in the double mutants. The assessment of C/N-ratios suggested co-limitations of C- and N-metabolism as possible cause for growth retardation of the double mutants. Feeding of sucrose partially rescued the growth and photosynthesis phenotypes of the double mutants. Immunoblots of thylakoid proteins, spectroscopic determinations of photosynthesis complexes, and chlorophyll a fluorescence emission spectra at 77 Kelvin could only partially explain constrains in photosynthesis observed in the double mutants. The data are discussed together with aspects of the OPPP and central carbon metabolism.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | | | | | - Stephan Krueger
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Peter Dörmann
- Molecular Biotechnology and Biochemistry, Universität Bonn, Bonn, Germany
| | | | - Ulf-Ingo Flügge
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
513
|
Kovinich N, Wang Y, Adegboye J, Chanoca AA, Otegui MS, Durkin P, Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. PLANT DIRECT 2018; 2:e00087. [PMID: 31245687 PMCID: PMC6508792 DOI: 10.1002/pld3.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/11/2023]
Abstract
Anthocyanins provide ideal visual markers for the identification of mutations that disrupt molecular responses to abiotic stress. We screened Arabidopsis mutants of ABC (ATP-Binding Cassette) and MATE (Multidrug And Toxic compound Extrusion) transporter genes under nutritional stress and identified four genes (ABCG25,ABCG9,ABCG5, and MATE45) required for normal anthocyanin pigmentation. ABCG25 was previously demonstrated to encode a vascular-localized cellular exporter of abscisic acid (ABA). Our results show that MATE45 encodes an aerial meristem- and a vascular-localized transporter associated with the trans-Golgi, and that it plays an important role in controlling the levels and distribution of ABA in growing aerial meristems and non-meristematic tissues. MATE45 promoter-GUS reporter fusions revealed the activity localized to the leaf and influorescence meristems and the vasculature. Loss-of-function mate45 mutants exhibited accelerated rates of aerial organ initiation suggesting at least partial functional conservation with the maize ortholog bige1. The aba2-1 mutant, which is deficient in ABA biosynthesis, exhibited a number of phenotypes that were rescued in the mate45-1 aba2-1 double mutant. mate45 exhibited enhanced the seed dormancy, and germination was hypersensitive to ABA. Enhanced frequency of leaf primordia growth in mate45 seedlings grown in nutrient imbalance stress was ABA-dependent. The ABA signaling reporter construct pRD29B::GUS revealed elevated levels of ABA signaling in the true leaf primordia of mate45 seedlings grown under nutritional stress, and gradually reduced signaling in surrounding cotyledon and hypocotyl tissues concomitant with reduced expressions of ABCG25. Our results suggest a role of MATE45 in reducing meristematic ABA and in maintaining ABA distribution in adjacent non-meristematic tissues.
Collapse
Affiliation(s)
- Nik Kovinich
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
| | - Yiqun Wang
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMassachusetts
| | - Janet Adegboye
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Cleveland Clinic Lerner College of MedicineClevelandOhio
| | - Alexandra A. Chanoca
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
VIB‐UGENT Center for Plant Systems BiologyZwijnaardeBelgium
| | - Marisa S. Otegui
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Laboratory of Molecular and Cellular BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Paige Durkin
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
West Virginia University School of DentistryMorgantownWest Virginia
| | - Erich Grotewold
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
514
|
Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. THE NEW PHYTOLOGIST 2018; 220:232-248. [PMID: 30156022 PMCID: PMC6175486 DOI: 10.1111/nph.15277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 05/02/2023]
Abstract
The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Dae Sung Kim
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Ruth Lintermann
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Pinja Jaspers
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Michael Wrzaczek
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Jaakko Kangasjärvi
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Daniel MacLean
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | |
Collapse
|
515
|
Polko JK, Barnes WJ, Voiniciuc C, Doctor S, Steinwand B, Hill JL, Tien M, Pauly M, Anderson CT, Kieber JJ. SHOU4 Proteins Regulate Trafficking of Cellulose Synthase Complexes to the Plasma Membrane. Curr Biol 2018; 28:3174-3182.e6. [DOI: 10.1016/j.cub.2018.07.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
|
516
|
Muro K, Matsuura-Tokita K, Tsukamoto R, Kanaoka MM, Ebine K, Higashiyama T, Nakano A, Ueda T. ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun Biol 2018; 1:152. [PMID: 30272028 PMCID: PMC6158268 DOI: 10.1038/s42003-018-0158-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
During plant reproduction, sperm cells are delivered to ovules through growing pollen tubes. This process involves tip-localized receptor kinases regulating integrity and/or guidance of pollen tubes, whose localizations must be strictly regulated. However, the molecular basis for tip-localization of these molecules remains largely elusive. Here we show that a pair of AP180 N-terminal homology domain-containing proteins, PICALM5a and PICALM5b, is responsible for the tip-localization of ANXUR receptor kinases acting in an autocrine signaling pathway required for pollen tube integrity in Arabidopsis thaliana. The picalm5a picalm5b double mutant exhibits reduced fertility, and the double mutant pollen is defective in pollen tube integrity with premature bursts. The tip localization of ANXUR proteins is severely impaired in picalm5a picalm5b pollen tubes, whereas another receptor kinase PRK6 acting in pollen tube guidance is not affected. Based on these results, we propose that PICALM5 proteins serve as specific loading adaptors to recycle ANXUR proteins.
Collapse
Affiliation(s)
- Keita Muro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kumi Matsuura-Tokita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
517
|
Kawade K, Li Y, Koga H, Sawada Y, Okamoto M, Kuwahara A, Tsukaya H, Hirai MY. The cytochrome P450 CYP77A4 is involved in auxin-mediated patterning of the Arabidopsis thaliana embryo. Development 2018; 145:145/17/dev168369. [PMID: 30213790 DOI: 10.1242/dev.168369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Metabolism often plays an important role in developmental control, in addition to supporting basal physiological requirements. However, our understanding of this interaction remains limited. Here, we performed quantitative phenome analysis of Arabidopsis thaliana cytochrome P450 mutants to identify a novel interaction between development and metabolism. We found that cyp77a4 mutants exhibit specific defects in cotyledon development, including asymmetric positioning and cup-shaped morphology, which could be rescued by introducing the CYP77A4 gene. Microscopy revealed that the abnormal patterning was detected at least from the 8-cell stage of the cyp77a4 embryos. We next analysed auxin distribution in mutant embryos, as the phenotypes resembled those of auxin-related mutants. We found that the auxin response pattern was severely perturbed in the cyp77a4 embryos owing to an aberrant distribution of the auxin efflux carrier PIN1. CYP77A4 intracellularly localised to the endoplasmic reticulum, which is consistent with the notion that this enzyme acts as an epoxidase of unsaturated fatty acids in the microsomal fraction. We propose that the CYP77A4-dependent metabolic pathway is an essential element for the establishment of polarity in plant embryos.
Collapse
Affiliation(s)
- Kensuke Kawade
- Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan .,National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yimeng Li
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
518
|
Zhang M, Chiang YH, Toruño TY, Lee D, Ma M, Liang X, Lal NK, Lemos M, Lu YJ, Ma S, Liu J, Day B, Dinesh-Kumar SP, Dehesh K, Dou D, Zhou JM, Coaker G. The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe 2018; 24:379-391.e5. [PMID: 30212650 PMCID: PMC6279242 DOI: 10.1016/j.chom.2018.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Microbial patterns are recognized by cell-surface receptors to initiate pattern-triggered immunity (PTI) in plants. Receptor-like cytoplasmic kinases (RLCKs), such as BIK1, and calcium-dependent protein kinases (CPKs) are engaged during PTI to activate the NADPH oxidase RBOHD for reactive oxygen species (ROS) production. It is unknown whether protein kinases besides CPKs and RLCKs participate in RBOHD regulation. We screened mutants in all ten Arabidopsis MAP4 kinases (MAP4Ks) and identified the conserved MAP4K SIK1 as a positive regulator of PTI. sik1 mutants were compromised in their ability to elicit the ROS burst in response to microbial features and exhibited compromised PTI to bacterial infection. SIK1 directly interacts with, phosphorylates, and stabilizes BIK1 in a kinase activity-dependent manner. Furthermore, SIK1 directly interacts with and phosphorylates RBOHD upon flagellin perception. Thus, SIK1 positively regulates immunity by stabilizing BIK1 and activating RBOHD to promote the extracellular ROS burst.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Mark Lemos
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
519
|
Nassrallah A, Rougée M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F. DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife 2018; 7:37892. [PMID: 30192741 PMCID: PMC6128693 DOI: 10.7554/elife.37892] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.
Collapse
Affiliation(s)
- Amr Nassrallah
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Martin Rougée
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Stephanie Drevensek
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Elisa Iniesto
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Ouardia Ait-Mohamed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Gerald Zabulon
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ikhlak Ahmed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - David Stroebel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vanessa Masson
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Berangere Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cecile Breyton
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
| | - Geert De Jaeger
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
520
|
Ruan Y, Halat LS, Khan D, Jancowski S, Ambrose C, Belmonte MF, Wasteneys GO. The Microtubule-Associated Protein CLASP Sustains Cell Proliferation through a Brassinosteroid Signaling Negative Feedback Loop. Curr Biol 2018; 28:2718-2729.e5. [DOI: 10.1016/j.cub.2018.06.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
|
521
|
Martínez-Cruz J, Romero D, de la Torre FN, Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. The Functional Characterization of Podosphaera xanthii Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:914-931. [PMID: 29513627 DOI: 10.1094/mpmi-12-17-0318-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Diego Romero
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Fernando N de la Torre
- 2 Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and
| | - Dolores Fernández-Ortuño
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Juan A Torés
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Antonio de Vicente
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
522
|
Knoch E, Sugawara S, Mori T, Poulsen C, Fukushima A, Harholt J, Fujimoto Y, Umemoto N, Saito K. Third DWF1 paralog in Solanaceae, sterol Δ 24-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc Natl Acad Sci U S A 2018; 115:E8096-E8103. [PMID: 30082386 PMCID: PMC6112714 DOI: 10.1073/pnas.1807482115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A large part of chemodiversity of plant triterpenes is due to the modification of their side chains. Reduction or isomerization of double bonds in the side chains is often an important step for the diversification of triterpenes, although the enzymes involved are not fully understood. Withanolides are a large group of structurally diverse C28 steroidal lactones derived from 24-methylenecholesterol. These compounds are found in the Indian medicinal plant Withania somnifera, also known as ashwagandha, and other members of the Solanaceae. The pathway for withanolide biosynthesis is unknown, preventing sustainable production via white biotechnology and downstream pharmaceutical usages. In the present study, based on genome and transcriptome data we have identified a key enzyme in the biosynthesis of withanolides: a DWF1 paralog encoding a sterol Δ24-isomerase (24ISO). 24ISO originated from DWF1 after two subsequent duplication events in Solanoideae plants. Withanolides and 24ISO appear only in the medicinal plants in the Solanoideae, not in crop plants such as potato and tomato, indicating negative selection during domestication. 24ISO is a unique isomerase enzyme evolved from a reductase and as such has maintained the FAD-binding oxidoreductase structure and requirement for NADPH. Using phylogenetic, metabolomic, and gene expression analysis in combination with heterologous expression and virus-induced gene silencing, we showed that 24ISO catalyzes the conversion of 24-methylenecholesterol to 24-methyldesmosterol. We propose that this catalytic step is the committing step in withanolide biosynthesis, opening up elucidation of the whole pathway and future larger-scale sustainable production of withanolides and related compounds with pharmacological properties.
Collapse
Affiliation(s)
- Eva Knoch
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yoshinori Fujimoto
- Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan;
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
523
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
524
|
Coursey T, Milutinovic M, Regedanz E, Brkljacic J, Bisaro DM. Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection. J Virol 2018. [PMID: 29875242 DOI: 10.1128/jvi.00219-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Histone posttranslational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 (EML1) and EML3, which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible (eml1) and tolerant (eml3) responses to CaLCuV infection and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Furthermore, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting.IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter chromatin structure or activity. In this study, CaLCuV was used to characterize the activities of two Arabidopsis Agenet domain histone readers, EML1 and EML3. We show that eml1 mutants are hypersusceptible to CaLCuV, whereas eml3 plants are more tolerant of infection than wild-type plants. We also demonstrate that EML1 and EML3 associate with histones and viral chromatin in planta and that both proteins bind peptides containing H3K36, a PTM associated with active gene expression. Consistent with antiviral activity, EML1 suppresses CaLCuV gene expression and reduces Pol II access to viral chromatin. By linking EML1 and EML3 to pathogenesis, these studies have expanded our knowledge of histone reader proteins and uncovered an additional level of viral chromatin regulation.
Collapse
Affiliation(s)
- Tami Coursey
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Milica Milutinovic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
- Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Regedanz
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jelena Brkljacic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, Ohio, USA
| | - David M Bisaro
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
525
|
Moison M, Marmagne A, Dinant S, Soulay F, Azzopardi M, Lothier J, Citerne S, Morin H, Legay N, Chardon F, Avice JC, Reisdorf-Cren M, Masclaux-Daubresse C. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4379-4393. [PMID: 29873769 PMCID: PMC6093384 DOI: 10.1093/jxb/ery217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.
Collapse
Affiliation(s)
- Michael Moison
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fabienne Soulay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jérémy Lothier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Halima Morin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Nicolas Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN Ecophysiologie Végétale, Agronomie and Nutrition N.C.S., Université de Caen Normandie, Caen, France
| | - Michèle Reisdorf-Cren
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Correspondence:
| |
Collapse
|
526
|
Ofori PA, Geisler M, di Donato M, Pengchao H, Otagaki S, Matsumoto S, Shiratake K. Tomato ATP-Binding Cassette Transporter SlABCB4 Is Involved in Auxin Transport in the Developing Fruit. PLANTS 2018; 7:plants7030065. [PMID: 30104476 PMCID: PMC6161087 DOI: 10.3390/plants7030065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Plant ATP binding cassette (ABC) transporters are membrane proteins that are important for transporting a wide range of compounds, including secondary metabolites and phytohormones. In Arabidopsis, some members of the ABCB subfamily of ABC transporter, also known as Multi-Drug Resistance proteins (MDRs), have been implicated in auxin transport. However, reports on the roles of the auxin-mediated ABCBs in fleshy fruit development are rare. Here, we present that SlABCB4, a member of the tomato ABCB subfamily, transports auxin in the developing fruit of tomato. Transient expression of SlABCB4-GFP fusion proteins in tobacco cells showed plasma membrane localization. The transport activity of SlABCB4, expressed in Nicotiana benthamiana protoplasts, revealed substrate specificity for indole-3-acetic acid export. Gene expression analysis of SlABCB4 revealed high expression levels at the early stages of fruit development. Therefore, SlABCB4 is considered to facilitate auxin distribution in tomato fruit, which is important for tomato fruit development.
Collapse
Affiliation(s)
- Peter Amoako Ofori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | - Martin di Donato
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | - Hao Pengchao
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
527
|
Shinozaki Y, Ezura K, Hu J, Okabe Y, Bénard C, Prodhomme D, Gibon Y, Sun TP, Ezura H, Ariizumi T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci Rep 2018; 8:12043. [PMID: 30104574 PMCID: PMC6089951 DOI: 10.1038/s41598-018-30502-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
Parthenocarpy, or pollination-independent fruit set, is an attractive trait for fruit production and can be induced by increased responses to the phytohormone gibberellin (GA), which regulates diverse aspects of plant development. GA signaling in plants is negatively regulated by DELLA proteins. A loss-of-function mutant of tomato DELLA (SlDELLA), procera (pro) thus exhibits enhanced GA-response phenotypes including parthenocarpy, although the pro mutation also confers some disadvantages for practical breeding. This study identified a new milder hypomorphic allele of SlDELLA, procera-2 (pro-2), which showed weaker GA-response phenotypes than pro. The pro-2 mutant contains a single nucleotide substitution, corresponding to a single amino acid substitution in the SAW subdomain of the SlDELLA. Accumulation of the mutated SlDELLA transcripts in wild-type (WT) resulted in parthenocarpy, while introduction of intact SlDELLA into pro-2 rescued mutant phenotypes. Yeast two-hybrid assays revealed that SlDELLA interacted with three tomato homologues of GID1 GA receptors with increasing affinity upon GA treatment, while their interactions were reduced by the pro and pro-2 mutations. Both pro and pro-2 mutants produced higher fruit yields under high temperature conditions, which were resulted from higher fruit set efficiency, demonstrating the potential for genetic parthenocarpy to improve yield under adverse environmental conditions.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Duyen Prodhomme
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
528
|
Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection. J Virol 2018; 92:JVI.00219-18. [PMID: 29875242 DOI: 10.1128/jvi.00219-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/27/2018] [Indexed: 11/20/2022] Open
Abstract
Histone posttranslational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 (EML1) and EML3, which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible (eml1) and tolerant (eml3) responses to CaLCuV infection and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Furthermore, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting.IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter chromatin structure or activity. In this study, CaLCuV was used to characterize the activities of two Arabidopsis Agenet domain histone readers, EML1 and EML3. We show that eml1 mutants are hypersusceptible to CaLCuV, whereas eml3 plants are more tolerant of infection than wild-type plants. We also demonstrate that EML1 and EML3 associate with histones and viral chromatin in planta and that both proteins bind peptides containing H3K36, a PTM associated with active gene expression. Consistent with antiviral activity, EML1 suppresses CaLCuV gene expression and reduces Pol II access to viral chromatin. By linking EML1 and EML3 to pathogenesis, these studies have expanded our knowledge of histone reader proteins and uncovered an additional level of viral chromatin regulation.
Collapse
|
529
|
Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors. Sci Rep 2018; 8:11009. [PMID: 30030474 PMCID: PMC6054658 DOI: 10.1038/s41598-018-29389-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Plant abietane diterpenoids (e.g. aethiopinone, 1- oxoaethiopinone, salvipisone and ferruginol), synthesized in the roots of several Salvia spp, have antibacterial, antifungal, sedative and anti-proliferative properties. Recently we have reported that content of these compounds in S. sclarea hairy roots is strongly depending on transcriptional regulation of genes belonging to the plastidial MEP-dependent terpenoid pathway, from which they mostly derive. To boost the synthesis of this interesting class of compounds, heterologous AtWRKY18, AtWRKY40, and AtMYC2 TFs were overexpressed in S. sclarea hairy roots and proved to regulate in a coordinated manner the expression of several genes encoding enzymes of the MEP-dependent pathway, especially DXS, DXR, GGPPS and CPPS. The content of total abietane diterpenes was enhanced in all overexpressing lines, although in a variable manner due to a negative pleiotropic effect on HR growth. Interestingly, in the best performing HR lines overexpressing the AtWRKY40 TF induced a significant 4-fold increase in the final yield of aethiopinone, for which we have reported an interesting anti-proliferative activity against resistant melanoma cells. The present results are also informative and instrumental to enhance the synthesis of abietane diterpenes derived from the plastidial MEP-derived terpenoid pathway in other Salvia species.
Collapse
|
530
|
Chen Y, Fokar M, Kang M, Chen N, Allen RD, Chen Y. Phosphorylation of Arabidopsis SINA2 by CDKG1 affects its ubiquitin ligase activity. BMC PLANT BIOLOGY 2018; 18:147. [PMID: 30012094 PMCID: PMC6048857 DOI: 10.1186/s12870-018-1364-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND SEVEN IN ABSENTIA (SINA) is a RING domain-containing ubiquitin ligase involved in Drosophila eye formation. SINA-like proteins in plants are involved in several signaling pathways. Of the 18 SINA-like proteins identified in Arabidopsis, SEVEN IN ABSENTIA 2 (SINA2) lacks a canonical RING domain and is thought to lack ubiquitin ligase activity. RESULTS Our results show that SINA2 has E3 ligase activity in vitro, raising the possibility that a modified B-box domain may compensate for its lack of a RING domain. SINA2 physically interacts with the nuclear protein CYCLIN-DEPENDENT KINASE G1 (CDKG1), which acts as a positive regulator of plant responses to abiotic stress. CDKG1 is expressed in multiple tissues and its expression increased in response to abscisic acid (ABA) and osmotic stress. Transgenic Arabidopsis plants that ectopically express CDKG1 exhibit increased tolerance to ABA and osmotic stress treatments during seed germination and cotyledon development, while the loss-of-function cdkg1 mutant plants show reduced tolerance to ABA and osmotic stress treatments. Moreover, CDKG1-dependent phosphorylation of SINA2 positively affects its E3 ubiquitin ligase activity. CONCLUSIONS Based on these results, we propose that CDKG1 modulates SINA2 ubiquitin ligase activity to regulate its effect on plant responses to ABA and osmotic stress.
Collapse
Affiliation(s)
- Yang Chen
- College of Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100 Republic of China
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401 USA
| | - Mohamed Fokar
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401 USA
| | - Miyoung Kang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401 USA
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401 USA
| | - Randy D. Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401 USA
| | - Yaofeng Chen
- College of Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100 Republic of China
| |
Collapse
|
531
|
León-Mediavilla J, Senovilla M, Montiel J, Gil-Díez P, Saez Á, Kryvoruchko IS, Reguera M, Udvardi MK, Imperial J, González-Guerrero M. MtMTP2-Facilitated Zinc Transport Into Intracellular Compartments Is Essential for Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:990. [PMID: 30042781 PMCID: PMC6048390 DOI: 10.3389/fpls.2018.00990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 05/23/2023]
Abstract
Zinc (Zn) is an essential nutrient for plants that is involved in almost every biological process. This includes symbiotic nitrogen fixation, a process carried out by endosymbiotic bacteria (rhizobia) living within differentiated plant cells of legume root nodules. Zn transport in nodules involves delivery from the root, via the vasculature, release into the apoplast and uptake into nodule cells. Once in the cytosol, Zn can be used directly by cytosolic proteins or delivered into organelles, including symbiosomes of infected cells, by Zn efflux transporters. Medicago truncatula MtMTP2 (Medtr4g064893) is a nodule-induced Zn-efflux protein that was localized to an intracellular compartment in root epidermal and endodermal cells, as well as in nodule cells. Although the MtMTP2 gene is expressed in roots, shoots, and nodules, mtp2 mutants exhibited growth defects only under symbiotic, nitrogen-fixing conditions. Loss of MtMTP2 function resulted in altered nodule development, defects in bacteroid differentiation, and severe reduction of nitrogenase activity. The results presented here support a role of MtMTP2 in intracellular compartmentation of Zn, which is required for effective symbiotic nitrogen fixation in M. truncatula.
Collapse
Affiliation(s)
- Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Montiel
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Ángela Saez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Ciencias Ambientales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
532
|
Zhang H, Deng X, Sun B, Lee Van S, Kang Z, Lin H, Lee YRJ, Liu B. Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. NATURE PLANTS 2018; 4:485-494. [PMID: 29967519 DOI: 10.1038/s41477-018-0192-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/04/2018] [Indexed: 05/15/2023]
Abstract
The evolutionarily conserved WD40 protein budding uninhibited by benzimidazole 3 (BUB3) is known for its function in spindle assembly checkpoint control. In the model plant Arabidopsis thaliana, nearly identical BUB3;1 and BUB3;2 proteins decorated the phragmoplast midline through interaction with the microtubule-associated protein MAP65-3 during cytokinesis. BUB3;1 and BUB3;2 interacted with the carboxy-terminal segment of MAP65-3 (but not MAP65-1), which harbours its microtubule-binding domain for its post-mitotic localization. Reciprocally, BUB3;1 and BUB3;2 also regulated MAP65-3 localization in the phragmoplast by enhancing its microtubule association. In the bub3;1 bub3;2 double mutant, MAP65-3 localization was often dissipated away from the phragmoplast midline and abolished upon treatment of low doses of the cytokinesis inhibitory drug caffeine that were tolerated by the control plant. The phragmoplast microtubule array exhibited uncoordinated expansion pattern in the double mutant cells as the phragmoplast edge reached the parental plasma membrane at different times in different areas. Upon caffeine treatment, phragmoplast expansion was halted as if the microtubule array was frozen. As a result, cytokinesis was abolished due to failed cell plate assembly. Our findings have uncovered a novel function of the plant BUB3 in MAP65-3-dependent microtubule reorganization during cytokinesis.
Collapse
Affiliation(s)
- Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Baojuan Sun
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Sonny Lee Van
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Honghui Lin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
533
|
Yang J, Wu C, Yu Y, Mao H, Bao Y, Kang Y, Qi Z. A mongolian pine specific endoplasmic reticulum localized CALMODULIN-LIKE calcium binding protein enhances arabidopsis growth. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:1-11. [PMID: 29689429 DOI: 10.1016/j.jplph.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Stress-adapted wild plants are natural sources of novel genes for molecular breeding. Here, we conducted a transcriptional analysis of Pinus sylvestris var. mongolica Litv, an evergreen pine in northeastern China, to identify a novel CALMODULIN-LIKE protein-encoding gene, PsCML1, no significant homologs found in other plant species. PsCML1 encodes a protein predicted to have a single trans-membrane domain at its N-terminal. Four EF-hand motifs (calcium [Ca]-binding structures) are located at its C-terminal and showed Ca2+-specific affinity in isothermal titration calorimetric analysis. Transient expression of PsCML1 in Nicotiana benthamiana showed that the PsCML1 localizes to the endoplasmic reticulum (ER). Heterologous expression of PsCML1 in Arabidopsis significantly promoted seedling growth, and increased resistance to stress from NaCl and Ca2+ deficiency. The roots of the transgenic seedlings had higher contents of cellulose and pectin, but less hemicellulose than those of the wild type (WT). The biosynthesis of cell wall components is linked with protein glycosylation in the ER and reactive oxygen species (ROS) homeostasis. No significant difference was found in the extent of protein glycosylation between the transgenic and WT plants. However, the transgenic roots had higher steady-state levels of ROS, NADPH oxidase activity, and endo-membrane dynamics than those of the WT. A working model was proposed to delineate the interaction among Ca2+, ROS homeostasis, and cell wall loosening-dependent cell division.
Collapse
Affiliation(s)
- Jia Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China; Inner Mongolia HeSheng Institute of Ecological Sciences & Technology, Hohhot, 011517, PR China
| | - Caili Wu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yahui Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huiping Mao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
534
|
A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLoS Genet 2018; 14:e1007455. [PMID: 29897949 PMCID: PMC6016943 DOI: 10.1371/journal.pgen.1007455] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth. The plant hormone auxin is a major regulator of cell expansion, which is a fundamental cellular process essential for plant growth and development. The acid growth theory was proposed in the 1970s to explain auxin-induced cell expansion. However, the mechanistic basis of auxin-induced cell expansion via acid growth is poorly understood. Here, we investigated the functions of the D-clade PP2C (PP2C.D) family phosphatases in auxin-induced cell expansion as well as plant growth and development. The PP2C.D protein family is composed of nine members. Our findings demonstrate that the plasma membrane-localized PP2C.D2, PP2C.D5, and PP2C.D6 family members are the major regulators in auxin-induced cell expansion. These proteins physically associate with SAUR proteins and plasma membrane H+-ATPases to negatively regulate cell expansion. PP2C.D genes are broadly expressed and are crucial for a variety of plant growth and developmental processes, particularly elongation growth, such as hypocotyl and stamen filament growth. The results of our studies provide novel insights into auxin-induced cell expansion via an acid growth mechanism.
Collapse
|
535
|
Huang W, Zhu Y, Wu W, Li X, Zhang D, Yin P, Huang J. The Pentatricopeptide Repeat Protein SOT5/EMB2279 Is Required for Plastid rpl2 and trnK Intron Splicing. PLANT PHYSIOLOGY 2018; 177:684-697. [PMID: 29686056 PMCID: PMC6001330 DOI: 10.1104/pp.18.00406] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 05/06/2023]
Abstract
Chloroplast biogenesis and development are highly complex processes requiring interaction between plastid and nuclear genomic products. Using a high-throughput screen for chloroplast biogenesis suppressors in Arabidopsis (Arabidopsis thaliana), we identified a suppressor of thf1 (sot5) that displays virescent and serrated leaves. Further characterization revealed that sot5 mutants are defective in leaf adaxial and abaxial polarity and act as enhancers of asymmetric leaves2 Map-based cloning identified SOT5 as a gene previously named EMB2279 that encodes a plastid-targeted pentatricopeptide repeat (PPR) protein with 11 PPR motifs. A G-to-A mutation in sot5 leads to a significant decrease in splicing efficiency, generating two additional mRNA variants. As reported previously, the sot5 null mutation is embryo lethal. SOT5 is predicted to bind to specific RNA sequences found in plastid rpl2 and trnK genes, and we found decreased splicing efficiency of the rpl2 and trnK genes in sot5 mutants. Together, our results reveal that the PPR protein SOT5/EMB2279 is required for intron splicing of plastid rpl2 and trnK, providing insights into the role of plastid translation in the coupled development between chloroplasts and leaves.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuan Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jirong Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
536
|
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:991-1009. [PMID: 29602224 DOI: 10.1111/tpj.13913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.
Collapse
Affiliation(s)
- Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| |
Collapse
|
537
|
Baiya S, Mahong B, Lee SK, Jeon JS, Ketudat Cairns JR. Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:223-230. [PMID: 29614441 DOI: 10.1016/j.plaphy.2018.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
The glycoside hydrolase family 1 members Os4BGlu14, Os4BGlu16, and Os4BGlu18 were proposed to be rice monolignol β-glucosidases. In vitro studies demonstrated that the Os4BGlu16 and Os4BGlu18 hydrolyze the monolignol glucosides coniferin and syringin with high efficiency compared to other substrates. The replacement of the conserved catalytic acid/base glutamate residue by a nonionizable glutamine residue in Os4BGlu14 suggested that it may be inactive as a β-glucosidase. Here, we investigated the activities of Os4BGlu14, Os4BGlu16, and Os4BGlu18 in planta by recombinant expression of their genes in the Arabidopsis bglu45-2 (monolignol β-glucosidase) mutant and analysis of monolignol glucosides by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MSMS). The bglu45-2 line exhibits elevated monolignol glucoside levels, but lower amounts of coniferin, syringin, and p-coumaryl alcohol glucoside were seen in Arabidopsis bglu45-2 rescued lines complemented by the Os4BGlu14, Os4BGlu16, and Os4BGlu18 genes. These data suggest that the bglu45-2 mutant has a broader effect on monolignols than previously reported and that the Os4BGlu14, Os4BGlu16 and Os4BGlu18 proteins act as monolignol β-glucosidases to complement the defect. An OsBGlu16-GFP fusion protein localized to the cell wall. This apoplastic localization and the effect of these enzymes on monolignol glucoside levels suggest monolignol glucosides from the vacuole may meet the monolignol β-glucosidases, despite their different localization.
Collapse
Affiliation(s)
- Supaporn Baiya
- Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, 20230, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Bancha Mahong
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung-Hee University, Yongin, 17104, South Korea.
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| |
Collapse
|
538
|
Luo Y, Qiu Y, Na R, Meerja F, Lu QS, Yang C, Tian L. A Golden Gate and Gateway double-compatible vector system for high throughput functional analysis of genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:117-126. [PMID: 29650149 DOI: 10.1016/j.plantsci.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
A major research topic nowadays is to study and understand the functions of the increasing number of predicted genes that have been discovered through the complete genome sequencing of many plant species. With the aim of developing tools for rapid and convenient gene function analysis, we have developed a set of "pGate" vectors based on the principle of Golden gate and Gateway cloning approaches. These vectors combine the positive aspects of both Golden gate and Gateway cloning strategies. pGate vectors can not only be used as Golden gate recipient vectors to assemble multiple DNA fragments in a pre-defined order, but they can also work as an entry vector to transfer the assembled DNA fragment(s) to a large number of already-existing, functionally diverse, Gateway compatible destination vectors without adding additional nucleotides during cloning. We show the pGate vectors are effective and convenient in several major aspects of gene function analyses, including BiFC (Bimolecular fluorescence complementation) to analyze protein-protein interaction, amiRNA (artificial microRNA) candidate screening and as assembly of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats, CRISPR-associated protein-9 nuclease) system elements together for genome editing. The pGate system is a practical and flexible tool which can facilitate plant gene function research.
Collapse
Affiliation(s)
- Yanjie Luo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Yang Qiu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Farida Meerja
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Department of Biology, Western University, London, ON, N6A5B7, Canada
| | - Qing Shi Lu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada.
| |
Collapse
|
539
|
Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura GI, Mizutani M, Ezura H, Hashimoto T, Shoji T. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:975-990. [PMID: 29569783 DOI: 10.1111/tpj.13911] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 05/18/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoki Shioya
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masahito Shikata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Chonprakun Thagun
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ayman Abdelkareem
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshihiro Okabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Gen-Ichiro Arimura
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
540
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
541
|
Gantner J, Ordon J, Ilse T, Kretschmer C, Gruetzner R, Löfke C, Dagdas Y, Bürstenbinder K, Marillonnet S, Stuttmann J. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system. PLoS One 2018; 13:e0197185. [PMID: 29847550 PMCID: PMC5976141 DOI: 10.1371/journal.pone.0197185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022] Open
Abstract
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.
Collapse
Affiliation(s)
- Johannes Gantner
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Theresa Ilse
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Ramona Gruetzner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Christian Löfke
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| |
Collapse
|
542
|
Gimenez-Ibanez S, Hann DR, Chang JH, Segonzac C, Boller T, Rathjen JP. Differential Suppression of Nicotiana benthamiana Innate Immune Responses by Transiently Expressed Pseudomonas syringae Type III Effectors. FRONTIERS IN PLANT SCIENCE 2018; 9:688. [PMID: 29875790 PMCID: PMC5974120 DOI: 10.3389/fpls.2018.00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/04/2018] [Indexed: 05/13/2023]
Abstract
The plant pathogen Pseudomonas syringae injects about 30 different virulence proteins, so-called effectors, via a type III secretion system into plant cells to promote disease. Although some of these effectors are known to suppress either pattern-triggered immunity (PTI) or effector-triggered immunity (ETI), the mode of action of most of them remains unknown. Here, we used transient expression in Nicotiana benthamiana, to test the abilities of type III effectors of Pseudomonas syringae pv. tomato (Pto) DC3000 and Pseudomonas syringae pv. tabaci (Pta) 11528 to interfere with plant immunity. We monitored the sequential and rapid bursts of cytoplasmic Ca2+ and reactive oxygen species (ROS), the subsequent induction of defense gene expression, and promotion of cell death. We found that several effector proteins caused cell death, but independently of the known plant immune regulator NbSGT1, a gene essential for ETI. Furthermore, many effectors delayed or blocked the cell death-promoting activity of other effectors, thereby potentially contributing to pathogenesis. Secondly, a large number of effectors were able to suppress PAMP-induced defense responses. In the majority of cases, this resulted in suppression of all studied PAMP responses, suggesting that these effectors target common elements of PTI. However, effectors also targeted different steps within defense pathways and could be divided into three major groups based on their suppressive activities. Finally, the abilities of effectors of both Pto DC3000 and Pta 11528 to suppress plant immunity was conserved in most but not all cases. Overall, our data present a comprehensive picture of the mode of action of these effectors and indicate that most of them suppress plant defenses in various ways.
Collapse
Affiliation(s)
- Selena Gimenez-Ibanez
- The Sainsbury Laboratory, Norwich, United Kingdom
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Dagmar R Hann
- The Sainsbury Laboratory, Norwich, United Kingdom
- Department of Environmental Sciences, Botanical Institute, University of Basel, Basel, Switzerland
- Institute of Genetics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich, United Kingdom
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Thomas Boller
- Department of Environmental Sciences, Botanical Institute, University of Basel, Basel, Switzerland
| | - John P Rathjen
- The Sainsbury Laboratory, Norwich, United Kingdom
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
543
|
Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci U S A 2018; 115:7135-7140. [PMID: 29789384 DOI: 10.1073/pnas.1801862115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian period and phase of cultivated tomato (Solanum lycopersicum) were changed during domestication, likely adapting the species to its new agricultural environments. Whereas the delayed circadian phase is mainly caused by allelic variation of EID1, the genetic basis of the long circadian period has remained elusive. Here we show that a partial deletion of the clock gene LNK2 is responsible for the period lengthening in cultivated tomatoes. We use resequencing data to phylogenetically classify hundreds of tomato accessions and investigate the evolution of the eid1 and lnk2 mutations along successive domestication steps. We reveal signatures of selection across the genomic region of LNK2 and different patterns of fixation of the mutant alleles. Strikingly, LNK2 and EID1 are both involved in light input to the circadian clock, indicating that domestication specifically targeted this input pathway. In line with this, we show that the clock deceleration in the cultivated tomato is light-dependent and requires the phytochrome B1 photoreceptor. Such conditional variation in circadian rhythms may be key for latitudinal adaptation in a variety of species, including crop plants and livestock.
Collapse
|
544
|
Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M, Bechtold U, Mullineaux PM. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2847-2862. [PMID: 29697803 PMCID: PMC5961379 DOI: 10.1093/jxb/ery142] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.
Collapse
Affiliation(s)
- Waleed S Albihlal
- Department of Microbial & Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Irabonosi Obomighie
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Thomas Blein
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ramona Persad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Martin Crespi
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
- Correspondence:
| |
Collapse
|
545
|
D'Amelia V, Aversano R, Ruggiero A, Batelli G, Appelhagen I, Dinacci C, Hill L, Martin C, Carputo D. Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. PLANT, CELL & ENVIRONMENT 2018; 41:1038-1051. [PMID: 28386931 DOI: 10.1111/pce.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Claudio Dinacci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
546
|
Lema Asqui S, Vercammen D, Serrano I, Valls M, Rivas S, Van Breusegem F, Conlon FL, Dangl JL, Coll NS. AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta. THE NEW PHYTOLOGIST 2018; 218:1156-1166. [PMID: 28157265 DOI: 10.1111/nph.14446] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/16/2016] [Indexed: 05/10/2023]
Abstract
The hypersensitive response (HR) is a localized programmed cell death phenomenon that occurs in response to pathogen recognition at the site of attempted invasion. Despite more than a century of research on HR, little is known about how it is so tightly regulated and how it can be contained spatially to a few cells. AtMC1 is an Arabidopsis thaliana plant metacaspase that positively regulates the HR. Here, we used an unbiased approach to identify new AtMC1 regulators. Immunoaffinity purification of AtMC1-containing complexes led us to the identification of the protease inhibitor AtSerpin1. Our data clearly showed that coimmunoprecipitation between AtMC1 and AtSerpin1 and formation of a complex between them was lost upon mutation of the AtMC1 catalytic site, and that the AtMC1 prodomain was not required for the interaction. AtSerpin1 blocked AtMC1 self-processing and inhibited AtMC1-mediated cell death. Our results constitute an in vivo example of a Serpin acting as a suicide inhibitor in plants, reminiscent of the activity of animal or viral serpins on immune/cell death regulators, including caspase-1. These results indicate a conserved function of a protease inhibitor on cell death regulators from different kingdoms with unrelated modes of action (i.e. caspases vs metacaspases).
Collapse
Affiliation(s)
- Saul Lema Asqui
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Dominique Vercammen
- Department of Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
| | - Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, Catalonia, 08193, Spain
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Department of Medical Protein Research, VIB, Ghent, 9000, Belgium
- Department of Biochemistry, Ghent University, Ghent, 9000, Belgium
| | - Frank L Conlon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
547
|
Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T, Kurata T, Hiruma K, Saijo Y, Takahashi N, Umeda M. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:439-453. [PMID: 29430765 DOI: 10.1111/tpj.13866] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/17/2023]
Abstract
In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.
Collapse
Affiliation(s)
- Nobuo Ogita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yoko Okushima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mutsutomo Tokizawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST, CREST, Kawaguchi, Saitama, 332-0012, Japan
| | - Yuko Makita
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Okamoto-Yoshiyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoki Takahashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- JST, CREST, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
548
|
Gou M, Ran X, Martin DW, Liu CJ. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. NATURE PLANTS 2018; 4:299-310. [PMID: 29725099 DOI: 10.1038/s41477-018-0142-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 05/18/2023]
Abstract
Lignin is a complex and irregular biopolymer of crosslinked phenylpropanoid units in plant secondary cell walls. Its biosynthesis requires three endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, C4H, C3'H and F5H, to establish the structural characteristics of its monomeric precursors. These P450 enzymes were reported to associate with each other or potentially with other soluble monolignol biosynthetic enzymes to form an enzyme complex or a metabolon. However, the molecular basis governing such enzyme or pathway organization remains elusive. Here, we show that Arabidopsis membrane steroid-binding proteins (MSBPs) serve as a scaffold to physically organize monolignol P450 monooxygenases, thereby regulating the lignin biosynthetic process. We find that although C4H, C3'H and F5H are in spatial proximity to each other on the ER membrane in vivo, they do not appear to directly interact with each other. Instead, two MSBP proteins physically interact with all three P450 enzymes and, moreover, MSBPs themselves associate as homomers and heteromers on the ER membrane, thereby organizing P450 clusters. Downregulation of MSBP genes does not affect the transcription levels of monolignol biosynthetic P450 genes but substantially impairs the stability and activity of the MSBP-interacting P450 enzymes and, consequently, lignin deposition, and the accumulation of soluble phenolics in the monolignol branch but not in the flavonoid pathway. Our study suggests that MSBP proteins are essential structural components in the ER membrane that physically organize and stabilize the monolignol biosynthetic P450 enzyme complex, thereby specifically controlling phenylpropanoid-monolignol branch biosynthesis.
Collapse
Affiliation(s)
- Mingyue Gou
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Xiuzhi Ran
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Dwight W Martin
- Department of Medicine and the Proteomics Center, Stony Brook University, Stony Brook, NY, USA
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
549
|
Sanchez E, Artuso E, Lombardi C, Visentin I, Lace B, Saeed W, Lolli ML, Kobauri P, Ali Z, spyrakis F, Cubas P, Cardinale F, Prandi C. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2333-2343. [PMID: 29554337 PMCID: PMC5913603 DOI: 10.1093/jxb/ery092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 06/01/2023]
Abstract
Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.
Collapse
Affiliation(s)
- Elena Sanchez
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Emma Artuso
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Chiara Lombardi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Ivan Visentin
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Beatrice Lace
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr., Freiburg, Germany
| | - Wajeeha Saeed
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Piermichele Kobauri
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Francesca spyrakis
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Pilar Cubas
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Francesca Cardinale
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Cristina Prandi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| |
Collapse
|
550
|
He F, Zhang F, Sun W, Ning Y, Wang GL. A Versatile Vector Toolkit for Functional Analysis of Rice Genes. RICE (NEW YORK, N.Y.) 2018; 11:27. [PMID: 29679176 PMCID: PMC5910328 DOI: 10.1186/s12284-018-0220-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is the main food for half of the world's population, and is considered the model for molecular biology studies of monocotyledon species. Although the rice genome was completely sequenced about 15 years ago, the function of most rice genes is still unknown. RESULTS In this study, we developed a vector toolkit that contains 42 vectors for transient expression studies in rice protoplasts and stable expression analysis in transgenic rice. These vectors have been successfully used to study protein subcellular localization, protein-protein interaction, gene overexpression, and the CRISPR/Cas9-mediated gene editing. A novel feature of these vectors is that they contain a universal multiple cloning site, which enables more than 99% of the rice coding sequences to be conveniently transferred between vectors. CONCLUSIONS The versatile vectors represent a highly efficient and high-throughput toolkit for functional analysis of rice genes.
Collapse
Affiliation(s)
- Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxian Sun
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|