601
|
Cleverdon ER, McGovern-Gooch KR, Hougland JL. The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Mol Membr Biol 2017; 33:111-124. [PMID: 29143554 DOI: 10.1080/09687688.2017.1388930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.
Collapse
Affiliation(s)
| | | | - James L Hougland
- a Department of Chemistry , Syracuse University , Syracuse , NY , USA
| |
Collapse
|
602
|
Effect of a single nucleotide polymorphism in the growth hormone secretagogue receptor (GHSR) gene on growth rate in pigs. Gene 2017; 634:68-73. [PMID: 28887157 DOI: 10.1016/j.gene.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) gene controls growth hormone (GH) release by inducing a strong stimulatory effect on the endogenous ligand, ghrelin. In this study, we examined the possible role of GHSR in the growth traits of four pig breeds, namely Tibetan pigs (n=45), Diannan small-eared pigs (n=40), Yorkshire pigs (n=45), and New Huai pigs (n=122). Single nucleotide polymorphisms (SNPs) in these pigs were identified by polymerase chain reaction (PCR) sequencing and genotyping was performed using PCR-restriction fragment length polymorphisms (PCR-RFLPs). A SNP (C/A) named C-1595A (the "C" allele), which is located 1595bp upstream of the initiation codon of the GHSR gene, was found at a higher frequency in the fast-growing Yorkshire pigs than in the slow-growing Tibetan and Diannan small-eared pigs. In preliminary assays, the C-1595A genotype was found to be associated with growth traits in New Huai pigs. Quantitative real-time PCR and western blotting assays were used to measure the levels of GHSR1a, a functionally active form of the GHSR protein, in the tissues of the growth axis. The estimated levels of mRNA and protein in pituitary and liver tissues were significantly higher in Yorkshire pigs than in Diannan small-eared or Tibetan pigs (P<0.05). The results indicated that GHSR had a positive influence on the growth rate of pigs and suggested that the C-1595A SNP could be of value as a molecular marker for improving the production performance of pig breeds.
Collapse
|
603
|
Azzam I, Gilad S, Limor R, Stern N, Greenman Y. Ghrelin stimulation by hypothalamic-pituitary-adrenal axis activation depends on increasing cortisol levels. Endocr Connect 2017; 6:847-855. [PMID: 29038331 PMCID: PMC5682420 DOI: 10.1530/ec-17-0212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Ghrelin plasma concentration increases in parallel to cortisol after a standardized psychological stress in humans, but the physiological basis of this interaction is unknown. We aimed to elucidate this question by studying the ghrelin response to pharmacological manipulation of the hypothalamic-pituitary-adrenal (HPA) axis. Six lean, healthy male volunteers were examined under four experimental conditions. Blood samples were collected every 30 min for two sequential periods of two hours. Initially, a baseline period was followed by intravenous injection of a synthetic analog of ACTH (250 μg). Subsequently, a single dose of metyrapone was administered at midnight and in the following morning, blood samples were collected for 2 h, followed by an intravenous injection of hydrocortisone (100 mg) with continued sampling. We show that increased cortisol serum levels secondary to ACTH stimulation or hydrocortisone administration are positively associated with plasma ghrelin levels, whereas central stimulation of the HPA axis by blocking cortisol synthesis with metyrapone is associated with decreased plasma ghrelin levels. Collectively, this suggests that HPA-axis-mediated elevations in ghrelin plasma concentration require increased peripheral cortisol levels, independent of central elevation of ACTH and possibly CRH levels.
Collapse
Affiliation(s)
- I Azzam
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - S Gilad
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - R Limor
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - N Stern
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
| | - Y Greenman
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
| |
Collapse
|
604
|
Abstract
IN BRIEF Bariatric surgery is the most efficacious treatment for obesity, type 2 diabetes, and other obesity-related comorbidities. In this article, the authors review the current indications for bariatric surgery and discuss the most commonly performed procedures. They analyze medical outcomes of bariatric procedures by reviewing key prospective trials and discuss changes in physiology after these procedures. They conclude by discussing long-term management of bariatric patients by reviewing current guidelines for nutritional support and listing common complications related to these procedures.
Collapse
Affiliation(s)
- Scott Kizy
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Cyrus Jahansouz
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Daniel Leslie
- Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
605
|
Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis. Pancreas 2017; 46:1305-1313. [PMID: 28984792 DOI: 10.1097/mpa.0000000000000946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. METHODS Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. RESULTS Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. CONCLUSIONS Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.
Collapse
|
606
|
Olvera‑Sandoval C, Betanzos‑Cabrera G, Casillas‑Pe�uelas R, Quintanar J. Changes in body composition and mRNA expression of ghrelin and lipoprotein lipase in rats treated with leuprolide acetate, a GnRH agonist. Exp Ther Med 2017; 15:592-598. [DOI: 10.3892/etm.2017.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carlos Olvera‑Sandoval
- Neurophysiology Laboratory, Department of Physiology and Pharmacology, Basic Science Center, Universidad Aut�noma de Aguascalientes, Ciudad Universitaria Aguascalientes, Ags 20131, M�xico
| | - Gabriel Betanzos‑Cabrera
- Nutrigenomics Laboratory, Academic Area of Nutrition, Health Sciences Institute, Universidad Aut�noma del Estado de Hidalgo, Pachuca de Soto, Hgo 42039, M�xico
| | - Rafael Casillas‑Pe�uelas
- Department of Food Technology, Universidad Aut�noma de Aguascalientes, Ciudad Universitaria Aguascalientes, Ags 20131, M�xico
| | - J. Quintanar
- Neurophysiology Laboratory, Department of Physiology and Pharmacology, Basic Science Center, Universidad Aut�noma de Aguascalientes, Ciudad Universitaria Aguascalientes, Ags 20131, M�xico
| |
Collapse
|
607
|
Wofford JA, Zollers B, Rhodes L, Bell M, Heinen E. Evaluation of the safety of daily administration of capromorelin in cats. J Vet Pharmacol Ther 2017; 41:324-333. [DOI: 10.1111/jvp.12459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - B. Zollers
- Aratana Therapeutics, Inc.; Leawood KS USA
| | - L. Rhodes
- Aratana Therapeutics, Inc.; Leawood KS USA
| | - M. Bell
- ClinData Services, Inc.; Fort Collins CO USA
| | - E. Heinen
- Aratana Therapeutics, Inc.; Leawood KS USA
| |
Collapse
|
608
|
Toth K, Slosky LM, Pack TF, Urs NM, Boone P, Mao L, Abraham D, Caron MG, Barak LS. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2. Synapse 2017; 72. [PMID: 28941296 DOI: 10.1002/syn.22012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required.
Collapse
Affiliation(s)
- Krisztian Toth
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lauren M Slosky
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Nikhil M Urs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Peter Boone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lawrence S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
609
|
Berrout L, Isokawa M. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus. Brain Res 2017; 1678:20-26. [PMID: 28993142 DOI: 10.1016/j.brainres.2017.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/03/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers.
Collapse
Affiliation(s)
- Liza Berrout
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States
| | - Masako Isokawa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States.
| |
Collapse
|
610
|
Huang R, Han J, Tian S, Cai R, Sun J, Shen Y, Wang S. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients. Oncotarget 2017; 8:15126-15135. [PMID: 28146431 PMCID: PMC5362472 DOI: 10.18632/oncotarget.14852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. RESULTS In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p < 0.05). Further logistic regression analysis showed that ghrelin level was one of independent factors for MCI in T2DM patients (p < 0.05). Moreover, partial correlation analysis demonstrated that ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. MATERIALS AND METHODS A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. CONCLUSIONS Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations.
Collapse
Affiliation(s)
- Rong Huang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009.,Medical School of Southeast University, Nanjing, PR China, 210009
| | - Jing Han
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Sai Tian
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Rongrong Cai
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Jie Sun
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Yanjue Shen
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Shaohua Wang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| |
Collapse
|
611
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
612
|
Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Front Pharmacol 2017; 8:676. [PMID: 29018345 PMCID: PMC5614981 DOI: 10.3389/fphar.2017.00676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.
Collapse
Affiliation(s)
- Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Anna M Costa
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Curia
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Marika Piat
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giuseppina Leo
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Jonathan Vinet
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Luc Brunel
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-BicoccaMilan, Italy
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
613
|
Ucan B, Sahin M, Kizilgul M, Ozbek M, Ozdemir S, Calıskan M, Cakal E. Serum ghrelin levels in papillary thyroid carcinoma. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:464-469. [PMID: 28977162 PMCID: PMC10522255 DOI: 10.1590/2359-3997000000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Ghrelin plays a role in several processes of cancer progression, and numerous cancer types express ghrelin and its receptor. We aimed to investigate serum levels of ghrelin in patients with papillary thyroid carcinoma (PTC) and its association with the prognostic factors in PTC. MATERIALS AND METHODS We enrolled 54 patients with thyroid cancer (7 male, 47 female) and 24 healthy controls (6 male, 18 female) in the study. We compared demographic, anthropometric, and biochemical data, and serum ghrelin levels between the groups. Serum ghrelin levels were measured using as enzyme-linked immunosorbent assay. RESULTS Ghrelin levels were similar between the groups, but plasma ghrelin levels were significantly higher in tumors larger than 1 cm diameter compared with papillary microcarcinomas. Serum ghrelin levels also correlated with tumor size (r = 0.499; p < 0.001). Body mass index, thyroid-stimulating hormone, and HOMA-IR levels were similar between the groups. There were no statistically significant differences regarding average age and other prognostic parameters including lymph node invasion, capsule invasion, multifocality and surgical border invasion between patients with microcarcinoma and tumors larger than 1 cm. CONCLUSION In our study, no significant difference in serum ghrelin levels was determined between patients with papillary thyroid cancer and healthy controls however, serum ghrelin levels were higher in tumors larger than 1 cm compared to in those with thyroid papillary microcarcinoma.
Collapse
Affiliation(s)
- Bekir Ucan
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of Endocrinology and MetabolismAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Mustafa Sahin
- Ankara UniversitySchool of MedicineDepartment of Endocrinology and MetabolismAnkaraTurkeyAnkara University, School of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Muhammed Kizilgul
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of Endocrinology and MetabolismAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Mustafa Ozbek
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of Endocrinology and MetabolismAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Seyda Ozdemir
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of BiochemistryAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Biochemistry, Ankara, Turkey
| | - Mustafa Calıskan
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of Endocrinology and MetabolismAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Erman Cakal
- SBU Diskapi Yildirim Beyazit Training and Research HospitalDepartment of Endocrinology and MetabolismAnkaraTurkeySBU Diskapi Yildirim Beyazit Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
614
|
Direct versus indirect actions of ghrelin on hypothalamic NPY neurons. PLoS One 2017; 12:e0184261. [PMID: 28877214 PMCID: PMC5587286 DOI: 10.1371/journal.pone.0184261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Objectives Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Materials and methods Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Results Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and ω-conotoxin, inhibitors of L- and N-type Ca2+ channels, respectively, while Ni2+, mibefradil, and TTA-P2 completely or partially inhibited ghrelin action, implicating T-type Ca2+ channels. Activation was also sensitive to a spider toxin, SNX-482, at concentrations selective for R-type Ca2+ channels. Nanomolar concentrations of GABA markedly inhibited ghrelin-activation of isolated NPY-GFP neurons, consistent with chronic suppression of ghrelin action in vivo. Conclusions NPY neurons express all the molecular machinery needed to respond directly to ghrelin. Consistent with recent studies, ghrelin stimulates presynaptic inputs that activate NPY-GFP neurons in situ. Ghrelin can also directly activate a depolarizing conductance. Results with isolated NPY-GFP neurons suggest the ghrelin-activated, depolarizing current is a Na+ conductance with the pharmacologic properties of SUR1/Trpm4 non-selective cation channels. In the isolated neuron model, the opening of SUR1/Trpm4 channels activates T- and SNX482-sensitive R-type voltage dependent Ca2+ channels, which could contribute to NPY neuronal activity in situ.
Collapse
|
615
|
Abtahi S, Mirza A, Howell E, Currie PJ. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. Gen Comp Endocrinol 2017; 250:9-14. [PMID: 28552460 PMCID: PMC6885356 DOI: 10.1016/j.ygcen.2017.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
In the present study we sought to investigate interactions between hypothalamic nitric oxide (NO) and ghrelin signaling on food intake and energy substrate utilization as measured by the respiratory exchange ratio (RER). Guide cannulae were unilaterally implanted in either the arcuate (ArcN) or paraventricular (PVN) nuclei of male Sprague-Dawley rats. Animals were pretreated with subcutaneous (2.5-10mg/kg/ml) or central (0-100pmol) N-nitro-l-Arginine methyl ester (l-NAME) followed by 50pmol of ghrelin administered into either the ArcN or PVN. Both l-NAME and ghrelin were microinjected at the onset of the active cycle and food intake and RER were assessed 2h postinjection. RER was measured as the ratio of the volume of carbon dioxide expelled relative to the volume of oxygen consumed (VCO2/VO2) using an open-circuit indirect calorimeter. Our results demonstrated that peripheral and central l-NAME pretreatment dose-dependently attenuated ghrelin induced increases in food intake and RER in either the ArcN or PVN. In fact the 100pmol dose largely reversed the metabolic effects of ghrelin in both anatomical regions. These findings suggest that ghrelin enhancement of food intake and carbohydrate oxidation in the rat ArcN and PVN is NO-dependent.
Collapse
Affiliation(s)
- Shayan Abtahi
- Department of Psychology, Reed College, Portland, OR, USA
| | - Aaisha Mirza
- Department of Psychology, Reed College, Portland, OR, USA
| | - Erin Howell
- Department of Psychology, Reed College, Portland, OR, USA
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR, USA.
| |
Collapse
|
616
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
617
|
Abstract
PURPOSE OF REVIEW A compromised autophagy is associated with the onset of obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases. Our aim is to review the potential role of ghrelin, a gut hormone involved in energy homeostasis, in the regulation of autophagy. RECENT FINDINGS In the recent years, it has been demonstrated that autophagy constitutes an important mechanism by which ghrelin exerts a plethora of central and peripheral actions. Ghrelin enhances autophagy through the activation of AMP-activated protein kinase in different target organs to regulate lipid and glucose metabolism, the remodeling and protection of small intestine mucosa, protection against cardiac ischemia as well as higher brain functions such as learning and memory consolidation. Nonetheless, in inflammatory states, such as acute hepatitis, liver fibrosis or adipose tissue inflammation, ghrelin acts as an anti-inflammatory factor reducing the autophagic flux to prevent further cell injury. Interestingly, several cardiometabolic disorders, including obesity, type 2 diabetes, nonalcoholic fatty liver disease or chronic heart failure are accompanied by low ghrelin levels in addition to altered autophagy. SUMMARY Ghrelin represents an attractive target for development of therapeutics for prevention or treatment of metabolic, cardiac or neuronal disorders, in which autophagy is impaired.
Collapse
Affiliation(s)
- Silvia Ezquerro
- aMetabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona bCIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid cDepartment of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
618
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
619
|
Wang JX, Li P, Zhang XT, Ye LX. Distribution and developmental changes of ghrelin-immunopositive cells in the pancreas of African ostrich chicks (Struthio camelus). Poult Sci 2017; 96:3445-3451. [PMID: 28595319 DOI: 10.3382/ps/pex145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/14/2017] [Indexed: 11/20/2022] Open
Abstract
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich.
Collapse
Affiliation(s)
- J X Wang
- College of Animal Science, Yangtze University, Jingzhou 434103, P. R. China; Ostrich Research Institute, Yangtze University, Jingzhou 434103, P. R. China.
| | - P Li
- College of Animal Science, Yangtze University, Jingzhou 434103, P. R. China; Ostrich Research Institute, Yangtze University, Jingzhou 434103, P. R. China
| | - X T Zhang
- College of Animal Science, Yangtze University, Jingzhou 434103, P. R. China; Ostrich Research Institute, Yangtze University, Jingzhou 434103, P. R. China
| | - L X Ye
- College of Animal Science, Yangtze University, Jingzhou 434103, P. R. China; Ostrich Research Institute, Yangtze University, Jingzhou 434103, P. R. China
| |
Collapse
|
620
|
Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017; 95:757-778. [PMID: 28817798 DOI: 10.1016/j.neuron.2017.06.014] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 01/26/2023]
Abstract
Prior mouse genetic research has set the stage for a deep understanding of appetite regulation. This goal is now being realized through the use of recent technological advances, such as the ability to map connectivity between neurons, manipulate neural activity in real time, and measure neural activity during behavior. Indeed, major progress has been made with regard to meal-related gut control of appetite, arcuate nucleus-based hypothalamic circuits linking energy state to the motivational drive, hunger, and, finally, limbic and cognitive processes that bring about hunger-mediated increases in reward value and perception of food. Unexpected findings are also being made; for example, the rapid regulation of homeostatic neurons by cues that predict future food consumption. The aim of this review is to cover the major underpinnings of appetite regulation, describe recent advances resulting from new technologies, and synthesize these findings into an updated view of appetite regulation.
Collapse
Affiliation(s)
- Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
621
|
Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949582. [PMID: 28913358 PMCID: PMC5587954 DOI: 10.1155/2017/7949582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.
Collapse
|
622
|
Gortan Cappellari G, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J 2017; 31:5159-5171. [PMID: 28778977 DOI: 10.1096/fj.201700126r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 µg twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
Collapse
Affiliation(s)
| | - Annamaria Semolic
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Guarnieri
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Michela Zanetti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy;
| |
Collapse
|
623
|
Simon JJ, Wetzel A, Sinno MH, Skunde M, Bendszus M, Preissl H, Enck P, Herzog W, Friederich HC. Integration of homeostatic signaling and food reward processing in the human brain. JCI Insight 2017; 2:92970. [PMID: 28768906 DOI: 10.1172/jci.insight.92970] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Food intake is guided by homeostatic needs and by the reward value of food, yet the exact relation between the two remains unclear. The aim of this study was to investigate the influence of different metabolic states and hormonal satiety signaling on responses in neural reward networks. METHODS Twenty-three healthy participants underwent functional magnetic resonance imaging while performing a task distinguishing between the anticipation and the receipt of either food- or monetary-related reward. Every participant was scanned twice in a counterbalanced fashion, both during a fasted state (after 24 hours fasting) and satiety. A functional connectivity analysis was performed to investigate the influence of satiety signaling on activation in neural reward networks. Blood samples were collected to assess hormonal satiety signaling. RESULTS Fasting was associated with sensitization of the striatal reward system to the anticipation of food reward irrespective of reward magnitude. Furthermore, during satiety, individual ghrelin levels were associated with increased neural processing during the expectation of food-related reward. CONCLUSIONS Our findings show that physiological hunger stimulates food consumption by specifically increasing neural processing during the expectation (i.e., incentive salience) but not the receipt of food-related reward. In addition, these findings suggest that ghrelin signaling influences hedonic-driven food intake by increasing neural reactivity during the expectation of food-related reward. These results provide insights into the neurobiological underpinnings of motivational processing and hedonic evaluation of food reward. TRIAL REGISTRATION ClinicalTrials.gov NCT03081585. FUNDING This work was supported by the German Competence Network on Obesity, which is funded by the German Federal Ministry of Education and Research (FKZ 01GI1122E).
Collapse
Affiliation(s)
- Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Wetzel
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Hamze Sinno
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mandy Skunde
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Internal Medicine VI and Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; and German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
624
|
YAĞAN Ö, TAŞ N, AYYILDIZ SN, KARAKAHYA M, NOYAN T. Comparison of the effects of continuous versus intermittent enteral feeding on plasma leptin and ghrelin levels in Intensive Care Units. REV NUTR 2017. [DOI: 10.1590/1678-98652017000400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective: The aim of this prospective randomized trial is to verify whether there is an association between the methods of administration of enteral nutrition and the leptin and ghrelin hormones, which have a major role in the regulation of energy metabolism. Methods: This study enrolled 38 enteral-fed patients aged 18 to 85 in the Intensive Care Unit. The patients were prospectively randomized to receive either continuous infusion (n=19) or intermittent feeding (n=18) of enteral nutrition. In addition to routine biochemical assays, blood samples were taken from the patients for leptin and ghrelin analyses on the 1th, 7th, and 14th days of enteral nutrition. Results: There was no statistically significant difference between the groups regarding descriptive statistics and categorical variables such as underlying diseases, complications, steroid use and others (p>0.05). The decrease in the number of white blood cells and in creatinine and C-reactive protein levels over time were statistically significant (p=0.010, p=0.026, p<0.001 respectively). There was no statistically significant difference between the groups with respect to leptin and ghrelin levels (p=0.982 and p=0.054). Leptin levels did not change over time; however, the ghrelin levels of both groups were significantly higher on the 7th and 14th days than on the first day of analysis (p=0.003). Conclusion: This study revealed that both continuous and intermittent enteral nutrition feeding regimens were well tolerated in Intensive Care Unit patients showing minor complications. The method of administration of enteral nutrition alone did not affect the leptin and ghrelin levels. Randomized controlled large cohort trials are needed to to compare intermittent and continuous enteral nutrition to determine which one is more adaptable to diurnal patterns of secretion metabolic hormones.
Collapse
|
625
|
Dodd GT, Andrews ZB, Simonds SE, Michael NJ, DeVeer M, Brüning JC, Spanswick D, Cowley MA, Tiganis T. A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metab 2017; 26:375-393.e7. [PMID: 28768176 DOI: 10.1016/j.cmet.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Zane B Andrews
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Stephanie E Simonds
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Natalie J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | - Jens C Brüning
- Max Plank Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, 85764 Neuherberg, Germany
| | - David Spanswick
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
626
|
Valencak TG, Osterrieder A, Schulz TJ. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol 2017; 12:806-813. [PMID: 28441629 PMCID: PMC5406544 DOI: 10.1016/j.redox.2017.04.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders.
Collapse
Affiliation(s)
- Teresa G Valencak
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 114-116, Arthur-Scheunert-Allee, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
627
|
Penna C, Tullio F, Femminò S, Rocca C, Angelone T, Cerra MC, Gallo MP, Gesmundo I, Fanciulli A, Brizzi MF, Pagliaro P, Alloatti G, Granata R. Obestatin regulates cardiovascular function and promotes cardioprotection through the nitric oxide pathway. J Cell Mol Med 2017; 21:3670-3678. [PMID: 28744974 PMCID: PMC5706590 DOI: 10.1111/jcmm.13277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under β-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated β-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carmine Rocca
- National Institute of Cardiovascular Research, Bologna, Italy.,Department of Biology, Ecology and E.S., University of Calabria, Rende, CS, Italy
| | - Tommaso Angelone
- National Institute of Cardiovascular Research, Bologna, Italy.,Department of Biology, Ecology and E.S., University of Calabria, Rende, CS, Italy
| | - Maria C Cerra
- National Institute of Cardiovascular Research, Bologna, Italy.,Department of Biology, Ecology and E.S., University of Calabria, Rende, CS, Italy
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| | - Giuseppe Alloatti
- National Institute of Cardiovascular Research, Bologna, Italy.,Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
628
|
Muscogiuri G, Balercia G, Barrea L, Cignarelli A, Giorgino F, Holst JJ, Laudisio D, Orio F, Tirabassi G, Colao A. Gut: A key player in the pathogenesis of type 2 diabetes? Crit Rev Food Sci Nutr 2017; 58:1294-1309. [PMID: 27892685 DOI: 10.1080/10408398.2016.1252712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible of the secretion of molecules that may impair insulin secretion/action. At the same time, intestinal milieu regulates the secretion of hormones such as GLP-1, GIP, ghrelin, gastrin, somatostatin, CCK, serotonin, peptide YY, GLP-2, all of which importantly influence metabolism in general and in particular glucose metabolism. Thus, the aim of this paper is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects.
Collapse
Affiliation(s)
| | - Giancarlo Balercia
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | | | - Angelo Cignarelli
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Francesco Giorgino
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Jens J Holst
- d NNF Center for Basic Metabolic Research and Department of Biomedical Sciences , Panum Institute, University of Copenhagen, Copenhagen , Denmark
| | | | - Francesco Orio
- e Endocrinology, Department of Sports Science and Wellness , "Parthenope" University Naples , Naples , Italy
| | - Giacomo Tirabassi
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | - Annamaria Colao
- f Department of Clinical Medicine and Surgery , "Federico II" University of Naples , Naples , Italy
| |
Collapse
|
629
|
Rivas PMS, Vechiato FMV, Borges BC, Rorato R, Antunes-Rodrigues J, Elias LLK. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling. Horm Behav 2017; 93:166-174. [PMID: 28576646 DOI: 10.1016/j.yhbeh.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022]
Abstract
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.
Collapse
Affiliation(s)
- Priscila M S Rivas
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernanda M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Beatriz C Borges
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rodrigo Rorato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
630
|
Blanco AM, Bertucci JI, Valenciano AI, Delgado MJ, Unniappan S. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus). Horm Behav 2017; 93:62-71. [PMID: 28506816 DOI: 10.1016/j.yhbeh.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
Abstract
Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Ana Isabel Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
631
|
Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake? Neurosci Lett 2017; 653:126-131. [DOI: 10.1016/j.neulet.2017.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 11/20/2022]
|
632
|
Mani BK, Uchida A, Lee Y, Osborne-Lawrence S, Charron MJ, Unger RH, Berglund ED, Zigman JM. Hypoglycemic Effect of Combined Ghrelin and Glucagon Receptor Blockade. Diabetes 2017; 66:1847-1857. [PMID: 28487437 PMCID: PMC5482080 DOI: 10.2337/db16-1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Glucagon receptor (GcgR) blockade has been proposed as an alternative to insulin monotherapy for treating type 1 diabetes since deletion or inhibition of GcgRs corrects hyperglycemia in models of diabetes. The factors regulating glycemia in a setting devoid of insulin and glucagon function remain unclear but may include the hormone ghrelin. Not only is ghrelin release controlled by glucose but also ghrelin has many actions that can raise or reduce falls in blood glucose level. Here, we tested the hypothesis that ghrelin rises to prevent hypoglycemia in the absence of glucagon function. Both GcgR knockout (Gcgr-/-) mice and db/db mice that were administered GcgR monoclonal antibody displayed lower blood glucose levels accompanied by elevated plasma ghrelin levels. Although treatment with the pancreatic β-cell toxin streptozotocin induced hyperglycemia and raised plasma ghrelin levels in wild-type mice, hyperglycemia was averted in similarly treated Gcgr-/- mice and the plasma ghrelin level was further increased. Notably, administration of a ghrelin receptor antagonist further reduced blood glucose levels into the markedly hypoglycemic range in overnight-fasted, streptozotocin-treated Gcgr-/- mice. A lowered blood glucose level also was observed in overnight-fasted, streptozotocin-treated ghrelin receptor-null mice that were administered GcgR monoclonal antibody. These data suggest that when glucagon activity is blocked in the setting of type 1 diabetes, the plasma ghrelin level rises, preventing hypoglycemia.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Atenolol/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Gastric Mucosa/metabolism
- Ghrelin/metabolism
- Immunohistochemistry
- Insulin/metabolism
- Mice
- Mice, Knockout
- Oligopeptides/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Ghrelin/antagonists & inhibitors
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/genetics
- Receptors, Leptin/genetics
- Sympatholytics/pharmacology
Collapse
Affiliation(s)
- Bharath K Mani
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aki Uchida
- Advanced Imaging Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sherri Osborne-Lawrence
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maureen J Charron
- Departments of Biochemistry, Obstetrics and Gynecology and Woman's Health, and Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eric D Berglund
- Advanced Imaging Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
633
|
Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci 2017; 67:459-465. [PMID: 28378265 PMCID: PMC10717116 DOI: 10.1007/s12576-017-0535-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
The hypothalamic feeding center plays an important role in energy homeostasis. The feeding center senses the systemic energy status by detecting hormone and nutrient levels for homeostatic regulation, resulting in the control of food intake, heat production, and glucose production and uptake. The concentration of glucose is sensed by two types of glucose-sensing neurons in the feeding center: glucose-excited neurons and glucose-inhibited neurons. Previous studies have mainly focused on glucose metabolism as the mechanism underlying glucose sensing. Recent studies have indicated that receptor-mediated pathways also play a role in glucose sensing. This review describes sweet taste receptors in the hypothalamus and explores the role of sweet taste receptors in energy homeostasis.
Collapse
Affiliation(s)
- Daisuke Kohno
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan.
| |
Collapse
|
634
|
Chowen JA, Argente J. Ghrelin: A Link Between Energy Homeostasis and the Immune System. Endocrinology 2017; 158:2077-2081. [PMID: 28881864 DOI: 10.1210/en.2017-00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28009 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28009 Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
| |
Collapse
|
635
|
Santiago-Fernández C, García-Serrano S, Tome M, Valdes S, Ocaña-Wilhelmi L, Rodríguez-Cañete A, Tinahones FJ, García-Fuentes E, Garrido-Sánchez L. Ghrelin levels could be involved in the improvement of insulin resistance after bariatric surgery. ACTA ACUST UNITED AC 2017; 64:355-362. [PMID: 28745606 DOI: 10.1016/j.endinu.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Ghrelin is a gastrointestinal peptide involved in regulation of body weight and energy balance. However, its behavior after bariatric surgery and its relationship to insulin resistance are still controversial. A simultaneous assessment was made of the association between changes in ghrelin levels and different variables after three types of bariatric surgery. PATIENTS AND METHODS Ghrelin levels were measured in 103 morbidly obese subjects before and 6 months after bariatric surgery (Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion of Scopinaro (BPD), and sleeve gastrectomy (SG)), and in 21 non-obese subjects. RESULTS Ghrelin levels increased after RYGB (p<0.05), were unchanged after BPD, and decreased after SG (p<0.05). The percent change in ghrelin levels (Δ-ghrelin) was associated to the type of surgery in a multiple linear regression model (p=0.017). When the same analysis was only performed in subjects in whom the gastric fundus was maintained (RYGB and BPD), Δ-ghrelin was negatively associated to Δ-HOMA-IR (p=0.001). In morbidly obese subjects who underwent RYGB and BPD, the odds ratio of a lower Δ-HOMA-IR in patients with Δ-ghrelin in the Q1 quartile versus those with Δ-ghrelin in the Q4 quartile was 8.74 (1.73-44.06) (p=0.009). CONCLUSIONS Changes in ghrelin levels after bariatric surgery are associated to the presence or absence of the gastric fundus. After bariatric surgery, the decrease in insulin resistance was associated to increased ghrelin levels in procedures in which the fundus is not excluded.
Collapse
Affiliation(s)
- Concepción Santiago-Fernández
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain
| | - Sara García-Serrano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Mónica Tome
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain
| | - Sergio Valdes
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Transplantes, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Alberto Rodríguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Transplantes, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Málaga, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Málaga, Spain.
| | - Eduardo García-Fuentes
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain.
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Málaga, Spain
| |
Collapse
|
636
|
The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol Metab 2017; 6:882-896. [PMID: 28752052 PMCID: PMC5518774 DOI: 10.1016/j.molmet.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. Methods A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. Results The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD-assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. Conclusions These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act. We generated a novel Ghsr-IRES-Cre knock-in mouse line. Cre activity in the line mirrors the known GHSR expression pattern. Chemogenetic modulation of neuronal activity reveals a required role of MBH GHSR neurons in rebound food intake after a fast. Neuronal projections of mediobasal hypothalamic GHSR neurons are reminiscent of AgRP neuronal projections.
Collapse
|
637
|
Llamas-Covarrubias IM, Llamas-Covarrubias MA, Martinez-López E, Zepeda-Carrillo EA, Rivera-León EA, Palmeros-Sánchez B, Alcalá-Zermeño JL, Sánchez-Enríquez S. Association of A-604G ghrelin gene polymorphism and serum ghrelin levels with the risk of obesity in a mexican population. Mol Biol Rep 2017; 44:289-293. [DOI: 10.1007/s11033-017-4109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/11/2017] [Indexed: 01/27/2023]
|
638
|
Abstract
Obesity, a major risk factor for the development of diabetes mellitus, cardiovascular diseases and certain types of cancer, arises from a chronic positive energy balance that is often due to unlimited access to food and an increasingly sedentary lifestyle on the background of a genetic and epigenetic vulnerability. Our understanding of the humoral and neuronal systems that mediate the control of energy homeostasis has improved dramatically in the past few decades. However, our ability to develop effective strategies to slow the current epidemic of obesity has been hampered, largely owing to the limited knowledge of the mechanisms underlying resistance to the action of metabolic hormones such as leptin and ghrelin. The development of resistance to leptin and ghrelin, hormones that are crucial for the neuroendocrine control of energy homeostasis, is a hallmark of obesity. Intensive research over the past several years has yielded tremendous progress in our understanding of the cellular pathways that disrupt the action of leptin and ghrelin. In this Review, we discuss the molecular mechanisms underpinning resistance to leptin and ghrelin and how they can be exploited as targets for pharmacological management of obesity.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
639
|
Endothelial and Perivascular Adipose Tissue Abnormalities in Obesity-Related Vascular Dysfunction: Novel Targets for Treatment. J Cardiovasc Pharmacol 2017; 69:360-368. [DOI: 10.1097/fjc.0000000000000469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
640
|
Russo C, Russo A, Gulino R, Pellitteri R, Stanzani S. Effects of different musical frequencies on NPY and Ghrelin secretion in the rat hypothalamus. Brain Res Bull 2017; 132:204-212. [DOI: 10.1016/j.brainresbull.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 01/14/2023]
|
641
|
Ceranowicz P, Warzecha Z, Cieszkowski J, Ceranowicz D, Kuśnierz-Cabala B, Bonior J, Jaworek J, Ambroży T, Gil K, Olszanecki R, Pihut M, Dembiński A. Essential Role of Growth Hormone and IGF-1 in Therapeutic Effect of Ghrelin in the Course of Acetic Acid-Induced Colitis. Int J Mol Sci 2017; 18:ijms18061118. [PMID: 28538694 PMCID: PMC5485942 DOI: 10.3390/ijms18061118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023] Open
Abstract
Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1.
Collapse
Affiliation(s)
- Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Dagmara Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Cracow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Diagnostics, Chair of Clinical Biochemistry, Faculty of Medicine Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Joanna Bonior
- Department of Medical Physiology Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Cracow, Poland.
| | - Jolanta Jaworek
- Department of Medical Physiology Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Cracow, Poland.
| | - Tadeusz Ambroży
- Department of Theory of Sport and Kinesiology, Faculty of Physical Education, University of Physical Education, 31-571 Cracow, Poland.
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland.
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Małgorzata Pihut
- Department of Prosthetic Dentistry, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
642
|
Koch M. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review. Front Neurosci 2017; 11:293. [PMID: 28596721 PMCID: PMC5442223 DOI: 10.3389/fnins.2017.00293] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1) represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced.
Collapse
Affiliation(s)
- Marco Koch
- Medical Faculty, Institute of Anatomy, University of LeipzigLeipzig, Germany
| |
Collapse
|
643
|
Luo QQ, Zhou YF, Chen MYJ, Liu L, Ma J, Zhang MW, Zhang FL, Ke Y, Qian ZM. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway. J Cell Physiol 2017; 233:30-37. [PMID: 28338217 DOI: 10.1002/jcp.25931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft-L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O-acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft-L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft-L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre-treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.
Collapse
Affiliation(s)
- Qian-Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China.,Pharmacological Evaluation and Research Center, Shanghai Institute of PharmaceuticalIndustry, Shanghai, China.,Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, China
| | - Yu-Fu Zhou
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Mesona Yung-Jin Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Li Liu
- Pharmacological Evaluation and Research Center, Shanghai Institute of PharmaceuticalIndustry, Shanghai, China
| | - Juan Ma
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Meng-Wan Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ya Ke
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
644
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
645
|
Ghrelin attenuates vascular calcification in diabetic patients with amputation. Biomed Pharmacother 2017; 91:1053-1064. [PMID: 28525946 DOI: 10.1016/j.biopha.2017.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/06/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is established to be a critical factor in diabetes mellitus, which causes cardiovascular and amputation complication of diabetic patients. OPG/RANKL/RANK axis serves as a regulatory role in vascular calcification. Ghrelin, an endogenous ligand of growth hormone secretagogue receptor (GHSR), has been reported to exhibit potent cardiovascular protective effects. However, the role of ghrelin in the regulation of diabetic vascular calcification is still elusive. Here, we reported the role of ghrelin and its relationship with OPG/RANKL/RANK system in patients with diabetic foot amputation. In vivo and in vitro investigations were performed. Sixty type 2 diabetic patients with foot amputation were enrolled in vivo investigation, and they were divided into three groups through Doppler ultrasound: mild stenosis group (n=20), moderate stenosis group (n=20), and severe stenosis/occlusion group (n=20). Morphological analysis results showed diffused calcium depositions in the anterior tibial artery of diabetic amputees. Compared with the mild and moderate stenosis group, the severe stenosis/occlusion group had more spotty calcium depositions in atherosclerotic plaques. Western blot analysis indicated the expressions of osteoprotegerin (OPG) and ghrelin were downregulated, while the expression of receptor activator of nuclear factor kappa B ligand (RANKL) was upregulated with the vascular stenosis aggravation. Pearson correlation analysis revealed a negative correlation between calcium content and ghrelin levels (r=-0.58, P<0.001), as well as the ghrelin levels and sRANKL levels (r=-0.57, P<0.001). Meanwhile, OPG levels were positively correlated with ghrelin levels (r=0.63, P<0.001). From in vitro investigation, we found that the high-glucose (HG), high-lipid (HL), and β-glycerophosphate (β-GP) considerably increased the total calcium content, ALP activity, and expression of osteogenic markers in vascular smooth muscle cells (VSMCs). Ghrelin blunted calcification in a dose-dependent manner. In addition, ghrelin upregulated OPG expression and downregulated RANKL expression in VSMC calcification when anti-OPG antibody and RANKL were performed. Collectively, we therefore conclude serum ghrelin level may be a predictor of diabetic vascular calcification. The possible mechanism may be related with OPG/RANKL signal.
Collapse
|
646
|
Velasco C, Moreiras G, Conde-Sieira M, Leao JM, Míguez JM, Soengas JL. Ceramide counteracts the effects of ghrelin on the metabolic control of food intake in rainbow trout. ACTA ACUST UNITED AC 2017; 220:2563-2576. [PMID: 28495865 DOI: 10.1242/jeb.159871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
In mammals, ceramides are involved in the modulation of the orexigenic effects of ghrelin (GHRL). We previously demonstrated in rainbow trout that intracerebroventricular (ICV) treatment with ceramide (2.5 µg/100 g fish) resulted in an anorexigenic response, i.e. a response opposed to that described in mammals, where ceramide treatment is orexigenic. Therefore, we hypothesized that the putative interaction between GHRL and ceramide must be different in fish. Accordingly, in a first experiment, we observed that ceramide levels in the hypothalamus of rainbow trout did not change after ICV treatment with GHRL. In a second experiment, we assessed whether the effects of GHRL treatment on the regulation of food intake in rainbow trout changed in the presence of ceramide. Thus, we injected ICV GHRL and ceramide alone or in combination to evaluate in hypothalamus and hindbrain changes in parameters related to the metabolic control of food intake. The presence of ceramide generally counteracted the effects elicited by GHRL on fatty acid-sensing systems, the capacity of integrative sensors (AMPK, mTOR and SIRT-1), proteins involved in cellular signalling pathways (Akt and FoxO1) and neuropeptides involved in the regulation of food intake (AgRP, NPY, POMC and CART). The results are discussed in the context of regulation of food intake by metabolic and endocrine inputs.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - Guillermo Moreiras
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José M Leao
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
647
|
Reano S, Angelino E, Ferrara M, Malacarne V, Sustova H, Sabry O, Agosti E, Clerici S, Ruozi G, Zentilin L, Prodam F, Geuna S, Giacca M, Graziani A, Filigheddu N. Unacylated Ghrelin Enhances Satellite Cell Function and Relieves the Dystrophic Phenotype in Duchenne Muscular Dystrophy mdx Model. Stem Cells 2017; 35:1733-1746. [PMID: 28436144 DOI: 10.1002/stem.2632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or in pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. Unacylated ghrelin (UnAG) is a circulating hormone that protects muscle from atrophy, promotes myoblast differentiation, and enhances ischemia-induced muscle regeneration. Here we show that UnAG increases SC activity and stimulates Par polarity complex/p38-mediated asymmetric division, fostering both SC self-renewal and myoblast differentiation. Because of those activities on different steps of muscle regeneration, we hypothesized a beneficial effect of UnAG in mdx dystrophic mice, in which the absence of dystrophin leads to chronic muscle degeneration, defective muscle regeneration, fibrosis, and, at later stages of the pathology, SC pool exhaustion. Upregulation of UnAG levels in mdx mice reduces muscle degeneration, improves muscle function, and increases dystrophin-null SC self-renewal, maintaining the SC pool. Our results suggest that UnAG has significant therapeutic potential for preserving the muscles in dystrophies. Stem Cells 2017;35:1733-1746.
Collapse
Affiliation(s)
- Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Hana Sustova
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Omar Sabry
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Sara Clerici
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Giulia Ruozi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino and Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO), Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy and Istituto Interuniversitario di Miologia (IIM)
| |
Collapse
|
648
|
Attenuating the Biologic Drive for Weight Regain Following Weight Loss: Must What Goes Down Always Go Back Up? Nutrients 2017; 9:nu9050468. [PMID: 28481261 PMCID: PMC5452198 DOI: 10.3390/nu9050468] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic adaptations occur with weight loss that result in increased hunger with discordant simultaneous reductions in energy requirements—producing the so-called energy gap in which more energy is desired than is required. The increased hunger is associated with elevation of the orexigenic hormone ghrelin and decrements in anorexigenic hormones. The lower total daily energy expenditure with diet-induced weight loss results from (1) a disproportionately greater decrease in circulating leptin and resting metabolic rate (RMR) than would be predicted based on the decline in body mass, (2) decreased thermic effect of food (TEF), and (3) increased energy efficiency at work intensities characteristic of activities of daily living. These metabolic adaptations can readily promote weight regain. While more experimental research is needed to identify effective strategies to narrow the energy gap and attenuate weight regain, some factors contributing to long-term weight loss maintenance have been identified. Less hunger and greater satiation have been associated with higher intakes of protein and dietary fiber, and lower glycemic load diets. High levels of physical activity are characteristic of most successful weight maintainers. A high energy flux state characterized by high daily energy expenditure and matching energy intake may attenuate the declines in RMR and TEF, and may also result in more accurate regulation of energy intake to match daily energy expenditure.
Collapse
|
649
|
Brown JA, Bugescu R, Mayer TA, Gata-Garcia A, Kurt G, Woodworth HL, Leinninger GM. Loss of Action via Neurotensin-Leptin Receptor Neurons Disrupts Leptin and Ghrelin-Mediated Control of Energy Balance. Endocrinology 2017; 158:1271-1288. [PMID: 28323938 PMCID: PMC5460836 DOI: 10.1210/en.2017-00122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/06/2017] [Indexed: 01/30/2023]
Abstract
The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which coexpress the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons. Because NtsLepRb neurons inhibit OX neurons, we hypothesized that disruption of the NtsLepRb neuronal circuit would impair both NtsLepRb and OX neurons from responding to their respective hormonal cues, thus compromising adaptive energy balance. Indeed, mice with developmental deletion of LepRb specifically from NtsLepRb neurons exhibit blunted adaptive responses to leptin and ghrelin that discoordinate the mesolimbic dopamine system and ingestive and locomotor behaviors, leading to weight gain. Collectively, these data reveal a crucial role for LepRb in the proper formation of LHA circuits, and that NtsLepRb neurons are important neuronal hubs within the LHA for hormone-mediated control of ingestive and locomotor behaviors.
Collapse
Affiliation(s)
- Juliette A. Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas A. Mayer
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Adriana Gata-Garcia
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Hillary L. Woodworth
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Gina M. Leinninger
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
650
|
Santos VV, Stark R, Rial D, Silva HB, Bayliss JA, Lemus MB, Davies JS, Cunha RA, Prediger RD, Andrews ZB. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice. J Neuroendocrinol 2017; 29. [PMID: 28380673 DOI: 10.1111/jne.12476] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
Abstract
Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological conditions, including Parkinson's disease (PD), stroke and traumatic brain injury. Acyl ghrelin treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In the present study, we used ghrelin knockout (KO) and their wild-type littermates to test whether or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid β peptide 1-40 (Aβ1-40 ) was injected into the lateral ventricles i.c.v. Recognition memory, using the novel object recognition task, was significantly impaired in ghrelin KO mice and after i.c.v. Aβ1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in ghrelin KO mice and after i.c.v. Aβ1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination; however, neither i.c.v. Aβ1-40 treatment, nor acyl ghrelin injections affected olfactory discrimination. We used stereology to show that ghrelin KO and Aβ1-40 increased the total number of glial fibrillary acidic protein expressing astrocytes and ionised calcium-binding adapter expressing microglial in the rostral hippocampus. Finally, Aβ1-40 blocked long-term potentiation induced by high-frequency stimulation and this effect could be acutely blocked with co-administration of acyl ghrelin. Collectively, our studies demonstrate that ghrelin deletion affects memory performance and also that acyl ghrelin treatment may delay the onset of early events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically beneficial with respect to restricting disease progression in AD.
Collapse
Affiliation(s)
- V V Santos
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - R Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - D Rial
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina UFSC, Florianópolis, SC, Brazil
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - H B Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - J A Bayliss
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M B Lemus
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, UK
| | - R A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - R D Prediger
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina UFSC, Florianópolis, SC, Brazil
| | - Z B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|