601
|
Abstract
Urodele amphibians have been widely used for studies of limb regeneration. In this article, we review studies on blastema cell proliferation and propose a model of blastemal self-organization and patterning. The model is based on local cell interactions that intercalate positional identities within circumferential and proximodistal boundaries that outline the regenerate. The positional identities created by the intercalation process appear to be reflected in the molecular composition of the cell surface. Transcription factors and signaling molecules involved in patterning are discussed within the context of the boundary/intercalation model.
Collapse
Affiliation(s)
- Holly L D Nye
- University of Illinois Department of Cell and Structural Biology and College of Medicine, B107 Chemical and Life Sciences Laboratory, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
602
|
Brand T, Andrée B, Schlange T. Molecular characterization of early cardiac development. Results Probl Cell Differ 2003; 38:215-38. [PMID: 12132397 DOI: 10.1007/978-3-540-45686-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Thomas Brand
- Institute of Biochemistry and Biotechnology, Department of Cell and Molecular Biology, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
603
|
MESH Headings
- Animals
- Auditory Pathways/metabolism
- Ear/embryology
- Ear/growth & development
- Ear/innervation
- Ear, External/growth & development
- Ear, External/innervation
- Ear, Inner/growth & development
- Ear, Inner/innervation
- Ear, Middle/growth & development
- Ear, Middle/innervation
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/metabolism
- Mesoderm/metabolism
- Morphogenesis
- Receptor, trkB/metabolism
- Receptor, trkC/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
604
|
Thesleff I, Mikkola M. The role of growth factors in tooth development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:93-135. [PMID: 12019566 DOI: 10.1016/s0074-7696(02)17013-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors and other paracrine signal molecules regulate communication between cells in all developing organs. During tooth morphogenesis, molecules in several conserved signal families mediate interactions both between and within the epithelial and mesenchymal tissue layers. The same molecules are used repeatedly during advancing development, and several growth factors are coexpressed in epithelial signaling centers. The enamel knots are signaling centers that regulate the patterning of teeth and are associated with foldings of the epithelial sheet. Different signaling pathways form networks and are integrated at many levels. Many targets of the growth factors have been identified, and mutations in several genes within the signaling networks cause defective tooth formation in both humans and mice.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
605
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
606
|
Irving C, Malhas A, Guthrie S, Mason I. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 2002; 129:5389-98. [PMID: 12403710 DOI: 10.1242/dev.00117] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formation of the trochlear nerve within the anterior hindbrain provides a model system to study a simple axonal projection within the vertebrate central nervous system. We show that trochlear motor neurons are born within the isthmic organiser and also immediately posterior to it in anterior rhombomere 1. Axons of the most anterior cells follow a dorsal projection, which circumnavigates the isthmus, while those of more posterior trochlear neurons project anterodorsally to enter the isthmus. Once within the isthmus, axons form large fascicles that extend to a dorsal exit point. We investigated the possibility that the projection of trochlear axons towards the isthmus and their subsequent growth within that tissue might depend upon chemoattraction. We demonstrate that both isthmic tissue and Fgf8 protein are attractants for trochlear axons in vitro, while ectopic Fgf8 causes turning of these axons away from their normal routes in vivo. Both inhibition of FGF receptor activation and inhibition of Fgf8 function in vitro affect formation of the trochlear projection within explants in a manner consistent with a guidance function of Fgf8 during trochlear axon navigation.
Collapse
Affiliation(s)
- Carol Irving
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, 4 Floor New Hunt's House, UK.
| | | | | | | |
Collapse
|
607
|
Richards LJ. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum. Braz J Med Biol Res 2002; 35:1431-9. [PMID: 12436186 DOI: 10.1590/s0100-879x2002001200004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The corpus callosum is a large fiber tract that connects neurons in the right and left cerebral hemispheres. Agenesis of the corpus callosum (ACC) is associated with a large number of human syndromes but little is known about why ACC occurs. In most cases of ACC, callosal axons are able to grow toward the midline but are unable to cross it, continuing to grow into large swirls of axons known as Probst bundles. This phenotype suggests that in some cases ACC may be due to defects in axonal guidance at the midline. General guidance mechanisms that influence the development of axons include chemoattraction and chemorepulsion, presented by either membrane-bound or diffusible molecules. These molecules are not only expressed by the final target but by intermediate targets along the pathway, and by pioneering axons that act as guides for later arriving axons. Midline glial populations are important intermediate targets for commissural axons in the spinal cord and brain, including the corpus callosum. The role of midline glial populations and pioneering axons in the formation of the corpus callosum are discussed. Finally the differential guidance of the ipsilaterally projecting perforating pathway and the contralaterally projecting corpus callosum is addressed. Development of the corpus callosum involves the coordination of a number of different guidance mechanisms and the probable involvement of a large number of molecules.
Collapse
Affiliation(s)
- L J Richards
- Department of Anatomy and Neurobiology, and the Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
608
|
Abstract
Retinogenesis is a developmental process that is tightly regulated both temporally and spatially and is therefore an excellent model system for studying the molecular and cellular mechanisms of neurogenesis in the central nervous system. Understanding of these events in vivo is greatly facilitated by the availability of mouse mutant models, including those with natural or targeted mutations and those with conditional knockout or forced expression of genes. This article reviews these genetic modifications and their contribution to the study of retinogenesis in mammals, with special emphasis on conditional gene targeting approaches.
Collapse
Affiliation(s)
- Ruth Ashery-Padan
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
609
|
Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev 2002; 16:2958-70. [PMID: 12435636 PMCID: PMC187478 DOI: 10.1101/gad.240102] [Citation(s) in RCA: 382] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Accepted: 09/20/2002] [Indexed: 11/25/2022]
Abstract
The mammalian kidney develops in three successive steps from the initial pronephros via the mesonephros to the adult metanephros. Although the nephric lineage is specified during pronephros induction, no single regulator, including the transcription factor Pax2 or Pax8, has yet been identified to control this initial phase of kidney development. In this paper, we demonstrate that mouse embryos lacking both Pax2 and Pax8 are unable to form the pronephros or any later nephric structures. In these double-mutant embryos, the intermediate mesoderm does not undergo the mesenchymal-epithelial transitions required for nephric duct formation, fails to initiate the kidney-specific expression of Lim1 and c-Ret, and is lost by apoptosis 1 d after failed pronephric induction. Conversely, retroviral misexpression of Pax2 was sufficient to induce ectopic nephric structures in the intermediate mesoderm and genital ridge of chick embryos. Together, these data identify Pax2 and Pax8 as critical regulators that specify the nephric lineage.
Collapse
Affiliation(s)
- Maxime Bouchard
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
610
|
Ren SY, Angrand PO, Rijli FM. Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev Dyn 2002; 225:305-15. [PMID: 12412013 DOI: 10.1002/dvdy.10171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies indicated that retention of selectable marker cassettes in targeted Hox loci may cause unexpected phenotypes in mutant mice, due to neighborhood effects. However, the molecular mechanisms have been poorly investigated. Here, we analysed the effects of the targeted insertion of a PGK-neo cassette in the 3' untranslated region of Hoxa2. Even at this 3' position, the insertion resulted in homozygous mutants that unexpectedly did not survive beyond 3 weeks of age. Molecular analysis of the targeted allele revealed a selective "knockdown" of Hoxa2 expression in rhombomere 2 and associated patterning abnormalities. Moreover, Hoxa1 was ectopically expressed in the hindbrain and branchial arches of mutant embryos. Of interest, we demonstrated that the ectopic expression was due to the generation of neo-Hoxa1 fusion transcripts, resulting from aberrant alternative splicing. These defects could be rescued after removal of the PGK-neo cassette by Flp-mediated recombination. These results underscore the complexity of transcriptional regulation at Hox loci and provide insights into the in vivo regulation of Hoxa2 segmental expression. They also provide a molecular basis for the interpretation of unexpected Hox knockout phenotypes in which the targeted selectable marker is retained in the locus.
Collapse
Affiliation(s)
- Shu-Yue Ren
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
611
|
Anderson RM, Lawrence AR, Stottmann RW, Bachiller D, Klingensmith J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 2002; 129:4975-87. [PMID: 12397106 DOI: 10.1242/dev.129.21.4975] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study we investigate the roles of the organizer factors chordin and noggin, which are dedicated antagonists of the bone morphogenetic proteins(BMPs), in formation of the mammalian head. The mouse chordin and noggin genes(Chrd and Nog) are expressed in the organizer (the node) and its mesendodermal derivatives, including the prechordal plate, an organizing center for rostral development. They are also expressed at lower levels in and around the anterior neural ridge, another rostral organizing center. To elucidate roles of Chrd and Nog that are masked by the severe phenotype and early lethality of the double null, we have characterized embryos of the genotype Chrd-/-;Nog+/-. These animals display partially penetrant neonatal lethality, with defects restricted to the head. The variable phenotypes include cyclopia,holoprosencephaly, and rostral truncations of the brain and craniofacial skeleton. In situ hybridization reveals a loss of SHH expression and signaling by the prechordal plate, and a decrease in FGF8 expression and signaling by the anterior neural ridge at the five-somite stage. DefectiveChrd-/-;Nog+/- embryos exhibit reduced cell proliferation in the rostral neuroepithelium at 10 somites, followed by increased cell death 1 day later. Because these phenotypes result from reduced levels of BMP antagonists, we hypothesized that they are due to increased BMP activity. Ectopic application of BMP2 to wild-type cephalic explants results in decreased FGF8 and SHH expression in rostral tissue, suggesting that the decreased expression of FGF8 and SHH observed in vivo is due to ectopic BMP activity. Cephalic explants isolated from Chrd;Nog double mutant embryos show an increased sensitivity to ectopic BMP protein, further supporting the hypothesis that these mutants are deficient in BMP antagonism. These results indicate that the BMP antagonists chordin and noggin promote the inductive and trophic activities of rostral organizing centers in early development of the mammalian head.
Collapse
Affiliation(s)
- Ryan M Anderson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA
| | | | | | | | | |
Collapse
|
612
|
Ishibashi M, McMahon AP. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 2002; 129:4807-19. [PMID: 12361972 DOI: 10.1242/dev.129.20.4807] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sonic hedgehog (Shh) is a key signal in the specification of ventral cell identities along the length of the developing vertebrate neural tube. In the presumptive hindbrain and spinal cord, dorsal development is largely Shh independent. By contrast, we show that Shh is required for cyclin D1 expression and the subsequent growth of both ventral and dorsal regions of the diencephalon and midbrain in early somite-stage mouse embryos. We propose that a Shh-dependent signaling relay regulates proliferation and survival of dorsal cell populations in the diencephalon and midbrain. We present evidence that Fgf15 shows Shh-dependent expression in the diencephalon and may participate in this interaction, at least in part, by regulating the ability of dorsal neural precursors to respond to dorsally secreted Wnt mitogens.
Collapse
Affiliation(s)
- Makoto Ishibashi
- Department of Molecular and Cellular Biology, The Biolabs, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
613
|
Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C. When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 2002; 529:116-21. [PMID: 12354622 DOI: 10.1016/s0014-5793(02)03266-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of site-specific recombinases enables the precise introduction of defined genetic mutations into the mouse genome. In theory, any deletion, point mutation, inversion or translocation can be modeled in mice. Because gene targeting is controlled both spatially and temporally, the function of a given gene can be studied in the desired cell types and at a specific time point. This 'genetic dissection' allows to define gene function in development, physiology or behavior. In this review, we focus on the technical possibilities of Cre and other site-specific recombinases but also discuss their limitations.
Collapse
Affiliation(s)
- François Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Collège de France, 11 place Marcelin Berthelot, 75231 Cedex 5, Paris, France.
| | | | | | | | | |
Collapse
|
614
|
Abu-Issa R, Smyth G, Smoak I, Yamamura KI, Meyers EN. Fgf8is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129:4613-25. [PMID: 12223417 DOI: 10.1242/dev.129.19.4613] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here an analysis of cardiovascular and pharyngeal arch development in mouse embryos hypomorphic for Fgf8. Previously, we have described the generation of Fgf8 compound heterozygous (Fgf8neo/–) embryos. Although early analysis demonstrated that some of these embryos have abnormal left-right (LR) axis specification and cardiac looping reversals, the number and type of cardiac defects present at term suggested an additional role for Fgf8 in cardiovascular development. Most Fgf8neo/– mutant embryos survive to term with abnormal cardiovascular patterning, including outflow tract, arch artery and intracardiac defects. In addition, these mutants have hypoplastic pharyngeal arches, small or absent thymus and abnormal craniofacial development. Neural crest cells (NCCs) populate the pharyngeal arches and contribute to many structures of the face, neck and cardiovascular system, suggesting that Fgf8 may be required for NCC development. Fgf8 is expressed within the developing pharyngeal arch ectoderm and endoderm during NCC migration through the arches. Analysis of NCC development in Fgf8neo/– mutant embryos demonstrates that NCCs are specified and migrate, but undergo cell death in areas both adjacent and distal to where Fgf8 is normally expressed. This study defines the cardiovascular defects present in Fgf8 mutants and supports a role for Fgf8 in development of all the pharyngeal arches and in NCC survival.
Collapse
Affiliation(s)
- Radwan Abu-Issa
- Department of Pediatrics, Neonatal Perinatal Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
615
|
Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM. AnFgf8mouse mutant phenocopies human 22q11 deletion syndrome. Development 2002; 129:4591-603. [PMID: 12223415 PMCID: PMC1876665 DOI: 10.1242/dev.129.19.4591] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormalities. Because ablation of neural crest in chicks produces many features of the deletion 22q11 syndrome, it has been proposed that haploinsufficiency in this region impacts neural crest function during cardiac and pharyngeal arch development. Few factors required for migration, survival, proliferation and subsequent differentiation of pharyngeal arch neural crest and mesoderm-derived mesenchyme into their respective cardiovascular, musculoskeletal, and glandular derivatives have been identified. However, the importance of epithelial-mesenchymal interactions and pharyngeal endoderm function is becoming increasingly clear.Fibroblast growth factor 8 is a signaling molecule expressed in the ectoderm and endoderm of the developing pharyngeal arches and known to play an important role in survival and patterning of first arch tissues. We demonstrate a dosage-sensitive requirement for FGF8 during development of pharyngeal arch, pharyngeal pouch and neural crest-derived tissues. We show that FGF8 deficient embryos have lethal malformations of the cardiac outflow tract, great vessels and heart due, at least in part, to failure to form the fourth pharyngeal arch arteries, altered expression of Fgf10 in the pharyngeal mesenchyme, and abnormal apoptosis in pharyngeal and cardiac neural crest.The Fgf8 mutants described herein display the complete array of cardiovascular, glandular and craniofacial phenotypes seen in human deletion 22q11 syndromes. This represents the first single gene disruption outside the typically deleted region of human chromosome 22 to fully recapitulate the deletion 22q11 phenotype. FGF8 may operate directly in molecular pathways affected by deletions in 22q11 or function in parallel pathways required for normal development of pharyngeal arch and neural crest-derived tissues. In either case, Fgf8 may function as a modifier of the 22q11 deletion and contribute to the phenotypic variability of this syndrome.
Collapse
Affiliation(s)
- Deborah U Frank
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
616
|
Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A. A genetic link between Tbx1 and fibroblast growth factor signaling. Development 2002; 129:4605-11. [PMID: 12223416 DOI: 10.1242/dev.129.19.4605] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tbx1 haploinsufficiency causes aortic arch abnormalities in mice because of early growth and remodeling defects of the fourth pharyngeal arch arteries. The function of Tbx1 in the development of these arteries is probably cell non-autonomous, as the gene is not expressed in structural components of the artery but in the surrounding pharyngeal endoderm. We hypothesized that Tbx1 may trigger signals from the pharyngeal endoderm directed to the underlying mesenchyme. We show that the expression patterns of Fgf8 and Fgf10, which partially overlap with Tbx1 expression pattern, are altered in Tbx1–/– mutants. In particular, Fgf8 expression is abolished in the pharyngeal endoderm. To understand the significance of this finding for the pathogenesis of the mutant Tbx1 phenotype, we crossed Tbx1 and Fgf8 mutants. Double heterozygous Tbx1+/–;Fgf8+/– mutants present with a significantly higher penetrance of aortic arch artery defects than do Tbx1+/–;Fgf8+/+ mutants, while Tbx1+/+;Fgf8+/– animals are normal. We found that Fgf8 mutation increases the severity of the primary defect caused by Tbx1 haploinsufficiency, i.e. early hypoplasia of the fourth pharyngeal arch arteries, consistent with the time and location of the shared expression domain of the two genes. Hence, Tbx1 and Fgf8 interact genetically in the development of the aortic arch. Our data provide the first evidence of a genetic link between Tbx1 and FGF signaling, and the first example of a modifier of the Tbx1 haploinsufficiency phenotype. We speculate that the FGF8 locus might affect the penetrance of cardiovascular defects in individuals with chromosome 22q11 deletions involving TBX1.
Collapse
Affiliation(s)
- Francesca Vitelli
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston TX 77030, USA
| | | | | | | | | | | |
Collapse
|
617
|
Maves L, Jackman W, Kimmel CB. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 2002; 129:3825-37. [PMID: 12135921 DOI: 10.1242/dev.129.16.3825] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | |
Collapse
|
618
|
Trifunovic A, Larsson NG. Tissue-specific knockout model for study of mitochondrial DNA mutation disorders. Methods Enzymol 2002; 353:409-21. [PMID: 12078514 DOI: 10.1016/s0076-6879(02)53065-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aleksandra Trifunovic
- Department of Medical Nutrition, Karolinska Institute, NOVUM, Huddinge Hospital, S-14186 Huddinge, Sweden
| | | |
Collapse
|
619
|
Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002; 418:501-8. [PMID: 12152071 DOI: 10.1038/nature00902] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To determine the role of fibroblast growth factor (FGF) signalling from the apical ectodermal ridge (AER), we inactivated Fgf4 and Fgf8 in AER cells or their precursors at different stages of mouse limb development. We show that FGF4 and FGF8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the AER. On the basis of the skeletal phenotypes observed, we conclude that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the complete absence of both FGF4 and FGF8 activities, limb development fails. We present a model to explain how the mutant phenotypes arise from FGF-mediated effects on limb bud size and cell survival.
Collapse
Affiliation(s)
- Xin Sun
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, 94143-0452, USA
| | | | | |
Collapse
|
620
|
Thaung C, Hough T, Hunter AJ, Hardisty R, Nolan PM. In search of new disease models in the mouse using ENU mutagenesis. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:109-34. [PMID: 11859561 DOI: 10.1007/978-3-662-04667-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
621
|
Ohkubo Y, Chiang C, Rubenstein JLR. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 2002; 111:1-17. [PMID: 11955708 DOI: 10.1016/s0306-4522(01)00616-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the roles of bare morphogenetic protein (BMP), sonic hedgehog (SHH) and fibroblast growth factor (FGF)-expressing signaling centers in regulating the patterned outgrowth of the telencephalic and optic vesicles. Implantation of BMP4 beads in the anterior neuropore of stage 10 chicken embryos repressed FGF8 and SHH expression. Similarly, loss of SHH expression in Shh mutant mice leads to increased BMP signaling and loss of Fgf8 expression in the prosencephalon. Increased BMP signaling and loss of FGF and SHH expression was correlated with decreased proliferation, increased cell death, and hypoplasia of the telencephalic and optic vesicles. However, decreased BMP signaling, through ectopic expression of Noggin, a BMP-binding protein, also caused decreased proliferation and hypoplasia of the telencephalic and optic vesicles, but with maintenance of Fgf8 and Shh expression, and no detectable increase in cell death. These results suggest that optimal growth requires a balance of BMP, FGF8 and SHH signaling. We suggest that the juxtaposition of Fgf8, Bmp4 and Shh expression domains generate patterning centers that coordinate the growth of the telencephalic and optic vesicles, similar to how Fgf8, Bmp4 and Shh regulate growth of the limb bud. Furthermore, these patterning centers regulate regional specification within the forebrain and eye, as exemplified by the regulation of Emx2 expression by different levels of BMP signaling. In summary, we present evidence that there is cross-regulation between BMP-, FGF- and SHH-expressing signaling centers in the prosencephalon which regulate morphogenesis of, and regional specification within, the telencephalic and optic vesicles.
Collapse
Affiliation(s)
- Y Ohkubo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, LPPI, University of California, San Francisco, 401 Parnassus, P.O. Box 0984, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
622
|
Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 2002; 35:255-65. [PMID: 12160744 DOI: 10.1016/s0896-6273(02)00751-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cells at the anterior boundary of the neural plate (ANB) can induce telencephalic gene expression when transplanted to more posterior regions. Here, we identify a secreted Frizzled-related Wnt antagonist, Tlc, that is expressed in ANB cells and can cell nonautonomously promote telencephalic gene expression in a concentration-dependent manner. Moreover, abrogation of Tlc function compromises telencephalic development. We also identify Wnt8b as a locally acting modulator of regional fate in the anterior neural plate and a likely target for antagonism by Tlc. Finally, we show that tlc expression is regulated by signals that establish early antero-posterior and dorso-ventral ectodermal pattern. From these studies, we propose that local antagonism of Wnt activity within the anterior ectoderm is required to establish the telencephalon.
Collapse
Affiliation(s)
- Corinne Houart
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, SE1 9RT, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
623
|
Firnberg N, Neubüser A. FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region. Dev Biol 2002; 247:237-50. [PMID: 12086464 DOI: 10.1006/dbio.2002.0696] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fgf8 is required for normal development of the nasal region. Here, we have used a candidate approach to identify genes that are induced in chick nasal mesenchyme in response to FGF signaling. Using an explant culture system, we show that expression of the transcription factors Tbx2, Erm, Pea3, and Pax3, but not Pax7, in nasal mesenchyme is regulated by ectodermal signals in a stage-dependent manner. Using beads soaked in recombinant FGF protein and an FGF receptor antagonist, we furthermore demonstrate that FGF signaling is necessary and sufficient for expression of Tbx2, Erm, Pea3, and Pax3, but has no effect on Pax7 expression. We also show that, within the nasal mesenchyme, competence to respond to FGF signaling is initially widespread and uniform but becomes restricted to regions normally exposed to FGF at later stages of development, coincident with changes in FGF receptor expression. Finally, we provide evidence that FGF8 also regulates Erm and Pea3 expression in the nasal placodes. Together, these results identify Tbx2, Erm, Pea3, and Pax3 as downstream targets of FGF signaling in the facial area and suggest that these genes may mediate some of the effects of FGF8 during development of the nasal region.
Collapse
Affiliation(s)
- Nicole Firnberg
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, A-1030, Austria
| | | |
Collapse
|
624
|
Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 2002; 247:351-66. [PMID: 12086472 DOI: 10.1006/dbio.2002.0707] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vertebrates, tendons connect muscles to skeletal elements. Surgical experiments in the chick have underlined developmental interactions between tendons and muscles. Initial formation of tendons occurs autonomously with respect to muscle. However, further tendon development requires the presence of muscle. The molecular signals involved in these interactions remain unknown. In the chick limb, Fgf4 transcripts are located at the extremities of muscles, where the future tendons will attach. In this paper, we analyse the putative role of muscle-Fgf4 on tendon development. We have used three general tendon markers, scleraxis, tenascin, and Fgf8 to analyse the regulation of these tendon-associated molecules by Fgf4 under different experimental conditions. In the absence of Fgf4, in muscleless and aneural limbs, the expression of the three tendon-associated molecules, scleraxis, tenascin, and Fgf8, is down-regulated. Exogenous implantation of Fgf4 in normal, aneural, and muscleless limbs induces scleraxis and tenascin expression but not that of Fgf8. These results indicate that Fgf4 expressed in muscle is required for the maintenance of scleraxis and tenascin but not Fgf8 expression in tendons.
Collapse
Affiliation(s)
- Frédérique Edom-Vovard
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France (UMR 7128), 49 bis, avenue de la Belle Gabrielle, Nogent-sur-Marne, 94736, France
| | | | | | | | | |
Collapse
|
625
|
Abstract
Genetic analysis, embryonic tissue explantation and in vivo chromatin studies have together identified the distinct regulatory steps that are necessary for the development of endoderm into a bud of liver tissue and, subsequently, into an organ. In this review, I discuss the acquisition of competence to express liver-specific genes by the endoderm, the control of early hepatic growth, the coordination of hepatic and vascular development and the cell differentiation that is necessary to generate a functioning liver. The regulatory mechanisms that underlie these phases are common to the development of many organ systems and might be recapitulated or disrupted during stem-cell differentiation and adult tissue pathogenesis.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
626
|
Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T, Goad DL, Lanske B, Kronenberg HM. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 2002; 129:2977-86. [PMID: 12050144 DOI: 10.1242/dev.129.12.2977] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002; 16:1446-65. [PMID: 12080084 DOI: 10.1101/gad.990702] [Citation(s) in RCA: 617] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
628
|
Takeuchi T, Nomura T, Tsujita M, Suzuki M, Fuse T, Mori H, Mishina M. Flp recombinase transgenic mice of C57BL/6 strain for conditional gene targeting. Biochem Biophys Res Commun 2002; 293:953-7. [PMID: 12051751 DOI: 10.1016/s0006-291x(02)00321-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.
Collapse
Affiliation(s)
- Tomonori Takeuchi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
629
|
Maroon H, Walshe J, Mahmood R, Kiefer P, Dickson C, Mason I. Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 2002; 129:2099-108. [PMID: 11959820 DOI: 10.1242/dev.129.9.2099] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fgf3 has long been implicated in otic placode induction and early development of the otocyst; however, the results of experiments in mouse and chick embryos to determine its function have proved to be conflicting. In this study, we determined fgf3 expression in relation to otic development in the zebrafish and used antisense morpholino oligonucleotides to inhibit Fgf3 translation. Successful knockdown of Fgf3 protein was demonstrated and this resulted in a reduction of otocyst size together with reduction in expression of early markers of the otic placode.fgf3 is co-expressed with fgf8 in the hindbrain prior to otic induction and, strikingly, when Fgf3 morpholinos were co-injected together with Fgf8 morpholinos, a significant number of embryos failed to form otocysts. These effects were made manifest at early stages of otic development by an absence of early placode markers (pax2.1 and dlx3) but were not accompanied by effects on cell division or death. The temporal requirement for Fgf signalling was established as being between 60% epiboly and tailbud stages using the Fgf receptor inhibitor SU5402. However, the earliest molecular event in induction of the otic territory, pax8 expression, did not require Fgf signalling, indicating an inductive event upstream of signalling by Fgf3 and Fgf8. We propose that Fgf3 and Fgf8 are required together for formation of the otic placode and act during the earliest stages of its induction.
Collapse
Affiliation(s)
- Habib Maroon
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
630
|
Spicer AP, Tien JL, Joo A, Bowling RA. Investigation of hyaluronan function in the mouse through targeted mutagenesis. Glycoconj J 2002; 19:341-5. [PMID: 12975614 DOI: 10.1023/a:1025321105691] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has become increasingly apparent that the high molecular mass glycosaminoglycan, hyaluronan (HA), is required for many morphogenetic processes during vertebrate development. This renewed understanding of the various developmental roles for HA, has come about largely through the advent of gene targeting approaches in the mouse. To date, mutations have been engineered in the enzymes responsible for biosynthesis and degradation and for those proteins that bind to HA within the extracellular matrix and at the cell surface. Collectively, the phenotypes resulting from these mutations demonstrate that HA is critical for normal mammalian embryogenesis and for various processes in postnatal and adult life (Table 1). In this article we will review our progress in understanding the biological functions for HA through targeted mutagenesis of the HA synthase 2 (Has2) and 3 (Has3) genes. Data that has been obtained from a conventional targeted disruption of the Has2 gene, is presented in an accompanying review by Camenisch and McDonald. More specifically, in this review we will provide an overview of the conditional gene targeting strategy being used to create tissue-specific deficiencies in Has2 function, along with our progress in understanding the role for Has3-dependent HA biosynthesis.
Collapse
Affiliation(s)
- Andrew P Spicer
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
631
|
Zammit C, Coope R, Gomm JJ, Shousha S, Johnston CL, Coombes RC. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br J Cancer 2002; 86:1097-103. [PMID: 11953856 PMCID: PMC2364190 DOI: 10.1038/sj.bjc.6600213] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 01/22/2002] [Accepted: 01/24/2002] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Collapse
Affiliation(s)
- C Zammit
- Cancer Research (UK) Laboratories, Department of Cancer Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
632
|
Abstract
Stem cells have been suggested as candidate therapeutic tools for neurodegenerative disorders, given their ability to give rise to the appropriate cell types after grafting in vivo. In this review I summarize some of the evidence currently available concerning two approaches for the treatment of Parkinson's disease: (1) The generation of dopaminergic neurons from embryonic stem cells, multipotent stem cells, and neuronal progenitor cells for cell replacement therapy. (2) The engineering of multipotent stem cells to release glial cell-line derived neurotrophic factor, a potent neurotrophic factor for dopaminergic neurons, in a neuroprotective and neuroregenerative approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- E Arenas
- Laboratory of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
633
|
Glavic A, Gómez-Skarmeta JL, Mayor R. The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 2002; 129:1609-21. [PMID: 11923198 DOI: 10.1242/dev.129.7.1609] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isthmic organizer, which patterns the anterior hindbrain and midbrain, is one of the most studied secondary organizers. In recent years, new insights have been reported on the molecular nature of its morphogenetic activity. Studies in chick, mouse and zebrafish have converged to show that mutually repressive interactions between the homeoproteins encoded by Otx and Gbx genes position this organizer in the neural primordia.
We present evidence that equivalent, in addition to novel, interactions between these and other genes operate in Xenopus embryos to position the isthmic organizer. We made use of fusion proteins in which we combined Otx2 or Gbx2 homeodomains with the E1A activation domain or the EnR repressor element which were then injected into embryos. Our results show that Otx2 and Gbx2 are likely to be transcriptional repressors, and that these two proteins repress each other transcription. Our experiments show that the interaction between these two proteins is required for the positioning of the isthmic organizer genes Fgf8, Pax2 and En2. In this study we also developed a novel in vitro assay for the study of the formation of this organizer. We show that conjugating animal caps previously injected with Otx2 and Gbx2 mRNAs recreate the interactions required for the induction of the isthmic organizer. We have used this assay to determine which cells produce and which cells receive the Fgf signal.
Finally, we have added a novel genetic element to this process, Xiro1, which encode another homeoprotein. We show that the Xiro1 expression domain overlaps with territories expressing Otx2, Gbx2 and Fgf8. By expressing wild-type or dominant negative forms of Xiro1, we show that this gene activates the expression of Gbx2 in the hindbrain. In addition, Xiro1 is required in the Otx2 territory to allow cells within this region to respond to the signals produced by adjacent Gbx2 cells. Moreover, Xiro1 is absolutely required for Fgf8 expression at the isthmic organizer. We discuss a model where Xiro1 plays different roles in regulating the genetic cascade of interactions between Otx2 and Gbx2 that are necessary for the specification of the isthmic organizer.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Faculty of Science, University of Chile, Casilla 653, Santiago, Chile
| | | | | |
Collapse
|
634
|
Raffai RL, Weisgraber KH. Hypomorphic apolipoprotein E mice: a new model of conditional gene repair to examine apolipoprotein E-mediated metabolism. J Biol Chem 2002; 277:11064-8. [PMID: 11792702 DOI: 10.1074/jbc.m111222200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In creating an allelic variant of mouse Apoe designed to resemble human apolipoprotein E4 (apoE4), we generated hypomorphic apoE (hypoE) mice that express only approximately 5% of normal apoE mRNA levels in all tissues. Insertion of a neo cassette flanked by loxP sites in the third intron of Apoe reduced expression of the Arg-61 allelic variant in hypoE mice and resulted in plasma apoE levels that were approximately 2-5% of normal. Unlike other mouse models with low levels of circulating apoE, hypoE mice had a nearly normal lipoprotein cholesterol profile when fed a chow diet. Further reduction of apoE expression in hypoE/Apoe(-/-) heterozygous mice led to an increase in remnant lipoprotein-associated cholesterol levels, demonstrating that hypoE mice express close to the threshold level of Arg-61 apoE required for a normal lipoprotein profile. Unlike wild type mice, hypoE mice were susceptible to diet-induced hypercholesterolemia, which was fully reversed within 3 weeks after resumption of a chow diet. In Mx1-Cre transgenic hypoE mice, plasma apoE levels returned to normal within 10 days after gene repair and removal of the neo cassette following induction of Cre recombinase. HypoE mice provide the opportunity for conditional gene repair by crossing with inducible or lineage/cell type-specific Cre transgenic mice, generating new models to dissect the roles of apoE in atherosclerosis regression, immunoregulation, and neurodegeneration.
Collapse
Affiliation(s)
- Robert L Raffai
- Gladstone Institutes of Cardiovascular Disease and Neurological Disease, San Francisco, California 94141-9100, USA
| | | |
Collapse
|
635
|
Crossley PH, Martinez S, Ohkubo Y, Rubenstein JL. Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 2002; 108:183-206. [PMID: 11734354 DOI: 10.1016/s0306-4522(01)00411-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies suggest that Fgf8 has a key role in regulating vertebrate development. In the rostral head of the embryonic chicken, there are increasing numbers of separate Fgf8 domains; these are present in tissues that appear to have previously expressed Otx2. As Fgf8 expression becomes established, Otx2 expression weakens, but remains in cells abutting the Fgf8 expression domain. These Fgf8 expression domains are closely associated with tissues expressing Bmp4 and Shh. Based on analogy with the embryonic limb, we suggest that Fgf8, Bmp4 and Shh function together in patterning regions of the embryonic head. Gene expression changes are particularly prominent in 14-21 somite stage embryos in the rostral forebrain, during early morphogenesis of the telencephalic and optic vesicles, when several new interfaces of Fgf8, Bmp4 and Shh are generated. To gain insights into the functions of fibroblast growth factor 8 (FGF8) in the embryonic forebrain, we studied the effects of implanting beads containing this protein in the dorsal prosencephalon of embryonic day 2 chicken embryos. Ectopic FGF8 had profound effects on morphogenesis of the telencephalic and optic vesicles. It disrupted formation of the optic stalk and caused a transformation of the pigment epithelium into neural retina. Within the telencephalon, FGF8 beads frequently induced a sulcus that had features of an ectopic rostral midline. The sulcus separated the telencephalon into rostral and caudal vesicles. Furthermore, we present evidence that FGF8 can regulate regionalization of the prosencephalon through inhibition of Otx2 and Emx2 expression. Thus, these experiments provide evidence that FGF8 can regulate both morphogenesis and patterning of the rostral prosencephalon (telencephalic and optic vesicles). FGF8 beads can induce midline properties (e.g. a sulcus) and can modulate the specification and differentiation of adjacent tissues. We suggest that some of these effects are through regulating the expression of homeobox genes (Otx2 and Emx2) that are known to participate in forebrain patterning.
Collapse
Affiliation(s)
- P H Crossley
- Department of Psychiatry, LPPI, University of California, SanFrancisco, 94143-0984, USA
| | | | | | | |
Collapse
|
636
|
Akagi K, Kyun Park E, Mood K, Daar IO. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development. Dev Dyn 2002; 223:216-28. [PMID: 11836786 DOI: 10.1002/dvdy.10048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from several growth factor receptors to the mitogen-activated protein (MAP) kinase signaling cascade, but its biological function during development is not well characterized. Here, we show that the Xenopus homolog of mammalian SNT1/FRS-2 (XSNT1) plays a critical role in the appropriate formation of mesoderm-derived tissue during embryogenesis. XSNT1 has an expression pattern that is quite similar to the fibroblast growth factor receptor-1 (FGFR1) during Xenopus development. Ectopic expression of XSNT1 markedly enhanced the embryonic defects induced by an activated FGF receptor, and increased the MAP kinase activity as well as the expression of a mesodermal marker in response to FGF receptor signaling. A loss-of-function study using antisense XSNT1 morpholino oligonucleotides (XSNT-AS) shows severe malformation of trunk and posterior structures. Moreover, XSNT-AS disrupts muscle and notochord formation, and inhibits FGFR-induced MAP kinase activation. In ectodermal explants, XSNT-AS blocks FGFR-mediated induction of mesoderm and the accompanying elongation movements. Our results indicate that XSNT1 is a critical mediator of FGF signaling and is required for early Xenopus development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Fibroblast Growth Factor 1/physiology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- MAP Kinase Signaling System
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mesoderm/metabolism
- Molecular Sequence Data
- Morphogenesis
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Vertebrates/genetics
- Xenopus Proteins/biosynthesis
- Xenopus Proteins/genetics
- Xenopus Proteins/physiology
- Xenopus laevis/embryology
- Xenopus laevis/genetics
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Keiko Akagi
- Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
637
|
Hallonet M, Kaestner KH, Martin-Parras L, Sasaki H, Betz UAK, Ang SL. Maintenance of the specification of the anterior definitive endoderm and forebrain depends on the axial mesendoderm: a study using HNF3beta/Foxa2 conditional mutants. Dev Biol 2002; 243:20-33. [PMID: 11846474 DOI: 10.1006/dbio.2001.0536] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mouse embryo, the early induction of the head region depends on signals from the anterior visceral endoderm (AVE) and the anterior primitive streak. Subsequently, node derivatives, including anterior definitive endoderm and axial mesendoderm, are thought to play a role in the maintenance and elaboration of anterior neural character. Foxa2 encodes a winged-helix transcription factor expressed in signaling centers required for head development, including the AVE, anterior primitive streak, anterior definitive endoderm, and axial mesendoderm. To address Foxa2 function during formation of the head, we used conditional mutants in which Foxa2 function is preserved in extraembryonic tissues during early embryonic stages and inactivated in embryonic tissues after the onset of gastrulation. In Foxa2 conditional mutants, the anterior neural plate and anterior definitive endoderm were initially specified. In contrast, the axial mesendoderm failed to differentiate. At later stages, specification of the anterior neural plate and anterior definitive endoderm was shown to be labile. As a result, head truncations were observed in Foxa2 conditional mutants. Our results therefore indicate that anterior definitive endoderm alone is not sufficient to maintain anterior head specification and that an interaction between the axial mesendoderm and the anterior definitive endoderm is required for proper specification of the endoderm. Foxa2 therefore plays an integral role in the formation of axial mesendoderm, which is required to maintain the specification of the forebrain and the anterior definitive endoderm.
Collapse
Affiliation(s)
- Marc Hallonet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, C.U. de Strasbourg, Illkirch, France
| | | | | | | | | | | |
Collapse
|
638
|
Reim G, Brand M. spiel-ohne-grenzen/pou2mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 2002; 129:917-33. [PMID: 11861475 DOI: 10.1242/dev.129.4.917] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural patterning of the vertebrate brain starts within the ectoderm during gastrulation and requires the activity of organizer cell populations in the neurectoderm. One such organizer is located at the prospective midbrain-hindbrain boundary (MHB) and controls development of the midbrain and the anterior hindbrain via the secreted signaling molecule Fgf8. However, little is known about how the ability of neural precursors to respond to Fgf8 is regulated. We have studied the function of the zebrafish spiel-ohne-grenzen (spg) gene in early neural development. Genetic mapping and molecular characterization presented in the accompanying paper revealed that spg mutations disrupt the pou2 gene, which encodes a POU domain transcription factor that is specifically expressed in the MHB primordium, and is orthologous to mammalian Oct3/Oct4. We show that embryos homozygous for spg/pou2 have severe defects in development of the midbrain and hindbrain primordium. Key molecules that function in the formation of the MHB, such as pax2.1, spry4, wnt1, her5, eng2 and eng3, and in hindbrain development, such as krox20, gbx2, fkd3 and pou2, are all abnormal in spg mutant embryos. By contrast, regional definition of the future MHB in the neuroectoderm by complementary expression of otx2 and gbx1, before the establishment of the complex regulatory cascade at the MHB, is normal in spg embryos. Moreover, the Fgf8 and Wnt1 signaling pathways are activated normally at the MHB but become dependent on spg towards the end of gastrulation. Therefore, spg plays a crucial role both in establishing and in maintaining development of the MHB primordium. Transplantation chimeras show that normal spg function is required within the neuroectoderm but not the endomesoderm. Importantly, gain-of-function experiments by mRNA injection of fgf8 and pou2 or Fgf8 bead implantations, as well as analysis of spg-ace double mutants show that spg embryos are insensitive to Fgf8, although Fgf receptor expression and activity of the downstream MAP kinase signaling pathway appear intact. We suggest that spg/pou2 is a transcription factor that mediates regional competence to respond to Fgf8 signaling.
Collapse
Affiliation(s)
- Gerlinde Reim
- Max Planck Institute for Molecular, Cell Biology and Genetics, Dresden, Pfotenhauer Str. 108, 01307 Dresden, FR of Germany
| | | |
Collapse
|
639
|
Tian E, Kimura C, Takeda N, Aizawa S, Matsuo I. Otx2 is required to respond to signals from anterior neural ridge for forebrain specification. Dev Biol 2002; 242:204-23. [PMID: 11820816 DOI: 10.1006/dbio.2001.0531] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the production of conditional knock-out mice. Unexpectedly, the neo-cassette insertion created a hypomorphic Otx2 allele; consequently, the phenotype of compound mutant embryos carrying both a hypomorphic and a null allele (Otx2(frt-neo/-)) was analyzed. Otx2(frt-neo/-) mutant mice died at birth, displaying rostral head malformations. Molecular marker analysis demonstrated that Otx2(frt-neo/-) mutant embryos appeared to undergo anterior-posterior axis generation and induction of anterior neuroectoderm normally; however, these mutants subsequently failed to correctly specify the forebrain region. As the rostral margin of the neural plate, termed the anterior neural ridge (ANR), plays crucial roles with respect to neural plate specification, we examined expression of molecular markers for the ANR and the neural plate; moreover, neural plate explant studies were performed. Analyses revealed that telencephalic gene expression did not occur in mutant embryos due to defects of the neural plate; however, the mutant ANR bore normal induction activity on gene expression. These results further suggest that Otx2 dosage may be crucial in the neural plate with respect to response to inductive signals primarily from the ANR for forebrain specification.
Collapse
Affiliation(s)
- E Tian
- Department of Morphogenesis, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | |
Collapse
|
640
|
Kwan KM. Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 2002; 32:49-62. [PMID: 11857777 DOI: 10.1002/gene.10068] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kin-Ming Kwan
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
641
|
Heanue TA, Davis RJ, Rowitch DH, Kispert A, McMahon AP, Mardon G, Tabin CJ. Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes. Mech Dev 2002; 111:75-87. [PMID: 11804780 DOI: 10.1016/s0925-4773(01)00611-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.
Collapse
Affiliation(s)
- Tiffany A Heanue
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
642
|
Possemato R, Eggan K, Moeller BJ, Jaenisch R, Jackson-Grusby L. Flp recombinase regulated lacZ expression at the ROSA26 locus. Genesis 2002; 32:184-6. [PMID: 11857816 DOI: 10.1002/gene.10039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Richard Possemato
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
643
|
Abstract
In vertebrates, the paraxial mesoderm corresponds to the bilateral strips of mesodermal tissue flanking the notochord and neural tube and which are delimited laterally by the intermediate mesoderm and the lateral plate. The paraxial mesoderm comprises the head or cephalic mesoderm anteriorly and the somitic region throughout the trunk and the tail of the vertebrates. Soon after gastrulation, the somitic region of vertebrates starts to become segmented into paired blocks of mesoderm, termed somites. This process lasts until the number of somites characteristic of the species is reached. The somites later give rise to all skeletal muscles of the body, the axial skeleton, and part of the dermis. In this review I discuss the processes involved in the formation of the paraxial mesoderm and its segmentation into somites in vertebrates.
Collapse
Affiliation(s)
- O Pourquié
- Laboratoire de génétique et de physiologie du développement, Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, France.
| |
Collapse
|
644
|
Pfeffer PL, Payer B, Reim G, di Magliano MP, Busslinger M. The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development 2002; 129:307-18. [PMID: 11807024 DOI: 10.1242/dev.129.2.307] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pax2 is the earliest known gene to be expressed throughout the mid-hindbrain region in late gastrula embryos of the mouse and is essential for the formation of an organizing center at the midbrain-hindbrain boundary (MHB), which controls midbrain and cerebellum development. We have used transgenic analysis to identify three MHB-specific enhancers in the upstream region of the mouse Pax2 gene. A 120 bp enhancer (at –3.7 kb) in cooperation with the endogenous promoter was sufficient to induce transgene expression in the anterior neural plate of late gastrula embryos, while it was already inactivated again at the MHB during somitogenesis. The activity of this early enhancer was severely reduced by mutation of three homeodomain-binding sites, two of which are part of a recognition sequence for POU homeodomain proteins. Oct3/4 (Pou5f1), the mouse ortholog of zebrafish Pou2, efficiently bound to this sequence, suggesting its involvement in the regulation of the early Pax2 enhancer. Starting at the four-somite stage, Pax2 is expressed at the MHB under the control of two enhancers located at –4.1 kb and –2.8 kb. The distal late enhancer contains a 102 bp sequence that is not only highly conserved between the mouse and pufferfish Pax2 genes, but also contributes to the enhancer activity of both genes in transgenic mice. The proximal 410 bp enhancer, which overlaps with a kidney-specific regulatory element, contains a functional Pax2/5/8-binding site and thus maintains Pax2 expression at the MHB under auto- and cross-regulatory control by Pax2/5/8 proteins. Importantly, the early and proximal late enhancers are not only sufficient but also necessary for expression at the MHB in the genomic context of the Pax2 locus, as their specific deletion interfered with correct temporal expression of a large Pax2 BAC transgene. Hence, separate enhancers under the control of distinct transcription factors activate and maintain Pax2 expression at the MHB.
Collapse
Affiliation(s)
- Peter L Pfeffer
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
645
|
Suh H, Gage PJ, Drouin J, Camper SA. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 2002; 129:329-37. [PMID: 11807026 DOI: 10.1242/dev.129.2.329] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of an allelic series in mice revealed that the Pitx2 homeobox gene is required at multiple stages of pituitary development. It is necessary for initiating expansion of Rathke's pouch and maintaining expression of the fetal-specific transcription factors Hesx1 and Prop1. At later stages Pitx2 is necessary for specification and expansion of the gonadotropes and Pit1 lineage within the ventral and caudomedial anterior pituitary. Mechanistically, this is due to the dependence of several critical lineage-specific transcription factors, Pit1, Gata2, Egr1 and Sf1, on a threshold level of PITX2. The related Pitx1 gene has a role in hormone gene transcription, and it is important late in ontogeny for the final expansion of the differentiated cell types. Pitx1 and Pitx2 have overlapping functions in the expansion of Rathke's pouch, revealing the sensitivity of pituitary organogenesis to the dosage of the PITX family. The model developed for PITX gene function in pituitary development provides a better understanding of the etiology of Rieger syndrome and may extend to other PITX-sensitive developmental processes.
Collapse
Affiliation(s)
- Hoonkyo Suh
- Neuroscience Program, Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0638, USA
| | | | | | | |
Collapse
|
646
|
Tour E, Pillemer G, Gruenbaum Y, Fainsod A. Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo. Mech Dev 2002; 110:3-13. [PMID: 11744364 DOI: 10.1016/s0925-4773(01)00591-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning and early induction of the MHB genetic cascade. We show that Otx2 and Gbx2 perform different roles in this process. We find that ectopically expressed Otx2 on its own can induce a substantial part of the MHB genetic network, namely En2, Wnt1, Pax-2, Fgf8 and Gbx2, in a concentration-dependent manner. This induction does not require protein synthesis and ends during neurulation. In contrast, Gbx2 is a negative regulator of Otx2 and the MHB genes. Based on the temporal patterns of expression of the genes involved, we propose that Otx2 might be the early inducer of the isthmic organizer genetic network while Gbx2 restricts Otx2 expression along the anterior-posterior axis and establishes an Otx2 gradient.
Collapse
Affiliation(s)
- Ella Tour
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
647
|
Abstract
Many homeodomain transcription factors having a distinct temporal and spatial expression pattern have been described in the developing anterior pituitary gland. By interacting with each other, as well as with other extrinsic and intrinsic signals, they control cell determination, cell differentiation and eventually maintenance of cell function which is most important for the life long secretion of the pituitary derived hormones in an appropriate manner. The different phenotypes, as mainly studied in the mouse, may help to analyse the consequences of disruption of a known or yet unknown individual transcription factor in humans. Therefore, to study the different steps in morphogenesis will shed light onto developmental processes which will open a most fascinating time not only for basic scientists, biologist but also for clinicians.
Collapse
Affiliation(s)
- P E Mullis
- University Children's Hospital, Inselspital, CH-3010 Bern, Switzerland.
| |
Collapse
|
648
|
Li JY, Joyner AL. Otx2andGbx2are required for refinement and not induction of mid-hindbrain gene expression. Development 2001; 128:4979-91. [PMID: 11748135 DOI: 10.1242/dev.128.24.4979] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Otx2 and Gbx2 are among the earliest genes expressed in the neuroectoderm, dividing it into anterior and posterior domains with a common border that marks the mid-hindbrain junction. Otx2 is required for development of the forebrain and midbrain, and Gbx2 for the anterior hindbrain. Furthermore, opposing interactions between Otx2 and Gbx2 play an important role in positioning the mid-hindbrain boundary, where an organizer forms that regulates midbrain and cerebellum development. We show that the expression domains of Otx2 and Gbx2 are initially established independently of each other at the early headfold stage, and then their expression rapidly becomes interdependent by the late headfold stage. As we demonstrate that the repression of Otx2 by retinoic acid is dependent on an induction of Gbx2 in the anterior brain, molecules other than retinoic acid must regulate the initial expression of Otx2 in vivo. In contrast to previous suggestions that an interaction between Otx2- and Gbx2-expressing cells may be essential for induction of mid-hindbrain organizer factors such as Fgf8, we find that Fgf8 and other essential mid-hindbrain genes are induced in a correct temporal manner in mouse embryos deficient for both Otx2 and Gbx2. However, expression of these genes is abnormally co-localized in a broad anterior region of the neuroectoderm. Finally, we find that by removing Otx2 function, development of rhombomere 3 is rescued in Gbx2–/– embryos, showing that Gbx2 plays a permissive, not instructive, role in rhombomere 3 development. Our results provide new insights into induction and maintenance of the mid-hindbrain genetic cascade by showing that a mid-hindbrain competence region is initially established independent of the division of the neuroectoderm into an anterior Otx2-positive domain and posterior Gbx2-positive domain. Furthermore, Otx2 and Gbx2 are required to suppress hindbrain and midbrain development, respectively, and thus allow establishment of the normal spatial domains of Fgf8 and other genes.
Collapse
Affiliation(s)
- J Y Li
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
649
|
Shinga J, Itoh M, Shiokawa K, Taira S, Taira M. Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mech Dev 2001; 109:225-39. [PMID: 11731236 DOI: 10.1016/s0925-4773(01)00528-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms that govern early patterning of anterior neuroectoderm (ANE) for the prospective brain region in vertebrates are largely unknown. Screening a cDNA library of Xenopus ANE led to the isolation of a Hairy and Enhancer of split- (HES)-related transcriptional repressor gene, Xenopus HES-related 1 (XHR1). XHR1 is specifically expressed in the midbrain-hindbrain boundary (MHB) region at the tailbud stage. The localized expression of XHR1 was detected as early as the early gastrula stage in the presumptive MHB region, an area just anterior to the involuting dorsal mesoderm that is demarcated by the expression of the gene Xbra. Expression of XHR1 was detected much earlier than that of other known MHB genes, XPax-2 and En-2, and also before the formation of the expression boundary between Xotx2 and Xgbx-2, suggesting that the early patterning of the presumptive MHB is independent of Xotx2 and Xgbx-2. Instead, the location of XHR1 expression appears to be determined in relation to the Xbra expression domain, since reduced or ectopic expression of Xbra altered the XHR1 expression domain according to the location of Xbra expression. In functional assays using mRNA injection, overexpression of dominant-negative forms of XHR1 in the MHB region led to marked reduction of XPax-2 and En-2 expression, and this phenotype was rescued by coexpression of wild-type XHR1. Furthermore, ectopically expressed wild-type XHR1 near the MHB region enhanced En-2 expression only in the MHB region but not in the region outside the MHB. These data suggest that XHR1 is required, but not sufficient by itself, to initiate MHB marker gene expression. Based on these data, we propose that XHR1 demarcates the prospective MHB region in the neuroectoderm in Xenopus early gastrulae.
Collapse
Affiliation(s)
- J Shinga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
650
|
Ye W, Bouchard M, Stone D, Liu X, Vella F, Lee J, Nakamura H, Ang SL, Busslinger M, Rosenthal A. Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat Neurosci 2001; 4:1175-81. [PMID: 11704761 DOI: 10.1038/nn761] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Local expression of FGF8 at the mid/hindbrain boundary (MHB) governs the development of multiple neurons and support cells. Here we show that the paired-domain protein Pax2 is necessary and sufficient for the induction of FGF8 in part by regulating the expression of Pax5&8. A network of transcription and secreted factors, including En1, Otx2, Gbx2, Grg4 and Wnt1&4, that is established independently of Pax2, further refines the expression domain and level of FGF8 at the MHB through opposing effects on Pax2 activity. Our results indicate that the expression of local organizing factors is controlled by combinatorial interaction between inductive and modulatory factors.
Collapse
Affiliation(s)
- W Ye
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|