601
|
Li XC, Zhou X, Zhuo JL. Evidence for a Physiological Mitochondrial Angiotensin II System in the Kidney Proximal Tubules: Novel Roles of Mitochondrial Ang II/AT 1a/O 2- and Ang II/AT 2/NO Signaling. Hypertension 2020; 76:121-132. [PMID: 32475319 DOI: 10.1161/hypertensionaha.119.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.
Collapse
Affiliation(s)
- Xiao Chun Li
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Xinchun Zhou
- Department of Pathology (X.Z.), University of Mississippi Medical Center, Jackson
| | - Jia Long Zhuo
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
602
|
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:425-435. [PMID: 32414646 PMCID: PMC7201239 DOI: 10.1016/j.jmii.2020.04.015] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the index case-patient, a number of conditions must be met, foremost among which is the encounter with humans and the presence in homo sapiens of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to the expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently described in human populations. Here we review the most recent evidence that ACE2 expression and/or polymorphism could influence both the susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart failure.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
603
|
Kuma A, Wang XH, Klein JD, Tan L, Naqvi N, Rianto F, Huang Y, Yu M, Sands JM. Inhibition of urea transporter ameliorates uremic cardiomyopathy in chronic kidney disease. FASEB J 2020; 34:8296-8309. [PMID: 32367640 PMCID: PMC7302978 DOI: 10.1096/fj.202000214rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Uremic cardiomyopathy, characterized by hypertension, cardiac hypertrophy, and fibrosis, is a complication of chronic kidney disease (CKD). Urea transporter (UT) inhibition increases the excretion of water and urea, but the effect on uremic cardiomyopathy has not been studied. We tested UT inhibition by dimethylthiourea (DMTU) in 5/6 nephrectomy mice. This treatment suppressed CKD-induced hypertension and cardiac hypertrophy. In CKD mice, cardiac fibrosis was associated with upregulation of UT and vimentin abundance. Inhibition of UT suppressed vimentin amount. Left ventricular mass index in DMTU-treated CKD was less compared with non-treated CKD mice as measured by echocardiography. Nephrectomy was performed in UT-A1/A3 knockout (UT-KO) to further confirm our finding. UT-A1/A3 deletion attenuates the CKD-induced increase in cardiac fibrosis and hypertension. The amount of α-smooth muscle actin and tgf-β were significantly less in UT-KO with CKD than WT/CKD mice. To study the possibility that UT inhibition could benefit heart, we measured the mRNA of renin and angiotensin-converting enzyme (ACE), and found both were sharply increased in CKD heart; DMTU treatment and UT-KO significantly abolished these increases. Conclusion: Inhibition of UT reduced hypertension, cardiac fibrosis, and improved heart function. These changes are accompanied by inhibition of renin and ACE.
Collapse
Affiliation(s)
- Akihiro Kuma
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Xiaonan H. Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Janet D. Klein
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lin Tan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Fitra Rianto
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Huang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Manshu Yu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
604
|
Furuhashi M, Moniwa N, Takizawa H, Ura N, Shimamoto K. Potential differential effects of renin-angiotensin system inhibitors on SARS-CoV-2 infection and lung injury in COVID-19. Hypertens Res 2020; 43:837-840. [PMID: 32433641 PMCID: PMC7237878 DOI: 10.1038/s41440-020-0478-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideki Takizawa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | | | | |
Collapse
|
605
|
Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2 2020; 1:147-159. [PMID: 34113869 PMCID: PMC8183954 DOI: 10.1016/j.hroo.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.
Collapse
Affiliation(s)
- Hailey J Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
606
|
A PKB-SPEG signaling nexus links insulin resistance with diabetic cardiomyopathy by regulating calcium homeostasis. Nat Commun 2020; 11:2186. [PMID: 32367034 PMCID: PMC7198626 DOI: 10.1038/s41467-020-16116-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic cardiomyopathy is a progressive disease in diabetic patients, and myocardial insulin resistance contributes to its pathogenesis through incompletely-defined mechanisms. Striated muscle preferentially expressed protein kinase (SPEG) has two kinase-domains and is a critical cardiac regulator. Here we show that SPEG is phosphorylated on Ser2461/Ser2462/Thr2463 by protein kinase B (PKB) in response to insulin. PKB-mediated phosphorylation of SPEG activates its second kinase-domain, which in turn phosphorylates sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (SERCA2a) and accelerates calcium re-uptake into the SR. Cardiac-specific deletion of PKBα/β or a high fat diet inhibits insulin-induced phosphorylation of SPEG and SERCA2a, prolongs SR re-uptake of calcium, and impairs cardiac function. Mice bearing a Speg3A mutation to prevent its phosphorylation by PKB display cardiac dysfunction. Importantly, the Speg3A mutation impairs SERCA2a phosphorylation and calcium re-uptake into the SR. Collectively, these data demonstrate that insulin resistance impairs this PKB-SPEG-SERCA2a signal axis, which contributes to the development of diabetic cardiomyopathy. Molecular mechanisms linking myocardial insulin resistance to diabetic cardiomyopathy are incompletely understood. Here the authors show that myocardial insulin resistance impairs a PKB-SPEG-SERCA2a signaling axis, which contributes to the development of diabetic cardiomyopathy.
Collapse
|
607
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
608
|
Miyao M, Cicalese S, Kawai T, Cooper HA, Boyer MJ, Elliott KJ, Forrester SJ, Kuroda R, Rizzo V, Hashimoto T, Scalia R, Eguchi S. Involvement of Senescence and Mitochondrial Fission in Endothelial Cell Pro-Inflammatory Phenotype Induced by Angiotensin II. Int J Mol Sci 2020; 21:ijms21093112. [PMID: 32354103 PMCID: PMC7247685 DOI: 10.3390/ijms21093112] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Angiotensin II (AngII) has a crucial role in cardiovascular pathologies, including endothelial inflammation and premature vascular aging. However, the precise molecular mechanism underlying aging-related endothelial inflammation induced by AngII remains elusive. Here, we have tested a hypothesis in cultured rat aortic endothelial cells (ECs) that the removal of AngII-induced senescent cells, preservation of proteostasis, or inhibition of mitochondrial fission attenuates the pro-inflammatory EC phenotype. AngII stimulation in ECs resulted in cellular senescence assessed by senescence-associated β galactosidase activity. The number of β galactosidase-positive ECs induced by AngII was attenuated by treatment with a senolytic drug ABT737 or the chemical chaperone 4-phenylbutyrate. Monocyte adhesion assay revealed that the pro-inflammatory phenotype in ECs induced by AngII was alleviated by these treatments. AngII stimulation also increased mitochondrial fission in ECs, which was mitigated by mitochondrial division inhibitor-1. Pretreatment with mitochondrial division inhibitor-1 attenuated AngII-induced senescence and monocyte adhesion in ECs. These findings suggest that mitochondrial fission and endoplasmic reticulum stress have causative roles in endothelial senescence-associated inflammatory phenotype induced by AngII exposure, thus providing potential therapeutic targets in age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Masashi Miyao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto 606–8501, Japan
| | - Stephanie Cicalese
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Hannah A. Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Michael J. Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Katherine J. Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Steven J. Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Ryohei Kuroda
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
| | - Tomoki Hashimoto
- Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Correspondence: (T.H.); (R.S.); (S.E.)
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
- Correspondence: (T.H.); (R.S.); (S.E.)
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (M.M.); (S.C.); (T.K.); (H.A.C.); (M.J.B.); (K.J.E.); (S.J.F.); (R.K.); (V.R.)
- Correspondence: (T.H.); (R.S.); (S.E.)
| |
Collapse
|
609
|
Centner AM, Bhide PG, Salazar G. Nicotine in Senescence and Atherosclerosis. Cells 2020; 9:E1035. [PMID: 32331221 PMCID: PMC7226537 DOI: 10.3390/cells9041035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoke is a known exacerbator of age-related pathologies, such as cardiovascular disease (CVD), atherosclerosis, and cellular aging (senescence). However, the role of nicotine and its major metabolite cotinine is yet to be elucidated. Considering the growing amount of nicotine-containing aerosol use in recent years, the role of nicotine is a relevant public health concern. A number of recent studies and health education sites have focused on nicotine aerosol-induced adverse lung function, and neglected cardiovascular (CV) impairments and diseases. A critical review of the present scientific literature leads to the hypothesis that nicotine mediates the effects of cigarette smoke in the CV system by increasing MAPK signaling, inflammation, and oxidative stress through NADPH oxidase 1 (Nox1), to induce vascular smooth muscle cell (VSMC) senescence. The accumulation of senescent VSMCs in the lesion cap is detrimental as it increases the pathogenesis of atherosclerosis by promoting an unstable plaque phenotype. Therefore, nicotine, and most likely its metabolite cotinine, adversely influence atherosclerosis.
Collapse
Affiliation(s)
- Ann Marie Centner
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, FSU College of Medicine, 1115, West Call Street, Tallahassee, FL 32306, USA;
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
610
|
Colman L, Caggiani M, Leyva A, Bresque M, Liechocki S, Maya-Monteiro CM, Mazal D, Batthyany C, Calliari A, Contreras P, Escande C. The protein Deleted in Breast Cancer-1 (DBC1) regulates vascular response and formation of aortic dissection during Angiotensin II infusion. Sci Rep 2020; 10:6772. [PMID: 32317757 PMCID: PMC7174338 DOI: 10.1038/s41598-020-63841-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are among the main causes of morbimortality in the adult population. Among them, hypertension is a leading cause for stroke, heart disease and kidney failure. Also, as a result of arterial wall weakness, hypertension can lead to the development of dissecting aortic aneurysms, a rare but often fatal condition if not readily treated. In this work, we investigated the role of DBC1 in the regulation of vascular function in an ANGII-induced hypertension mouse model. We found that WT and DBC1 KO mice developed hypertension in response to ANGII infusion. However, DBC1 KO mice showed increased susceptibility to develop aortic dissections. The effect was accompanied by upregulation of vascular remodeling factors, including MMP9 and also VEGF. Consistent with this, we found decreased collagen deposition and elastic fiber fragmentation, suggesting that increased expression of MMPs in DBC1 KO mice weakens the arterial wall, promoting the formation of aortic dissections during treatment with ANGII. Finally, DBC1 KO mice had reduced cell proliferation in the intima-media layer in response to ANGII, paralleled with an impairment to increase wall thickness in response to hypertension. Furthermore, VSMC purified from DBC1 KO mice showed impaired capacity to leave quiescence, confirming the in vivo results. Altogether, our results show for the first time that DBC1 regulates vascular response and function during hypertension and protects against vascular injury. This work also brings novel insights into the molecular mechanisms of the development of aortic dissections.
Collapse
Affiliation(s)
- Laura Colman
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Maria Caggiani
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Alejandro Leyva
- Laboratory of Vascular Biology and Rational Drug Design, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Bresque
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Sally Liechocki
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniel Mazal
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de la República (UdelaR) and C.H Pereira Rossell, Montevideo, Uruguay
| | - Carlos Batthyany
- Laboratory of Vascular Biology and Rational Drug Design, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Aldo Calliari
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Biociencias, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Paola Contreras
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo, Uruguay.
| |
Collapse
|
611
|
Speth RC. Response to recent commentaries regarding the involvement of angiotensin-converting enzyme 2 (ACE2) and renin-angiotensin system blockers in SARS-CoV-2 infections. Drug Dev Res 2020; 81:643-646. [PMID: 32304146 PMCID: PMC7264739 DOI: 10.1002/ddr.21672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
612
|
da Silva-Bertani DCT, Vileigas DF, Mota GAF, de Souza SLB, Sant'Ana PG, Freire PP, de Tomasi LC, Corrêa CR, Padovani CR, Fernandes T, de Oliveira EM, Cicogna AC. Increased angiotensin II from adipose tissue modulates myocardial collagen I and III in obese rats. Life Sci 2020; 252:117650. [PMID: 32294475 DOI: 10.1016/j.lfs.2020.117650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
It has been described that the cardiac dysfunction in the obesity model is because of collagen imbalance and that angiotensin II (Ang II) contributes to myocardial fibrosis. However, it remains undefined if changes in collagen I and III metabolism in obesity is due to the renin-angiotensin system (RAS) dysregulation from myocardium or excessive adipose tissue. AIM This study aimed to verify whether the changes in myocardial collagen metabolism result from RAS deregulation of cardiac or adipose tissue in an obesity model. MAIN METHODS Wistar rats were fed with control (CD) and high-fat (HFD) diets for 30 weeks. After the dietary intervention, animals were assigned to be treated with losartan at the 30 mg/kg/day dosage or kept untreated for an additional five weeks. KEY FINDINGS HFD induced obesity, comorbidities, and cardiac collagen overexpression. The HFD group presented an increase in Ang II levels in both adipose tissue and plasma, as well as AT1 receptor expression in cardiac tissue. Of note, the myocardial Ang II was not changed in the HFD group. Losartan administration reduced some obesity-induced comorbidities regardless of weight loss. The AT1 receptor blockade also decreased the release of Ang II from adipose tissue and myocardial AT1 receptor and collagen. SIGNIFICANCE It was seen that excessive adipose tissue is responsible for the exacerbated circulating Ang II, which induced cardiac fibrosis development.
Collapse
Affiliation(s)
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18618970, Brazil
| | - Loreta Casquel de Tomasi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18618970, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of São Paulo (USP), 05508-900 São Paulo, Brazil
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of São Paulo (USP), 05508-900 São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil.
| |
Collapse
|
613
|
Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH OPEN 2020; 4:e138-e144. [PMID: 32607467 PMCID: PMC7319800 DOI: 10.1055/s-0040-1713678] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
The activated renin-angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin-angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1-7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin-angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1-7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.
Collapse
Affiliation(s)
- Wolfgang Miesbach
- Department of Haemostaseology and Haemophilia Center, Institute of Transfusion Medicine, Medical Clinic 2, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
614
|
Braz NFT, Pinto MRC, Vieira ÉLM, Souza AJ, Teixeira AL, Simões-E-Silva AC, Kakehasi AM. Renin-angiotensin system molecules are associated with subclinical atherosclerosis and disease activity in rheumatoid arthritis. Mod Rheumatol 2020; 31:119-126. [PMID: 32149558 DOI: 10.1080/14397595.2020.1740418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To compare serum levels of RAS components in women with RA versus healthy females and to investigate the association between these molecules and subclinical atherosclerosis. METHODS A cross-sectional study involving female RA patients without ischemic CVD. Disease activity was assessed using the DAS28 and the CDAI. IMT of the common carotid artery was evaluated by ultrasonography. Serum levels of Ang II, Ang-(1-7), ACE and ACE2 were determined by enzyme immunoassay. RESULTS Fifty women with RA, mean 48.2 (7.3) years, were compared to 30 healthy women, paired by age. RA patients had higher plasma levels of Ang II (p < .01), Ang-(1-7) (p < .01), and ACE (p < .01) than controls. The ratios of ACE to ACE2 were higher in RA patients, whereas Ang II/Ang-(1-7) ratios were lower in RA patients. The presence of hypertension and the treatment with ACE inhibitors did not significantly modify serum levels of Ang II, Ang-(1-7), ACE and ACE2 in patients with RA. Seven RA patients had altered IMT, and eight patients exhibited atherosclerotic plaque. There was a negative correlation between ACE2 levels and IMT (p = .041). IMT positively correlated with age (p = .022), disease duration (p = .012) and overall Framingham risk score (p = .008). Ang II concentrations positively correlated with DAS28 (p = .034) and CDAI (p = .040). CONCLUSION Patients with RA had an activation of the RAS, suggesting an association with disease activity and cardiovascular risk. Rheumatological key messages Imbalance of both RAS axes may be associated with cardiovascular risk and disease activity in rheumatoid arthritis. Ultrasonography of the carotid arteries can identify early, subclinical atherosclerotic disease in rheumatoid arthritis patients. Angiotensin-converting enzyme inhibition or angiotensin 1 receptor blockade may be beneficial for rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Nayara Felicidade Tomaz Braz
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Raquel C Pinto
- Rheumatology Unit, Clinic Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Antonio Lucio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Simões-E-Silva
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Maria Kakehasi
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Locomotor Apparatus Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
615
|
Oakes JM, Xu J, Morris TM, Fried ND, Pearson CS, Lobell TD, Gilpin NW, Lazartigues E, Gardner JD, Yue X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension 2020; 75:1305-1314. [PMID: 32172623 DOI: 10.1161/hypertensionaha.119.14608] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases; however, the role of nicotine in the pathogenesis of these diseases is incompletely understood. The purpose of this study was to examine the effects of chronic nicotine inhalation on the development of cardiovascular and pulmonary disease with a focus on blood pressure and cardiac remodeling. Male C57BL6/J mice were exposed to air (control) or nicotine vapor (daily, 12 hour on/12 hour off) for 8 weeks. Systemic blood pressure was recorded weekly by radio-telemetry, and cardiac remodeling was monitored by echocardiography. At the end of the 8 weeks, mice were subjected to right heart catheterization to measure right ventricular systolic pressure. Nicotine-exposed mice exhibited elevated systemic blood pressure from weeks 1 to 3, which then returned to baseline from weeks 4 to 8, indicating development of tolerance to nicotine. At 8 weeks, significantly increased right ventricular systolic pressure was detected in nicotine-exposed mice compared with the air controls. Echocardiography showed that 8-week nicotine inhalation resulted in right ventricular (RV) hypertrophy with increased RV free wall thickness and a trend of increase in RV internal diameter. In contrast, there were no significant structural or functional changes in the left ventricle following nicotine exposure. Mechanistically, we observed increased expression of angiotensin-converting enzyme and enhanced activation of mitogen-activated protein kinase pathways in the RV but not in the left ventricle. We conclude that chronic nicotine inhalation alters both systemic and pulmonary blood pressure with the latter accompanied by RV remodeling, possibly leading to progressive and persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua M Oakes
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Tamara M Morris
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas D Fried
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Charlotte S Pearson
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| | - Thomas D Lobell
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Nicholas W Gilpin
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics (J.X., T.M.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans.,Southeast Louisiana Veterans Health Care Systems, New Orleans (J.X., T.M.M., T.D.L., N.W.G., E.L.)
| | - Jason D Gardner
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (E.L., J.D.G.), Louisiana State University Health Sciences Center, New Orleans
| | - Xinping Yue
- From the Department of Physiology (J.M.O., N.D.F., C.S.P., T.D.L., N.W.G., J.D.G., X.Y.), Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
616
|
Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, Zhang Z, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. SCIENCE CHINA. LIFE SCIENCES 2020; 63:364-374. [PMID: 32048163 PMCID: PMC7088566 DOI: 10.1007/s11427-020-1643-8] [Citation(s) in RCA: 1326] [Impact Index Per Article: 331.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/29/2022]
Abstract
The outbreak of the 2019-nCoV infection began in December 2019 in Wuhan, Hubei province, and rapidly spread to many provinces in China as well as other countries. Here we report the epidemiological, clinical, laboratory, and radiological characteristics, as well as potential biomarkers for predicting disease severity in 2019-nCoV-infected patients in Shenzhen, China. All 12 cases of the 2019-nCoV-infected patients developed pneumonia and half of them developed acute respiratory distress syndrome (ARDS). The most common laboratory abnormalities were hypoalbuminemia, lymphopenia, decreased percentage of lymphocytes (LYM) and neutrophils (NEU), elevated C-reactive protein (CRP) and lactate dehydrogenase (LDH), and decreased CD8 count. The viral load of 2019-nCoV detected from patient respiratory tracts was positively linked to lung disease severity. ALB, LYM, LYM (%), LDH, NEU (%), and CRP were highly correlated to the acute lung injury. Age, viral load, lung injury score, and blood biochemistry indexes, albumin (ALB), CRP, LDH, LYM (%), LYM, and NEU (%), may be predictors of disease severity. Moreover, the Angiotensin II level in the plasma sample from 2019-nCoV infected patients was markedly elevated and linearly associated to viral load and lung injury. Our results suggest a number of potential diagnosis biomarkers and angiotensin receptor blocker (ARB) drugs for potential repurposing treatment of 2019-nCoV infection.
Collapse
Affiliation(s)
- Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Fengming Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhaoqin Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Cheng Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zheng Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lifei Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Li Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yuhao Qin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Dandan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Shuguang Tan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Yin
- Emergence Department Peking Union Medical College Hospital, Beijing, 100731, China
| | - Jun Xu
- Emergence Department Peking Union Medical College Hospital, Beijing, 100731, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China.
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
617
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.
Collapse
|
618
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
619
|
The renin-angiotensin system in the arcuate nucleus controls resting metabolic rate. Curr Opin Nephrol Hypertens 2020; 28:120-127. [PMID: 30531199 DOI: 10.1097/mnh.0000000000000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Obesity represents the primary challenge to improving cardiovascular health, and suppression of resting metabolic rate (RMR) is implicated in the maintenance of obesity. Increasing evidence supports a major role for the renin-angiotensin system (RAS) within the brain in the control of RMR. RECENT FINDINGS The angiotensin II (ANG) Agtr1a receptor colocalizes with the leptin receptor (Lepr) primarily within cells of the arcuate nucleus (ARC) of the hypothalamus that also express Agouti-related peptide (Agrp). This sub-population of Agtr1a receptors is required for stimulation of thermogenic sympathetic nervous activity and RMR, but not the suppression of food intake or increasing blood pressure, in response to various stimuli including high-fat diet, deoxycorticosterone acetate and salt, and leptin. Agtr1a is localized to a specific subset (SST3) of Agrp neurons within the ARC. SUMMARY The RAS within the ARC is implicated specifically in RMR control, primarily through Agtr1a localized to the SST3 subset of Agrp neurons. Ongoing research is focused on understanding the unique anatomical projections, neurotransmitter utilization, and signal transduction pathways of Agtr1a within this subset of neurons. Understanding these projections and molecular mechanisms may identify therapeutic targets for RMR and thus obesity, independent of blood pressure and appetite.
Collapse
|
620
|
Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:469-482. [PMID: 31988269 DOI: 10.1681/asn.2019070677] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analyses and single-center prospective studies identify chronic metabolic acidosis as an independent and modifiable risk factor for progression of CKD. In patients with CKD, untreated chronic metabolic acidosis often leads to an accelerated reduction in GFR. Mechanisms responsible for this reduction include adaptive responses that increase acid excretion but lead to a decline in kidney function. Metabolic acidosis in CKD stimulates production of intrakidney paracrine hormones including angiotensin II, aldosterone, and endothelin-1 (ET-1) that mediate the immediate benefit of increased kidney acid excretion, but their chronic upregulation promotes inflammation and fibrosis. Chronic metabolic acidosis also stimulates ammoniagenesis that increases acid excretion but also leads to ammonia-induced complement activation and deposition of C3 and C5b-9 that can cause tubule-interstitial damage, further worsening disease progression. These effects, along with acid accumulation in kidney tissue, combine to accelerate progression of kidney disease. Treatment of chronic metabolic acidosis attenuates these adaptive responses; reduces levels of angiotensin II, aldosterone, and ET-1; reduces ammoniagenesis; and diminishes inflammation and fibrosis that may lead to slowing of CKD progression.
Collapse
Affiliation(s)
- Donald E Wesson
- Baylor Scott & White Health and Wellness Center, Dallas, Texas; .,Department of Internal Medicine, Texas A&M College of Medicine, Bryan, Texas
| | | | - David A Bushinsky
- Division of Nephrology, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
621
|
Kluknavsky M, Balis P, Skratek M, Manka J, Bernatova I. (-)-Epicatechin Reduces the Blood Pressure of Young Borderline Hypertensive Rats During the Post-Treatment Period. Antioxidants (Basel) 2020; 9:antiox9020096. [PMID: 31979210 PMCID: PMC7071046 DOI: 10.3390/antiox9020096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022] Open
Abstract
This study investigated the effects of (–)-epicatechin (Epi) in young male borderline hypertensive rats (BHR) during two weeks of treatment (Epi group, 100 mg/kg/day p.o.) and two weeks post treatment (PE group). Epi reduced blood pressure (BP), which persisted for two weeks post treatment. This was associated with delayed reduction of anxiety-like behaviour. Epi significantly increased nitric oxide synthase (NOS) activities in the aorta and left heart ventricle (LHV) vs. the age-matched controls without affecting the brainstem and frontal neocortex. Furthermore, Epi significantly reduced the superoxide production in the aorta and relative content of iron-containing compounds in blood. Two weeks post treatment, the NOS activities and superoxide productions in the heart and aorta did not differ from the age-matched controls. The gene expressions of the NOSs (nNOS, iNOS, eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ (PPAR-γ) remained unaltered in the aorta and LHV of the Epi and PE groups. In conclusion, while Epi-induced a decrease of the rats’ BP persisted for two weeks post treatment, continuous Epi treatments seem to be necessary for maintaining elevated NO production as well as redox balance in the heart and aorta without changes in the NOSs, Nrf2, and PPAR-γ gene expressions.
Collapse
Affiliation(s)
- Michal Kluknavsky
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
| | - Peter Balis
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
| | - Martin Skratek
- Slovak Academy of Sciences, Institute of Measurement Science, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Jan Manka
- Slovak Academy of Sciences, Institute of Measurement Science, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Iveta Bernatova
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
- Correspondence:
| |
Collapse
|
622
|
Tyurin-Kuzmin PA, Kalinina NI, Kulebyakin KY, Balatskiy AV, Sysoeva VY, Tkachuk VA. Angiotensin receptor subtypes regulate adipose tissue renewal and remodelling. FEBS J 2020; 287:1076-1087. [PMID: 31899581 DOI: 10.1111/febs.15200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Obesity is often associated with high systemic and local renin-angiotensin system (RAS) activity in adipose tissue. Adipose-derived mesenchymal stem/stromal cells (ADSCs), responsible for adipose tissue growth upon high-fat diet, express multiple angiotensin II receptor isoforms, including angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), Mas and Mas-related G protein-coupled receptor D. Although AT1 R is expressed on most ADSCs, other angiotensin receptors are co-expressed on a small subpopulation of the cells, a phenomenon that results in a complex response pattern. Following AT1 R activation, the effects are transient due to rapid receptor internalisation. This short-lived effect can be prevented by heteromerisation with AT2 R, a particularly important strategy for the regulation of ADSC differentiation and secretory activity. Heteromeric AT2 R might be especially important for the generation of thermogenic beige adipocytes. This review summarises current data regarding the regulation of adipose tissue renewal and particularly ADSC adipogenic differentiation and secretory activity by RAS, with an emphasis on AT2 R and its effects. We reveal a new scheme that implicates AT2 R into the regulation of ADSC hormonal sensitivity.
Collapse
Affiliation(s)
- Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Natalia I Kalinina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Konstantin Y Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Alexander V Balatskiy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,Department of Clinical Diagnostics, Medical Centre, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| |
Collapse
|
623
|
The Vasoactive Mas Receptor in Essential Hypertension. J Clin Med 2020; 9:jcm9010267. [PMID: 31963731 PMCID: PMC7019597 DOI: 10.3390/jcm9010267] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
The renin–angiotensin–aldosterone system (RAAS) has been studied extensively, and with the inclusion of novel components, it has become evident that the system is much more complex than originally anticipated. According to current knowledge, there are two main axes of the RAAS, which counteract each other in terms of vascular control: The classical vasoconstrictive axis, renin/angiotensin-converting enzyme/angiotensin II/angiotensin II receptor type 1 (AT1R), and the opposing vasorelaxant axis, angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor (MasR). An abnormal activity within the system constitutes a hallmark in hypertension, which is a global health problem that predisposes cardiovascular and renal morbidities. In particular, essential hypertension predominates in the hypertensive population of more than 1.3 billion humans worldwide, and yet, the pathophysiology behind this multifactorial condition needs clarification. While commonly applied pharmacological strategies target the classical axis of the RAAS, discovery of the vasoprotective effects of the opposing, vasorelaxant axis has presented encouraging experimental evidence for a new potential direction in RAAS-targeted therapy based on the G protein-coupled MasR. In addition, the endogenous MasR agonist angiotensin-(1-7), peptide analogues, and related molecules have become the subject of recent studies within this field. Nevertheless, the clinical potential of MasR remains unclear due to indications of physiological-biased activities of the RAAS and interacting signaling pathways.
Collapse
|
624
|
A colorful view of the brain renin-angiotensin system. Hypertens Res 2020; 43:357-359. [PMID: 31953528 DOI: 10.1038/s41440-020-0396-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
|
625
|
Miesbach W, Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin Appl Thromb Hemost 2020; 26:1076029620938149. [PMID: 32677459 PMCID: PMC7370334 DOI: 10.1177/1076029620938149] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus infection (COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as adult respiratory syndrome, sepsis, coagulopathy, and death in a proportion of patients. Among other factors and direct viral effects, the increase in the vasoconstrictor angiotensin II, the decrease in the vasodilator angiotensin, and the sepsis-induced release of cytokines can trigger a coagulopathy in COVID-19. A coagulopathy has been reported in up to 50% of patients with severe COVID-19 manifestations. An increase in d-dimer is the most significant change in coagulation parameters in severe COVID-19 patients, and progressively increasing values can be used as a prognostic parameter indicating a worse outcome. Limited data suggest a high incidence of deep vein thrombosis and pulmonary embolism in up to 40% of patients, despite the use of a standard dose of low-molecular-weight heparin (LMWH) in most cases. In addition, pulmonary microvascular thrombosis has been reported and may play a role in progressive lung failure. Prophylactic LMWH has been recommended by the International Society on Thrombosis and Haemostasis (ISTH) and the American Society of Hematology (ASH), but the best effective dosage is uncertain. Adapted to the individual risk of thrombosis and the d-dimer value, higher doses can be considered, especially since bleeding events in COVID-19 are rare. Besides the anticoagulant effect of LMWH, nonanticoagulant properties such as the reduction in interleukin 6 release have been shown to improve the complex picture of coagulopathy in patients with COVID-19.
Collapse
Affiliation(s)
- Wolfgang Miesbach
- Department of Haemostaseology and Hemophilia Center, Medical Clinic 2, Institute of Transfusion Medicine, University Hospital Frankfurt, Germany
| | - Michael Makris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, United Kingdom
- Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
626
|
Alanazi AZ, Clark MA. Effects of angiotensin III on c-Jun N terminal kinase in Wistar and hypertensive rat vascular smooth muscle cells. Peptides 2020; 123:170204. [PMID: 31738968 DOI: 10.1016/j.peptides.2019.170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and inflammation are well known actions associated with hypertension. Angiotensin (Ang) II mediates these physiological actions through the c-Jun N terminal Kinase (JNK), mitogen-activated proteins kinase (MAPK) pathway. Ang III effects on this pathway in VSMCs are unknown. The aim of this study was to determine whether Ang III activates JNK MAPK in Wistar VSMCs and determined whether the response was different in spontaneously hypertensive rat (SHR) VSMCs. We also ascertained whether this effect leads to VSMC proliferation. Western blots were used to determine the time and concentration effects of Ang II on JNK MAPK phosphorylation in Wistar VSMCs. Similar studies were conducted for Ang III in Wistar and SHR VSMCs. Both peptides induced JNK phosphorylation in a concentration- and time-dependent manner in Wistar VSMCs. Ang III also increased JNK phosphorylation in a concentration- and time-dependent fashion in SHR VSMCs as well. However, the ability of Ang III to induce JNK MAPK was different in SHR VSMCs as the phosphorylation levels of JNK were significantly higher in Wistar VSMCs as compared to SHR VSMCs at several time points and concentrations. Further, Ang III-mediated DNA synthesis, a measure of VSMC proliferation, occurred through activation of JNK MAPK. This study is the first to show Ang III effects on the JNK MAPK pathway in VSMCs and the role of JNK in Ang III-mediated cellular proliferation. These findings impart key information for the understanding of Ang III functions, especially in VSMCs and possible cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
627
|
Watkins JM, von Chamier M, Brown MB, Reyes L, Hayward LF. Prenatal infection with Mycoplasma pulmonis in rats exaggerates the angiotensin II pressor response in adult offspring. Am J Physiol Regul Integr Comp Physiol 2019; 318:R338-R350. [PMID: 31850818 DOI: 10.1152/ajpregu.00194.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to different stressors in utero is linked to adult diseases such as obesity and hypertension. In this study, the impact of prenatal infection (PNI) on adult body weight and cardiovascular function was evaluated using a naturally occurring rodent pathogen, Mycoplasma pulmonis (MP). Pregnant Sprague-Dawley rats were infected with MP on gestational day 14 and gave birth naturally. Adult PNI offspring weighed more than controls, but resting mean arterial pressure (MAP) was unchanged. Subcutaneous injection of angiotensin II (10 μg/kg) elicited a rise in MAP that was greater in both male and female PNI offspring compared with controls (P < 0.03). The accompanying reflex bradycardia was similar to the controls, suggesting that PNI induced baroreflex dysfunction. Subcutaneous nicotine administration, a potent cardiorespiratory stimulus, also elicited a transient rise in MAP that was generally greater in the PNI group, but the change in MAP from baseline was only significant in the PNI females compared with controls (P < 0.03). Elevated body weight and cardiovascular reactivity in the PNI offspring was associated with an increase in the ratio of hypothalamic corticotrophin-releasing hormone receptors type 1 to type 2 gene expression in both sexes compared with controls. These findings support previous studies demonstrating that PNI induces alterations in cardiovascular function and body weight. Yet, unlike previous studies utilizing other models of PNI (e.g., endotoxin), MP PNI did not induce resting hypertension. Thus, our study provides a foundation for future studies evaluating the cardiovascular risks of offspring exposed to microbial challenges in utero.
Collapse
Affiliation(s)
- J M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M von Chamier
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M B Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - L Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - L F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
628
|
Riching AS, Major JL, Londono P, Bagchi RA. The Brain-Heart Axis: Alzheimer's, Diabetes, and Hypertension. ACS Pharmacol Transl Sci 2019; 3:21-28. [PMID: 32259085 DOI: 10.1021/acsptsci.9b00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting millions worldwide. Currently, there are only four approved treatments for AD, which improve symptoms modestly. AD is believed to be caused by the formation of intercellular plaques and intracellular tangles in the brain, but thus far all new drugs which target these pathologies have failed clinical trials. New research highlights the link between AD and Type II Diabetes (T2D), and some believe that AD is actually a brain specific form of it termed Type III Diabetes (T3D). Drugs which are currently approved for the treatment of T2D, such as metformin, have shown promising results in improving cognitive function and even preventing the development of AD in diabetic patients. Recent studies shed light on the relationship between the brain and cardiovascular system in which the brain and heart communicate with one another via the vasculature to regulate fluid and nutrient homeostasis. This line of research reveals how the brain-heart axis regulates hypertension and diabetes, both of which can impact cognitive function. In this review we survey past and ongoing research and clinical trials for AD, and argue that AD is a complex and systemic disorder which requires comprehensive approaches beyond the brain for effective prevention and/or treatment.
Collapse
Affiliation(s)
- Andrew S Riching
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Pilar Londono
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
629
|
Quiroga DT, Miquet JG, Gonzalez L, Sotelo AI, Muñoz MC, Geraldes PM, Giani JF, Dominici FP. Mice lacking angiotensin type 2 receptor exhibit a sex-specific attenuation of insulin sensitivity. Mol Cell Endocrinol 2019; 498:110587. [PMID: 31539597 PMCID: PMC6903409 DOI: 10.1016/j.mce.2019.110587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Diego T Quiroga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Lorena Gonzalez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Ana I Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Marina C Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Pedro M Geraldes
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
630
|
Lin QY, Lang PP, Zhang YL, Yang XL, Xia YL, Bai J, Li HH. Pharmacological blockage of ICAM-1 improves angiotensin II-induced cardiac remodeling by inhibiting adhesion of LFA-1 + monocytes. Am J Physiol Heart Circ Physiol 2019; 317:H1301-H1311. [PMID: 31729904 DOI: 10.1152/ajpheart.00566.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a member of an immunoglobulin-like superfamily of adhesion molecules that mediate leukocyte adhesion to vascular endothelium and are involved in several cardiovascular diseases, including ischemia-reperfusion injury, myocardial infarction, and atherosclerosis. However, the role of ICAM-1 in angiotensin II (ANG II)-induced cardiac remodeling in mice remains unclear. Wild-type mice were administered an IgG control or ICAM-1 neutralizing antibody (1 and 2 mg/mouse, respectively) and ANG II (1,000 ng·kg-1·min-1) for up to 14 days. Cardiac contractile function and structure were detected by echocardiography. Hypertrophy, fibrosis, and inflammation were assessed by histological examination. The infiltration of lymphocyte function-associated antigen-1 (LFA-1+) monocytes/macrophages was assessed by immunostaining. The mRNA expression of genes was evaluated by quantitative RT-PCR analysis. Protein levels were tested by immunoblotting. We found that ICAM-1 expression in ANG II-infused hearts and ICAM-1 levels in serum from human patients with heart failure were significantly increased. Moreover, ANG II infusion markedly enhanced ANG II-induced hypertension, caused cardiac contractile dysfunction, and promoted cardiac hypertrophy, fibrosis, and LFA-1+ macrophage infiltration. Conversely, blockage of ICAM-1 with a neutralizing antibody dose-dependently attenuated these effects. Moreover, our in vitro data further demonstrated that blocking ICAM-1 inhibited ANG II-induced LFA-1+ macrophage adhesion to endothelial cells and migration. In conclusion, these results provide novel evidence that blocking ICAM-1 exerts a protective effect in ANG II-induced cardiac remodeling at least in part through the modulation of adhesion and infiltration of LFA-1+ macrophages in the heart. Inhibition of ICAM-1 may represent a new therapeutic approach for hypertrophic heart diseases.NEW & NOTEWORTHY Leukocyte adhesion to vascular endothelium is a critical step in cardiovascular diseases. ICAM-1 is a member of immunoglobulin-like superfamily of adhesion molecules that binds LFA-1 to mediate leukocytes adhesion and migration. However, the significance of ICAM-1 in ANG II-induced cardiac remodeling remains unclear. This study reveals that blocking of ICAM-1 prevents ANG II-induced cardiac remodeling via modulating adhesion and migration of LFA-1+ monocytes, may serve as a novel therapeutic target for hypertensive cardiac diseases.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Ping-Ping Lang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Xiao-Lei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian, Medical University, Dalian, China
| |
Collapse
|
631
|
Badreh F, Joukar S, Badavi M, Rashno M. Restoration of the Renin-Angiotensin System Balance Is a Part of the Effect of Fasting on Cardiovascular Rejuvenation: Role of Age and Fasting Models. Rejuvenation Res 2019; 23:302-312. [PMID: 31571520 DOI: 10.1089/rej.2019.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intermittent fasting (IF) is an intervention that can be beneficial for health span and mitigate the risk of developing age-related cardiovascular diseases; however, the involved mechanisms are not well understood. The present study investigated the effects of IF regimens on the plasma level of angiotensin II (Ang II), and the expression of Ang II receptors (AT1aR and AT2R) and angiotensin-converting enzyme 2 (ACE2) in the heart and aorta of male, 3-, 12-, and 24-month-old Wistar rats fed ad libitum (AL), fed ad libitum and fasted 1 day per week (FW), or fasted every other day (EOD) for 3 months. Aging was associated with high circulating levels of Ang II, high level of AT1aR protein expression in the heart and aorta, and low level of AT2R protein expression in the heart and aorta. Both FW and EOD decreased Ang II levels (p < 0.01, p < 0.001) and AT1aR protein expression in the heart (p < 0.01, p < 0.001) and aorta (p < 0.001) of old rats. Both FW and EOD increased the expression of AT2R protein in the heart (p < 0.05 and p < 0.001, respectively). However, only EOD increased the expression of AT2R protein (p < 0.05) in the aorta. In the old group, both the FW and EOD regimens induced a significant increase in the expression of ACE2 protein in the heart (p < 0.01, p < 0.001 vs. age-matched AL group, respectively). The results suggest that a part of the recovery effect of fasting on cardiovascular system in old rats is mediated through restoration of the balance of renin-angiotensin system.
Collapse
Affiliation(s)
- Firuzeh Badreh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,The Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
632
|
Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK, Eguchi S, Tan YF, Kossenkov AV, Khoreva MV, Gankovskaya LV, Sykes SM, Koltsova EK. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun 2019; 10:5046. [PMID: 31695038 PMCID: PMC6834661 DOI: 10.1038/s41467-019-13017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent life-threatening disease, where aortic wall degradation is mediated by accumulated immune cells. Although cytokines regulate inflammation within the aorta, their contribution to AAA via distant alterations, particularly in the control of hematopoietic stem cell (HSC) differentiation, remains poorly defined. Here we report a pathogenic role for the interleukin-27 receptor (IL-27R) in AAA, as genetic ablation of IL-27R protects mice from the disease development. Mitigation of AAA is associated with a blunted accumulation of myeloid cells in the aorta due to the attenuation of Angiotensin II (Ang II)-induced HSC expansion. IL-27R signaling is required to induce transcriptional programming to overcome HSC quiescence and increase differentiation and output of mature myeloid cells in response to stress stimuli to promote their accumulation in the diseased aorta. Overall, our studies illuminate how a prominent vascular disease can be distantly driven by a cytokine-dependent regulation of bone marrow precursors.
Collapse
Affiliation(s)
- Iuliia O Peshkova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Turan Aghayev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Aliia R Fatkhullina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Elizaveta K Titerina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Satoru Eguchi
- Lewis Katz School of Medicine, Temple University Cardiovascular Research Center, Philadelphia, Pennsylvania, 19140, USA
| | - Yin Fei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Andrew V Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Marina V Khoreva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Ekaterina K Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA.
| |
Collapse
|
633
|
Imanaka-Yoshida K. Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathol Int 2019; 70:1-11. [PMID: 31691489 DOI: 10.1111/pin.12868] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) is a heterogeneous group of myocardial diseases clinically defined by the presence of left ventricular dilatation and contractile dysfunction. Among various causes of DCM, a progression from viral myocarditis to DCM has long been hypothesized. Supporting this possibility, studies by endomyocardial biopsy, the only method to obtain a definite diagnosis of myocarditis at present, have provided evidence of inflammation in the myocardium in DCM patients. A number of experimental studies have elucidated a cell-mediated autoimmune mechanism triggered by viral infection in the progression of myocarditis to DCM. In addition, the important role of inflammation in the pathogenesis of heart failure has been recognized, and many terms including myocarditis, inflammatory cardiomyopathy, and inflammatory DCM have been used for myocardial diseases associated with inflammation. This review discusses the pathophysiology of inflammation in the myocardium, and refers to diagnosis and treatment based on these concepts.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Mie, Japan.,Mie University Research Center for Matrix Biology, Mie, Japan
| |
Collapse
|
634
|
Kumaran GK, Hanukoglu I. Identification and classification of epithelial cells in nephron segments by actin cytoskeleton patterns. FEBS J 2019; 287:1176-1194. [PMID: 31605441 PMCID: PMC7384063 DOI: 10.1111/febs.15088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
The basic functional unit in a kidney is the nephron, which is a long and morphologically segmented tubule. The nephron begins with a cluster of capillaries called glomerulus through which the blood is filtered into the Bowman's space. The filtrate flows through the nephron segments. During this flow, electrolytes and solutes are reabsorbed by channels and transport systems into the capillaries wrapped around the nephron. Many questions related to renal function focus on identifying the sites of expression of these systems. In this study, we mapped whole kidney sections by confocal microscopic imaging of fluorescent phalloidin, which binds to actin filaments. In tile scans (composed of hundreds of images) of these sections, the cortex and the medullary regions (outer and inner stripes of the outer medulla, and inner medulla) could be easily identified by their cytoskeletal patterns. At a higher resolution, we identified distinct features of the actin cytoskeleton in the apical, basal, and lateral borders of the cells. These features could be used to identify segments of a nephron (the proximal tubule, thin and thick segments of Henle's loop, and distal tubule), the collecting duct system, the papillary ducts in the papilla, and the urothelium that covers the pelvis. To verify our findings, we used additional markers, including aquaporin isoforms, cytokeratin 8‐18, and WGA lectin. This study highlights the power of high‐resolution confocal microscopy for identifying specific cell types using the simple probe of F‐actin‐binding phalloidin.
Collapse
|
635
|
Iturriaga R, Castillo-Galán S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 2019; 21:89. [PMID: 31599367 DOI: 10.1007/s11906-019-0995-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
636
|
Affiliation(s)
- Hannah A Cooper
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rosario Scalia
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Victor Rizzo
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Satoru Eguchi
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
637
|
Angiotensin-II Drives Human Satellite Cells Toward Hypertrophy and Myofibroblast Trans-Differentiation by Two Independent Pathways. Int J Mol Sci 2019; 20:ijms20194912. [PMID: 31623362 PMCID: PMC6801484 DOI: 10.3390/ijms20194912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.
Collapse
|
638
|
Yang T, Chen YY, Liu JR, Zhao H, Vaziri ND, Guo Y, Zhao YY. Natural products against renin-angiotensin system for antifibrosis therapy. Eur J Med Chem 2019; 179:623-633. [DOI: 10.1016/j.ejmech.2019.06.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
639
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
640
|
Erol I, Cosut B, Durdagi S. Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. J Chem Inf Model 2019; 59:4314-4327. [PMID: 31429557 DOI: 10.1021/acs.jcim.9b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin II type 1 receptor (AT1R) is a prototypical class A G protein-coupled receptor (GPCR) that has an important role in cardiovascular pathologies and blood pressure regulation as well as in the central nervous system. GPCRs may exist and function as monomers; however, they can assemble to form higher order structures, and as a result of oligomerization, their function and signaling profiles can be altered. In the case of AT1R, the classical Gαq/11 pathway is initiated with endogenous agonist angiotensin II binding. A variety of cardiovascular pathologies such as heart failure, diabetic nephropathy, atherosclerosis, and hypertension are associated with this pathway. Recent findings reveal that AT1R can form homodimers and activate the noncanonical (β-arrestin-mediated) pathway. Nevertheless, the exact dimerization interface and atomic details of AT1R homodimerization have not been still elucidated. Here, six different symmetrical dimer interfaces of AT1R are considered, and homodimers were constructed using other published GPCR crystal dimer interfaces as template structures. These AT1R homodimers were then inserted into the model membrane bilayers and subjected to all-atom molecular dynamics simulations. Our simulation results along with the principal component analysis and water pathway analysis suggest four different interfaces as the most plausible: symmetrical transmembrane (TM)1,2,8; TM5; TM4; and TM4,5 AT1R dimer interfaces that consist of one inactive and one active protomer. Moreover, we identified ILE2386.33 as a hub residue in the stabilization of the inactive state of AT1R.
Collapse
Affiliation(s)
- Ismail Erol
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Bunyemin Cosut
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | | |
Collapse
|
641
|
van de Wouw J, Broekhuizen M, Sorop O, Joles JA, Verhaar MC, Duncker DJ, Danser AHJ, Merkus D. Chronic Kidney Disease as a Risk Factor for Heart Failure With Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic Targets. Front Physiol 2019; 10:1108. [PMID: 31551803 PMCID: PMC6737277 DOI: 10.3389/fphys.2019.01108] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) and chronic kidney disease (CKD) co-exist, and it is estimated that about 50% of HF patients suffer from CKD. Although studies have been performed on the association between CKD and HF with reduced ejection fraction (HFrEF), less is known about the link between CKD and heart failure with preserved ejection fraction (HFpEF). Approximately, 50% of all patients with HF suffer from HFpEF, and this percentage is projected to rise in the coming years. Therapies for HFrEF are long established and considered quite successful. In contrast, clinical trials for treatment of HFpEF have all shown negative or disputable results. This is likely due to the multifactorial character and the lack of pathophysiological knowledge of HFpEF. The typical co-existence of HFpEF and CKD is partially due to common underlying comorbidities, such as hypertension, dyslipidemia and diabetes. Macrovascular changes accompanying CKD, such as hypertension and arterial stiffening, have been described to contribute to HFpEF development. Furthermore, several renal factors have a direct impact on the heart and/or coronary microvasculature and may underlie the association between CKD and HFpEF. These factors include: (1) activation of the renin-angiotensin-aldosterone system, (2) anemia, (3) hypercalcemia, hyperphosphatemia and increased levels of FGF-23, and (4) uremic toxins. This review critically discusses the above factors, focusing on their potential contribution to coronary dysfunction, left ventricular stiffening, and delayed left ventricular relaxation. We further summarize the directions of novel treatment options for HFpEF based on the contribution of these renal drivers.
Collapse
Affiliation(s)
- Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle Broekhuizen
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
642
|
Lu Q, Davel AP, McGraw AP, Rao SP, Newfell BG, Jaffe IZ. PKCδ Mediates Mineralocorticoid Receptor Activation by Angiotensin II to Modulate Smooth Muscle Cell Function. Endocrinology 2019; 160:2101-2114. [PMID: 31373631 PMCID: PMC6735772 DOI: 10.1210/en.2019-00258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023]
Abstract
Angiotensin II (AngII) and the mineralocorticoid receptor (MR) ligand aldosterone both contribute to cardiovascular disorders, including hypertension and adverse vascular remodeling. We previously demonstrated that AngII activates MR-mediated gene transcription in human vascular smooth muscle cells (SMCs), yet the mechanism and the impact on SMC function are unknown. Using an MR-responsive element-driven transcriptional reporter assay, we confirm that AngII induces MR transcriptional activity in vascular SMCs and endothelial cells, but not in Cos1 or human embryonic kidney-293 cells. AngII activation of MR was blocked by the MR antagonist spironolactone or eplerenone and the protein kinase C-δ (PKCδ) inhibitor rottlerin, implicating both in the mechanism. Similarly, small interfering RNA knockdown of PKCδ in SMCs prevented AngII-mediated MR activation, whereas knocking down of MR blocked both aldosterone- and AngII-induced MR function. Coimmunoprecipitation studies reveal that endogenous MR and PKCδ form a complex in SMCs that is enhanced by AngII treatment in association with increased serine phosphorylation of the MR N terminus. AngII increased mRNA expression of the SMC-MR target gene, FKBP51, via an MR-responsive element in intron 5 of the FKBP51 gene. The impact of AngII on FKBP51 reporter activity and gene expression in SMCs was inhibited by spironolactone and rottlerin. Finally, the AngII-induced increase in SMC number was also blocked by the MR antagonist spironolactone and the PKCδ inhibitor rottlerin. These data demonstrate that AngII activates MR transcriptional regulatory activity, target gene regulation, and SMC proliferation in a PKCδ-dependent manner. This new mechanism may contribute to synergy between MR and AngII in driving SMC dysfunction and to the cardiovascular benefits of MR and AngII receptor blockade in humans.
Collapse
Affiliation(s)
- Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Sitara P Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Brenna G Newfell
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Correspondence: Iris Z. Jaffe, MD, PhD, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, Massachusetts 02111. E-mail:
| |
Collapse
|
643
|
Kim HJ, Jang JH, Zhang YH, Yoo HY, Kim SJ. Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS. Pflugers Arch 2019; 471:1317-1330. [PMID: 31468138 DOI: 10.1007/s00424-019-02305-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Angiotensin II (AngII) triggers a transient contraction of pulmonary arteries (PAs) followed by protracted desensitization. Based on the unconventional eNOS expression in PA smooth muscle cells (PASMCs), we hypothesized that activation of smooth muscle eNOS by AngII might be responsible for fast relaxation and tachyphylaxis. Using dual-wire myograph, mechanically endothelium-denuded rat PA [E(-)PA] showed AngII concentration-dependent transient contractions (ΔTAngII, 95% decay within 1 min), which were abolished by losartan (AT1R antagonist). Neither PD123319 (AT2R antagonist) nor A779 (MasR antagonist) affected ΔTAngII. When the vessels were pretreated with L-NAME (NOS inhibitor), ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), ΔTAngII of E(-)PA became larger and sustained, whereas nNOS or iNOS inhibitors had no such effect. Immunoblotting of human PASMCs (hPASMCs) also showed eNOS expression, and AngII treatment induced activating phosphorylations of Ser1177 in eNOS and of Ser473 in Akt (Ser/Thr protein kinase B), an upstream signal of eNOS phosphorylation. In addition, L-NAME co-treatment promoted AngII-induced Ser19 phosphorylation of myosin light chain. In hPASMCs, AngII abolished plasma membrane expression of AT1R, and recovery by washout took more than 1 h. Consistent with the data from hPASMCs, the second application of AngII to E(-)PA did not induce contraction, and significant recovery of ΔTAngII required prolonged washout (> 2 h) in the myography study. L-NAME treatment before the second application facilitated recovery of ΔTAngII. Muscular eNOS plays an auto-inhibitory role in ΔTAngII of PAs. The molecular changes investigated in hPASMCs revealed eNOS phosphorylation and internalization of AT1R by AngII. We propose that the rat PA smooth muscle eNOS-induced lusitropy and slow recovery of AT1R from tachyphylaxis might counterbalance the excessive contractile response to AngII, contributing to the distinctive low-pressure pulmonary circulation.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Ji Hyun Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, 100-031, South Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
644
|
Kang Y, Ding L, Dai H, Wang F, Zhou H, Gao Q, Xiong X, Zhang F, Song T, Yuan Y, Zhu G, Zhou Y. Intermedin in Paraventricular Nucleus Attenuates Ang II-Induced Sympathoexcitation through the Inhibition of NADPH Oxidase-Dependent ROS Generation in Obese Rats with Hypertension. Int J Mol Sci 2019; 20:ijms20174217. [PMID: 31466304 PMCID: PMC6747263 DOI: 10.3390/ijms20174217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Increased reactive oxygen species (ROS) induced by angiotensin II (Ang II) in the paraventricular nucleus (PVN) play a critical role in sympathetic overdrive in hypertension (OH). Intermedin (IMD), a bioactive peptide, has extensive clinically prospects in preventing and treating cardiovascular diseases. The study was designed to test the hypothesis that IMD in the PVN can inhibit the generation of ROS caused by Ang II for attenuating sympathetic nerve activity (SNA) and blood pressure (BP) in rats with obesity-related hypertension (OH). Male Sprague-Dawley rats (160-180 g) were used to induce OH by feeding of a high-fat diet (42% kcal as fat) for 12 weeks. The dynamic changes of sympathetic outflow were evaluated as the alterations of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to certain chemicals. The results showed that the protein expressions of Ang II type 1 receptor (AT1R), calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 2 (RAMP2) and RAMP3 were markedly increased, but IMD was much lower in OH rats when compared to control rats. IMD itself microinjection into PVN not only lowered SNA, NADPH oxidase activity and ROS level, but also decreased Ang II-caused sympathetic overdrive, and increased NADPH oxidase activity, ROS levels and mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) activation in OH rats. However, those effects were mostly blocked by the adrenomedullin (AM) receptor antagonist AM22-52 pretreatment. The enhancement of SNA caused by Ang II can be significantly attenuated by the pretreatment of AT1R antagonist lorsatan, superoxide scavenger Tempol and NADPH oxidase inhibitor apocynin (Apo) in OH rats. ERK activation inhibitor U0126 in the PVN reversed Ang II-induced enhancement of SNA, and Apo and IMD pretreatment in the PVN decreased Ang II-induced ERK activation. Chronic IMD administration in the PVN resulted in significant reductions in basal SNA and BP in OH rats. Moreover, IMD lowered NADPH oxidase activity and ROS level in the PVN; reduced the protein expressions of AT1R and NADPH oxidase subunits NOX2 and NOX4, and ERK activation in the PVN; and decreased Ang II levels-inducing sympathetic overactivation. These results indicated that IMD via AM receptors in the PVN attenuates SNA and hypertension, and decreases Ang II-induced enhancement of SNA through the inhibition of NADPH oxidase activity and ERK activation.
Collapse
Affiliation(s)
- Ying Kang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Lei Ding
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hangbing Dai
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Fangzheng Wang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Tianrun Song
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yan Yuan
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Guoqing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yebo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
645
|
Verma A, Zhu P, de Kloet A, Krause E, Sumners C, Li Q. Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Exp Eye Res 2019; 187:107770. [PMID: 31449794 DOI: 10.1016/j.exer.2019.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The renin-angiotensin system (RAS) plays a vital role in cardiovascular physiology and body homeostasis. In addition to circulating RAS, a local RAS exists in the retina. Dysfunction of local RAS, resulting in increased levels of Angiotensin II (Ang II) and activation of AT1R-mediated signaling pathways, contributes to tissue pathophysiology and end-organ damage. Activation of AT2R on other hand is known to counteract the effects of AT1R activation and produce anti-inflammatory and anti-oxidative effects. We examined the expression of angiotensin receptors in the retina by using transgenic dual reporter mice and by real-time RT-PCR. We further evaluated the effects of C21, a selective agonist of AT2R, in reducing Ang II, lipopolysaccharide (LPS) and hydrogen peroxide induced oxidative stress and inflammatory responses in cultured human ARPE-19 cells. We showed that both AT1Ra and AT2R positive cells are detected in different cell types of the eye, including the RPE/choroid complex, ciliary body/iris, and neural retina. AT1Ra is more abundantly expressed than AT2R in mouse retina, consistent with previous reports. In the neural retina, AT1Ra are also detected in photoreceptors whereas AT2R are mostly expressed in the inner retinal neurons and RGCs. In cultured human RPE cells, activation of AT2R with C21 significantly blocked Ang II, LPS and hydrogen peroxide -induced NF-κB activation and inflammatory cytokine expression; Ang II and hydrogen peroxide-induced reactive oxygen species (ROS) production and MG132-induced apoptosis, comparable to the effects of Angiotensin-(1-7) (Ang-(1-7)), another protective component of the RAS, although C21 is more potent in reducing some of the effects induced by Ang II, whereas Ang-(1-7) is more effective in reducing some of the LPS and hydrogen peroxide-induced effects. These results suggest that activation of AT2R may represent a new therapeutic approach for retinal diseases.
Collapse
Affiliation(s)
- Amrisha Verma
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Ping Zhu
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Annette de Kloet
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Eric Krause
- College of Medicine, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Colin Sumners
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Qiuhong Li
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
646
|
Liang L, Yuan W, Qu L, Li H, Zhang L, Fan GC, Peng T. Administration of losartan preserves cardiomyocyte size and prevents myocardial dysfunction in tail-suspended mice by inhibiting p47 phox phosphorylation, NADPH oxidase activation and MuRF1 expression. J Transl Med 2019; 17:279. [PMID: 31438970 PMCID: PMC6704685 DOI: 10.1186/s12967-019-2021-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Spaceflight or microgravity conditions cause myocardial atrophy and dysfunction, contributing to post-flight orthostatic intolerance. However, the underlying mechanisms remain incompletely understood and preventive approaches are limited. This study investigated whether and how losartan, a blocker of angiotensin-II receptor, preserved cardiomyocyte size and prevented myocardial dysfunction during microgravity. Method Adult male mice were suspended with their tails to simulate microgravity. Echocardiography was performed to assess myocardial function. Heart weight and cardiomyocyte size were measured. NADPH oxidase activation was determined by analyzing membrane translocation of its cytosolic subunits including p47phox, p67phox and Rac1. Heart tissues were also assayed for oxidative stress, p47phox phosphorylation (Ser345), MuRF1 protein levels and angiotensin-II production. Results Tail-suspension for 28 days increased angiotensin-II production in hearts, decreased cardiomyocyte size and heart weight, and induced myocardial dysfunction. Administration of losartan preserved cardiomyocyte size and heart weight, and prevented myocardial dysfunction in tail-suspended mice. These cardioprotective effects of losartan were associated with inhibition of p47phox phosphorylation (Ser345), NADPH oxidase and oxidative stress in tail-suspended mouse hearts. Additionally, the NADPH oxidase inhibitor, apocynin, also reduced oxidative stress, preserved cardiomyocyte size and heart weight, and improved myocardial function in tail-suspended mice. Furthermore, losartan but not apocynin attenuated tail-suspension-induced up-regulation of MuRF1 protein in mouse hearts. Conclusions Administration of losartan preserves cardiomyocyte size and prevents myocardial dysfunction under microgravity by blocking p47phox phosphorylation and NADPH oxidase activation, and by inhibiting MuRF1 expression. Thus, losartan may be a useful drug to prevent microgravity-induced myocardial abnormalities.
Collapse
Affiliation(s)
- Liwen Liang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Wenyi Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Huili Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
647
|
Vacková Š, Kikerlová S, Melenovsky V, Kolář F, Imig JD, Kompanowska-Jezierska E, Sadowski J, Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press Res 2019; 44:792-809. [PMID: 31430751 PMCID: PMC10107072 DOI: 10.1159/000501688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
Objective: We evaluated the hypothesis that the development of renal dysfunction and congestive heart failure (CHF) caused by volume overload in rats with angiotensin II (ANG II)-dependent hypertension is associated with altered renal vascular responsiveness to ANG II and to epoxyeicosatrienoic acids (EETs). Methods: Ren-2 transgenic rats (TGRs) were used as a model of ANG II-dependent hypertension. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF). Renal blood flow (RBF) responses were determined to renal arterial administration of ANG II, native 11,12-EET, an analog of 14,15-EETs (EET-A), norepinephrine (NE), acetylcholine (Ach) and bradykinin (Bk) in healthy (i.e., sham-operated) TGR and ACF TGR (5 weeks after ACF creation). Results: Selective intrarenal administration of neither vasoactive drug altered mean arterial pressure in any group. Administration of ANG II caused greater decreases in RBF in ACF TGR than in sham-operated TGR, whereas after administration of NE the respective decreases were comparable in the 2 groups. Administration of Ach and Bk elicited significantly higher RBF increases in ACF TGR as compared with sham-operated TGR. In contrast, administration of 11,12-EET and EET-A caused significantly smaller RBF increases in ACF TGR than in sham-operated TGR. Conclusion: The findings show that 5 weeks after creation of ACF, the TGR exhibit exaggerated renal vasoconstrictor responses to ANG II and reduced renal vasodilatory responses to EETs, suggesting that both these alterations might play an important role in the development of renal dysfunction in this model of CHF.
Collapse
Affiliation(s)
- Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| |
Collapse
|
648
|
Reho JJ, Guo DF, Morgan DA, Rahmouni K. Smooth Muscle Cell-Specific Disruption of the BBSome Causes Vascular Dysfunction. Hypertension 2019; 74:817-825. [PMID: 31422694 DOI: 10.1161/hypertensionaha.119.13382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BBSome-a complex consisting of 8 Bardet-Biedl syndrome proteins-is involved in the regulation of various cellular processes. Recently, the BBSome complex has emerged as an important regulator of cardiovascular function with implications for disease. In this study, we examined the role of the BBSome in vascular smooth muscle and its effects on the regulation of cardiovascular function. Smooth muscle-specific disruption of the BBSome through tamoxifen-inducible deletion of Bbs1 gene-a critical component of the BBSome complex-reduces relaxation and enhances contractility of vascular rings and increases aortic stiffness independent of changes in arterial blood pressure. Mechanistically, we demonstrate that smooth muscle Bbs1 gene deletion increases vascular angiotensinogen gene expression implicating the renin-angiotensin system in these altered cardiovascular responses. Additionally, we report that smooth muscle-specific Bbs1 knockout mice demonstrate enhanced ET-1 (endothelin-1)-induced contractility of mesenteric arteries-an effect reversed by blockade of the AT1 (angiotensin type 1 receptor) with losartan. These findings highlight the importance of the smooth muscle BBSome in the control of vascular function and arterial stiffness through modulation of renin-angiotensin system signaling.
Collapse
Affiliation(s)
- John J Reho
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Deng-Fu Guo
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Donald A Morgan
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine
| | - Kamal Rahmouni
- From the Department of Pharmacology (J.J.R., D.-F.G., D.A.M., K.R.), University of Iowa Carver College of Medicine.,Department of Internal Medicine (K.R.), University of Iowa Carver College of Medicine.,Obesity Education and Research Initiative (K.R.), University of Iowa Carver College of Medicine.,Fraternal Order of Eagles Diabetes Research Center (K.R.), University of Iowa Carver College of Medicine.,Veterans Affairs Health Care System, Iowa City, IA (K.R.)
| |
Collapse
|
649
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
650
|
Zhu P, Verma A, Prasad T, Li Q. Expression and Function of Mas-Related G Protein-Coupled Receptor D and Its Ligand Alamandine in Retina. Mol Neurobiol 2019; 57:513-527. [PMID: 31392515 DOI: 10.1007/s12035-019-01716-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
A local renin-angiotensin system (RAS) exists in the retina and plays a critical role in retinal neurovascular function. The protective axis of RAS comprising of angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor attenuate the deleterious actions of increased levels of angiotensin II (Ang II), the main effector peptide of RAS. A new peptide, alamandine, and its receptor Mas-related G protein-coupled receptor D (MrgD) have been recently identified that share structural and functional similarity to Ang-(1-7) and its receptor, Mas, establishing another new protective axis of RAS. Here, we examined the expression and cellular localization of MrgD in the retina, the effect of MrgD deficiency on mouse retinal structure and function, as well as the biological function of alamandine in cultured retinal cells. We showed that MrgD is expressed in the retinal neurons, retinal vasculature, Müller glial and RPE cells, similar to Mas receptor expression. MrgD-deficient mice did not exhibit gross change in retinal morphology and thickness; however, these mice did show a progressive decrease in both scotopic and photopic a-wave and b-wave amplitudes, and increase in retinal capillary loss with age compared to age-matched wild-type mice. In vitro studies in human retinal cells showed that alamandine attenuated the Ang II and LPS-induced increases in inflammatory cytokine gene expression, NF-κB activation, Ang II and hydrogen peroxide-induced production of reactive oxygen species, comparable to that mediated by Ang-(1-7). These results support the notion that alamandine/MrgD may represent another new protective axis of RAS in the retina exerting anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610-0284, USA
| | - Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610-0284, USA
| | - Tuhina Prasad
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610-0284, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610-0284, USA.
| |
Collapse
|