701
|
Kole MHP, Czéh B, Fuchs E. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress. Hippocampus 2004; 14:742-51. [PMID: 15318332 DOI: 10.1002/hipo.10212] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well understood. We tested the hypothesis that chronic stress affects the input-output characteristics and excitability of CA3 pyramidal cells. Somatic whole-cell current-clamp recording with parallel intracellular biocytin labeling was performed on CA3 neurons from in vitro hippocampal slices from male tree shrews, which were collected after 28 days of psychosocial stress exposure and compared to recordings obtained from control animals. Post hoc morphometric analysis of biocytin-labeled CA3 cells revealed branch regression, by fewer dendritic crossings and length, limited to a distance of approximately 280-340 microm from the soma only. The results from whole-cell recording indicate that chronic stress surprisingly reduced the apparent membrane time constant and input resistance 20-25%, accompanied by increased amplitude of the hyperpolarization-induced voltage "sag." All active membrane properties, including depolarization-induced action potential kinetics, complex spiking patterns, and afterhyperpolarization voltages, were indistinguishable from control recordings. Although linear association analysis confirmed that differences in geometry, such as apical length or branch number, were correlated to functional variability in properties of the AP current and voltage threshold, these changes were too marginal to be reflected in the group differences. However, the individual adrenal hormone status was associated significantly with the selective changes in subthreshold excitability. Taken together, the data provide evidence that despite long-term stress induces morphological changes, upregulates cortisol release and shifts the intrinsic membrane properties, the efficacy of somatic excitability of CA3 pyramidal neurons is largely preserved.
Collapse
Affiliation(s)
- Maarten H P Kole
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | |
Collapse
|
702
|
Reagan LP, Rosell DR, Wood GE, Spedding M, Muñoz C, Rothstein J, McEwen BS. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci U S A 2004; 101:2179-84. [PMID: 14766991 PMCID: PMC357072 DOI: 10.1073/pnas.0307294101] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Excitatory amino acids play a key role in stress-induced remodeling of dendrites in the hippocampus as well as in suppression of neurogenesis in the dentate gyrus. The regulation of extracellular glutamate levels has been suggested as a potential mechanism through which repeated stress causes dendritic remodeling of CA3 pyramidal neurons. Accordingly, the current study examined the distribution and regulation of the glia glutamate transporter GLT-1 and the recently identified GLT isoform, GLT-1b, in the hippocampus of rats subjected to chronic restraint stress (CRS). We also examined the ability of the antidepressant tianeptine, which blocks CRS-induced dendritic remodeling, to modulate CRS-mediated changes in GLT-1 and GLT-1b expression. CRS increased GLT-1 mRNA expression in the dentate gyrus and CA3 region of Ammon's horn, increases that were inhibited by tianeptine. CRS more selectively increased GLT-1 protein levels in the subregion where dendritic remodeling is most prominent, namely the CA3 region, increases that were also inhibited by tianeptine administration. In contrast, GLT-1b mRNA expression was not modulated in the hippocampus in any of these groups, but CRS increased GLT-1b protein levels in all hippocampal subfields examined, increases that were unaffected by tianeptine treatment. These results point to the importance of understanding the mechanism for the differential and subregional regulation of GLT-1 isoforms in neuronal and glial compartments in the hippocampus as a basis for understanding the effects of chronic stress on structural plasticity as well as the neuroprotective properties of agents such as tianeptine.
Collapse
Affiliation(s)
- Lawrence P Reagan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
703
|
Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA. Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 2004; 77:209-20. [PMID: 14751447 DOI: 10.1016/j.pbb.2003.10.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Principal mental disorders affecting the geriatric population include dementia and depression. A lack of trophic support is thought to contribute to the pathology of these disorders. Physical activity and antidepressant treatment increase the expression of brain-derived neurotrophic factor (BDNF) in the young rat hippocampus. Herein, we investigated the responsiveness of the aging rat hippocampus to antidepressant treatment and voluntary exercise. In situ hybridization revealed that, in young animals, exercise, antidepressant treatment, or their combination elevated BDNF mRNA levels in several hippocampal regions, most notably in the CA3, CA4, and dentate gyrus (DG). This effect was rapid (detectable at 2 days) and sustainable to 20 days. In aged (22-month-old) rats, hippocampal responsiveness to antidepressant treatment and exercise was also rapid and sustainable, but evident mostly in the CA1 and CA2. Daily swimming also revealed that small amounts of activity led to marked elevations in hippocampal BDNF mRNA. The differences in regional patterns of BDNF mRNA elevations between young and aged animals observed with running were maintained with this different exercise modality. Our results indicate that the aged brain is responsive to exercise and antidepressant treatment, and changes in regional response patterns may reflect shifts in hippocampal physiology during the lifespan.
Collapse
Affiliation(s)
- Antonio A Garza
- Department of Biological Sciences, California State University-Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | | | | | | | | |
Collapse
|
704
|
Abstract
The adult nervous system is not static, but instead can change, can be reshaped by experience. Such plasticity has been demonstrated from the most reductive to the most integrated levels, and understanding the bases of this plasticity is a major challenge. It is apparent that stress can alter plasticity in the nervous system, particularly in the limbic system. This paper reviews that subject, concentrating on: a) the ability of severe and/or prolonged stress to impair hippocampal-dependent explicit learning and the plasticity that underlies it; b) the ability of mild and transient stress to facilitate such plasticity; c) the ability of a range of stressors to enhance implicit fear conditioning, and to enhance the amygdaloid plasticity that underlies it.
Collapse
Affiliation(s)
- Robert M Sapolsky
- Department of Biological Sciences, Stanford University, Gilbert Laboratory, MC 5020, Stanford, California 94305-5020, USA.
| |
Collapse
|
705
|
Mulholland PJ, Self RL, Harris BR, Littleton JM, Prendergast MA. (−)-nicotine ameliorates corticosterone's potentiation of N-methyl-d-aspartate receptor-mediated cornu ammonis 1 toxicity. Neuroscience 2004; 125:671-82. [PMID: 15099681 DOI: 10.1016/j.neuroscience.2004.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 11/22/2022]
Abstract
Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine has been shown to reduce toxic consequences of NMDA receptor function, it may be suggested that nicotine intake may attenuate the neurotoxic effects of hypercortisolemia. To investigate this possibility, organotypic hippocampal slice cultures derived from rat were pre-treated with corticosterone (0.001-1 microM) alone or in combination with selective glucocorticoid receptor antagonists for 72-h prior to a brief (1-h) NMDA exposure (5 microM). Pre-treatment with corticosterone (0.001-1 microM) alone did not cause hippocampal damage, while NMDA exposure produced significant cellular damage in the cornu ammonis (CA)1 subregion. No significant damage was observed in the dentate gyrus or CA3 regions following NMDA exposure. Pre-treatment of cultures with corticosterone (0.1-1 microM) markedly exacerbated NMDA-induced CA1 and dentate gyrus region damage. This effect in the CA1 region was prevented by co-administration of the glucocorticoid receptor antagonist RU486 (>or=1 microM), but not spironolactone (1-10 microM), a mineralocorticoid receptor antagonist. In a second series of studies, both acute and pre-exposure of cultures to (-)-nicotine (1-10 microM) significantly reduced NMDA toxicity in the CA1 region. Co-administration of cultures to (-)-nicotine (1-10 microM) with 100 nM corticosterone prevented corticosterone's exacerbation of subsequent CA1 insult. This protective effect of (-)-nicotine was not altered by co-exposure of cultures to 10 microM dihydro-beta-erythroidine but was blocked by co-exposure to 100 nM methyllycaconitine, suggesting the involvement of nicotinic acetylcholine receptors possessing the alpha7* subunit. The present studies suggest a role for hypercortisolemia in sensitizing the hippocampal NMDA receptor system to pathological activation and indicate that prolonged nicotine exposure attenuates this sensitization. Thus, it is possible that one consequence of heavy smoking in those suffering from hypercortisolemia may be a reduction of neuronal injury and sparing of cellular function.
Collapse
Affiliation(s)
- P J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA
| | | | | | | | | |
Collapse
|
706
|
Jay TM, Rocher C, Hotte M, Naudon L, Gurden H, Spedding M. Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotox Res 2004; 6:233-44. [PMID: 15325962 DOI: 10.1007/bf03033225] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The direct hippocampal to prefrontal cortex pathway and its changes in synaptic plasticity is a useful framework for investigating the functional operations of hippocampal-prefrontal cortex communication in cognitive functions. Synapses on this pathway are modifiable and synaptic strength can be turned up or down depending on specific patterns of activity in the pathway. The objective of this review will be to summarize the different studies carried out on this topic including very recent data and to underline the importance of animal models for the development of new and effective medications in psychiatric diseases. We have shown that long-term potentiation (LTP) of hippocampal-prefrontal synapses is driven by the level of mesocortical dopaminergic (DA) activity and more recently that stress is also an environmental determinant of LTP at these cortical synapses. Stimulation of the ventral tegmental area at a frequency known to evoke DA overflow in the prefrontal cortex produces a long-lasting enhancement of the magnitude of hippocampal-prefrontal cortex LTP whereas a depletion of cortical DA levels generates a dramatic decrease in this LTP. Moreover, hippocampal stimulation induces a transient but significant increase in DA release in the prefrontal cortex and an optimal level of D1 receptor activation is essential for LTP expression. We recently investigated the impact of stress on hippocampal-prefrontal LTP and demonstrated that exposure to an acute stress causes a remarkable and long-lasting inhibition of LTP. Furthermore, we demonstrated that tianeptine, an antidepressant which has a unique mode of action, and clozapine an atypical antipsychotic when administered at doses normally used in human testing are able to reverse the impairment in LTP. Stressful life events have a substantial causal association with psychiatric disorders like schizophrenia and depression and recent imaging studies have shown an important role of the limbic-cortical circuit in the pathophysiology of these illnesses. Therefore, we proposed that agents capable of reversing the impairment of plasticity at hippocampal to prefrontal cortex synapses have the potential of becoming new therapeutic classes of antidepressant or antipsychotic drugs.
Collapse
Affiliation(s)
- Thérèse M Jay
- INSERM E 0117, Physiopathologie des Maladies Psychiatriques, Centre Paul Broca, 2ter rue d'Alésia, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
707
|
Coburn-Litvak PS, Tata DA, Gorby HE, McCloskey DP, Richardson G, Anderson BJ. Chronic corticosterone affects brain weight, and mitochondrial, but not glial volume fraction in hippocampal area CA3. Neuroscience 2004; 124:429-38. [PMID: 14980392 DOI: 10.1016/j.neuroscience.2003.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2003] [Indexed: 10/26/2022]
Abstract
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
Collapse
Affiliation(s)
- P S Coburn-Litvak
- Program in Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
708
|
Abstract
Electroconvulsive seizure therapy (ECS) is a clinically proven treatment for depression and is often effective even in patients resistant to chemical antidepressants. However, the molecular mechanisms underlying the therapeutic efficacy of ECS are not fully understood. One theory that has gained attention is that ECS and other antidepressants increase the expression of select neurotrophic factors that could reverse or block the atrophy and cell loss resulting from stress and depression. To further address this topic, we examined the expression of other neurotrophic-growth factors and related signaling pathways in the hippocampus in response to ECS using a custom growth factor microarray chip. We report the regulation of several genes that are involved in growth factor and angiogenic-endothelial signaling, including neuritin, stem cell factor, vascular endothelial growth factor (VEGF), VGF (nonacronymic), cyclooxygenase-2, and tissue inhibitor of matrix metalloproteinase-1. Some of these, as well as other growth factors identified, including VEGF, basic fibroblast growth factor, and brain-derived neurotrophic factor, have roles in mediating neurogenesis and cell proliferation in the adult brain. We also examined gene expression in the choroid plexus and found several growth factors that are enriched in this vascular tissue as well as regulated by ECS. These data suggest that an amplification of growth factor signaling combined with angiogenic mechanisms could have an important role in the molecular action of ECS. This study demonstrates the applicability of custom-focused microarray technology in addressing hypothesis-driven questions regarding the action of antidepressants.
Collapse
|
709
|
Grillo CA, Piroli GG, Rosell DR, Hoskin EK, Mcewen BS, Reagan LP. Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 2003; 121:133-40. [PMID: 12946706 DOI: 10.1016/s0306-4522(03)00343-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress and modulation of anti-oxidant enzymes may contribute to the deleterious consequences of diabetes mellitus and to the effects of chronic (i.e. 21 day) stress in the CNS. We therefore compared the effects of short- and long-term exposure to diabetes-induced hyperglycemia, restraint stress and the combined effects of restraint stress and diabetes upon parameters of oxidative stress in the rat hippocampus. Whereas 7 days of restraint stress or hyperglycemia, or the combination, produced similar increases in oxidative stress markers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) throughout the hippocampus, 21 days of stress or hyperglycemia did not increase these markers in the dentate gyrus. In contrast, Ammon's horn still showed elevated levels of these lipid peroxidation products, especially in diabetic rats subjected to 21 days of restraint stress. The expression of two anti-oxidant enzymes, copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese SOD, was also differentially regulated by stress and hyperglycemia in a time- and region-specific manner in the rat hippocampus. Although long-term stress decreased both SOD isoforms, diabetes increased Cu/Zn-SOD expression in DG with or without 21 days of repeated stress. These increases may account for the finding that protein-conjugated HNE and MDA levels returned to control levels between 7 days and 21 days of hyperglycemia or the combination of diabetes and stress. These results suggest that while other anti-oxidant pathways may account for decreases in oxidative stress in the long-term stress paradigm, increases in Cu/Zn-SOD expression may contribute to the region-specific attenuation of oxidative stress in the diabetic rat hippocampus.
Collapse
Affiliation(s)
- C A Grillo
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
710
|
Wennström M, Hellsten J, Ekdahl CT, Tingström A. Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus. Biol Psychiatry 2003; 54:1015-24. [PMID: 14625143 DOI: 10.1016/s0006-3223(03)00693-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Analysis of postmortem tissue from patients with major depression and bipolar disorder has revealed structural changes in several brain regions. We have shown that electroconvulsive seizure (ECS), used for the treatment of severe depression, induces proliferation of both neuronal and nonneuronal cells in the adult rat hippocampus. METHODS Male Wistar rats were subjected to one or several ECS treatments, then injected with bromodeoxyuridine (BrdU) to detect cell proliferation. Animals were perfused either 1 day or 3 weeks following the last BrdU injection. Cells were double stained for BrdU and the cell type markers chondroitin sulfate proteoglycan (NG2), complement 3-receptor OX-42, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), Ca(+) binding protein S100-beta, or neuron-specific nuclear protein (NeuN). RESULTS We identified NG2-expressing cells as a major cell type proliferating in the rat dentate gyrus in response to ECS. A sharp increase in NG2-positive cell proliferation was seen 2 days after ECS, and a large number of NG2-expressing cells persisted at 3 weeks. CONCLUSIONS Our results show that antidepressant treatment can induce a strong proliferation of glial progenitor cells in the adult rat hippocampus. We propose that this may counteract degenerative changes found in depression and be an important neurobiological event underlying the clinical effect of electroconvulsive seizures.
Collapse
Affiliation(s)
- Malin Wennström
- Molecular Psychiatry Unit, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | | |
Collapse
|
711
|
Cordero MI, Venero C, Kruyt ND, Sandi C. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone. Horm Behav 2003; 44:338-45. [PMID: 14613728 DOI: 10.1016/s0018-506x(03)00160-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that exposure of rats to chronic restraint stress for 21 days enhances subsequent contextual fear conditioning. Since recent evidence suggest that this effect is not dependent on stress-induced neurodegenerative processes, but to elevated training-elicited glucocorticoid release in chronically stressed animals, we aimed to explore here whether a single exposure to restraint stress, which is not expected to induce neuronal damage, would also affect contextual fear conditioning. We also questioned whether post-training corticosterone levels might be associated with any potential effect of stress on fear conditioning. Adult male Wistar rats were exposed to acute restraint stress for 2 h and, two days later, trained in the contextual fear conditioning task, under training conditions involving either moderate (0.4 mA shock) or high (1 mA shock) stress levels. The results showed that acute stress enhanced conditioned freezing at both training conditions, although data from the 1 mA shock intensity experiment only approached significance. Stressed animals were shown to display higher post-training corticosterone levels. Furthermore, the facilitating effect of prior stress was not evident when animals were trained in the hippocampal-independent auditory-cued conditioning task. Therefore, these findings support the idea that stress experiences preceding exposure to new types of stressors facilitate the development of contextual fear conditioning. They also indicate that not only repeated, but also a single exposure to aversive stimulation is sufficient to facilitate context-dependent fear conditioning, and suggest that increased glucocorticoid release at training might be implicated in the mechanisms mediating the memory facilitating effects induced by prior stress experiences.
Collapse
Affiliation(s)
- M Isabel Cordero
- Department of Psychobiology, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
712
|
Roskoden T, Otten U, Schwegler H. Early postnatal corticosterone administration regulates neurotrophins and their receptors in septum and hippocampus of the rat. Exp Brain Res 2003; 154:183-91. [PMID: 14557907 DOI: 10.1007/s00221-003-1656-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 07/30/2003] [Indexed: 10/26/2022]
Abstract
The principal glucocorticoid in rats, corticosterone, interacts with neurons in the limbic system and leads to morphological and behavioral changes. Putative corticosterone-triggered mediators are neurotrophins. In the present study we investigated the effects of early postnatal corticosterone treatment in rats on neurotrophic factors of the nerve growth factor (NGF) family and their receptors. Newborn rats were treated with corticosterone-containing polymers until postnatal day 12. The mRNA and protein levels of the neurotrophins of the NGF family (NGF, BDNF, NT-3 and NT-4/5) and their receptors (trkA, trkB, trkC and p75) were quantified in septum and hippocampus using RT-PCR. In the septal region, we found an unchanged mRNA expression after corticosterone treatment, whereas in the hippocampus there was a general increase in mRNA. Particularly, the gene expression of NGF, NT-3, and the high affinity receptors trkA, trkB and trkC increased significantly. Quantification of the neurotrophin protein levels using an ELISA revealed significant treatment effects for NGF and NT-4/5 in the hippocampus. The present study of corticosterone treatment in young rats demonstrates interactions of steroid hormones with neurotrophic factors and their receptors in the septo-hippocampal system during the first two postnatal weeks.
Collapse
Affiliation(s)
- Thomas Roskoden
- Institute of Anatomy, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | | | | |
Collapse
|
713
|
Marmigère F, Givalois L, Rage F, Arancibia S, Tapia-Arancibia L. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus 2003; 13:646-55. [PMID: 12921353 DOI: 10.1002/hipo.10109] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is strongly expressed in the hippocampus, where it has been associated with memory processes. In the central nervous system, some learning processes, as well as brain insults, including stress, induce modifications in BDNF mRNA expression. Because stress and memory appear to share some neuronal pathways, we studied BDNF mRNA and BDNF peptide variations in response to short times of immobilization stress. Using an RNase protection assay, we demonstrated that short-time stress application induced a significant increase (at 60 min) in BDNF mRNA levels in the whole rat hippocampus. Changes in BDNF mRNA content appear to reflect increased expression of BDNF transcripts containing exons I, II, and III, that were also significantly modified at this time. The time course of stress-induced changes in BDNF transcript levels revealed that mRNA containing exon III was the first increased, significantly elevated by 15 min, attaining maximal levels at 60 min, as BDNF transcripts containing exons I and II. However, at longer times of stress (180 min), BDNF mRNA levels were decreased as well as mRNA containing exon IV. In situ hybridization analysis of discrete hippocampal layers demonstrated that BDNF mRNA expression increased as early as 15 min in most hippocampal regions, with no modification in the number of labeled cells. The same signal pattern, although less pronounced, was determined at 60 min, but at this time a significant increase in BDNF-positive cells was visualized in the CA3 layer. The peptide, measured by immunoassay, was significantly augmented after 180 min of stress exposure whereas at 300 min, levels were similar to those measured in control animals. These data suggest that rapid changes in BDNF expression may be part of a compensatory response to preserve hippocampal homeostasis or a form of neuronal plasticity to cope with new stimuli.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Laboratoire de Plasticité Cérébrale, Université de Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
714
|
Mizoguchi K, Ishige A, Aburada M, Tabira T. Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 2003; 119:887-97. [PMID: 12809708 DOI: 10.1016/s0306-4522(03)00105-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disruption of the glucocorticoid negative feedback system is observed in approximate one half of human depressives, and a similar condition is induced in animals by chronic stress. This disruption is thought to involve down-regulation of glucocorticoid receptors (GRs) in the feedback sites of the brain. However, the responsible site of the brain has not been well elucidated. Here we examined the effects of chronic stress induced by water immersion and restraint (2 h/day) for 4 weeks followed by recovery for 10 days on the GR levels in the prefrontal cortex (PFC), hippocampus, and hypothalamus of rats using a Western immunoblot technique. In the PFC, the cytosolic GR levels were decreased, but the nuclear GR levels were not changed. In the hippocampus, the levels of cytosolic and nuclear GRs were increased. However, there were no marked changes in the GR levels in the hypothalamus. The changes in the cytosolic GR levels were confirmed at the mRNA level by an in situ hybridization technique. We next examined the suppressive effects of dexamethasone (DEX) infusions into these regions on the circulating corticosterone levels. When DEX was infused into the PFC or hippocampus of the chronically stressed rats, the suppressive response to DEX was abolished, but the response was normal in the hypothalamus. In addition, when DEX was injected systemically to the chronically stressed rats, the suppressive response to DEX was significantly attenuated. These results suggest that the abnormal changes in GRs in the higher centers of the hypothalamo-pituitary-adrenal axis are involved in the chronic stress-induced attenuation of the feedback. Since dysfunction of the PFC or hippocampus is implicated in the pathogenesis of depression, the present findings would help to understand the mechanisms underlying the disrupted feedback system and its relation to brain dysfunction in depression.
Collapse
Affiliation(s)
- K Mizoguchi
- Pharmacology Department, Central Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | | | | | | |
Collapse
|
715
|
Dazzi L, Seu E, Cherchi G, Biggio G. Antagonism of the stress-induced increase in cortical norepinephrine output by the selective norepinephrine reuptake inhibitor reboxetine. Eur J Pharmacol 2003; 476:55-61. [PMID: 12969749 DOI: 10.1016/s0014-2999(03)02130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that long-term treatment of rats with antidepressant drugs that affect the activity of noradrenergic and serotonergic neurons by different mechanisms, inhibits the increase in cortical norepinephrine output induced by stress. With the use of microdialysis, we have now evaluated the effects of reboxetine, an antidepressant drug that selectively inhibits norepinephrine reuptake, on the increase in cortical norepinephrine output elicited in rats by exposure to foot-shock stress or by the acute administration of N-methyl-beta-carboline-3-carboxamide (FG 7142) (20 mg/kg, i.p.). Foot-shock stress and FG 7142 each induced a marked increase in the cortical extracellular concentration of norepinephrine (+200 and +90%, respectively) in control rats. Long-term treatment with reboxetine (10 mg/kg, i.p., once a day for 21 days) reduced the effect of foot-shock stress and completely antagonized the effect of FG 7142 on cortical norepinephrine output. Our results suggest that changes in the activity of noradrenergic neurons in the cortex might be relevant to the anxiolytic and antidepressant effects of reboxetine.
Collapse
Affiliation(s)
- Laura Dazzi
- Department of Experimental Biology B. Loddo, University of Cagliari, 09123 Cagliari, Italy.
| | | | | | | |
Collapse
|
716
|
Abstract
Different types of stressors are known to activate distinct neuronal circuits in the brain. Acute physiological stimuli that are life threatening and require immediate reactions lead to a rapid stimulation of brainstem and hypothalamus to activate efferent visceral pathways. In contrast, psychological stressors activate higher-order brain structures for further interpretations of the perceived endangerment. Common to the later multimodal stressors is that they need cortical processing and, depending on previous experience or ongoing activation, the information is assembled within limbic circuits connecting, e.g., the hippocampus, amygdala and prefrontal cortex to induce neuroendocrine and behavioral responses. In view of the fact that stressful life events often contribute to the etiology of psychopathologies such as depressive episodes, several animal models have been developed to study central nervous mechanisms that are induced by stress. The present review summarizes observations made in the tree shrew chronic psychosocial stress paradigm with particular focus on neurotransmitter systems and structural changes in limbic brain regions.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany.
| | | |
Collapse
|
717
|
Coburn-Litvak PS, Pothakos K, Tata DA, McCloskey DP, Anderson BJ. Chronic administration of corticosterone impairs spatial reference memory before spatial working memory in rats. Neurobiol Learn Mem 2003; 80:11-23. [PMID: 12737930 DOI: 10.1016/s1074-7427(03)00019-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Corticosterone (CORT), the predominant glucocorticoid in rodents, elevated for 21 days damages hippocampal subregion CA3. We tested the hypothesis that CORT would impair spatial memory, a hippocampal function. In each of the three experiments, rats received daily, subcutaneous injections of either CORT (26.8 mg/kg body weight in sesame oil) or sesame oil vehicle alone (VEH). CORT given for 21 or 56 days effectively attenuated body weight gain and reduced selective organ and muscle weights. All behavioral testing was done on tasks that are minimally stressful and avoid deprivation. For each experiment, testing commenced 24h after the last injection. CORT given for 21 days did not impair spatial working memory in the Y-maze (Experiments 1 and 2). After 56-day administration of CORT, spatial working memory was impaired in the Y-maze (Experiment 2). CORT given for 21 days also failed to impair spatial working memory in the Barnes maze (Experiment 3). However, in trials that depended solely on reference memory, the VEH group improved in performance, whereas the CORT group did not. In conclusion, CORT elevated over a period of 21 days did not impair spatial working memory, but impaired the formation of a longer-term form of memory, most likely reference memory. Impairments in spatial working memory are seen only after longer durations of CORT administration.
Collapse
Affiliation(s)
- P S Coburn-Litvak
- Program in Neurobiology, SUNY Stony Brook, Stony Brook, NY 11790-5230, USA
| | | | | | | | | |
Collapse
|
718
|
Cavus I, Duman RS. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol Psychiatry 2003; 54:59-69. [PMID: 12842309 DOI: 10.1016/s0006-3223(03)00236-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Estradiol affects neuronal plasticity, mood, and cognition. We examined the effects of the estrous cycle, acute and chronic estradiol treatments on BDNF mRNA expression in the hippocampus and cortex of female rats. The roles of 5-HT2A receptors and of stress on the BDNF mRNA regulation were also explored. METHODS BDNF mRNA levels were measured using in situ hybridization at proestrus and estrus, and following acute and chronic estradiol treatment of acutely and chronically ovariectomized (OVX) female rats. Some rats were pretreated with 5-HT2A agonist and antagonist, and another group was subjected to two-hour immobilization stress. RESULTS BDNF mRNA levels in the dentate gyrus and the medial prefrontal cortex were decreased during estrus, when estradiol levels are highest. Acute estradiol treatment decreased hippocampal BDNF mRNA in acutely OVX rats, but neither acute nor chronic estradiol had effect in chronically OVX rats. Estradiol pretreatment reduced the 5-HT2A receptor-mediated cortical upregulation in BDNF mRNA and did not effect the stress-induced down-regulation of BDNF mRNA in the dentate gyrus. CONCLUSIONS The duration of the estradiol treatment and the duration of the ovarian hormone deprivation are important factors in the regulation of BDNF synthesis and possibly in the functional outcome of estrogen treatment.
Collapse
Affiliation(s)
- Idil Cavus
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
719
|
Falconer EM, Galea LAM. Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res 2003; 975:22-36. [PMID: 12763590 DOI: 10.1016/s0006-8993(03)02542-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Males show suppressed cell proliferation in the hippocampus in response to acute stress but no studies to date have examined cell proliferation in response to acute stress in females. In the current study, we examined the effects of acute exposure to a predator odor stressor [trimethyl thiazoline (TMT); the main component of fox feces] or a control odor on cell proliferation and cell death in the dentate gyrus and on behavior in adult male and female [intact, ovariectomized (OVX) or OVX+estradiol benzoate (EB)] rats. Further, we examined whether TMT-induced changes in behavior were related to cellular changes. During TMT exposure, rats were injected with the cell synthesis marker bromodeoxyuridine and perfused 24 h later. Acute TMT exposure suppressed both cell proliferation and death in males but not in any group of females. Interestingly, in the OVX females we observed an increase in cell death that was eliminated by EB treatment. Consistent with prior studies, estradiol treatment increased cell proliferation regardless of odor condition. Regardless of sex or hormone treatment, TMT increased defensive behavior, suggesting that the behavioral response to TMT is dissociated from this cellular response. This is the first demonstration of a sex difference in cell proliferation and death in the adult dentate gyrus in response to stress.
Collapse
Affiliation(s)
- Erin M Falconer
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
720
|
Sandi C, Davies HA, Cordero MI, Rodriguez JJ, Popov VI, Stewart MG. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci 2003; 17:2447-56. [PMID: 12814376 DOI: 10.1046/j.1460-9568.2003.02675.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2-3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity.
Collapse
Affiliation(s)
- Carmen Sandi
- Dept of Psychobiology, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
721
|
Bisagno V, Bowman R, Luine V. Functional aspects of estrogen neuroprotection. Endocrine 2003; 21:33-41. [PMID: 12777701 DOI: 10.1385/endo:21:1:33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 02/06/2003] [Accepted: 02/11/2003] [Indexed: 11/11/2022]
Abstract
Evidence that estrogen protects neurons against toxic/ ischemic insults or degenerative/aging processes is evident in a variety of in vitro and in vivo systems. However, a critical remaining question is: Does the demonstrated morphologic and neurochemical protection by estrogen lead to a preservation of brain function or an enhanced ability to recover? To date, little basic research is available on this issue. Cognition is a critical function that might provide a sensitive way to examine this question. As a first step, we present results showing that two chronic environmental insults, psychoactive drugs and stress, produce gender-specific responses in cognitive abilities. Specifically, females appear less sensitive than males to cognitive impairments following chronic exposure to these factors. Results are presented in male and female rats utilizing cognitive tests that assess visual (object recognition) and spatial memory (object placement and radial arm maze) following chronic amphetamine, methamphetamine, or daily restraint stress. Following regimes of chronic stress or amphetamine, males were impaired on these tasks while females were either unaffected, less affected, or enhanced in performance. These observations suggest that differences in circulating gonadal hormone levels between the sexes may contribute to the differential sensitivity of the sexes and provide endogenous neuroprotection for females. Surprisingly, ovariectomized females were still not impaired following a stress regimen that impaired males (21 d of daily restraint). These data taken together with neurochemical data on estrogen neuroprotective effects indicate that it is possible that neuroprotection by estrogen may result from hormone action both during sexual differentiation (organizational effect) and in adulthood (activational effect). These considerations and possible unwanted/untoward effects of chronic estrogen use are discussed in relation to the use of selective estrogen receptor modulators for chronic treatment of both males and females. In conclusion, although compelling evidence for neuroprotection by estrogen has been presented in anatomic and neurochemical studies, it is clear that the functional/ behavioral aspects need further investigation.
Collapse
Affiliation(s)
- Veronica Bisagno
- Department of Psychology, Hunter College of the City University of New York, New York 10021, USA
| | | | | |
Collapse
|
722
|
Abstract
Stress is a risk factor for a variety of illnesses, involving the same hormones that ensure survival during a period of stress. Although there is a considerable ambiguity in the definition of stress, a useful operational definition is: "anything that induces increased secretion of glucocorticoids". The brain is a major target for glucocorticoids. Whereas the precise mechanism of glucocorticoid-induced brain damage is not yet understood, treatment strategies aimed at regulating abnormal levels of glucocorticoids, are worth examining.
Collapse
Affiliation(s)
- Isabella Heuser
- Department of Psychiatry, University Hospital Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany.
| | | |
Collapse
|
723
|
Reduction but not cleavage of poly(ADP-ribose) polymerase during stress-mediated cell death in the rat hippocampus. Neuroreport 2003. [DOI: 10.1097/00001756-200305230-00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
724
|
Reagan LP. Glucose, stress, and hippocampal neuronal vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:289-324. [PMID: 12420363 DOI: 10.1016/s0074-7742(02)51009-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Lawrence P Reagan
- Laboratory of Neuroendocrinology, Rockefeller University, New York 10021, USA
| |
Collapse
|
725
|
Venero C, Tilling T, Hermans-Borgmeyer I, Schmidt R, Schachner M, Sandi C. Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience 2003; 115:1211-9. [PMID: 12453492 DOI: 10.1016/s0306-4522(02)00543-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of 21-day exposure to restraint stress on mRNA levels of the cell adhesion molecules NCAM and L1 were evaluated in different hippocampal regions (CA1, CA3, and dentate gyrus) and other structures (thalamus, prefrontal and frontal cortices, and striatum) of the rat brain. A general decrease in gene expression of the neural cell adhesion molecule (NCAM) was found throughout the brain, particularly in all hippocampal subregions. On the contrary, transcripts for the adhesion molecule L1 were specifically increased at the level of the hippocampus, especially in the dorsal dentate gyrus and area CA3. mRNA for the NCAM180 isoform was detected unchanged in all brain areas examined after chronic stress. A second experiment explored whether there would be cognitive alterations associated with this stress procedure and molecular regulation. Thus, after exposure to the same restraint regimen, performance in the water maze was evaluated. Although stressed rats displayed the ability to learn the task throughout the training session, they showed a transient deficit in the initial phase of the acquisition. In conclusion, our findings indicate that chronic stress interferes with the mechanisms involved in the synthesis of cell adhesion molecules of the immunoglobulin superfamily. Furthermore, they suggest that these effects might be involved in the mechanisms by which stress induces structural and functional alterations in the central nervous system and, particularly, in the hippocampus.
Collapse
Affiliation(s)
- C Venero
- Department of Psychobiology, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
726
|
Vyas A, Bernal S, Chattarji S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 2003; 965:290-4. [PMID: 12591150 DOI: 10.1016/s0006-8993(02)04162-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A differential role has been suggested for two important areas in the neural circuitry of stress, central nucleus of the amygdala (CeA) and bed nucleus of stria terminalis (BNST) in the extended amygdala, in regulating fear versus anxiety. Since chronic stress enhances anxiety and consolidation of aversive memories, we examined the effects of chronic immobilization stress (CIS) on neuronal morphology in the CeA and BNST of rats. In contrast to previous reports of stress-induced atrophy in the hippocampus, CIS does not cause dendritic atrophy in CeA and BNST neurons. While dendritic arborization in CeA neurons remains unaffected, it increases in BNST neurons after CIS. These results suggest a role for dendritic remodeling of BNST neurons in stress-induced facilitation of anxiety.
Collapse
Affiliation(s)
- Ajai Vyas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065, India
| | | | | |
Collapse
|
727
|
de Quervain DJF, Henke K, Aerni A, Treyer V, McGaugh JL, Berthold T, Nitsch RM, Buck A, Roozendaal B, Hock C. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur J Neurosci 2003; 17:1296-302. [PMID: 12670318 DOI: 10.1046/j.1460-9568.2003.02542.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work indicates that stress levels of circulating glucocorticoids can impair retrieval of declarative memory in human subjects. Several studies have reported that declarative memory retrieval relies on the medial temporal lobe. The present study used H(2)(15)O-positron emission tomography to investigate whether acutely elevated glucocorticoid levels affect regional cerebral blood flow in the medial temporal lobe, as well as in other brain regions, during declarative memory retrieval in healthy male human subjects. When measured over four different declarative memory retrieval tasks, a single, stress-level dose of cortisone (25 mg) administered orally 1 h before retention testing, induced a large decrease in regional cerebral blood flow in the right posterior medial temporal lobe, the left visual cortex and the cerebellum. The decrease in the right posterior medial temporal lobe was maximal in the parahippocampal gyrus, a region associated with successful verbal memory retrieval. Cortisone administration also significantly impaired cued recall of word pairs learned 24 h earlier, while drug effects on performance in the other tasks (verbal recognition, semantic generation and categorization) were not significant. The present results provide further evidence that acutely elevated glucocorticoid levels can impair declarative memory retrieval processes and suggest that such impairments may be related to a disturbance of medial temporal lobe function.
Collapse
|
728
|
Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, Enami T, Suzuki K, Tanabe N, Ishii H, Mukai H, Takahashi T, Hattori TA, Kawato S. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:301-16. [PMID: 12573490 DOI: 10.1016/s0304-4165(02)00489-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, 17beta-estradiol and testosterone as well as their sulfate esters. These brain neurosteroids are synthesized by cytochrome P450s (P450scc, P45017alpha and P450arom) from endogenous cholesterol. Synthesis is acutely dependent on the Ca(2+) influx attendant upon neuron-neuron communication via N-methyl-D-aspartate (NMDA) receptors. Pregnenolone sulfate, estradiol and corticosterone rapidly modulate neuronal signal transduction and the induction of long-term potentiation via NMDA receptors and putative membrane steroid receptors. Brain neurosteroids are therefore promising neuromodulators that may either activate or inactivate neuron-neuron communication, thereby mediating learning and memory in the hippocampus.
Collapse
Affiliation(s)
- Keisuke Shibuya
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Meguro, 153, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
729
|
Roozendaal B, Griffith QK, Buranday J, De Quervain DJF, McGaugh JL. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proc Natl Acad Sci U S A 2003; 100:1328-33. [PMID: 12538851 PMCID: PMC298772 DOI: 10.1073/pnas.0337480100] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2002] [Indexed: 11/18/2022] Open
Abstract
Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11beta, 17beta-dihydroxy-6,21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague-Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval.
Collapse
Affiliation(s)
- Benno Roozendaal
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA.
| | | | | | | | | |
Collapse
|
730
|
Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003; 17:879-86. [PMID: 12603278 DOI: 10.1046/j.1460-9568.2003.02513.x] [Citation(s) in RCA: 493] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic restraint stress has been shown to induce structural remodelling throughout the interconnected dentate gyrus-CA3 fields. To find out how this stressor affects the rate of adult hippocampal neurogenesis, we subjected rats to acute or chronic restraint stress and assessed the proliferation, survival and differentiation of newly born cells in the dentate gyrus. We also examined polysialylated neural cell adhesion molecule expression, a molecule normally expressed in immature neurons and important for morphological plasticity. The results show that acute restraint stress did not change either the proliferation of dentate gyrus precursor cells or the expression of polysialylated neural cell adhesion molecule, whereas 3 weeks of chronic restraint stress suppressed proliferation by 24% and increased polysialylated neural cell adhesion molecule expression by 40%. The study was extended for an additional 3 weeks to trace the survival and development of the cells born after the initial 3 weeks of restraint. Rats subjected to 6 weeks of daily restraint stress exhibited suppressed cell proliferation and attenuated survival of the recently born cells after the extended time course, resulting in a 47% reduction of granule cell neurogenesis. Furthermore, 6 weeks of chronic stress significantly reduced the total number of granule cells by 13% and the granule cell layer volume by 5%. Expression of polysialylated neural cell adhesion molecule followed a biphasic time course, displaying a significant up-regulation after 3 weeks of daily restraint stress that was lost after 6 weeks of stress. These studies may help us understand the basis for hippocampal shrinkage and raise questions about the ultimate reversibility of the effects of chronic stress.
Collapse
Affiliation(s)
- Kara Pham
- Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
731
|
Tran PV, Bymaster FP, McNamara RK, Potter WZ. Dual monoamine modulation for improved treatment of major depressive disorder. J Clin Psychopharmacol 2003; 23:78-86. [PMID: 12544378 DOI: 10.1097/00004714-200302000-00011] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The worldwide scope of depressive illness and lack of fully effective pharmacotherapy mandates significant improvements in treatment paradigms. Current antidepressant medications remain limited by poor efficacy, slow onset of action, and untoward side effects. While the introduction of serotoninspecific reuptake inhibitors (SSRIs) offered significant improvements in tolerability, no improvements in efficacy or speed of onset have been made relative to the traditional and poorly tolerated tricyclic antidepressants (TCA). The dominant efforts toward improving antidepressant medications are guided by cumulative evidence from neurochemical and clinical studies supporting the therapeutic potential of enhancing monoamine function in depression. A number of novel antidepressant drugs, including mirtazapine, milnacipran, venlafaxine, and duloxetine have been developed based on their interaction with both 5-HT and NE. Current clinical evidence suggests that these new agents may offer improved efficacy and/or faster onset of action compared with SSRIs and an improved side effect profile compared with TCAs. Potential neurobiological substrates mediating the enhanced antidepressant activity of dual reuptake inhibitors are discussed.
Collapse
Affiliation(s)
- Pierre V Tran
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
732
|
Abstract
We show here that subtle forms of maltreatment during infancy (below 1 year of age) have potential consequences for the functioning of the child's adrenocortical response system. Infants who received frequent corporal punishment (e.g., spanking) showed high hormonal reactivity to stress (a repeated separation from mother, combined with the presence of a stranger). In addition, infants who experienced frequent emotional withdrawal by their mothers (either as a result of maternal depression, or mother's strategic use of withdrawal as a control tactic) showed elevated baseline levels of cortisol. It was suggested that there are hormonal "costs" when mothers show response patterns (intentionally or unintentionally) that limit their utility as a means of buffering the child against stress. The hormonal responses shown by infants may alter the functioning of the hypothalamic-pituitary-adrenal (HPA) axis in ways that, if continued, may foster risk for immune disorders, sensitization to later stress, cognitive deficits, and social-emotional problems.
Collapse
Affiliation(s)
- Daphne Blunt Bugental
- Department of Psychology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
733
|
Conrad CD, Grote KA, Hobbs RJ, Ferayorni A. Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiol Learn Mem 2003; 79:32-40. [PMID: 12482677 DOI: 10.1016/s1074-7427(02)00018-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic restraint is known to alter hippocampal CA3 dendritic morphology and spatial memory in male rats. The present study examined whether female rats, which exhibit different anatomical adaptations to chronic stress than those of males, would also show spatial memory impairments. Male and female Sprague-Dawley rats were restrained for 6 h/day for 21 days, a time frame previously demonstrated to cause hippocampal CA3 dendritic atrophy. The day after the last restraint session, rats were tested on a Y-maze, a habituation task that can be used to assess spatial memory. Chronic stress impaired Y-maze performance in both sexes without affecting levels of locomotion as measured by total arm entries in the first minute. However, Y-maze performance of stressed females improved in 2-5 min when chronically stressed males continued to show poor Y-maze performance. The enhanced Y-maze performance of chronically stressed females occurred when total arm entries were higher compared to the entries made by males. Therefore, correlations were performed between total arm entries and spatial memory in 1 and 2-5 min. In the first minute when control females demonstrated functional spatial memory, female controls with the lowest locomotor levels exhibited the best performance. The correlations for stressed females were not significant, and neither were the correlations for any group in 2-5 min. Overall, these results show important sex differences in response to chronic stress with females exhibiting an ability to recover quickly from deficits in Y-maze performance.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| | | | | | | |
Collapse
|
734
|
Abstract
Increasing evidence suggests that the time course of advantageous versus deleterious effects of stress on physiologic function is also apparent in some brain functions, including learning and memory. This article reviews the effects of chronic stress on behavioral performance and, more importantly, shows that sex of the subject, as well as duration and intensity of stress, is an important determinant of the functional/behavioral, neurochemical, and anatomical consequences of the stress. Following chronic stress (7-28 days of restraint, 6 h/day), male and female rats were tested on a visual memory task (object recognition) and two spatial memory tasks (object placement and radial arm maze). At 21 days, stress impaired males on all tasks while females were either enhanced (spatial memory tasks) or not impaired (nonspatial memory tasks). Additionally, the influence of the hypothalamic-pituitary-adrenocortical axis in mediating the sex-specific responses to stress is considered. Behavioral and neurochemical assessments following chronic stress in ovariectomized females, with and without estradiol, suggest that estrogen exerts both organizational and activational influences on the observed sex differences in response to stress. Furthermore, stress differentially affected central transmitter levels in the frontal cortex, hippocampus, and amygdala depending on sex. The possible role of these sex-specific changes in neurotransmitter levels in mediating behavioral differences in response to stress is discussed. While these results are thus far limited to a few studies and require both further investigation and verification, chronic stress appears to be associated with distinct, sex-differentiated behavioral/cognitive and neurochemical responses. We conclude that sex differences must be taken into account when investigating or describing stress and associated sequalae.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
735
|
Wood GE, Young LT, Reagan LP, McEwen BS. Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm Behav 2003; 43:205-13. [PMID: 12614651 DOI: 10.1016/s0018-506x(02)00026-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stress and elevated stress hormone levels are known to alter cognition, learning, memory, and emotional responses. Three weeks of chronic stress or glucocorticoid exposure is reported to alter neuronal morphology in the hippocampus, the amygdala, and the prefrontal cortex, and to decrease neurogenesis in the dentate gyrus. Here we examine the effects of acute and chronic restraint stress exposure on the incidence of emotional responses throughout a 3-week period among adult rat conspecifics. Our data indicate that acute restraint stress (i.e., a single 6-h exposure) results in a significant reduction in aggressive conflicts among stressed males compared to experimental controls. In contrast, on Days 14 and 21, repeatedly restrained rats exhibited significantly more aggressive behaviors than controls. Blood samples taken 18 h after the last restraint session indicate that plasma concentrations of the stress hormone corticosterone (CORT) in stressed rats were equivalent to those of unstressed rats; however, the number of individually initiated aggressive acts observed positively correlated with plasma CORT measures taken at the end of the study. In contrast to studies of psychosocial stress or intruder paradigms, here we observe spontaneous emotional responses to an uncontrollable stressor in the homecage. This study provides a novel examination of the effects of chronic restraint stress on emotional responses in the home environment among cagemates. These results indicate that acute and chronic restraint stress alter the incidence of aggression, and emphasize the relevance of this model of chronic stress to studies of stress-responsive disorders characterized by aggressive behavior.
Collapse
Affiliation(s)
- Gwendolyn E Wood
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
736
|
Karst H, Joëls M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J Neurophysiol 2003; 89:625-33. [PMID: 12522207 DOI: 10.1152/jn.00691.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the effect of chronic stress on synaptic responses of rat dentate granule cells to perforant path stimulation. Rats were subjected for 3 wk to unpredictable stressors twice daily or to control handling. One day after the last stressor, hippocampal slices were prepared and synaptic responses were determined with whole-cell recording. At that time, adrenal weight was found to be increased and thymus weight as well as gain in body weight were decreased in the stressed versus control animals, indicative of corticosterone hypersecretion during the stress period. In slices from rats with basal corticosteroid levels (at the circadian trough, under rest), no effect of prior stress exposure was observed on synaptic responses. However, synaptic responses of dentate granule cells from chronically stressed and control rats were differently affected by in vitro activation of glucocorticoid receptors, i.e., 1-4 h after administration of 100 nM corticosterone for 20 min. Thus the maximal response to synaptic activation of dentate cells at holding potential of -70 mV [when N-methyl-D-aspartate (NMDA) receptors are blocked by magnesium] was significantly enhanced after corticosterone administration in chronically stressed but not in control animals. In accordance, the amplitude of alpha-amino-3-hydroxy-5-methylisolazole-4-propionic acid (AMPA) but not of NMDA receptor-mediated currents was increased by corticosterone in stressed rats, over the entire voltage range. Corticosterone treatment also decreased the time to peak of AMPA currents, but this effect did not depend on prior stress exposure. The data indicate that following chronic stress exposure synaptic excitation of dentate granule cells may be enhanced when corticosterone levels rise. This enhanced synaptic flow could contribute to enhanced excitation of projection areas of the dentate gyrus, most notably the CA3 hippocampal region.
Collapse
Affiliation(s)
- Henk Karst
- Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | | |
Collapse
|
737
|
Roy M, Sapolsky RM. The exacerbation of hippocampal excitotoxicity by glucocorticoids is not mediated by apoptosis. Neuroendocrinology 2003; 77:24-31. [PMID: 12624538 DOI: 10.1159/000068337] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Indexed: 11/19/2022]
Abstract
Both endogenous and exogenous glucocorticoids (GCs) are known to cause apoptosis in a number of peripheral tissues and in some cases in the CNS. Additionally, GCs can exacerbate the neuron loss associated with such acute neurological insults as hypoxia-ischemia, excitotoxicity, and metabolic disruption. This exacerbation is accompanied by increased accumulation of glutamate in the synapse, excessive cytosolic calcium, and increased oxygen radical activity, markers usually attributed to pathways of necrotic cell death. It is also known that acute insults can involve apoptotic mediators. In this context, one outstanding question that has received little attention is whether the exacerbation of insult-mediated cell death in neurons is apoptotic in mechanism. In this study we investigate whether the GC-mediated exacerbation of hippocampal excitotoxicity in culture involves apoptosis. Specifically, we show that while the magnitude of hippocampal neuron death caused by the excitotoxin kainic acid is indeed worsened in the presence of GCs, there is no evidence of increased markers of apoptosis. Specifically, we show that neither kainic acid nor GCs alone, or in combination, cause activation of caspase 3, a critical executor of insult-induced apoptosis. Furthermore, while kainic acid causes a significant incidence of apoptotic nuclear condensation, the incidence of this morphological indicator of apoptosis is not worsened by GCs. Thus, GCs appear to augment excitotoxic death in hippocampal neurons without augmenting the occurrence of apoptosis. We suggest that this finding is to be expected, given some energetic features of GC action and the energetic demands of apoptosis.
Collapse
Affiliation(s)
- Madhuri Roy
- Department of Biological Sciences, Stanford University, Stanford, Calif 94305-5020, USA.
| | | |
Collapse
|
738
|
Abstract
The influence of corticosteroids on hippocampus-dependent learning and memory processes is now indisputable. On the other hand, closer scrutiny of early studies together with interpretations from newer studies would suggest that the proposition that corticosteroid-induced hippocampal cell death accounts fully for the associated cognitive deficits is only partially correct. Firstly, it is now clear that a specific sub-population of hippocampal neurons, the granule cells of the dentate gyrus, is more sensitive to changes in the corticosteroid environment; this fact raises the interesting question of what might be the unique properties of granule cells that render them more vulnerable to these hormones, since virtually all hippocampal cells express corticosteroid receptors. Secondly, from a critical analysis of the available data, the picture that emerges is that corticosteroids, by acting through two distinct receptors, influence not only cell birth and death, but probably also cell differentiation. Mineralocorticoid receptor (MR) occupation appears to be essential for the survival of existing and newly generated granule neurons. In contrast, while glucocorticoid receptors (GR) can induce loss of neurons in the absence of MR activation, it appears that their occupation usually results in less drastic effects involving only dendritic atrophy and loss of synaptic contacts. This revised scheme of corticosteroid actions on hippocampal structure should explain earlier observations that many of the cognition- impairing effects of corticosteroids are reversible.
Collapse
Affiliation(s)
- Nuno Sousa
- Department of Anatomy, Porto Medical School, Portugal.
| | | |
Collapse
|
739
|
Abstract
In the rat, perinatal food and maternal deprivation provoke long-lasting effects upon the retrieving responses of dams to displaced pups. In the current study, the retrieving latency and the disruption in the body area of pups chosen by the mother to transport them to a new location was investigated on days 4, 8 and 12 postpartum in lactating Wistar rats. Rats, neonatally underfed by daily (12 h) mother-litter separation in an incubator from days 1 to 23 postpartum, exhibited prolonged retrieving latencies and disruption in the body area of young ones chosen by the dam to transport them to the nest. Furthermore, neonatally underfed dams frequently transported pups in a rude manner eliciting sonic distress cries from them compared to control mothers. These findings are possibly relevant to understand the impact of epigenetic influences on offspring brain and physiological maturation partly mediated through maternal care.
Collapse
Affiliation(s)
- Manuel Salas
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico, Campus UNAM Juriquilla Querétaro, Qro., Mexico 76001 Mexico.
| | | | | | | |
Collapse
|
740
|
Takahashi T, Kimoto T, Tanabe N, Hattori TA, Yasumatsu N, Kawato S. Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J Neurochem 2002; 83:1441-51. [PMID: 12472898 DOI: 10.1046/j.1471-4159.2002.01251.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work reports the first demonstration that corticosterone (CORT) has a rapid and transient effect on NMDA receptor-mediated Ca2+ signaling in cultured rat hippocampal neurons. Using single cell Ca2+ imaging, CORT and agonists of glucocorticoid receptors were observed to modulate the NMDA receptor-mediated Ca2+ signals in a completely different fashion from pregnenolone sulfate. In the absence of steroids, 100 micro m NMDA induced a transient Ca2+ signal that lasted for 30-70 s in 86.1% of the neurons prepared from postnatal rats (3-5 days old). After pre-treatment with 0.1-100 micro m CORT for 10-20 min, NMDA induced extremely prolonged Ca2+ elevation. This prolonged Ca2+ elevation was terminated by the application of MK-801 and followed by washing out of CORT. The proportion of CORT-modulated neurons within the NMDA-responsive cells increased from 25.1 to 95.5% when the concentration of CORT was raised from 0.1 to 50 micro m. Substitution of BSA-conjugated CORT produced essentially the same results. When hippocampal neurons were preincubated with 10 micro m cortisol and 1 micro m dexamethasone for 20 min, a very prolonged Ca2+ elevation was also observed upon NMDA stimulation. The CORT-prolonged Ca2+ elevation caused a long-lasting depolarization of the mitochondrial membrane, as observed with rhodamine 123. In contrast, incubation with 100 micro m pregnenolone sulfate did not considerably alter the time duration of NMDA-induced transient Ca2+ elevation, but caused a significant increase in the peak amplitude of Ca2+ elevation in hippocampal neurons. These results imply that high levels of CORT induce a rapid and non-genomic prolongation of NMDA receptor-mediated Ca2+ elevation, probably via putative membrane surface receptors for CORT in the hippocampal neurons.
Collapse
Affiliation(s)
- Taiki Takahashi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Meguro, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
741
|
Pavlides C, Nivón LG, McEwen BS. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 2002; 12:245-57. [PMID: 12000121 DOI: 10.1002/hipo.1116] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic stress causes atrophy of the apical dendrites of CA3 pyramidal neurons and deficits in spatial memory. We investigated the effects of chronic stress on hippocampal physiology and long-term potentiation (LTP) in the CA3 and dentate gyrus (DG). Rats were subjected to chronic (21 days, 6 h/day) restraint stress and tested for LTP 48 h following the last stress episode. Control animals were briefly handled each day, similar to the experimental group but without restraint. To eliminate acute stress effects, a second control group of rats was subjected to a single acute (6 h) restraint stress and tested for LTP 48 h later. Field potential recordings were made, under chloropent anesthesia, from the stratum lucidum of CA3, with stimulation of either the mossy fiber or commissural/associational pathways, or in the DG granule-cell layer, with stimulation of the medial perforant pathway. Chronic stress produced a suppression of LTP at 48 h compared to controls in a site-specific manner, namely, significantly lower LTP in the medial perforant input to the DG and also in the commissural/associational input to the CA3, but not in the mossy fiber input to CA3. The animals subjected to acute stress and tested 48 h later did not show a suppression in LTP. High-frequency stimulation (HFS) of the commissural/associational and mossy fiber inputs to CA3 produced epileptic afterdischarges in 56% of acutely stressed animals and in 29% of chronically stressed animals, whereas HFS caused afterdischarges in only 9% of nonstressed controls. No afterdischarges were seen in the medial perforant path input to DG. In order to explore the basis for these changes, we performed paired-pulse inhibition/facilitation (PPI/F) and current-source-density (CSD) analysis in stressed and control animals. For PPI/F, acute stress caused an overall significant enhancement of excitation in the commissural/associational input to CA3 and medial perforant path input to DG. In contrast, chronic stress did not produce significant changes in PPI/F. The CSD analysis revealed significant chronic stress-induced shifts in the current sources and sinks in the apical dendrites and pyramidal cell layers of the CA3 field but not in the DG. These results are consistent with the morphological findings for stress effects upon dendrites of CA3 neurons. Furthermore, they suggest that chronic stress produces changes in the input-output relationship in the hippocampal trisynaptic circuit which could affect information flow through this structure.
Collapse
|
742
|
Rosa MLNM, Guimarães FS, Pearson RCA, Del Bel EA. Effects of single or repeated restraint stress on GluR1 and GluR2 flip and flop mRNA expression in the hippocampal formation. Brain Res Bull 2002; 59:117-24. [PMID: 12379442 DOI: 10.1016/s0361-9230(02)00859-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mRNAs encoding the flip and flop isoforms of the glutamate receptor subunits GluR1 and 2 were detected and quantified by in situ hybridization in the hippocampal formation of rats following acute (6h) or chronic (6h daily for 21 days) restraint stress. The GluR1 flip mRNA was slightly reduced in CA1 after chronic stress and the GluR2 flip mRNA was increased in the dentate gyrus (DG), CA4, and CA3 after acute stress. There were no changes in the mRNA encoding the flop isoforms of either GluR1 or 2 in the hippocampus. In entorhinal cortex, the GluR1 flip mRNA was significantly increased after both acute and chronic stress, while the flop isoform increased only after chronic stress. The GluR2 flip mRNA was slightly increased after acute and chronic stress. However, no changes were found for the flop isoform of GluR2. These results suggest that different assembly of AMPA receptors subunits and isoforms may underlie, in a different way, the neuronal plastic changes induced by specific type and intensity of stressful stimuli.
Collapse
|
743
|
Reagan LP, McEwen BS. Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Neuroreport 2002; 13:1801-4. [PMID: 12395127 DOI: 10.1097/00001756-200210070-00022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays an important role in synaptic plasticity and learning and memory. Since deficits in long-term potentiation (LTP) and learning are observed in diabetic rats and following stress, we examined the expression of nNOS mRNA and protein in the hippocampus of streptozotocin (STZ) diabetic rats and rats subjected to restraint stress. Stress did not modulate nNOS expression, while nNOS mRNA and protein levels were significantly decreased in the hippocampus of STZ diabetic rats. These results suggest that: (1) decreased expression of nNOS mRNA and protein may contribute to deficits in hippocampal dependent learning and LTP in diabetic rats; and (2) other mechanisms may be involved in stress mediated decreases in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Lawrence P Reagan
- Haroldand Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
744
|
Bowman RE, Ferguson D, Luine VN. Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats. Neuroscience 2002; 113:401-10. [PMID: 12127097 DOI: 10.1016/s0306-4522(02)00156-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Twenty-one days of chronic restraint stress impairs male rat performance on the radial arm maze [Luine et al. (1994) Brain Res. 639, 167-170], but enhances female rat performance [Bowman et al. (2001) Brain Res. 904, 279-289]. To assess possible ovarian hormone mechanisms underlying this sexually dimorphic response to stress, we examined chronic stress effects in ovariectomized rats. Ovariectomized rats received Silastic capsule implants containing cholesterol or estradiol and were assigned to a daily restraint stress (21 days, 6 h/day) or non-stress group. Following the stress period, subjects were tested for open field activity and radial arm maze performance. Stress and estradiol treatment affected open field activity. All stressed animals, with or without estradiol treatment, made fewer total outer sector crossings. In contrast, estradiol-treated animals, with or without stress, made more inner sector visits, an indication that estradiol decreased anxious behavior on the open field across time. As measured by the total number of visits required to complete the task, stress did not affect radial arm maze performance in ovariectomized rats, but estradiol-treated animals, with or without stress, performed better than non-treated animals on the radial arm maze. Stressed subjects receiving estradiol showed the best radial arm maze performance. Following killing, tissue samples were obtained from various brain regions known to contribute to learning and memory, and monoamine and metabolite levels were measured. Several changes were observed in response to both stress and estradiol. Most noteworthy, stress treatment decreased homovanillic acid levels in the prefrontal cortex, an effect not previously observed in stressed intact females. Estradiol treatment increased norepinephrine levels in CA3 region of the hippocampus, mitigating stress-dependent changes. Both stress and estradiol decreased dentate gyrus levels of 5-hydroxyindole acetic acid. In summary, the current study provides novel information showing that estradiol alters behavioral and neurochemical responses to stress in ovariectomized rats. Estradiol treatment decreased anxious behavior on the open field and stressed animals receiving estradiol had enhanced radial arm maze performance. In relation to interactions between stress and estradiol on cognition and anxiety, changes in the prefrontal cortex dopaminergic system, dentate gyrus serotonergic system, and norepinephrine levels in the CA3 region appear important. Results show that estradiol may moderate stress effects on cognition and anxiety through both organizational and activation effects.
Collapse
Affiliation(s)
- R E Bowman
- Department of Psychology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
745
|
Abstract
The hippocampus and the amygdala are essential components of the neural circuitry mediating stress responses. The hippocampus, which provides negative feedback regulation of the stress response, is particularly vulnerable to degenerative changes caused by chronic stress. Unlike the hippocampus, relatively little is known about how stress affects the amygdala and the nature of its role in the stress response. Hence, we examined the effects of two different models of chronic stress on hippocampal and amygdaloid neuronal morphology in rats. In agreement with previous reports, chronic immobilization stress (CIS) induced dendritic atrophy and debranching in CA3 pyramidal neurons of the hippocampus. In striking contrast, pyramidal and stellate neurons in the basolateral complex of the amygdala exhibited enhanced dendritic arborization in response to the same CIS. Chronic unpredictable stress (CUS), however, had little effect on CA3 pyramidal neurons and induced atrophy only in BLA bipolar neurons. These results indicate that chronic stress can cause contrasting patterns of dendritic remodeling in neurons of the amygdala and hippocampus. Moreover, CIS, but not CUS, reduced open-arm activity in the elevated plus-maze. These findings raise the possibility that certain forms of chronic stress, by affecting specific neuronal elements in the amygdala, may lead to behavioral manifestations of enhanced emotionality. Thus, stress-induced structural plasticity in amygdala neurons may provide a candidate cellular substrate for affective disorders triggered by chronic stress.
Collapse
|
746
|
Abstract
Paraphilias or disorders of sexual behavior have markedly increased in prevalence during the last decade. Until now no published neuropathological studies on paraphilia have appeared in the medical literature. A computerized search was done on all available medical and autopsy records of a large urban hospital (St. Elizabeths Hospital, Washington, DC) for any mention of deviant sexual behavior. Cases were then reviewed for presence of a history consistent with DSM-IV diagnoses of paraphilia. Two such cases were identified. Neuropathological examination in both cases revealed simple cell atrophy of pyramidal cells confined to different hippocampal subfields. Reactive astrocytosis was present in the outer strata of the affected regions. The pathological changes in the hippocampus resemble those reported after persistent stress or long-term chronic glucocorticoid administration. The accompanying astrocytosis indicates a reactive, ongoing process. The findings suggest new therapeutic interventions in the treatment of paraphilia.
Collapse
Affiliation(s)
- Manuel F Casanova
- Medical College of Georgia, 3B-121, Downtown VA Medical Center (24), Augusta, GA 30910, USA.
| | | | | |
Collapse
|
747
|
Palomo T, Kostrzewa RM, Archer T, Beninger RJ. Neurodevelopmental liabilities in schizophrenia and affective disorders. Neurotox Res 2002; 4:397-408. [PMID: 12754154 DOI: 10.1080/1029842021000022061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is now considerable evidence that both schizophrenia and affective disorders have their origin at least in part in events that occur during early pre- and post-natal development. In the case of schizophrenia, many observations, for example, increased risk for schizophrenia in the offspring of mothers who had influenza A during their second trimester of pregnancy and evidence for abnormal neuronal migration in the cerebral cortex of post mortem tissue from schizophrenic patients, suggest that a second trimester insult may have occurred and that this insult may have increased the risk for the development of schizophrenia in late adolescence or early adulthood. Animal studies have found that rats that undergo exocitotoxic damage to the ventral hippocampus on postnatal day 7 develop exaggerated sensitivity to dopamine-stimulating drugs or to stressful stimuli that becomes apparent after sexual maturity but not before, providing a neurodevelopmental model of schizophrenia. Similarly, post-weaning social isolation leads to enhanced responses to dopaminergic drugs and to stress that emerges after sexual maturity. These animal models are proving to be valuable tools to study the neurobiological mechanisms mediating the influence of early insults to the nervous system on later behavioural functions. In the case of affective disorders, although the evidence is not as strong, a number of the same observations have been made suggesting that an insult during early ontogeny may lead to the development of affective disorders later in life. For example, retrospective studies of people with affective disorders showed that they were more likely to have attained motor milestones at a later age and to have had poorer academic performance as children. There is a wealth of evidence suggesting hyperfunctioning of the hypothalamic-pituitary-adrenal (HPA) axis in affective disorders. Animal studies have shown that early maternal deprivation can lead to lasting changes in the reactivity of the HPA axis to stressful stimuli, providing another link from early experience to adult psychopathology. Continued studies of the effects of pre- and early post-natal events on the development of the nervous system and the relationships of these events to schizophrenia or affective disorder will provide new insights into the mechanisms underlying these common neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Tomás Palomo
- Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
748
|
Van Praag HM. Crossroads of corticotropin releasing hormone, corticosteroids and monoamines. About a biological interface between stress and depression. Neurotox Res 2002; 4:531-555. [PMID: 12754165 DOI: 10.1080/1029842021000022115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mental disorders are frequently preceded by stressful events or situations. Depression is a typical case in point. This raises the question, is depression - or possibly better: are certain forms of depression - caused by stress? Can stress be a true pathogenic factor? Phrased differently: can stress destabilize neuronal systems in the central nervous system to such an extent that depressive symptoms are generated? This question is discussed with the corticotrophin releasing hormone (CRH) and MA systems and hypothalamic-pituitary-adrenal (HPA) axis as major foci. The following issues are explored: the effect of antidepressants on corticosteroid receptor gene expression; the behavioral sequellae of CRH administration; CRH disturbances in depression; the impact of early life adversity on the development of the CRH system and on stress reactivity; the interrelationships of stress hormones and monoaminergic (MA ergic) transmission and finally the therapeutic potential of CRH and cortisol antagonists. The available data suggest that CRH overdrive and cortisol overproduction may play a pathogenic role in the occurrence of certain types of depression, directly and/or indirectly, i.e. by induction or exacerbation of disturbances in MA ergic transmission. Stress should, thus, become a major focus of biological depression research.
Collapse
Affiliation(s)
- H. M. Van Praag
- Department of Psychiatry and Neuropsychology, Academic Hospital Maastricht, and the Brain and Behavior Research Institute, Maastricht University, P.O.Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
749
|
Rabois D, Batten SV, Keane TM. Implications of biological findings for psychological treatments of post-traumatic stress disorder. Psychiatr Clin North Am 2002; 25:443-62, viii. [PMID: 12136509 DOI: 10.1016/s0193-953x(01)00002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The goal of this article is to initiate dialogue among those conducting research on the biological aspects of post-traumatic stress disorder (PTSD) and clinicians and researchers concerned with developing effective psychological treatments for PTSD. Important biological findings in PTSD are reviewed, paying special attention to the clinical implications of these findings. A discussion of the psychological treatments effective for PTSD follows, focusing on how these empirically supported treatments may address some of the issues raised by the biological findings. Finally, suggestions are made for future directions for psychological treatment development for this disabling condition, examining how these innovative treatment approaches may be relevant to the reviewed biological findings.
Collapse
Affiliation(s)
- Dana Rabois
- National Center for PTSD, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA
| | | | | |
Collapse
|
750
|
Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:29-54. [PMID: 12086707 DOI: 10.1016/s0165-0173(02)00158-3] [Citation(s) in RCA: 618] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and abnormal loci of spine origin on the neuron. Pathologies of spine ultrastructure involve distortion of subcellular organelles within dendritic spines. Spine distributions are altered on mature neurons following traumatic lesions, and in progressive neurodegeneration involving substantial neuronal loss such as in Alzheimer's disease and in Creutzfeldt-Jakob disease. Similarly, spine distributions are altered in the developing brain following malnutrition, alcohol or toxin exposure, infection, and in a large number of genetic disorders that result in mental retardation, such as Down's and fragile-X syndromes. An important question is whether altered dendritic spines are the intrinsic cause of the accompanying neurological disturbances. The data suggest that many categories of spine pathology may result not from intrinsic pathologies of the spiny neurons, but from a compensatory response of these neurons to the loss of excitatory input to dendritic spines. More detailed studies are needed to determine the cause of spine pathology in most disorders and relationship between spine pathology and cognitive deficits.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, 5 Cummington Street, MA 02215, USA.
| | | | | |
Collapse
|