7851
|
He W, Luo Y, Liu JP, Sun N, Guo D, Cui LL, Zheng PP, Yao SM, Yang JF, Wang H. Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite, is Associated with Frailty in Older Adults with Cardiovascular Disease. Clin Interv Aging 2020; 15:1809-1820. [PMID: 33061331 PMCID: PMC7534046 DOI: 10.2147/cia.s270887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Our study aimed to explore the association between trimethylamine N-oxide and frailty in older adults with cardiovascular disease. Patients and Methods This cross-sectional study analyzed a total of 451 people aged 65 years or older who underwent comprehensive geriatric assessments. Frailty status was determined using a frailty index constructed with 48 variables according to the cumulative deficits model. Physical frailty and cognitive frailty were also assessed in detail. Fasting plasma TMAO was measured by mass spectrometry. Results The proportion of frail subjects was 29.9% (135/451). Plasma TMAO levels were significantly higher in frail patients than in nonfrail individuals (4.04 [2.84–7.01] vs 3.21 [2.13–5.03] µM; p<0.001). Elevated plasma TMAO levels were independently associated with the likelihood of frailty (OR 2.12, 95% CI 1.01–4.38, p=0.046). Dose–response analysis revealed a linear association between the TMAO concentration and the OR for frailty. A 2-unit increase in TMAO was independently correlated with physical frailty (OR 1.23, 95% CI 1.08–1.41, p for trend 0.002) and cognitive frailty (OR 1.21, 95% CI 1.01–1.45, p for trend 0.04). Conclusion Elevated circulating TMAO levels are independently associated with frailty among older adults with cardiovascular disease.
Collapse
Affiliation(s)
- Wei He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yao Luo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jun-Peng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Ning Sun
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Di Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Ling-Ling Cui
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Pei-Pei Zheng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Si-Min Yao
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
7852
|
Neurite Outgrowth-Promoting Activity of Compounds in PC12 Cells from Sunflower Seeds. Molecules 2020; 25:molecules25204748. [PMID: 33081156 PMCID: PMC7587564 DOI: 10.3390/molecules25204748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer’s disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of β-sitosterol, stigmasterol and campesterol, with β-sitosterol being the main component. Neurite outgrowth-promoting activities of β-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. β-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (β-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that β-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by β-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. β-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.
Collapse
|
7853
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
7854
|
Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020; 8:E421. [PMID: 33076333 PMCID: PMC7602623 DOI: 10.3390/biomedicines8100421] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is a highly complex process which is associated with a variety of molecular mechanisms related to ageing. Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common, affecting more than 45 million individuals. The underlying mechanisms involve amyloid plaques and neurofibrillary tangles (NFTs) deposition, which will subsequently lead to oxidative stress, chronic neuroinflammation, neuron dysfunction, and neurodegeneration. The current diagnosis methods are still limited in regard to the possibility of the accurate and early detection of the diseases. Therefore, research has shifted towards the identification of novel biomarkers and matrices as biomarker sources, beyond amyloid-β and tau protein levels within the cerebrospinal fluid (CSF), that could improve AD diagnosis. In this context, the aim of this paper is to provide an overview of both conventional and novel biomarkers for AD found within body fluids, including CSF, blood, saliva, urine, tears, and olfactory fluids.
Collapse
Affiliation(s)
- Adrian Florian Bălașa
- Târgu Mures, Emergency Clinical Hospital, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mures, RO-540142 Târgu Mures, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| |
Collapse
|
7855
|
Yaffe K, Barnes DE, Rosenberg D, Dublin S, Kaup AR, Ludman EJ, Vittinghoff E, Peltz CB, Renz AD, Adams KJ, Larson EB. Systematic Multi-Domain Alzheimer's Risk Reduction Trial (SMARRT): Study Protocol. J Alzheimers Dis 2020; 70:S207-S220. [PMID: 30475764 PMCID: PMC6639147 DOI: 10.3233/jad-180634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article describes the protocol for the Systematic Multi-domain Alzheimer's Risk Reduction Trial (SMARRT), a single-blind randomized pilot trial to test a personalized, pragmatic, multi-domain Alzheimer's disease (AD) risk reduction intervention in a US integrated healthcare delivery system. Study participants will be 200 higher-risk older adults (age 70-89 years with subjective cognitive complaints, low normal performance on cognitive screen, and ≥ two modifiable risk factors targeted by our intervention) who will be recruited from selected primary care clinics of Kaiser Permanente Washington, oversampling people with non-white race or Hispanic ethnicity. Study participants will be randomly assigned to a two-year Alzheimer's risk reduction intervention (SMARRT) or a Health Education (HE) control. Randomization will be stratified by clinic, race/ethnicity (non-Hispanic white versus non-white or Hispanic), and age (70-79, 80-89). Participants randomized to the SMARRT group will work with a behavioral coach and nurse to develop a personalized plan related to their risk factors (poorly controlled hypertension, diabetes with evidence of hyper or hypoglycemia, depressive symptoms, poor sleep quality, contraindicated medications, physical inactivity, low cognitive stimulation, social isolation, poor diet, smoking). Participants in the HE control group will be mailed general health education information about these risk factors for AD. The primary outcome is two-year cognitive change on a cognitive test composite score. Secondary outcomes include: 1) improvement in targeted risk factors, 2) individual cognitive domain composite scores, 3) physical performance, 4) functional ability, 5) quality of life, and 6) incidence of mild cognitive impairment, AD, and dementia. Primary and secondary outcomes will be assessed in both groups at baseline and 6, 12, 18, and 24 months.
Collapse
Affiliation(s)
- Kristine Yaffe
- University of California, San Francisco, San Francisco, CA, USA.,San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Deborah E Barnes
- University of California, San Francisco, San Francisco, CA, USA.,San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Dori Rosenberg
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Sascha Dublin
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Allison R Kaup
- University of California, San Francisco, San Francisco, CA, USA.,San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Evette J Ludman
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Carrie B Peltz
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Anne D Renz
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Kristin J Adams
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| |
Collapse
|
7856
|
The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020; 163:105248. [PMID: 33065283 DOI: 10.1016/j.phrs.2020.105248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.
Collapse
|
7857
|
Wang N, Zhou Y, Zhao L, Wang C, Ma W, Ge G, Wang Y, Ullah I, Muhammad F, Alwayli D, Zhi D, Li H. Ferulic acid delayed amyloid β-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans. Food Chem Toxicol 2020; 146:111808. [PMID: 33045309 DOI: 10.1016/j.fct.2020.111808] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
The amyloid β (Aβ) generation or aggregation plays a crucial role in Alzheimer's disease (AD). Autophagy agonists, which function as the clearance of Aβ, could be the potential drug candidates against AD. In staple food crops, ferulic acid (FA) is an enormously copious and almost ubiquitous phenolic antioxidant. In the present study, FA significantly inhibited Aβ-induced pathological symptoms of paralysis and hypersensitivity to exogenous serotonin, meanwhile restrained Aβ monomers, oligomers, and deposits in AD C. elegans. FA increased the expression of autophagy reporter LGG-1 and enhanced autophagy flux. However, the autophagy inhibitors abolished the restrictive action of FA on the worm paralysis phenotype. According to these results, FA triggered autophagy and ameliorated Aβ-induced pathological symptoms by the autophagy pathway. Moreover, FA activated the HLH-30 transcription factor to nuclear localization, which acts upstream of autophagy in fasted animals, reduced the level of lipids, but affected nor the growth of E. coli OP50, neither animal food intake behavior. These suggest that FA induced a fasting-like effect to activate the autophagy pathway. Additionally, FA ameliorated poly Q aggregations in Huntington's disease worm. Thus, FA could not only affect AD, broadly but also neurodegenerative diseases characterized by misfolded or aggregated proteins.
Collapse
Affiliation(s)
- Ningbo Wang
- School of Life Sciences, Lanzhou University, China.
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China.
| | - Caiding Wang
- School of Life Sciences, Lanzhou University, China.
| | - Wuli Ma
- School of Life Sciences, Lanzhou University, China.
| | - Guangfei Ge
- School of Life Sciences, Lanzhou University, China.
| | - Yu Wang
- School of Pharmacy, Lanzhou University, China.
| | - Inam Ullah
- School of Life Sciences, Lanzhou University, China.
| | | | | | - Dejuan Zhi
- School of Pharmacy, Lanzhou University, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China; School of Pharmacy, Lanzhou University, China.
| |
Collapse
|
7858
|
Effect of Caffeine Consumption on the Risk for Neurological and Psychiatric Disorders: Sex Differences in Human. Nutrients 2020; 12:nu12103080. [PMID: 33050315 PMCID: PMC7601837 DOI: 10.3390/nu12103080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Caffeine occurs naturally in various foods, such as coffee, tea, and cocoa, and it has been used safely as a mild stimulant for a long time. However, excessive caffeine consumption (1~1.5 g/day) can cause caffeine poisoning (caffeinism), which includes symptoms such as anxiety, agitation, insomnia, and gastrointestinal disorders. Recently, there has been increasing interest in the effect of caffeine consumption as a protective factor or risk factor for neurological and psychiatric disorders. Currently, the importance of personalized medicine is being emphasized, and research on sex/gender differences needs to be conducted. Our review focuses on the effect of caffeine consumption on several neurological and psychiatric disorders with respect to sex differences to provide a better understanding of caffeine use as a risk or protective factor for those disorders. The findings may help establish new strategies for developing sex-specific caffeine therapies.
Collapse
|
7859
|
Thomas A, Baillet M, Proust-Lima C, Féart C, Foubert-Samier A, Helmer C, Catheline G, Samieri C. Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk. Alzheimers Dement 2020; 17:407-416. [PMID: 33090665 DOI: 10.1002/alz.12195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We searched for consistent associations of an omega-3 index in plasma (sum of eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) with several dementia-related outcomes in a large cohort of older adults. METHODS We included 1279 participants from the Three-City study, non-demented at the time of blood measurements at baseline, with face-to-face neuropsychological assessment and systematic detection of incident dementia over a 17-year follow-up. An ancillary study included 467 participants with up to three repeated brain imaging exams over 10 years. RESULTS In multivariable models, higher levels of plasma EPA+DHA were consistently associated with a lower risk of dementia (hazard ratio for 1 standard deviation = 0.87 [95% confidence interval, 0.76-0.98]), and a lower decline in global cognition (P = .04 for change over time), memory (P = .06), and medial temporal lobe volume (P = .02). DISCUSSION This prospective study provides compelling evidence for a relationship between long-chain omega-3 fatty acids levels and lower risks for dementia and related outcomes.
Collapse
Affiliation(s)
- Aline Thomas
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | - Marion Baillet
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | | | - Catherine Féart
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | - Alexandra Foubert-Samier
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
- Institut des Maladies Neurodégénératives, Bordeaux Univ. Hospital, Bordeaux, F-33000, France
| | | | - Gwénaëlle Catheline
- CNRS, INCIA, UMR5287, Univ. Bordeaux, Bordeaux, F-33000, France
- Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL, Bordeaux, F-33000, France
| | - Cécilia Samieri
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| |
Collapse
|
7860
|
Estevez-Fraga C, Scahill R, Rees G, Tabrizi SJ, Gregory S. Diffusion imaging in Huntington's disease: comprehensive review. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-324377. [PMID: 33033167 PMCID: PMC7803908 DOI: 10.1136/jnnp-2020-324377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a monogenic disorder with 100% penetrance. With the advent of genetic testing in adults, disease-related, structural brain changes can be investigated from the earliest, premorbid stages of HD. While examining macrostructural change characterises global neuronal damage, investigating microstructural alterations provides information regarding brain organisation and its underlying biological properties. Diffusion MRI can be used to track the progression of microstructural anomalies in HD decades prior to clinical disease onset, providing a greater understanding of neurodegeneration. Multiple approaches, including voxelwise, region of interest and tractography, have been used in HD cohorts, showing a centrifugal pattern of white matter (WM) degeneration starting from deep brain areas, which is consistent with neuropathological studies. The corpus callosum, longer WM tracts and areas that are more densely connected, in particular the sensorimotor network, also tend to be affected early during premanifest stages. Recent evidence supports the routine inclusion of diffusion analyses within clinical trials principally as an additional measure to improve understanding of treatment effects, while the advent of novel techniques such as multitissue compartment models and connectomics can help characterise the underpinnings of progressive functional decline in HD.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
7861
|
Chan J, Leung DKY, Walton H, Wong GHY, Spector A. Can mindfulness-based interventions benefit people with dementia? Drawing on the evidence from a systematic review in populations with cognitive impairments. Expert Rev Neurother 2020; 20:1143-1156. [PMID: 32842799 DOI: 10.1080/14737175.2020.1810571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Non-pharmacological interventions that promote quality of life in people with dementia are urgently needed. To accelerate development, evidence-based psychotherapies used in other populations can be considered. Mindfulness-based interventions with standardized protocols, namely mindfulness-based cognitive therapy (MBCT) and mindfulness-based stress reduction (MBSR), may be effective in people with dementia, although tailoring for cognitive impairment may be needed. Evidence from other cognitive disorders can inform research. AREAS COVERED The authors reviewed 12 studies of MBCT/MBSR conducted in people with cognitive impairments, including 10 in stroke, traumatic brain injury, and mild cognitive impairment; and two in dementia. Protocol modifications, outcomes, and evidence quality were analyzed. Common themes to address cognitive difficulties included: shortened session duration, use of memory aids, increase in repetition, simplified language, and omitted retreat sessions. EXPERT OPINION MBCT and MBSR can be applied without drastic modifications in people with cognitive impairment. Their effectiveness in people with dementia remains unknown: empirical studies using/adapting evidence-based MBCT/MBSR protocols in this population is seriously lacking. Studies used a diverse range of outcome measures, which made direct comparison difficult. Further research with high methodological quality, sufficient power, and longer follow-up is urgently needed. Development of manuals would enhance the replicability of future studies.
Collapse
Affiliation(s)
- Joanne Chan
- Department of Clinical, Educational and Health Psychology, University College London , London, UK
| | - Dara K Y Leung
- Department of Social Work and Social Administration, The University of Hong Kong , Hong Kong, Hong Kong SAR
| | - Holly Walton
- Department of Clinical, Educational and Health Psychology, University College London , London, UK
| | - Gloria H Y Wong
- Department of Social Work and Social Administration, The University of Hong Kong , Hong Kong, Hong Kong SAR
| | - Aimee Spector
- Department of Clinical, Educational and Health Psychology, University College London , London, UK
| |
Collapse
|
7862
|
Xiang Y, Xin J, Le W, Yang Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front Aging Neurosci 2020; 12:584743. [PMID: 33132903 PMCID: PMC7573493 DOI: 10.3389/fnagi.2020.584743] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) is a small protein usually expressed in granule-like structures in pyramidal cells of the hippocampus and cortex. However, its clinical value is not fully clear so far. Currently, Ng is proved to be involved in synaptic plasticity, synaptic regeneration, and long-term potentiation mediated by the calcium- and calmodulin-signaling pathways. Due to both the synaptic integrity and function as the growing concerns in the pathogenesis of a wide variety of neurological and mental diseases, a series of researches published focused on the associations between Ng and these kinds of diseases in the past decade. Therefore, in this review, we highlight several diseases, which include, but are not limited to, Alzheimer’s disease, Parkinson disease, Creutzfeldt–Jakob disease, neuro-HIV, neurosyphilis, schizophrenia, depression, traumatic brain injury, and acute ischemic stroke, and summarize the associations between cerebrospinal fluid or blood-derived Ng with these diseases. We propose that Ng is a potential and promising biomarker to improve the diagnosis, prognosis, and severity evaluation of these diseases in the future.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayan Xin
- North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Weidong Le
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjian Yang
- Department of Cardiovasology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
7863
|
Zhu F, Li C, Chu F, Tian X, Zhu J. Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:544235. [PMID: 33132894 PMCID: PMC7572848 DOI: 10.3389/fnagi.2020.544235] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is commonly an age-associated dementia with neurodegeneration. The pathogenesis of AD is complex and still remains unclear. The inflammation, amyloid β (Aβ), and neurofibrillary tangles as well misfolded tau protein in the brain may contribute to the occurrence and development of AD. Compared with tau protein, Aβ is less toxic. So far, all efforts made in the treatments of AD with targeting these pathogenic factors were unsuccessful over the past decades. Recently, many studies demonstrated that changes of the intestinal environment and gut microbiota via gut–brain axis pathway can cause neurological disorders, such as AD, which may be involved in the pathogenesis of AD. Thus, remodeling the gut microbiota by various ways to maintain their balance might be a novel therapeutic strategy for AD. In the review article, we analyzed the characteristics of gut microbiota and its dysbiosis in AD and its animal models and investigated the possibility of targeting the gut microbiota in the treatment of the patients with AD in the future.
Collapse
Affiliation(s)
- Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
7864
|
Khalid A, Abbasi UA, Amber S, Sumera, Mirza FJ, Asif M, Javed A, Zahid S. Methylphenidate and Rosmarinus officinalis improves cognition and regulates inflammation and synaptic gene expression in AlCl 3-induced neurotoxicity mouse model. Mol Biol Rep 2020; 47:7861-7870. [PMID: 33011892 DOI: 10.1007/s11033-020-05864-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
Methylphenidate (MPH), a psychotropic medication is commonly used for children with attention deficit hyperactivity disorder (ADHD). In this study we elucidated the neuroprotective and anti-inflammatory effects of MPH and Rosmarinus officinalis (rosemary) extract, an ancient aromatic herb with several applications in traditional medicine. Briefly, six groups of mice (n = 8 each group), were specified for the study and behavioral analysis was performed to analyze spatial memory followed by histological assessment and gene expression analysis of synaptic (Syn I, II and III) and inflammatory markers (IL-6, TNFα and GFAP) via qRT-PCR, in an AlCl3-induced mouse model for neurotoxicity. The behavioral analysis demonstrated significant cognitive decline, memory defects and altered gene expression in AlCl3-treated group. Rosemary extract significantly decreased the expression of inflammatory and synaptic markers to the similar levels as that of MPH. The present findings suggested the neuroprotective potential of Rosmarinus officinalis extract. However, further characterization of its anti-inflammatory and neuroprotective properties and MPH is required to strategize future treatments for several neurological and neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Anibah Khalid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Umme Aimen Abbasi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sanila Amber
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sumera
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fatima Javed Mirza
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Asif
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
7865
|
Cognitive Impairment in the 3xTg-AD Mouse Model of Alzheimer's Disease is Affected by Aβ-ImmunoTherapy and Cognitive Stimulation. Pharmaceutics 2020; 12:pharmaceutics12100944. [PMID: 33023109 PMCID: PMC7601886 DOI: 10.3390/pharmaceutics12100944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical symptoms of Alzheimer’s Disease (AD) include behavioral alterations and cognitive impairment. These functional phenotypes early occur in triple-transgenic (3xTg-AD) mice. Specifically, behavioral alterations are first detected when mice are at around 2.5 months old and cognitive impairment in between 3- and 5-month-old mice. In this work, the effect of chronic Aβ-immunotherapy on behavioral and cognitive abilities was tested by monthly administering the antibody fragment scFv-h3D6 to 3xTg-AD female mice from 5 to 9 months of age. An untreated group was used as a reference, as well as to attain some information on the effect of training during the longitudinal study. Behavioral and psychological symptoms of dementia (BPSD)-like symptoms were already evident in 5-month-old mice, in the form of neophobia and anxious-like behavior. The exploratory activity decreased over the longitudinal study, not only for 3xTgAD mice but also for the corresponding non-transgenic mice (NTg). Learning abilities of 3xTg-AD mice were not seriously compromised but an impairment in long-term spatial memory was evident at 5 months of age. Interestingly, scFv-h3D6-treatment affected the cognitive impairment displayed by 5-month-old 3xTg-AD mice. It is worth noting that training also reduced cognitive impairment of 3xTg-AD mice over the longitudinal study, suggesting that to properly quantify the isolated therapeutic potential of any drug on cognition using this model it is convenient to perform a prompt, age-matched study rather than a longitudinal study. In addition, a combination of both training and Aβ-immunotherapy could constitute a possible approach to treat Alzheimer’s disease.
Collapse
|
7866
|
Sun Y, Sommerville NR, Liu JYH, Ngan MP, Poon D, Ponomarev ED, Lu Z, Kung JSC, Rudd JA. Intra-gastrointestinal amyloid-β1-42 oligomers perturb enteric function and induce Alzheimer's disease pathology. J Physiol 2020; 598:4209-4223. [PMID: 32617993 PMCID: PMC7586845 DOI: 10.1113/jp279919] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Alzheimer's disease (AD) patients and transgenic mice have beta-amyloid (Aβ) aggregation in the gastrointestinal (GI) tract. It is possible that Aβ from the periphery contributes to the load of Aβ in the brain, as Aβ has prion-like properties. The present investigations demonstrate that Aβ injected into the GI tract of ICR mice is internalised into enteric cholinergic neurons; at 1 month, administration of Aβ into the body of the stomach and the proximal colon was observed to partly redistribute to the fundus and jejunum; at 1 year, vagal and cerebral β-amyloidosis was present, and mice exhibited GI dysfunction and cognitive deficits. These data reveal a previously undiscovered mechanism that potentially contributes to the development of AD. ABSTRACT Alzheimer's disease (AD) is the most common age-related cause of dementia, characterised by extracellular beta-amyloid (Aβ) plaques and intracellular phosphorylated tau tangles in the brain. Aβ deposits have also been observed in the gastrointestinal (GI) tract of AD patients and transgenic mice, with overexpression of amyloid precursor protein. In the present studies, we investigate whether intra-GI administration of Aβ can potentially induce amyloidosis in the central nervous system (CNS) and AD-related pathology such as dementia. We micro-injected Aβ1-42 oligomers (4 μg per site, five sites) or vehicle (saline, 5 μl) into the gastric wall of ICR mice under general anaesthesia. Immunofluorescence staining and in vivo imaging showed that HiLyte Fluor 555-labelled Aβ1-42 had migrated within 3 h via the submucosa to nearby areas and was internalised into cholinergic neurons. At 1 month, HiLyte Fluor 555-labelled Aβ1-42 in the body of the stomach and proximal colon had partly re-distributed to the fundus and jejunum. At 1 year, the jejunum showed functional alterations in neuromuscular coupling (P < 0.001), and Aβ deposits were present in the vagus and brain, with animals exhibiting cognitive impairments in the Y-maze spontaneous alteration test (P < 0.001) and the novel object recognition test (P < 0.001). We found that enteric Aβ oligomers induce an alteration in gastric function, amyloidosis in the CNS, and AD-like dementia via vagal mechanisms. Our results suggest that Aβ load is likely to occur initially in the GI tract and may translocate to the brain, opening the possibility of new strategies for the early diagnosis and prevention of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John A. Rudd
- School of Biomedical Sciences
- Faculty of Medicine the Laboratory Animal Services CentreThe Chinese University of Hong KongNew TerritoriesHong Kong
| |
Collapse
|
7867
|
Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochem Pharmacol 2020; 180:114187. [PMID: 32755557 PMCID: PMC7606641 DOI: 10.1016/j.bcp.2020.114187] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Among the more promising treatments proposed for Alzheimer's disease (AD) and Parkinson's disease (PD) are those reducing brain insulin resistance. The antidiabetics in the class of incretin receptor agonists (IRAs) reduce symptoms and brain pathology in animal models of AD and PD, as well as glucose utilization in AD cases and clinical symptoms in PD cases after their systemic administration. At least 9 different IRAs are showing promise as AD and PD therapeutics, but we still lack quantitative data on their relative ability to cross the blood-brain barrier (BBB) reaching the brain parenchyma. We consequently compared brain uptake pharmacokinetics of intravenous 125I-labeled IRAs in adult CD-1 mice over the course of 60 min. We tested single IRAs (exendin-4, liraglutide, lixisenatide, and semaglutide), which bind receptors for one incretin (glucagon-like peptide-1 [GLP-1]), and dual IRAs, which bind receptors for two incretins (GLP-1 and glucose-dependent insulinotropic polypeptide [GIP]), including unbranched, acylated, PEGylated, or C-terminally modified forms (Finan/Ma Peptides 17, 18, and 20 and Hölscher peptides DA3-CH and DA-JC4). The non-acylated and non-PEGylated IRAs (exendin-4, lixisenatide, Peptide 17, DA3-CH and DA-JC4) had significant rates of blood-to-brain influx (Ki), but the acylated IRAs (liraglutide, semaglutide, and Peptide 18) did not measurably cross the BBB. The brain influx of the non-acylated, non-PEGylated IRAs were not saturable up to 1 μg of these drugs and was most likely mediated by adsorptive transcytosis across brain endothelial cells, as observed for exendin-4. Of the non-acylated, non-PEGylated IRAs tested, exendin-4 and DA-JC4 were best able to cross the BBB based on their rate of brain influx, percentage reaching the brain that accumulated in brain parenchyma, and percentage of the systemic dose taken up per gram of brain tissue. Exendin-4 and DA-JC4 thus merit special attention as IRAs well-suited to enter the central nervous system (CNS), thus reaching areas pathologic in AD and PD.
Collapse
Affiliation(s)
- Therese S Salameh
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Konrad Talbot
- Loma Linda University School of Medicine, Departments of Neurosurgery, Basic Sciences, and Pathology and Human Anatomy, Loma Linda, CA 92354, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA.
| |
Collapse
|
7868
|
Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 2020; 83:102083. [PMID: 32873420 DOI: 10.1016/j.npep.2020.102083] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Spermidine is a naturally occurring endogenous polyamine synthesized from diamine putrescine. It is a well-known autophagy inducer that maintains cellular and neuronal homeostasis. Healthy brain development and function are dependent on brain polyamine concentration. Polyamines interact with the opioid system, glutamatergic signaling and neuroinflammation in the neuronal and glial compartments. Among the polyamines, spermidine is found highest in the human brain. Age-linked fluctuations in the spermidine levels may possibly contribute to the impairments in neural network and neurogenesis. Exogenously administered spermidine helps in the treatment of brain diseases. Further, current studies highlight the ability of spermidine to promote longevity by inducing autophagy. Still, the causal neuroprotective mechanism of spermidine in neuronal dysfunction remains unidentified. This review aims to summarize various neuroprotective effects of spermidine related to anti-aging/ anti-inflammatory properties and the prevention of neurotoxicity that helps in achieving beneficial effects in age-related neurological disorder. We also expose the signaling cascades modulated by spermidine which might result in therapeutic action. The present review highlights clinical studies along with in-vivo and in-vitro preclinical studies to provide a new dimension for the therapeutic potential of spermidine in neurological disorders.
Collapse
Affiliation(s)
- Indrani Ghosh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Queensland, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
7869
|
Associations between CLU polymorphisms and memory performance: The role of serum lipids in Alzheimer's disease. J Psychiatr Res 2020; 129:281-288. [PMID: 32882505 DOI: 10.1016/j.jpsychires.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
CLU encoding clusterin, has been reported to associate with Alzherimer's disease (AD) by genome-wide association studies (GWAS) based on Caucasian populations. Our previous case-control study has independently confirmed the disease association of CLU in Chinese population. Since little is known about the underlying mechanism of CLU in AD, we have conducted this study to investigate whether the genetic impact of CLU polymorphisms on cognitive functioning is via serum lipid's dysfunction. Three GWAS previously published CLU polymorphisms including rs2279590, rs11136000 and rs9331888, were genotyped in 689 subjects. Serum levels of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and tested as mediators. Delayed Word Recall Test (DWRT) was used to evaluate subjects' memory performance. Multiple mediation analysis, a nonparametric procedure to create confidence interval, was performed according to Preacher and Hayes's Bootstrapping method. Our findings suggested significant correlation between CLU polymorphism and DWRT scores for rs11136000 (p = 0.045) after adjustment for age, gender, body mass index, and APOEε4 status, with borderline significant correlation for rs2279590 (p = 0.058). Both T allele of rs11136000 and A allele of rs2279590 were negatively correlated with serum TG levels (p = 0.003; p = 0.001, separately). Moreover, A allele of rs2279590 was positively correlated with serum HDL-C levels (p = 0.015). Consistent with our hypotheses, the genetic impact of CLU polymorphisms on memory performance were partially mediated through TG (rs11136000 95% CI [-0.099,-0.003] and rs2279590 95% CI [-0.104, -0.004]), but not through HDL-C and LDL-C. Our findings indicate CLU polymorphisms may modify AD susceptibility through lipid metabolic pathway.
Collapse
|
7870
|
El-Hayek YH, Wiley RE, Khoury CP, Daya RP, Ballard C, Evans AR, Karran M, Molinuevo JL, Norton M, Atri A. Tip of the Iceberg: Assessing the Global Socioeconomic Costs of Alzheimer's Disease and Related Dementias and Strategic Implications for Stakeholders. J Alzheimers Dis 2020; 70:323-341. [PMID: 31256142 PMCID: PMC6700654 DOI: 10.3233/jad-190426] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While it is generally understood that Alzheimer’s disease (AD) and related dementias (ADRD) is one of the costliest diseases to society, there is widespread concern that researchers and policymakers are not comprehensively capturing and describing the full scope and magnitude of the socioeconomic burden of ADRD. This review aimed to 1) catalogue the different types of AD-related socioeconomic costs described in the literature; 2) assess the challenges and gaps of existing approaches to measuring these costs; and 3) analyze and discuss the implications for stakeholders including policymakers, healthcare systems, associations, advocacy groups, clinicians, and researchers looking to improve the ability to generate reliable data that can guide evidence-based decision making. A centrally emergent theme from this review is that it is challenging to gauge the true value of policies, programs, or interventions in the ADRD arena given the long-term, progressive nature of the disease, its insidious socioeconomic impact beyond the patient and the formal healthcare system, and the complexities and current deficiencies (in measures and real-world data) in accurately calculating the full costs to society. There is therefore an urgent need for all stakeholders to establish a common understanding of the challenges in evaluating the full cost of ADRD and define approaches that allow us to measure these costs more accurately, with a view to prioritizing evidence-based solutions to mitigate this looming public health crisis.
Collapse
Affiliation(s)
| | - Ryan E Wiley
- Shift Health, Toronto, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Barcelona, Spain.,Paqual Maragall Foundation, Barcelona, Spain
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ, USA.,Department of Neurology, Center for Brain/Mind Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7871
|
Malden DE, Mangoni AA, Woodman RJ, Thies F, McNeil C, Murray AD, Soiza RL. Circulating asymmetric dimethylarginine and cognitive decline: A 4-year follow-up study of the 1936 Aberdeen Birth Cohort. Int J Geriatr Psychiatry 2020; 35:1181-1188. [PMID: 32452069 DOI: 10.1002/gps.5355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The underlying mechanisms leading to dementia and Alzheimer's disease (AD) are unclear. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, may be associated with cognitive decline, but population-based evidence is lacking. METHODS Change in cognitive performance was assessed in participants of the Aberdeen Birth Cohort of 1936 using longitudinal Raven's progressive matrices (RPM) between 2000 and 2004. Multiple linear regression was used to estimate the association between ADMA concentrations in 2000 and change in cognitive performance after adjustment for potential confounders. RESULTS A total of 93 participants had complete information on cognitive performance between 2000 and 2004. Mean plasma ADMA concentrations were approximately 0.4 μmol/L lower in those participants with stable or improved RPM scores over follow-up compared with participants whose cognitive performance worsened. In confounder-adjusted analysis, one SD (0.06 μmol/L) increase in ADMA at 63 years of age was associated with an average reduction in RPM of 1.26 points (95% CI 0.14-2.26) after 4 years. CONCLUSION Raised plasma ADMA concentrations predicted worsening cognitive performance after approximately 4 years in this cohort of adults in late-middle age. These findings have implications for future research, including presymptomatic diagnosis or novel therapeutic targets for dementia and AD.
Collapse
Affiliation(s)
- Deborah E Malden
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia.,Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Frank Thies
- Rowett institute, University of Aberdeen, Aberdeen, UK
| | - Chris McNeil
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Roy L Soiza
- Ageing Clinical & Experimental Research (ACER), University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7872
|
Tufail AB, Ma YK, Zhang QN. Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning. J Digit Imaging 2020; 33:1073-1090. [PMID: 32728983 PMCID: PMC7573078 DOI: 10.1007/s10278-019-00265-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible devastative neurodegenerative disorder associated with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for the development of possible future treatment option(s). Structural magnetic resonance images (sMRI) play an important role to help in understanding the anatomical changes related to AD especially in its early stages. Conventional methods require the expertise of domain experts and extract hand-picked features such as gray matter substructures and train a classifier to distinguish AD subjects from healthy subjects. Different from these methods, this paper proposes to construct multiple deep 2D convolutional neural networks (2D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. The whole brain image was passed through two transfer learning architectures; Inception version 3 and Xception, as well as a custom Convolutional Neural Network (CNN) built with the help of separable convolutional layers which can automatically learn the generic features from imaging data for classification. Our study is conducted using cross-sectional T1-weighted structural MRI brain images from Open Access Series of Imaging Studies (OASIS) database to maintain the size and contrast over different MRI scans. Experimental results show that the transfer learning approaches exceed the performance of non-transfer learning-based approaches demonstrating the effectiveness of these approaches for the binary AD classification task.
Collapse
Affiliation(s)
- Ahsan Bin Tufail
- Harbin Institute of Technology, Harbin, China
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Yong-Kui Ma
- Harbin Institute of Technology, Harbin, China.
| | | |
Collapse
|
7873
|
Higginbotham L, Ping L, Dammer EB, Duong DM, Zhou M, Gearing M, Hurst C, Glass JD, Factor SA, Johnson ECB, Hajjar I, Lah JJ, Levey AI, Seyfried NT. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaaz9360. [PMID: 33087358 PMCID: PMC7577712 DOI: 10.1126/sciadv.aaz9360] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/03/2020] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid (CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identified ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome resolved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelination and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for AD clinical applications.
Collapse
Affiliation(s)
- Lenora Higginbotham
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Lingyan Ping
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Maotian Zhou
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheyenne Hurst
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7874
|
Sun BL, Li WW, Wang J, Xu YL, Sun HL, Tian DY, Wang YJ, Yao XQ. Gut Microbiota Alteration and Its Time Course in a Tauopathy Mouse Model. J Alzheimers Dis 2020; 70:399-412. [PMID: 31177213 DOI: 10.3233/jad-181220] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that gut microbiota dysbiosis plays a role in neurodegenerative disorders. However, whether the composition and diversity of the gut microbiota are altered in tauopathies remains largely unknown. This study was aimed to examine the diversity and composition of the gut microbiota in tauopathies, as well as the correlation with pathological changes in the brain. We collected fecal samples from 32 P301L tau transgenic mice and 32 age- and gender-matched littermate mice at different ages. The 16S ribosomal RNA sequencing technique was used to analyze the microbiota composition in feces. Brain tau pathology levels were measured by immunohistochemistry. The diversity and composition of the gut microbiota significantly changed with aging. At the phylum level, the relative abundance of Bacteroidetes was increased, while Firmicutes were decreased in P301L mice compared with that in Wt mice after 3 months of age. In addition, Actinobacteria was decreased in P301L mice at 3 and 6 months of age, meanwhile Tenericutes was decreased in P301L mice at 10 months of age. Moreover, several specific macrobiota were highly associated with the levels of AT8-tau or pT231-tau protein in the brain. Our findings suggest that gut microbiota changed with aging, as well as in the tauopathy mice model. Modulation of the gut microbiota may be a potential strategy for treatment of tauopathy.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Li Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao-Lun Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ding-Yuan Tian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Beijing, China
| | - Xiu-Qing Yao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
7875
|
Myakotnykh VS, Sidenkova AP, Ostapchuk ES, Kulakova IA, Belikh NA, Borovkova TA. Cognitive Aging and Cognitive Reserve: Points of Contact. ADVANCES IN GERONTOLOGY 2020; 10:356-362. [DOI: 10.1134/s2079057020040165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 10/20/2024]
|
7876
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
7877
|
Gullett JM, O'Shea A, Lamb DG, Porges EC, O'Shea DM, Pasternak O, Cohen RA, Woods AJ. The association of white matter free water with cognition in older adults. Neuroimage 2020; 219:117040. [PMID: 32534124 PMCID: PMC7429363 DOI: 10.1016/j.neuroimage.2020.117040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Extracellular free water within cerebral white matter tissue has been shown to increase with age and pathology, yet the cognitive consequences of free water in typical aging prior to the development of neurodegenerative disease remains unclear. Understanding the contribution of free water to cognitive function in older adults may provide important insight into the neural mechanisms of the cognitive aging process. METHODS A diffusion-weighted MRI measure of extracellular free water as well as a commonly used diffusion MRI metric (fractional anisotropy) along nine bilateral white matter pathways were examined for their relationship with cognitive function assessed by the NIH Toolbox Cognitive Battery in 47 older adults (mean age = 74.4 years, SD = 5.4 years, range = 65-85 years). Probabilistic tractography at the 99th percentile level of probability (Tracts Constrained by Underlying Anatomy; TRACULA) was utilized to produce the pathways on which microstructural characteristics were overlaid and examined for their contribution to cognitive function independent of age, education, and gender. RESULTS When examining the 99th percentile probability core white matter pathway derived from TRACULA, poorer fluid cognitive ability was related to higher mean free water values across the angular and cingulum bundles of the cingulate gyrus, as well as the corticospinal tract and the superior longitudinal fasciculus. There was no relationship between cognition and mean FA or free water-adjusted FA across the 99th percentile core white matter pathway. Crystallized cognitive ability was not associated with any of the diffusion measures. When examining cognitive domains comprising the NIH Toolbox Fluid Cognition index relationships with these white matter pathways, mean free water demonstrated strong hemispheric and functional specificity for cognitive performance, whereas mean FA was not related to age or cognition across the 99th percentile pathway. CONCLUSIONS Extracellular free water within white matter appears to increase with normal aging, and higher values are associated with significantly lower fluid but not crystallized cognitive functions. When using TRACULA to estimate the core of a white matter pathway, a higher degree of free water appears to be highly specific to the pathways associated with memory, working memory, and speeded decision-making performance, whereas no such relationship existed with FA. These data suggest that free water may play an important role in the cognitive aging process, and may serve as a stronger and more specific indicator of early cognitive decline than traditional diffusion MRI measures, such as FA.
Collapse
Affiliation(s)
- Joseph M Gullett
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA.
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Damon G Lamb
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Road, Gainesville, FL, 32608, USA; Department of Psychiatry, University of Florida, 100 S. Newell Dr., L4100, McKnight Brain Institute, Gainesville, FL, 32611, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Deirdre M O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston St., Boston, MA, 02215, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| |
Collapse
|
7878
|
Rao CV, Farooqui M, Madhavaram A, Zhang Y, Asch AS, Yamada HY. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell 2020; 19:e13221. [PMID: 32857910 PMCID: PMC7576275 DOI: 10.1111/acel.13221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral amyloid‐β accumulation that begins in middle age is considered the critical triggering event in the pathogenesis of late‐onset Alzheimer's disease (LOAD). However, the molecular mechanism remains elusive. The Shugoshin 1 (Sgo1−/+) mouse model, a model for mitotic cohesinopathy‐genomic instability that is observed in human AD at a higher rate, showed spontaneous accumulation of amyloid‐β in the brain at old age. With the model, novel insights into the molecular mechanism of LOAD development are anticipated. In this study, the initial appearance of cerebral amyloid‐β accumulation was determined as 15‐18 months of age (late middle age) in the Sgo1−/+ model. The amyloid‐β accumulation was associated with unexpected GSK3α/β inactivation, Wnt signaling activation, and ARC/Arg3.1 accumulation, suggesting involvement of both the GSK3‐Arc/Arg3.1 axis and the GSK3‐Wnt axis. As observed in human AD brains, neuroinflammation with IFN‐γ expression occurred with amyloid‐β accumulation and was pronounced in the aged (24‐month‐old) Sgo1−/+ model mice. AD‐relevant protein panels (oxidative stress defense, mitochondrial energy metabolism, and β‐oxidation and peroxisome) analysis indicated (a) early increases in Pdk1 and Phb in middle‐aged Sgo1−/+ brains, and (b) misregulations in 32 proteins among 130 proteins tested in old age. Thus, initial amyloid‐β accumulation in the Sgo1−/+ model is suggested to be triggered by GSK3 inactivation and the resulting Wnt activation and ARC/Arg3.1 accumulation. The model displayed characteristics and affected pathways similar to those of human LOAD including neuroinflammation, demonstrating its potential as a study tool for the LOAD development mechanism and for preclinical AD drug research and development.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Mudassir Farooqui
- Department of Neurology University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | - Avanish Madhavaram
- Biology/Exercise and Sports Science University of North Carolina Chapel Hill North Carolina USA
| | - Yuting Zhang
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Adam S. Asch
- Hematology/Oncology Section Department of Medicine Stephenson Cancer Center University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Hiroshi Y. Yamada
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| |
Collapse
|
7879
|
Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, Gutteridge A, Erola P, Liu Y, Luo S, Robinson J, Richardson TG, Staley JR, Elsworth B, Burgess S, Sun BB, Danesh J, Runz H, Maranville JC, Martin HM, Yarmolinsky J, Laurin C, Holmes MV, Liu JZ, Estrada K, Santos R, McCarthy L, Waterworth D, Nelson MR, Smith GD, Butterworth AS, Hemani G, Scott RA, Gaunt TR. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet 2020; 52:1122-1131. [PMID: 32895551 PMCID: PMC7610464 DOI: 10.1038/s41588-020-0682-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/24/2020] [Indexed: 01/23/2023]
Abstract
The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here we estimated the effects of 1,002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium is widespread in naïve phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes ( https://www.epigraphdb.org/pqtl/ ). Evaluation of data from historic drug development programs showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of this approach in identifying and prioritizing potential therapeutic targets.
Collapse
Affiliation(s)
- Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK.
- Proteome MR writing group, .
| | - Valeriia Haberland
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
| | - Denis Baird
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
| | - Venexia Walker
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
| | - Mark R Hurle
- Human Genetics, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Pau Erola
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Yi Liu
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Shan Luo
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Jamie Robinson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - James R Staley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen Burgess
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benjamin B Sun
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Heiko Runz
- Translational Biology, Biogen, Cambridge, MA, USA
| | - Joseph C Maranville
- Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA, USA
| | - Hannah M Martin
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Charles Laurin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael V Holmes
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
| | - Jimmy Z Liu
- Translational Biology, Biogen, Cambridge, MA, USA
| | | | - Rita Santos
- Functional Genomics, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | | | | | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Adam S Butterworth
- Proteome MR writing group
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Proteome MR writing group
| | - Robert A Scott
- Proteome MR writing group, .
- Human Genetics, GlaxoSmithKline, Stevenage, UK.
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK.
- Proteome MR writing group, .
- NIHR Bristol Biomedical Research Centre, Bristol, UK.
| |
Collapse
|
7880
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7881
|
Verberk IMW, Thijssen E, Koelewijn J, Mauroo K, Vanbrabant J, de Wilde A, Zwan MD, Verfaillie SCJ, Ossenkoppele R, Barkhof F, van Berckel BNM, Scheltens P, van der Flier WM, Stoops E, Vanderstichele HM, Teunissen CE. Combination of plasma amyloid beta (1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:118. [PMID: 32988409 PMCID: PMC7523295 DOI: 10.1186/s13195-020-00682-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Blood-based biomarkers for Alzheimer's disease (AD) might facilitate identification of participants for clinical trials targeting amyloid beta (Abeta) accumulation, and aid in AD diagnostics. We examined the potential of plasma markers Abeta(1-42/1-40), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) to identify cerebral amyloidosis and/or disease severity. METHODS We included individuals with a positive (n = 176: 63 ± 7 years, 87 (49%) females) or negative (n = 76: 61 ± 9 years, 27 (36%) females) amyloid PET status, with syndrome diagnosis subjective cognitive decline (18 PET+, 25 PET-), mild cognitive impairment (26 PET+, 24 PET-), or AD-dementia (132 PET+). Plasma Abeta(1-42/1-40), GFAP, and NfL were measured by Simoa. We applied two-way ANOVA adjusted for age and sex to investigate the associations of the plasma markers with amyloid PET status and syndrome diagnosis; logistic regression analysis with Wald's backward selection to identify an optimal panel that identifies amyloid PET positivity; age, sex, and education-adjusted linear regression analysis to investigate associations between the plasma markers and neuropsychological test performance; and Spearman's correlation analysis to investigate associations between the plasma markers and medial temporal lobe atrophy (MTA). RESULTS Abeta(1-42/1-40) and GFAP independently associated with amyloid PET status (p = 0.009 and p < 0.001 respectively), and GFAP and NfL independently associated with syndrome diagnosis (p = 0.001 and p = 0.048 respectively). The optimal panel identifying a positive amyloid status included Abeta(1-42/1-40) and GFAP, alongside age and APOE (AUC = 88% (95% CI 83-93%), 82% sensitivity, 86% specificity), while excluding NfL and sex. GFAP and NfL robustly associated with cognitive performance on global cognition and all major cognitive domains (GFAP: range standardized β (sβ) = - 0.40 to - 0.26; NfL: range sβ = - 0.35 to - 0.18; all: p < 0.002), whereas Abeta(1-42/1-40) associated with global cognition, memory, attention, and executive functioning (range sβ = 0.22 - 0.11; all: p < 0.05) but not language. GFAP and NfL showed moderate positive correlations with MTA (both: Spearman's rho> 0.33, p < 0.001). Abeta(1-42/1-40) showed a moderate negative correlation with MTA (Spearman's rho = - 0.24, p = 0.001). DISCUSSION AND CONCLUSIONS Combination of plasma Abeta(1-42/1-40) and GFAP provides a valuable tool for the identification of amyloid PET status. Furthermore, plasma GFAP and NfL associate with various disease severity measures suggesting potential for disease monitoring.
Collapse
Affiliation(s)
- Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jannet Koelewijn
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | - Arno de Wilde
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marissa D Zwan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7882
|
Bagattini C, Zanni M, Barocco F, Caffarra P, Brignani D, Miniussi C, Defanti CA. Enhancing cognitive training effects in Alzheimer's disease: rTMS as an add-on treatment. Brain Stimul 2020; 13:1655-1664. [PMID: 33002645 DOI: 10.1016/j.brs.2020.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
The treatment of Alzheimer's disease (AD) in the field of non-pharmacological interventions is a challenging issue, given the limited benefits of the available drugs. Cognitive training (CT) represents a commonly recommended strategy in AD. Recently, repetitive transcranial magnetic stimulation (rTMS) has gained increasing attention as a promising therapeutic tool for the treatment of AD, given its ability of enhancing neuroplasticity. In the present randomized, double-blind, sham-controlled study, we aimed at investigating the add-on effect of a high frequency rTMS protocol applied over the left dorsolateral prefrontal cortex (DLPFC) combined with a face-name associative memory CT in the continuum of AD pathology. Fifty patients from a very early to a moderate phase of dementia were randomly assigned to one of two groups: CT plus real rTMS or CT plus placebo rTMS. The results showed that the improvement in the trained associative memory induced with rTMS was superior to that obtained with CT alone. Interestingly, the extent of the additional improvement was affected by disease severity and levels of education, with less impaired and more educated patients showing a greater benefit. When testing for generalization to non-trained cognitive functions, results indicated that patients in CT-real group showed also a greater improvement in visuospatial reasoning than those in the CT-sham group. Interestingly, this improvement persisted over 12 weeks after treatment beginning. The present study provides important hints on the promising therapeutic use of rTMS in AD.
Collapse
Affiliation(s)
- Chiara Bagattini
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
| | - Mara Zanni
- Fondazione Europea Ricerca Biomedica, Ospedale Sant'Isidoro, 24069, Trescore Balneario, Bergamo, Italy
| | - Federica Barocco
- Fondazione Europea Ricerca Biomedica, Ospedale Sant'Isidoro, 24069, Trescore Balneario, Bergamo, Italy
| | - Paolo Caffarra
- Department of Medicine and Surgery, Section of Neuroscience, University of Parma, 43126, Parma, Italy
| | - Debora Brignani
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences- CIMeC, University of Trento, 38068, Rovereto, Italy
| | - Carlo Alberto Defanti
- Fondazione Europea Ricerca Biomedica, Ospedale Sant'Isidoro, 24069, Trescore Balneario, Bergamo, Italy
| |
Collapse
|
7883
|
Knapskog AB, Henjum K, Idland AV, Eldholm RS, Persson K, Saltvedt I, Watne LO, Engedal K, Nilsson LNG. Cerebrospinal fluid sTREM2 in Alzheimer's disease: comparisons between clinical presentation and AT classification. Sci Rep 2020; 10:15886. [PMID: 32985583 PMCID: PMC7522273 DOI: 10.1038/s41598-020-72878-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by microglia. Its cleaved fragments, soluble TREM2 (sTREM2), can be measured in the cerebrospinal fluid (CSF). Previous studies indicate higher CSF sTREM2 in symptomatic AD; however most of these studies have included biomarker positive AD cases and biomarker negative controls. The aim of the study was to explore potential differences in the CSF level of sTREM2 and factors associated with an increased sTREM2 level in patients diagnosed with mild cognitive impairment (MCI) or dementia due to AD compared with cognitively unimpaired controls as judged by clinical symptoms and biomarker category (AT). We included 299 memory clinic patients, 62 (20.7%) with AD-MCI and 237 (79.3%) with AD dementia, and 113 cognitively unimpaired controls. CSF measures of the core biomarkers were applied to determine AT status. CSF sTREM2 was analyzed by ELISA. Patients presented with comparable CSF sTREM2 levels as the cognitively unimpaired (9.6 ng/ml [SD 4.7] versus 8.8 ng/ml [SD 3.6], p = 0.27). We found that CSF sTREM2 associated with age-related neuroinflammation and tauopathy irrespectively of amyloid β, APOE ε4 status or gender. The findings were similar in both symptomatic and non-symptomatic individuals.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.
| | - Kristi Henjum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane-Victoria Idland
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Karin Persson
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway
| | - Knut Engedal
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7884
|
Wearn AR, Saunders-Jennings E, Nurdal V, Hadley E, Knight MJ, Newson M, Kauppinen RA, Coulthard EJ. Accelerated long-term forgetting in healthy older adults predicts cognitive decline over 1 year. ALZHEIMERS RESEARCH & THERAPY 2020; 12:119. [PMID: 32988418 PMCID: PMC7523317 DOI: 10.1186/s13195-020-00693-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 01/17/2023]
Abstract
Background Here, we address a pivotal factor in Alzheimer’s prevention—identifying those at risk early, when dementia can still be avoided. Recent research highlights an accelerated forgetting phenotype as a risk factor for Alzheimer’s disease. We hypothesized that delayed recall over 4 weeks would predict cognitive decline over 1 year better than 30-min delayed recall, the current gold standard for detecting episodic memory problems which could be an early clinical manifestation of incipient Alzheimer’s disease. We also expected hippocampal subfield volumes to improve predictive accuracy. Methods Forty-six cognitively healthy older people (mean age 70.7 ± 7.97, 21/46 female), recruited from databases such as Join Dementia Research, or a local database of volunteers, performed 3 memory tasks on which delayed recall was tested after 30 min and 4 weeks, as well as Addenbrooke’s Cognitive Examination III (ACE-III) and CANTAB Paired Associates Learning. Medial temporal lobe subregion volumes were automatically measured using high-resolution 3T MRI. The ACE-III was repeated after 12 months to assess the change in cognitive ability. We used univariate linear regressions and ROC curves to assess the ability of tests of delayed recall to predict cognitive decline on ACE-III over the 12 months. Results Fifteen of the 46 participants declined over the year (≥ 3 points lost on ACE-III). Four-week verbal memory predicted cognitive decline in healthy older people better than clinical gold standard memory tests and hippocampal MRI. The best single-test predictor of cognitive decline was the 4-week delayed recall on the world list (R2 = .123, p = .018, β = .418). Combined with hippocampal subfield volumetry, 4-week verbal recall identifies those at risk of cognitive decline with 93% sensitivity and 86% specificity (AUC = .918, p < .0001). Conclusions We show that a test of accelerated long-term forgetting over 4 weeks can predict cognitive decline in healthy older people where traditional tests of delayed recall cannot. Accelerated long-term forgetting is a sensitive, easy-to-test predictor of cognitive decline in healthy older people. Used alone or with hippocampal MRI, accelerated forgetting probes functionally relevant Alzheimer’s-related change. Accelerated forgetting will identify early-stage impairment, helping to target more invasive and expensive molecular biomarker testing.
Collapse
Affiliation(s)
- Alfie R Wearn
- Bristol Medical School, University of Bristol, Bristol, UK. .,Institute of Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK.
| | | | - Volkan Nurdal
- Bristol Medical School, University of Bristol, Bristol, UK.,Department of Psychology, University of Bath, Bath, UK
| | - Emma Hadley
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael J Knight
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Margaret Newson
- Institute of Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK.,School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Elizabeth J Coulthard
- Bristol Medical School, University of Bristol, Bristol, UK.,Institute of Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
7885
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
7886
|
Abstract
The central nervous system is simply divided into two distinct anatomical regions based on the color of tissues, i.e. the gray and white matter. The gray matter is composed of neuronal cell bodies, glial cells, dendrites, immune cells, and the vascular system, while the white matter is composed of concentrated myelinated axonal fibers extending from neuronal soma and glial cells, such as oligodendrocyte precursor cells (OPCs), oligodendrocytes, astrocytes, and microglia. As neuronal cell bodies are located in the gray matter, great attention has been focused mainly on the gray matter regarding the understanding of the functions of the brain throughout the neurophysiological areas, leading to a scenario in which the function of the white matter is relatively underestimated or has not received much attention. However, increasing evidence shows that the white matter plays highly significant and pivotal functions in the brain based on the fact that its abnormalities are associated with numerous neurological diseases. In this review, we will broadly discuss the pathways and functions of myelination, which is one of the main processes that modulate the functions of the white matter, as well as the manner in which its abnormalities are related to neurological disorders.
Collapse
|
7887
|
Hanes J, Kovac A, Kvartsberg H, Kontsekova E, Fialova L, Katina S, Kovacech B, Stevens E, Hort J, Vyhnalek M, Boonkamp L, Novak M, Zetterberg H, Hansson O, Scheltens P, Blennow K, Teunissen CE, Zilka N. Evaluation of a novel immunoassay to detect p-tau Thr217 in the CSF to distinguish Alzheimer disease from other dementias. Neurology 2020; 95:e3026-e3035. [PMID: 32973122 PMCID: PMC7734919 DOI: 10.1212/wnl.0000000000010814] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To investigate whether tau phosphorylated at Thr217 (p-tau T217) assay in CSF can distinguish patients with Alzheimer disease (AD) from patients with other dementias and healthy controls. METHODS We developed and validated a novel Simoa immunoassay to detect p-tau T217 in CSF. There was a total of 190 participants from 3 cohorts with AD (n = 77) and other neurodegenerative diseases (n = 69) as well as healthy participants (n = 44). RESULTS The p-tau T217 assay (cutoff 242 pg/mL) identified patients with AD with accuracy of 90%, with 78% positive predictive value (PPV), 97% negative predictive value (NPV), 93% sensitivity, and 88% specificity, compared favorably with p-tau T181 ELISA (52 pg/mL), showing 78% accuracy, 58% PPV, 98% NPV, 71% specificity, and 97% sensitivity. The assay distinguished patients with AD from age-matched healthy controls (cutoff 163 pg/mL, 98% sensitivity, 93% specificity), similarly to p-tau T181 ELISA (cutoff 60 pg/mL, 96% sensitivity, 86% specificity). In patients with AD, we found a strong correlation between p-tau T217 and p-tau T181, total tau and β-amyloid 40, but not β-amyloid 42. CONCLUSIONS This study demonstrates that p-tau T217 displayed better diagnostic accuracy than p-tau T181. The data suggest that the new p-tau T217 assay has potential as an AD diagnostic test in clinical evaluation. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that a CSF immunoassay for p-tau T217 distinguishes patients with AD from patients with other dementias and healthy controls.
Collapse
Affiliation(s)
- Jozef Hanes
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Andrej Kovac
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Hlin Kvartsberg
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Eva Kontsekova
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Lubica Fialova
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Stanislav Katina
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Branislav Kovacech
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Eva Stevens
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Jakub Hort
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Martin Vyhnalek
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Lynn Boonkamp
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Michal Novak
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Henrik Zetterberg
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Oskar Hansson
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Philip Scheltens
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Kaj Blennow
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Charlotte E Teunissen
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands
| | - Norbert Zilka
- From the AXON Neuroscience R&D Services SE (J. Hanes, A.K., E.K., L.F., B.K., E.S., N.Z.), Bratislava, Slovakia; Department of Psychiatry and Neurochemistry (H.K., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal; Clinical Neurochemistry Laboratory (H.K., H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; AXON Neuroscience CRM Services SE (S.K.), Bratislava, Slovakia; International Clinical Research Centre (J. Hort, M.V.), St. Anne's University Hospital Brno; Memory Clinic, Department of Neurology (J. Hort, M.V.), Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; Department of Clinical Chemistry, Neurochemistry Laboratory (L.B., C.E.T.), Amsterdam Neuroscience, VU University Medical Center Amsterdam, the Netherlands; Axon Neuroscience SE (M.N.), Larnaca, Cyprus; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London; UK Dementia Research Institute at UCL (H.Z.), London; Clinical Memory Research Unit (O.H.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neurology, Alzheimer Center (P.S.), Amsterdam Neuroscience, the Netherlands.
| |
Collapse
|
7888
|
Shen X, Li J, Wang H, Li H, Huang Y, Yang Y, Tan L, Dong Q, Yu J. Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer's disease pathology and clinical progression in older adults without dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12104. [PMID: 33005724 PMCID: PMC7513626 DOI: 10.1002/dad2.12104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Plasma markers have been reported to be associated with brain amyloid burden, tau pathology, or neurodegeneration. We aimed to evaluate whether plasma biomarker profiles could predict Alzheimer's disease (AD) pathology and clinical progression in older adults without dementia. METHODS Cross-sectional and longitudinal data of participants enrolled in this study were from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio was selected as the marker for amyloid pathology, p-tau181 for tau pathology, and neurofilament light for neurodegeneration. Cut-offs for these plasma markers were calculated with well-established positron emission tomography and structural imaging biomarkers as reference. Older adults without dementia were categorized into eight groups at baseline by plasma amyloid/tau/neurodegeneration (A/T/N) cut-offs. Clinical progression was analyzed using linear mixed-effects models and Cox proportional hazard models. RESULTS A total of 183 participants (97 cognitively normal [CN] subjects and 86 patients with mild cognitive impairment [MCI]; mean age 72.6 years, and 48.1% men) were included. Participants with A+ had significantly higher proportions of apolipoprotein E (APOE) gene ɛ4 carriers than those with A-. Brain atrophy was observed in all groups of CN, whereas cognition decline was obvious in the A+T+N+ group. Compared to A-T-N-, MCI patients with A+T+N+ had faster cognition worsening and faster brain atrophy. In the whole cohort, A+T+N+ and A+T+N- participants were at higher risk of clinical progression. DISCUSSION Plasma A/T/N biomarker profiles may predict AD pathology and clinical progression, indicating a potential role for plasma biomarkers in clinical trials. More research is warranted to develop a robust plasma AD framework.
Collapse
Affiliation(s)
- Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jie‐Qiong Li
- Department of Neurologythe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hui‐Fu Wang
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Hong‐Qi Li
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Xiang Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | | |
Collapse
|
7889
|
Katan M, Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays Biochem 2020; 64:513-531. [PMID: 32844214 PMCID: PMC7517351 DOI: 10.1042/ebc20200041] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, U.K
| |
Collapse
|
7890
|
Picciolini S, Gualerzi A, Carlomagno C, Cabinio M, Sorrentino S, Baglio F, Bedoni M. An SPRi-based biosensor pilot study: Analysis of multiple circulating extracellular vesicles and hippocampal volume in Alzheimer's disease. J Pharm Biomed Anal 2020; 192:113649. [PMID: 33038641 DOI: 10.1016/j.jpba.2020.113649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
One of the main hurdles in the study of Alzheimer's Disease (AD) is the lack of easily accessible and sensitive biomarkers for the diagnosis, the prediction of the disease progression rate and the evaluation of rehabilitative and pharmacological treatments. Extracellular Vesicles (EVs) are nanoscale particles released by body cells, studied as promising biomarkers of AD as they are involved in the onset and progression of the disease. In the strive for a reliable and sensitive method to analyze EVs, we applied our recently developed biosensor based on Surface Plasmon Resonance imaging (SPRi) technology for the identification and profiling of neural EVs populations circulating in the plasma of 10 AD patients and 10 healthy subjects. The SPRi-array was designed to separate simultaneously EVs released by neurons, astrocytes, microglia and oligodendrocytes, and to evaluate the presence and the relative amount of specific surface molecules related to pathological processes including translocator protein (TSPO), β-Amyloid and ganglioside M1. As results, significant variations in the relative amount and cargoes of specific brain-derived populations of EVs were observed comparing EVs coming from AD patients and healthy subjects, finding the main differences in the activation phenotype of microglia EVs, in the lipid moieties on generic EVs and in the β-Amyloid expression on surfaces of neuronal EVs. Besides, the demonstrated correlation of SPRi data with Magnetic Resonance Imaging analysis, provided support for using the SPRi-based biosensor for the evaluation of neurodegeneration detecting and characterizing circulating EVs as peripheral biomarkers for the diagnosis and monitoring of progression and rehabilitation treatments in AD patients.
Collapse
Affiliation(s)
- Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | | | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | | | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy.
| |
Collapse
|
7891
|
Geddes MR, O'Connell ME, Fisk JD, Gauthier S, Camicioli R, Ismail Z. Remote cognitive and behavioral assessment: Report of the Alzheimer Society of Canada Task Force on dementia care best practices for COVID-19. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12111. [PMID: 32999916 PMCID: PMC7507991 DOI: 10.1002/dad2.12111] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Despite the urgent need for remote neurobehavioral assessment of individuals with cognitive impairment, guidance is lacking. Our goal is to provide a multi-dimensional framework for remotely assessing cognitive, functional, behavioral, and physical aspects of people with cognitive impairment, along with ethical and technical considerations. METHODS Literature review on remote cognitive assessment and multidisciplinary expert opinion from behavioral neurologists, neuropsychiatrists, neuropsychologists, and geriatricians was integrated under the auspices of the Alzheimer Society of Canada Task Force on Dementia Care Best Practices for COVID-19. Telephone and video approaches to assessments were considered. RESULTS Remote assessment is shown to be acceptable to patients and caregivers. Informed consent, informant history, and attention to privacy and autonomy are paramount. A range of screening and domain-specific instruments are available for telephone or video assessment of cognition, function, and behavior. Some neuropsychological tests administered by videoconferencing show good agreement with in-person assessment but still lack validation and norms. Aspects of the remote dementia-focused neurological examination can be performed reliably. DISCUSSION Despite challenges, current literature and practice support implementation of telemedicine assessments for patients with cognitive impairment. Convergence of data across the clinical interview, reliable and brief remote cognitive tests, and remote neurological exam increase confidence in clinical interpretation and diagnosis.
Collapse
Affiliation(s)
- Maiya R. Geddes
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
- McGill Center for Studies in AgingMcGill UniversityVerdunCanada
- Departments of Psychiatry and NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonUSA
| | - Megan E. O'Connell
- Department of PsychologyUniversity of SaskatchewanSaskatoonCanada
- Canadian Center for Health & Safety in AgricultureMedicineUniversity of SaskatchewanSaskatoonCanada
| | - John D. Fisk
- Department of PsychiatryDalhousie UniversityHalifaxCanada
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxCanada
- Department of MedicineDalhousie UniversityHalifaxCanada
| | - Serge Gauthier
- McGill Center for Studies in AgingMcGill UniversityVerdunCanada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of MedicineDivision of NeurologyUniversity of AlbertaEdmontonCanada
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health SciencesCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteO'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
7892
|
Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020; 8:555409. [PMID: 33072744 PMCID: PMC7536349 DOI: 10.3389/fcell.2020.555409] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
7893
|
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease. Mol Neurodegener 2020; 15:55. [PMID: 32962744 PMCID: PMC7507636 DOI: 10.1186/s13024-020-00395-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Subjective cognitive decline (SCD) is regarded as the first clinical manifestation in the Alzheimer’s disease (AD) continuum. Investigating populations with SCD is important for understanding the early pathological mechanisms of AD and identifying SCD-related biomarkers, which are critical for the early detection of AD. With the advent of advanced neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), accumulating evidence has revealed structural and functional brain alterations related to the symptoms of SCD. In this review, we summarize the main imaging features and key findings regarding SCD related to AD, from local and regional data to connectivity-based imaging measures, with the aim of delineating a multimodal imaging signature of SCD due to AD. Additionally, the interaction of SCD with other risk factors for dementia due to AD, such as age and the Apolipoprotein E (ApoE) ɛ4 status, has also been described. Finally, the possible explanations for the inconsistent and heterogeneous neuroimaging findings observed in individuals with SCD are discussed, along with future directions. Overall, the literature reveals a preferential vulnerability of AD signature regions in SCD in the context of AD, supporting the notion that individuals with SCD share a similar pattern of brain alterations with patients with mild cognitive impairment (MCI) and dementia due to AD. We conclude that these neuroimaging techniques, particularly multimodal neuroimaging techniques, have great potential for identifying the underlying pathological alterations associated with SCD. More longitudinal studies with larger sample sizes combined with more advanced imaging modeling approaches such as artificial intelligence are still warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Sino-Britain Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
7894
|
Chiou KL, Montague MJ, Goldman EA, Watowich MM, Sams SN, Song J, Horvath JE, Sterner KN, Ruiz-Lambides AV, Martínez MI, Higham JP, Brent LJN, Platt ML, Snyder-Mackler N. Rhesus macaques as a tractable physiological model of human ageing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190612. [PMID: 32951555 DOI: 10.1098/rstb.2019.0612] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research in the basic biology of ageing is increasingly identifying mechanisms and modifiers of ageing in short-lived organisms such as worms and mice. The ultimate goal of such work is to improve human health, particularly in the growing segment of the population surviving into old age. Thus far, few interventions have robustly transcended species boundaries in the laboratory, suggesting that changes in approach are needed to avoid costly failures in translational human research. In this review, we discuss both well-established and alternative model organisms for ageing research and outline how research in nonhuman primates is sorely needed, first, to translate findings from short-lived organisms to humans, and second, to understand key aspects of ageing that are unique to primate biology. We focus on rhesus macaques as a particularly promising model organism for ageing research owing to their social and physiological similarity to humans as well as the existence of key resources that have been developed for this species. As a case study, we compare gene regulatory signatures of ageing in the peripheral immune system between humans and rhesus macaques from a free-ranging study population in Cayo Santiago. We show that both mRNA expression and DNA methylation signatures of immune ageing are broadly shared between macaques and humans, indicating strong conservation of the trajectory of ageing in the immune system. We conclude with a review of key issues in the biology of ageing for which macaques and other nonhuman primates may uniquely contribute valuable insights, including the effects of social gradients on health and ageing. We anticipate that continuing research in rhesus macaques and other nonhuman primates will play a critical role in conjunction with the model organism and human biodemographic research in ultimately improving translational outcomes and extending health and longevity in our ageing population. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA 98195, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Sierra N Sams
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Jeff Song
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA.,Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Angelina V Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Melween I Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Marketing, Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA 98195, USA.,Department of Biology, University of Washington, Seattle, WA 98195, USA.,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
7895
|
Xu J, Bankov G, Kim M, Wretlind A, Lord J, Green R, Hodges A, Hye A, Aarsland D, Velayudhan L, Dobson RJB, Proitsi P, Legido-Quigley C. Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer's disease. Transl Neurodegener 2020; 9:36. [PMID: 32951606 PMCID: PMC7504646 DOI: 10.1186/s40035-020-00215-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is an urgent need to understand the pathways and processes underlying Alzheimer's disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer's dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. METHODS A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. RESULTS Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE ε4 genotype). CONCLUSIONS Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Giulia Bankov
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Jodie Lord
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Richard J B Dobson
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK.
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
7896
|
Thabtah F, Peebles D, Retzler J, Hathurusingha C. Dementia medical screening using mobile applications: A systematic review with a new mapping model. J Biomed Inform 2020; 111:103573. [PMID: 32961306 DOI: 10.1016/j.jbi.2020.103573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Early detection is the key to successfully tackling dementia, a neurocognitive condition common among the elderly. Therefore, screening using technological platforms such as mobile applications (apps) may provide an important opportunity to speed up the diagnosis process and improve accessibility. Due to the lack of research into dementia diagnosis and screening tools based on mobile apps, this systematic review aims to identify the available mobile-based dementia and mild cognitive impairment (MCI) apps using specific inclusion and exclusion criteria. More importantly, we critically analyse these tools in terms of their comprehensiveness, validity, performance, and the use of artificial intelligence (AI) techniques. The research findings suggest diagnosticians in a clinical setting use dementia screening apps such as ALZ and CognitiveExams since they cover most of the domains for the diagnosis of neurocognitive disorders. Further, apps such as Cognity and ACE-Mobile have great potential as they use machine learning (ML) and AI techniques, thus improving the accuracy of the outcome and the efficiency of the screening process. Lastly, there was overlapping among the dementia screening apps in terms of activities and questions they contain therefore mapping these apps to the designated cognitive domains is a challenging task, which has been done in this research.
Collapse
Affiliation(s)
- Fadi Thabtah
- Digital Technologies, Manukau Institute of Technology, Auckland, New Zealand.
| | - David Peebles
- Department of Psychology, University of Huddersfield, Huddersfield, UK.
| | - Jenny Retzler
- Department of Psychology, University of Huddersfield, Huddersfield, UK.
| | | |
Collapse
|
7897
|
The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease. Neurobiol Aging 2020; 97:10-17. [PMID: 33070094 DOI: 10.1016/j.neurobiolaging.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
Abstract
Neurofilament light (NFL) is an emerging marker of axonal degeneration. This study investigated the relationship between white matter hyperintensities (WMHs) and plasma NFL in a large elderly cohort with, and without, cognitive impairment. We used the Alzheimer's Disease Neuroimaging Initiative and included 163 controls, 103 participants with a significant memory concern, 279 with early mild cognitive impairment (EMCI), 152 with late mild cognitive impairment (LMCI), and 130 with Alzheimer's disease, with 3T MRI and plasma NFL data. Multiple linear regression models examined the relationship between WMHs and NFL, with and without age adjustment. We used smoking status, history of hypertension, history of diabetes, and BMI as additional covariates to examine the effect of vascular risk. We found increases of between 20% and 41% in WMH volume per 1SD increase in NFL in significant memory concern, early mild cognitive impairment, late mild cognitive impairment, and Alzheimer's disease groups (p < 0.02). Marked attenuation of the positive associations between WMHs and NFL were seen after age adjustment, suggesting that a significant proportion of the association between NFL and WMHs is age-related. No effect of vascular risk was observed. These results are supportive of a link between WMH and axonal degeneration in early to late disease stages, in an age-dependent, but vascular risk-independent manner.
Collapse
|
7898
|
Subramanian ML, Vig V, Chung J, Fiorello MG, Xia W, Zetterberg H, Blennow K, Zetterberg M, Shareef F, Siegel NH, Ness S, Jun GR, Stein TD. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res Ther 2020; 12:111. [PMID: 32943089 PMCID: PMC7500015 DOI: 10.1186/s13195-020-00677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. METHODS This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5-1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. RESULTS NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10-5), Aβ42 (p = 2.8 × 10-4), and t-tau (p = 5.5 × 10-7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10-4), IL-16 (p = 2.2 × 10-4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10-4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10-6), Vegf-C (p = 8.6 × 10-6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10-4), Tie-2 (p = 6.3 × 10-4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10-4). CONCLUSION NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients' clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye.
Collapse
Affiliation(s)
- Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA.
| | - Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Marissa G Fiorello
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Farah Shareef
- Department of Ophthalmology, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
7899
|
Lee Y, Lee BH, Yip W, Chou P, Yip BS. Neurofilament Proteins as Prognostic Biomarkers in Neurological Disorders. Curr Pharm Des 2020; 25:4560-4569. [PMID: 31820696 DOI: 10.2174/1381612825666191210154535] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson's disease (PD), Aβ and tau in Alzheimer's disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.
Collapse
Affiliation(s)
- Yichen Lee
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China
| | - Bo H Lee
- Department of Geriatrics, Northern Beaches Hospital, Frenchs Forest New South Wales, Australia
| | - William Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vacover, BC V6T1Z4, Canada
| | - Pingchen Chou
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China
| | - Bak-Sau Yip
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China.,Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan, China
| |
Collapse
|
7900
|
Bryant AG, Hu M, Carlyle BC, Arnold SE, Frosch MP, Das S, Hyman BT, Bennett RE. Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. Front Neurol 2020; 11:575953. [PMID: 33041998 PMCID: PMC7525127 DOI: 10.3389/fneur.2020.575953] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's Disease (AD) is associated with neuropathological changes, including aggregation of tau neurofibrillary tangles (NFTs) and amyloid-beta plaques. Mounting evidence indicates that vascular dysfunction also plays a key role in the pathogenesis and progression of AD, in part through endothelial dysfunction. Based on findings in animal models that tau pathology induces vascular abnormalities and cellular senescence, we hypothesized that tau pathology in the human AD brain leads to vascular senescence. To explore this hypothesis, we isolated intact microvessels from the dorsolateral prefrontal cortex (PFC, BA9) from 16 subjects with advanced Braak stages (Braak V/VI, B3) and 12 control subjects (Braak 0/I/II, B1), and quantified expression of 42 genes associated with senescence, cell adhesion, and various endothelial cell functions. Genes associated with endothelial senescence and leukocyte adhesion, including SERPINE1 (PAI-1), CXCL8 (IL8), CXCL1, CXCL2, ICAM-2, and TIE1, were significantly upregulated in B3 microvessels after adjusting for sex and cerebrovascular pathology. In particular, the senescence-associated secretory phenotype genes SERPINE1 and CXCL8 were upregulated by more than 2-fold in B3 microvessels after adjusting for sex, cerebrovascular pathology, and age at death. Protein quantification data from longitudinal plasma samples for a subset of 13 (n = 9 B3, n = 4 B1) subjects showed no significant differences in plasma senescence or adhesion-associated protein levels, suggesting that these changes were not associated with systemic vascular alterations. Future investigations of senescence biomarkers in both the peripheral and cortical vasculature could further elucidate links between tau pathology and vascular changes in human AD.
Collapse
Affiliation(s)
- Annie G Bryant
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Miwei Hu
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Becky C Carlyle
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Steven E Arnold
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matthew P Frosch
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Pathology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sudeshna Das
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|