751
|
Ziabreva I, Ballard C, Johnson M, Larsen JP, McKeith I, Perry R, Aarsland D, Perry E. Loss of Musashi1 in Lewy body dementia associated with cholinergic deficit. Neuropathol Appl Neurobiol 2007; 33:586-90. [PMID: 17573814 DOI: 10.1111/j.1365-2990.2007.00848.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
752
|
Abstract
Parallel to the role that normal stem cells play in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Understanding normal development might therefore lead to better treatments of cancer. We review recent data that stem cells of glioblastoma, a highly malignant brain tumour, seem to be dependent on cues from aberrant vascular niches that mimic the normal neural stem cell niche. These data have direct implications for cancer, highlighting the similarity between normal and malignant stem cells and identifying the tumour microenvironment as a target for new therapies.
Collapse
Affiliation(s)
- Richard J Gilbertson
- Department of Developmental Neurobiology and Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
753
|
Naujokat C, Sarić T. Concise Review: Role and Function of the Ubiquitin-Proteasome System in Mammalian Stem and Progenitor Cells. Stem Cells 2007; 25:2408-18. [PMID: 17641241 DOI: 10.1634/stemcells.2007-0255] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly ordered degradation of cell proteins by the ubiquitin-proteasome system, a sophisticated cellular proteolytic machinery, has been identified as a key regulatory mechanism in many eukaryotic cells. Accumulating evidence reveals that the ubiquitin-proteasome system is involved in the regulation of fundamental processes in mammalian stem and progenitor cells of embryonic, neural, hematopoietic, and mesenchymal origin. Such processes, including development, survival, differentiation, lineage commitment, migration, and homing, are directly controlled by the ubiquitin-proteasome system, either via proteolytic degradation of key regulatory proteins of signaling and gene expression pathways or via nonproteolytic mechanisms involving the proteasome itself or posttranslational modifications of target proteins by ubiquitin or other ubiquitin-like modifiers. Future characterization of the precise roles and functions of the ubiquitin-proteasome system in mammalian stem and early progenitor cells will improve our understanding of stem cell biology and may provide an experimental basis for the development of novel therapeutic strategies in regenerative medicine. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
754
|
Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med 2007; 2:425-46. [PMID: 17635050 DOI: 10.2217/17460751.2.4.425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease and Alzheimer's disease are the most common neurodegenerative diseases in the elderly population. Given that age is the most important risk factor in these diseases, the number of patients is expected to rise dramatically in the coming years. Therefore, an effective therapy for these diseases is highly sought. Current treatment brings only temporary symptomatic relief and does not result in halting the progression of these diseases. The increasing knowledge on the molecular mechanisms that underlie these diseases enables the design of novel therapies, targeted at degenerating neurons by creating an optimal regenerative cellular environment. Here, we review the progress made in the field of cell-replacement and gene-therapy strategies. New developments in the application of embryonic stem cells and adult neuronal progenitors are discussed. We also discuss the use of genetically engineered cells in neuronal rescuing strategies that have recently advanced into the clinic. The first trials for the treatment of Alzheimer's disease and Parkinson's disease with this approach are ongoing.
Collapse
Affiliation(s)
- Joanna A Korecka
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
755
|
Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 2007; 331:179-91. [PMID: 17786483 DOI: 10.1007/s00441-007-0461-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/02/2007] [Indexed: 01/19/2023]
Abstract
A common assumption of classical neuroscience was that neurons and glial cells were derived from separate pools of progenitor cells and that, once development was completed, no new neurons were produced. The subsequent disproving of the "no new neuron" dogma suggested that ongoing adult neurogenesis was supported by a population of multipotent neural stem cells. Two germinal regions within the adult mammalian brain were shown to contain neural progenitor cells: the subventricular zone (SVZ) along the walls of the lateral ventricles, and the subgranular zone (SGZ) within the dentate gyrus of the hippocampus. Surprisingly, when the primary progenitors (stem cells) of the new neurons in these regions were identified, they exhibited structural and biological markers of astrocytes. The architecture of these germinal regions and the pattern of division of neural stem cells have raised fundamental questions about the mechanism of adult neurogenesis. This review describes studies on the origin of adult neural stem cells, the features distinguishing them from astrocytes in non-germinal regions, and the control mechanisms of the proliferation and differentiation of these cells. Astrocytic adult neural stem cells are part of a developmental lineage extending from the neuroepithelium to radial glia to germinal astrocytes. Adult neural stem cells appear to be strongly influenced by their local microenvironment, while also contributing significantly to the architecture of these germinal zones. However, environment alone does not seem to be sufficient to induce non-germinal astrocytes to behave as neural stem cells. Although emerging evidence suggests that significant heterogeneity exists within populations of germinal zone astrocytes, the way that these differences are encoded remains unclear. The further characterization of these cells should eventually provide a body of knowledge central to the understanding of brain development and disease.
Collapse
Affiliation(s)
- Rebecca A Ihrie
- Department of Neurosurgery and Institute for Regeneration Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
756
|
Kocher AA, Schlechta B, Gasparovicova A, Wolner E, Bonaros N, Laufer G. Stem cells and cardiac regeneration. Transpl Int 2007; 20:731-46. [PMID: 17555531 DOI: 10.1111/j.1432-2277.2007.00493.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite many advances in cardiovascular medicine, heart failure (HF) remains the leading cause of death in developed countries affecting at least 10 million people in Western Europe alone. The poor long-term prognosis of HF patients, and immense public health implications has fuelled interest in finding new therapeutic modalities. Recent observations of the beneficial effect of stem cells on the damaged heart in animal experiments have generated tremendous excitement and stimulated clinical studies suggesting that this approach is feasible, safe, and potentially effective in humans. Cell-based myocardial regeneration is currently explored for a wide range of cardiac disease states, including acute and chronic ischemic myocardial damage, cardiomyopathy and as biological heart pacemakers. The aim of the present manuscript is to review the work that has been done to establish the role of stem cells in cardiac repair, give an update on the clinical trials performed so far, as well as to discuss critically the controversies, challenges and future surrounding this novel therapeutic concept.
Collapse
Affiliation(s)
- Alfred A Kocher
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
757
|
Mazur-Kolecka B, Cohen IL, Jenkins EC, Kaczmarski W, Flory M, Frackowiak J. Altered development of neuronal progenitor cells after stimulation with autistic blood sera. Brain Res 2007; 1168:11-20. [PMID: 17706942 DOI: 10.1016/j.brainres.2007.06.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/28/2022]
Abstract
Changes of brain structure and functions in people with autism may result from altered neuronal development, however, no adequate cellular or animal models are available to study neurogenesis in autism. Neuronal development can be modeled in culture of neuronal progenitor cells (NPCs) stimulated with serum to differentiate into neurons. Because sera from people with autism and age-matched controls contain different levels of numerous biologically active factors, we hypothesized that development of human NPCs induced to differentiate into neurons with sera from children with autism reflects the altered early neuronal development that leads to autism. The control and autistic sera were collected from siblings aged below 6 years that lived in the same environment. The effect of sera on differentiation of NPC neurospheres into neuronal colonies was tested in 72-h-long cultures by morphometry, immunocytochemistry and immunoblotting. We found that sera from children with autism significantly reduced NPCs' proliferation, but stimulated cell migration, development of small neurons with processes, length of processes and synaptogenesis. These results suggest that development of network of processes and synaptogenesis--the specific events in the brain during postnatal ontogenesis--are altered in autism. Further studies in this cell culture model may explain some of the cellular alterations described in autistic patients.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
758
|
Chaichana K, Capilla-Gonzalez V, Gonzalez-Perez O, Pradilla G, Han J, Olivi A, Brem H, Garcia-Verdugo JM, Quiñones-Hinojosa A. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases. J Neurosci Methods 2007; 164:261-70. [PMID: 17580092 PMCID: PMC2744592 DOI: 10.1016/j.jneumeth.2007.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 11/29/2022]
Abstract
For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time ( approximately 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor and non-tumor human brain tissue has several potential applications including the study of cell migration on actual tissue matrix, drug toxicity on neural tissue and pharmacological treatment for brain cancers, among others.
Collapse
Affiliation(s)
- Kaisorn Chaichana
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivian Capilla-Gonzalez
- Unidad Mixta Centro de Investigacion Principe Felipe - Universidad de Valencia, Laboratorio de Morfologia Celular, Valencia, Spain
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Gustavo Pradilla
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Han
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandro Olivi
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Manuel Garcia-Verdugo
- Unidad Mixta Centro de Investigacion Principe Felipe - Universidad de Valencia, Laboratorio de Morfologia Celular, Valencia, Spain
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
759
|
Piccirillo SGM, Vescovi AL. Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opin Biol Ther 2007; 7:1129-35. [PMID: 17696813 DOI: 10.1517/14712598.7.8.1129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cancers are composed of heterogeneous cell populations, including highly proliferative immature precursors and differentiated cells, which may belong to different lineages. Recent advances in stem cell research have demonstrated the existence of tumour-initiating, cancer stem cells (CSCs) in non-solid and solid tumours. These cells are defined as CSCs because they show functional properties that resemble those of their normal counterpart to a significant extent. This concept applies to CSCs from brain tumours and, particularly, to glioblastoma stem-like cells, which self-renew under clonal conditions and differentiate into neuron- and glia-like cells, and into aberrant cells, with mixed neuronal/astroglia phenotypes. Notably, across serial transplantation into immunodeficient mice, glioblastoma stem-like cells are able to form secondary tumours which are a phenocopy of the human disease. A significant effort is underway to identify both CSC-specific markers and the molecular mechanism that underpin the tumorigenic potential of these cells, for this will have a critical impact on the understanding of the origin of malignant brain tumour and the discovery of new and more specific therapeutic approaches. Lately, the authors have shown that some of the bone morphogenetic proteins can reduce the tumorigenic ability of CSCs in GBMs. This suggests that mechanisms regulating the physiology of normal brain stem cells may be still in place in their cancerous siblings and that this may lead to the development of cures that selectively target the population CSCs found in the patients' tumour mass.
Collapse
Affiliation(s)
- Sara G M Piccirillo
- University of Milan, Department of Biotechnology and Biosciences, Bicocca & Stemgen, SPA, Milan, Italy
| | | |
Collapse
|
760
|
Kim Y, Szele FG. Activation of subventricular zone stem cells after neuronal injury. Cell Tissue Res 2007; 331:337-45. [PMID: 17694326 DOI: 10.1007/s00441-007-0451-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/20/2007] [Indexed: 01/19/2023]
Abstract
The mammalian subventricular zone (SVZ) has garnered a tremendous amount of attention as a potential source of replacement cells for neuronal injury. This zone is highly neurogenic, harbours stem cells and supports long-distance migration. The general pattern of activation includes increased proliferation, neurogenesis and emigration towards the injury. Intrinsic transcription factors and environmental signalling molecules are rapidly being discovered that may facilitate the induction of these cells to mount appropriate therapeutic responses. The extent of SVZ neurogenesis in humans is controversial. However, tantalizing new data suggest that humans are capable of generating increased numbers of neurons after a variety of diseases.
Collapse
Affiliation(s)
- Yongsoo Kim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | | |
Collapse
|
761
|
Abstract
Evidence accumulated in the last decade indicating that psychoactive substances negatively influence neurogenesis in the adult hippocampus has provided new insights into the neurobiology of drug addiction. Using a variety of experimental approaches and treatments, drugs such as psychomotor stimulants, opioids, alcohol and psychedelic compounds have been shown to alter one or several aspects of adult neurogenesis, including the rate of progenitor proliferation, the survival of newly generated cells, and the maturation and acquisition of cellular phenotype. This evidence, though critical from a neurotoxicological standpoint, cannot be linked unambiguously to the process of drug dependence at this stage of research. Drug addiction is a complex recurrent process involving the acquisition and maintenance of drug taking, followed by detoxification, abstinence and eventual relapse to drug seeking. The specific contribution of adult hippocampal neurogenesis to each of these processes is yet to be determined. This notwithstanding, the suggested role of the hippocampus in the storage and retrieval of declarative and contextual memories on the one hand, and in the regulation of mood and affect on the other, provides a fertile ground for further exploring the mutual relationships between postnatal hippocampal neurogenesis and addictive behaviours.
Collapse
Affiliation(s)
- Juan J Canales
- Laboratory of Biopsychology and Comparative Neuroscience, Cavanilles Institute (ICBiBE), University of Valencia-General Foundation, Polígono de la Coma s/n, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
762
|
Platel JC, Lacar B, Bordey A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Histol 2007; 38:303-11. [PMID: 17554632 PMCID: PMC2556597 DOI: 10.1007/s10735-007-9103-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/17/2007] [Indexed: 01/19/2023]
Abstract
The neurotransmitter GABA exerts a strong negative influence on the production of adult-born olfactory bulb interneurons via tightly regulated, non-synaptic GABAergic signaling. After discussing some findings on GABAergic signaling in the neurogenic subventricular zone (SVZ), we provide data suggesting ambient GABA clearance via two GABA transporter subtypes and further support for a non-vesicular mechanism of GABA release from neuroblasts. While GABA works in cooperation with the neurotransmitter glutamate during embryonic cortical development, the role of glutamate in adult forebrain neurogenesis remains obscure. Only one of the eight metabotropic glutamate receptors (mGluRs), mGluR5, has been reported to tonically increase the number of proliferative SVZ cells in vivo, suggesting a local source of glutamate in the SVZ. We show here that glutamate antibodies strongly label subventricular zone (SVZ) astrocytes, some of which are stem cells. We also show that some SVZ neuroblasts express one of the ionotropic glutamate receptors, AMPA/kainate receptors, earlier than previously thought. Collectively, these findings suggest that neuroblast-to-astrocyte GABAergic signaling may cooperate with astrocyte-to-neuroblast glutamatergic signaling to provide strong homeostatic control on the production of adult-born olfactory bulb interneurons.
Collapse
Affiliation(s)
- Jean-Claude Platel
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
763
|
Walton RM, Wolfe JH. Abnormalities in Neural Progenitor Cells in a Dog Model of Lysosomal Storage Disease. J Neuropathol Exp Neurol 2007; 66:760-9. [PMID: 17882020 DOI: 10.1097/nen.0b013e31812571c8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lysosomal storage disorders constitute a large group of genetic diseases, many of which are characterized by mental retardation and other neurologic symptoms. The mechanisms of neural dysfunction remain poorly understood. Because neural progenitor cells (NPCs) are fundamentally important to normal brain development and function, we investigated NPC properties in a canine model of mucopolysaccharidosis VII (MPS VII). MPS VII is a lysosomal storage disorder characterized by defects in the catabolism of glycosaminoglycans. NPCs were isolated from the olfactory bulb, cerebellum, and striatal subventricular zone of normal and MPS VII (beta-glucuronidase-deficient) postnatal dog brains. Canine NPCs (cNPCs) from normal and MPS VII brains had similar growth curves, but cerebellar-derived cNPCs grew significantly slower than those derived from other regions. In differentiation assays, MPS VII cNPCs from the striatal subventricular zone and cerebellum generated fewer mature neuronal and/or glial cells than normal, and MPS VII olfactory bulb-derived cNPCs retained significantly more phenotypically immature cells. These differences were only present at the earliest time point after isolation; at later passages, there were no differences attributable to genotype. The data suggest that MPS VII cNPCs respond differently to developmental cues in vivo, probably because of the diseased neural microenvironment rather than intrinsic cellular deficits.
Collapse
Affiliation(s)
- Raquel M Walton
- W F Goodman Center for Comparative Medical Genetics, and Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
764
|
Abstract
It is now widely accepted that neurogenesis occurs in two regions of the adult mammalian brain--the hippocampus and the olfactory bulb. There is evidence for adult neurogenesis in several additional areas, including the neocortex, striatum, amygdala and substantia nigra, but this has been difficult to replicate consistently other than in the damaged brain. The discrepancies may be due to variations in the sensitivity of the methods used to detect new neurons.
Collapse
Affiliation(s)
- Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
765
|
Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S, Berger MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 2007; 9:424-9. [PMID: 17622647 PMCID: PMC1994099 DOI: 10.1215/15228517-2007-023] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells with astrocyte-like characteristics exist in the human brain subventricular zone (SVZ), and these cells may give rise to glioblastoma multiforme (GBM). We therefore analyzed MRI features of GBMs in specific relation to the SVZ. We reviewed the preoperative and serial postoperative MR images of 53 patients with newly diagnosed GBM. The spatial relationship of the contrast-enhancing lesion (CEL) with the SVZ and cortex was determined preoperatively. Classification was as follows: group I, CEL contacting SVZ and infiltrating cortex; group II, CEL contacting SVZ but not involving cortex; group III, CEL not contacting SVZ but involving cortex; and group IV, CEL neither contacting SVZ nor infiltrating cortex. Patients with group I GBMs (n = 16) were most likely to have multifocal disease at diagnosis (9 patients, 56%, p = 0.001). In contrast, group IV GBMs (n = 14) were never multifocal. Group II (n = 14) and group III (n = 9) GBMs were multifocal in 11% and 29% of cases, respectively. Group I GBMs always had tumor recurrences noncontiguous with the initial lesion(s), while group IV GBM recurrences were always bordering the primary lesion. Group I GBMs may be most related to SVZ stem cells; these tumors were in intimate contact with the SVZ, were most likely to be multifocal at diagnosis, and recurred at great distances to the initial lesion(s). In contrast, group IV GBMs were always solitary lesions; these may arise from non-SVZ, white matter glial progenitors. Our MRI-based classification of GBMs may further our understanding of GBM histogenesis and help predict tumor recurrence pattern.
Collapse
Affiliation(s)
- Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
766
|
Ortega-Perez I, Murray K, Lledo PM. The how and why of adult neurogenesis. J Mol Histol 2007; 38:555-62. [PMID: 17605077 DOI: 10.1007/s10735-007-9114-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/09/2007] [Indexed: 01/12/2023]
Abstract
Brain plasticity refers to the brain's ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. "Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain 'know' that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? "[corrected].Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.
Collapse
Affiliation(s)
- Inmaculada Ortega-Perez
- Laboratory for Perception and Memory, Pasteur Institute, CNRS URA 2182, Paris Cedex 15, 75724, France.
| | | | | |
Collapse
|
767
|
Juan L, Dawei Z, Julie AD. Increased number and differentiation of neural precursor cells in the brainstem of superoxide dismutase 1(G93A) (G1H) transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 2007; 29:204-9. [PMID: 17439705 DOI: 10.1179/174313206x152519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The superoxide dismutase 1(G93A G1H) (SOD1(G93A G1H)) transgenic mouse is a model of familial human amyotrophic lateral sclerosis (ALS) that has progressive neurodegeneration within the spinal cord and brainstem. In this study, we investigated the number and differentiation of neural precursor cells (NPCs). Nestin-positive NPCs were rarely seen in the nervous system of wild type controls or pre-disease mice at post-natal days 30 and 60. With disease onset on post-natal day 90, nestin labeled NPCs proliferated preferentially in the brainstem with maximal number and density at post-natal day 120. NPCs did not double-label with CNPase or O(4) markers of oligodendrocytes. The majority of the NPCs co-labeled with the astrocyte maker glial fibrillary acidic protein (GFAP) and a small number with the neuronal marker NeuN. At disease onset, 73 and 10% of NPCs co-expressed GFAP and NeuN respectively while at severe disease stage, 80 and 8% of the NPCs co-expressed GFAP and NeuN. Proliferating cell nuclear antigen (PCNA) was used to confirm that at least some of these cells undergo mitosis. Future studies could be directed at controlling the differentiation of these endogenous NPCs into neurons and astrocytes in order to ameliorate the degeneration within the brainstem of the ALS mouse.
Collapse
Affiliation(s)
- Liu Juan
- Department of Laboratory Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | | | | |
Collapse
|
768
|
Abstract
The concept of brain tumor stem cells is gaining increased recognition in neuro-oncology. Until recently, the paradigm of a tumor-initiating stem cell was confined to hematopoietic malignancies where the hierarchical lineages of stem progenitor cells are well established. The demonstration of persistent stem cells and cycling progenitors in the adult brain, coupled with the expansion of the cancer stem cell concept to solid tumors, has led to the exploration of "stemness" within gliomas. Emerging data are highly suggestive of the subsistence of transformed multipotential cells within a glioma, with a subfraction of cells exhibiting increased efficiency at tumor initiation. However, data in support of true glioma stem cells are inconclusive to date, particularly with respect to functional characterization of these cells. Ongoing work aims at the identification of unique pathways governing self-renewal of these putative stem cells and at their validation as ultimate therapeutic targets.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Division of Neurosurgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, C711, New York, NY 10021, USA
| | | |
Collapse
|
769
|
Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res 2007; 85:1647-55. [PMID: 17455304 DOI: 10.1002/jnr.21303] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the adult human brain, the presence of neural stem cells has been documented in the subgranular layer of the dentate gyrus of the hippocampus and in the subventricular zone of the lateral ventricles. Neurogenesis has also been reported in rodent models of ischemic stroke, traumatic brain injury, epileptic seizures, and intracerebral or subarachnoid hemorrhage. However, only sparse information is available about the occurrence of neurogenesis in the human brain under similar pathological conditions. In the present report, we describe neural progenitor cell proliferation in the brain of patients suffering from subarachnoid hemorrhage (SAH) resulting from ruptured aneurysm. Ten cerebral samples from both SAH and control patients obtained, respectively, during aneurysm clipping and deep brain tumor removal were analyzed by reverse transcription followed by polymerase chain reaction (RT-PCR) and/or immunohistochemistry (IHC). In tissue specimens from SAH patients, RT-PCR and IHC revealed the expression of a variety of markers consistent with CNS progenitor cells, including nestin, vimentin, SOX-2, and Musashi1 and -2. In the same specimens, double immunohistochemistry followed by confocal analysis revealed that Musashi2 consistently colocalized with the proliferation marker Ki67. By contrast, no such gene or protein expression profiles were detected in any of the control specimens. Thus, activation of neural progenitor cell proliferation may occur in adult human brain following subarachnoid hemorrhage, possibly contributing to the promotion of spontaneous recovery, in this pathological condition.
Collapse
Affiliation(s)
- D Sgubin
- B.R.A.I.N. Centre for Neuroscience, Department of Physiology and Pathology, University of Trieste, and Neurosurgery Unit, Treviso Hospital, Italy
| | | | | | | | | |
Collapse
|
770
|
Amrein I, Dechmann DK, Winter Y, Lipp HP. Absent or low rate of adult neurogenesis in the hippocampus of bats (Chiroptera). PLoS One 2007; 2:e455. [PMID: 17520014 PMCID: PMC1866182 DOI: 10.1371/journal.pone.0000455] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 04/13/2007] [Indexed: 11/19/2022] Open
Abstract
Bats are the only flying mammals and have well developed navigation abilities for 3D-space. Even bats with comparatively small home ranges cover much larger territories than rodents, and long-distance migration by some species is unique among small mammals. Adult proliferation of neurons, i.e., adult neurogenesis, in the dentate gyrus of rodents is thought to play an important role in spatial memory and learning, as indicated by lesion studies and recordings of neurons active during spatial behavior. Assuming a role of adult neurogenesis in hippocampal function, one might expect high levels of adult neurogenesis in bats, particularly among fruit- and nectar-eating bats in need of excellent spatial working memory. The dentate gyrus of 12 tropical bat species was examined immunohistochemically, using multiple antibodies against proteins specific for proliferating cells (Ki-67, MCM2), and migrating and differentiating neurons (Doublecortin, NeuroD). Our data show a complete lack of hippocampal neurogenesis in nine of the species (Glossophaga soricina, Carollia perspicillata, Phyllostomus discolor, Nycteris macrotis, Nycteris thebaica, Hipposideros cyclops, Neoromicia rendalli, Pipistrellus guineensis, and Scotophilus leucogaster), while it was present at low levels in three species (Chaerephon pumila, Mops condylurus and Hipposideros caffer). Although not all antigens were recognized in all species, proliferation activity in the subventricular zone and rostral migratory stream was found in all species, confirming the appropriateness of our methods for detecting neurogenesis. The small variation of adult hippocampal neurogenesis within our sample of bats showed no indication of a correlation with phylogenetic relationship, foraging strategy, type of hunting habitat or diet. Our data indicate that the widely accepted notion of adult neurogenesis supporting spatial abilities needs to be considered carefully. Given their astonishing longevity, certain bat species may be useful subjects to compare adult neurogenesis with other long-living species, such as monkeys and humans, showing low rates of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irmgard Amrein
- University of Zurich, Institute of Anatomy, Division of Neuroanatomy and Behavior, Zurich, Switzerland
| | - Dina K.N. Dechmann
- University of Zurich, Institute of Anatomy, Division of Neuroanatomy and Behavior, Zurich, Switzerland
| | - York Winter
- Department of Biology, University of Munich, Munich, Germany
| | - Hans-Peter Lipp
- University of Zurich, Institute of Anatomy, Division of Neuroanatomy and Behavior, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
771
|
Schrot RJ, Ma JH, Greco CM, Arias AD, Angelastro JM. Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme. J Neurooncol 2007; 85:149-57. [PMID: 17516028 DOI: 10.1007/s11060-007-9401-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
The role of stem cells in the origin, growth patterns, and infiltration of glioblastoma multiforme is a subject of intense investigation. One possibility is that glioblastoma may arise from transformed stem cells in the ventricular zone. To explore this hypothesis, we examined the distribution of two stem cell markers, activating transcription factor 5 (ATF5) and CD133, in an autopsy brain specimen from an individual with glioblastoma multiforme. A 41-year-old male with a right posterior temporal glioblastoma had undergone surgery, radiation, and chemotherapy. The brain was harvested within several hours after death. After formalin fixation, sectioning, and mapping of tumor location in the gross specimen, histologic specimens were prepared from tumor-bearing and grossly normal hemispheres. Fluorescence immunohistochemistry and colorimetric staining were performed for ATF5 and CD133. Both markers co-localized to the ependymal and subependymal zones on the side of the tumor, but not in the normal hemisphere or more rostrally in the affected hemisphere. ATF5 staining was especially robust within the diseased hemisphere in histologically normal ependyma. To our knowledge, this is the first in situ demonstration of stem cell markers in whole human brain. These preliminary results support the hypothesis that some glioblastomas may arise from the neurogenic zone of the lateral ventricle. The robust staining for ATF5 and CD133 in histologically normal ventricular zone suggests that an increase in periventricular stem cell activity occurred in this patient on the side of the tumor, either as a localized response to brain injury or as an integral component of oncogenesis and tumor recurrence.
Collapse
Affiliation(s)
- Rudolph J Schrot
- Department of Neurological Surgery, UC Davis Medical Center, 4860 Y Street, Suite 3740, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
772
|
Endogenous Neural Stem Cells in the Adult Brain. J Neuroimmune Pharmacol 2007; 2:236-42. [DOI: 10.1007/s11481-007-9076-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/24/2007] [Indexed: 01/18/2023]
|
773
|
Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, Weiss S. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 2007; 27:983-97. [PMID: 16985505 DOI: 10.1038/sj.jcbfm.9600402] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies suggest that proliferation in the adult forebrain subventricular zone increases in response to a forebrain stroke and intraventricular infusions of growth factors enhance this response. The potential for growth factor infusions to regenerate the damaged motor cortex and promote recovery of motor function after stroke has not been examined. Here, we report that intraventricular infusions of epidermal growth factor and erythropoietin together, but not individually, promote substantial regeneration of the damaged cerebral cortex and reverse impairments in spontaneous and skilled motor tasks, in a rat model of stroke. Cortical regeneration and functional recovery occurred even when growth factor administration was delayed for up to 7 days after the stroke-induced lesion. Cell tracking demonstrated the contribution of neural precursors originating in the forebrain subventricular zone to the regenerated cortex. Strikingly, removal of the regenerated cortical tissue reversed the growth factor-induced functional recovery. These findings reveal that specific combinations of growth factors can mobilize endogenous adult neural stem cells to promote cortical tissue re-growth and functional recovery after stroke.
Collapse
Affiliation(s)
- Bryan Kolb
- Department of Psychology, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
774
|
Wei P, Liu J, Zhou HL, Han ZT, Wu QY, Pang JX, Liu S, Wang TH. Effects of engrafted neural stem cells derived from GFP transgenic mice in Parkinson's diseases rats. Neurosci Lett 2007; 419:49-54. [PMID: 17420097 DOI: 10.1016/j.neulet.2007.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/24/2007] [Accepted: 03/20/2007] [Indexed: 01/14/2023]
Abstract
This study evaluated the therapeutic effect of neural stem cells (NSCs) transplanted into Parkinson's disease (PD) rats. NSCs were identified in vitro, then engrafted into the striatum of the PD rats. The rotational behavior was evaluated 1, 2, 4 and 6 weeks. A significant rotational behavior improvement was observed in PD rats subjected to cell transplantation. Transplanted NSCs not only express Nerve growth factor and Neurotrophin-3 in vitro, but also survive and partly differentiate into tyrosine hydroxylase (TH) positive cells in vivo. The results show that NSCs could be effective for PD treatment and the mechanisms might involve the neurotrophin expression and the neural differentiation.
Collapse
Affiliation(s)
- Peng Wei
- Renmin Western Road No. 191, Institute of Neuroscience, Kunming Medical College, 650031, China
| | | | | | | | | | | | | | | |
Collapse
|
775
|
Barani IJ, Cuttino LW, Benedict SH, Todor D, Bump EA, Wu Y, Chung TD, Broaddus WC, Lin PS. Neural stem cell-preserving external-beam radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys 2007; 68:978-85. [PMID: 17467925 DOI: 10.1016/j.ijrobp.2007.01.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/26/2022]
Abstract
PURPOSE Recent discoveries have implicated neural stem cells (NSC) as the source of plasticity and repair in the mature mammalian brain. Treatment-induced NSC dysfunction may lead to observed toxicity. This study evaluates the feasibility of NSC-preserving external beam radiotherapy. METHODS AND MATERIALS A single computed tomography (CT) dataset depicting a right periventricular lesion was used in this study as this location reflects the most problematic geometric arrangement with respect to NSC preservation. Conventional and NSC preserving radiotherapy (RT) plans were generated for the same lesion using two clinical scenarios: cerebral metastatic disease and primary high-grade glioma. Disease-specific target volumes were used. Metastatic disease was conventionally treated with whole-brain radiotherapy (WBRT) to 3,750 cGy (15 fractions) followed by a single stereotactic radiosurgery (SRS) boost of 1,800 cGy to gross disease only. High-grade glioma was treated with conventional opposed lateral and anterior superior oblique beams to 4,600 cGy (23 fractions) followed by a 1,400 cGy (7 fractions) boost. NSC preservation was achieved in both scenarios with inverse-planned intensity modulated radiotherapy (IMRT). RESULTS Cumulative dose reductions of 65% (metastatic disease) and 25% (high-grade glioma) to the total volume of the intracranial NSC compartments were achieved with NSC-preserving IMRT plans. The reduction of entry and exit dose to NSC niches located contralateral to the target contributed most to NSC preservation. CONCLUSIONS Neural stem cells preservation with current external beam radiotherapy techniques is achievable in context of both metastatic brain disease and high-grade glioma, even when the target is located adjacent to a stem cell compartment. Further investigation with clinical trials is warranted to evaluate whether NSC preservation will result in reduced toxicity.
Collapse
Affiliation(s)
- Igor J Barani
- Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
776
|
Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D. Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 2007; 28:206-13. [PMID: 17433452 DOI: 10.1016/j.tips.2007.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/12/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Cancer stem cells are currently a target for the treatment of malignant tumors. Transformed neural stem-progenitor cells of the brain subventricular zone and the external granular layer of the cerebellum are the putative cells of origin of malignant gliomas and medulloblastomas, which are the most frequent malignant brain tumors in adults and children, respectively. The proliferation of neural stem-progenitor cells is regulated by metabotropic glutamate (mGlu) receptors, which are G-protein-coupled receptors that are activated by glutamate, the major excitatory neurotransmitter of the CNS. At least two receptor subtypes - mGlu(3) and mGlu(4) receptors - control the proliferation of brain tumor cells, whereas mGlu(1) receptors have been implicated in the development of melanomas. We believe that individual mGlu receptor subtypes represent new potential targets for the treatment of several malignant tumors, including brain tumors.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Istituto Neurologico Mediterraneo Neuromed, Località Camerelle, Pozzilli 86079, Italy.
| | | | | | | | | | | |
Collapse
|
777
|
Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 2007; 361:1477-97. [PMID: 16939970 PMCID: PMC1664671 DOI: 10.1098/rstb.2006.1887] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.
Collapse
|
778
|
Abstract
With the hope of replacing neurons lost in traumatic brain injury (TBI), experimental models are being used to investigate TBI-induced neurogenesis. Although selectively vulnerable to TBI, the neurogenic hippocampus may have the unique ability to replace damaged neurons locally. Injury may also activate signaling pathways that induce neuroblasts from the subventricular zone to migrate to areas of focal cortical damage. Additionally, there is some evidence for local activation of latent neural progenitor cells in the injured neocortex itself. Each of these themes is discussed, with emphasis on the possibility of future therapeutic intervention.
Collapse
Affiliation(s)
- R Mark Richardson
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Avenue, Room M779, San Francisco, CA 94143-0112, USA.
| | | | | |
Collapse
|
779
|
Fomchenko EI, Holland EC. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg Clin N Am 2007; 18:39-58, viii. [PMID: 17244553 DOI: 10.1016/j.nec.2006.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelet-derived growth factor (PDGF) is a growth factor family of ligands and receptors known to activate phosphatidylinositol 3-kinase, mitogen-activated protein kinase, Jak family kinase, Src family kinase, and phospholipase Cgamma signal transduction pathways, some of which have been causally linked to glioma formation. Extensive involvement of PDGF in development and its implication in a variety of pathologic conditions, including gliomagenesis, are mediated not only by autocrine effects but by paracrine effects. Many researchers view brain tumors as clonal entities derived from the cancer stem cell; however, recent documentation of the importance of the tumor microenvironment for glioma initiation and progression as well as the ability of neural stem or progenitor cells to migrate toward the sites of injury or tumor formation reveals additional complexities in brain tumorigenesis. Paracrine effects of PDGF in animal models of gliomagenesis, continued adult neurogenesis capable of increasing in response to brain injury, and the growth factor-rich environment of brain tumors suggest that recruitment may play a role in gliomagenesis. In this view, glioma formation involves recruitment of cells from the adjacent brain and possibly other sites.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
780
|
Keyoung HM, Goldman SA. Glial progenitor-based repair of demyelinating neurological diseases. Neurosurg Clin N Am 2007; 18:93-104, x. [PMID: 17244557 DOI: 10.1016/j.nec.2006.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Demyelinating diseases of the brain and spinal cord affect more than one-quarter million of Americans, with numbers reaching more than two million across the world. These patients experience not only the vascular, traumatic, and inflammatory demyelinations of adulthood but the congenital and childhood dysmyelinating syndromes of the pediatric leukodystrophies. Several disease-modifying strategies have been developed that slow disease progression, especially in the inflammatory demyelinations and in multiple sclerosis in particular. Yet, currently available disease modifiers typically influence the immune system and are neither intended to nor competent to reverse the structural neurologic damage attending acquired demyelination. Fortunately, however, the disorders of myelin lend themselves well to attempts at structural repair, because central oligodendrocytes are the primary, and often sole, victims of the underlying disease process. Given the relative availability and homogeneity of human oligodendrocyte progenitor cells, the disorders of myelin formation and maintenance may be especially compelling targets for cell-based neurologic therapy.
Collapse
Affiliation(s)
- H Michael Keyoung
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779, PO Box 0470, San Francisco, CA 94143-0470, USA.
| | | |
Collapse
|
781
|
Abstract
The adult mammalian brain harbors a population of neural stem cells (NSCs) that are responsible for persistent neurogenesis in the olfactory system and hippocampus and may also play a role in tumorigenesis. Here, the authors review the evidence that NSCs within the adult brain are a special type of astrocyte. In addition, the authors examine the phylogenetic and ontogenetic relations between this astrocyte stem cell and related members of the astrocyte family. Finally, the authors compare and contrast the functional characteristics of NSCs and hematopoietic stem cells and review the potential oncogenic transformation of astrocyte NSCs that may underlie brain tumorigenesis as seen in glioblastoma and other primary brain tumors.
Collapse
Affiliation(s)
- Eric D Laywell
- Department of Anatomy and Cell Biology, The McKnight Brain Institute, The University of Florida, 100 South Newell Drive, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
782
|
Quiñones-Hinojosa A, Chaichana K. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 2007; 205:313-24. [PMID: 17459377 DOI: 10.1016/j.expneurol.2007.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 02/23/2007] [Accepted: 03/13/2007] [Indexed: 02/04/2023]
Abstract
The mammalian brain has been perceived as a quiescent organ incapable of postnatal neurogenesis for many years. Most recently, several studies have demonstrated that the adult mammalian brain is indeed capable of neurogenesis and that the process is primarily confined to the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus. Of these regions, the SVZ is the largest niche of neurogenesis in the adult mammalian brain. Within this niche resides a subpopulation of astrocytes with stem cell-like features of self-renewal and multipotentiality. Interestingly, there is also a subpopulation of cells within brain tumors that possess these same characteristics. Based on these findings, the emerging hypothesis is that brain tumor stem cells may be derived from neural stem cells and that both of these populations may originate from the SVZ. This possible connection stresses the importance of studying and understanding the role that the human SVZ plays in not only harboring neural and brain tumor stem cells, but how this microenvironment may support both neurogenesis and tumorigenesis. Furthermore, the obvious differences in the SVZ between humans and other animals make it important to understand the human model when studying human disease. Such an understanding may lead to novel therapeutic strategies for both neurodegenerative diseases and currently intractable brain tumors.
Collapse
Affiliation(s)
- Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
783
|
Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Höglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 2007; 104:4694-9. [PMID: 17360586 PMCID: PMC3025281 DOI: 10.1073/pnas.0606835104] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In multiple sclerosis (MS), oligodendrocyte and myelin destruction lead to demyelination with subsequent axonal loss. Experimental demyelination in rodents has highlighted the activation of the subventricular zone (SVZ) and the involvement of progenitor cells expressing the polysialylated form of neural cell adhesion molecule (PSA-NCAM) in the repair process. In this article, we studied the distribution of early PSA-NCAM(+) progenitors in the SVZ and MS lesions in human postmortem brains. Compared with controls, MS SVZ showed a 2- to 3-fold increase in cell density and proliferation, which correlated with enhanced numbers of PSA-NCAM(+) and glial fibrillary acidic protein-positive (GFAP(+)) cells. PSA-NCAM(+) progenitors mainly were Sox9(+), and a few expressed Sox10 and Olig2, markers of oligodendroglial specification. PSA-NCAM(+) progenitors expressing Sox10 and Olig2 also were detected in demyelinated MS lesions. In active and chronic active lesions, the number of PSA-NCAM(+) progenitors was 8-fold higher compared with chronic silent lesions, shadow plaques, and normal-appearing white matter. In active and chronic active lesions, PSA-NCAM(+) progenitors were more frequent in periventricular lesions (30-50%) than in lesions remote from the ventricular wall. These data indicate that, as in rodents, activation of gliogenesis in the SVZ occurs in MS and suggest the mobilization of SVZ-derived early glial progenitors to periventricular lesions, where they could give rise to oligodendrocyte precursors. These early glial progenitors could be a potential target for therapeutic strategies designed to promote myelin repair in MS.
Collapse
Affiliation(s)
- Brahim Nait-Oumesmar
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Neurologie, 75013 Paris, France
| | - Nathalie Picard-Riera
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
| | - Christophe Kerninon
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Neurologie, 75013 Paris, France
| | - Laurence Decker
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
| | - Danielle Seilhean
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Neurologie, 75013 Paris, France
| | - Günter U. Höglinger
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 679, 75651 Paris, France; and
| | - Etienne C. Hirsch
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 679, 75651 Paris, France; and
| | - Richard Reynolds
- Department of Cellular and Molecular Neuroscience, Imperial College London, London W6 8RF, United Kingdom
| | - Anne Baron-Van Evercooren
- *Institut National de la Santé et de la Recherche Médicale, Unité 546, 75013 Paris, France
- Université Pierre et Marie Curie–Paris 6, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Neurologie, 75013 Paris, France
- To whom correspondence should be addressed at:
Institut National de la Santé et de la Recherche Médicale, Unité 546, CHU Pitié-Salpêtrière, 105 Boulevard de l'Hôpital, 75013 Paris Cedex 13, France. E-mail:
| |
Collapse
|
784
|
|
785
|
Sergent-Tanguy S, Véziers J, Bonnamain V, Boudin H, Neveu I, Naveilhan P. Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (-) cell populations. Differentiation 2007; 74:530-41. [PMID: 17177850 DOI: 10.1111/j.1432-0436.2006.00098.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the hematopoietic lineage has been extensively studied using cluster of differentiation (CD) antibodies, very few data are available on the extracellular epitopes expressed by rat neural progenitors (rNPC) and their derivatives. In the present study, we used flow cytometry to screen 47 cell surface antigens, initially known as immune markers. The quantitative analyses were performed on rat neurospheres and compared with primary cultures of astroglial cells or cerebellar neurons. Several antigens such as CD80 or CD86 were clearly undetectable while others, like CD26 or CD161, showed a weak expression. Interestingly, 10% and 15% of the cells were immunopositive for CD172a and CD200, two immunoglobulin superfamily members preferentially expressed by glial or neuronal cells, respectively. Over 40% of the cells were immunopositive for CD3, CD71, or MHCI. The biological significance of the latter markers in rNPC remains to be determined but analyses of the CD3(-)/CD3(+) populations isolated by magnetic cell separation revealed differences in their cell fate. Indeed, CD3(+) cells did not establish neurospheres and differentiated mostly into GFAP(+) cells while CD3(-) cells were able to generate neurospheres upon mitogen treatment and gave rise to GFAP(+), A2B5(+), Tuj-1(+), and RIP(+) cells under differentiating conditions. In contrast, CD71(-)/CD71(+) cells did not show any significant difference in their proliferating and differentiating potentials. Finally, it is worth noting that an subpopulation of cells in rat neurospheres exhibit an immunoreactivity against anti-CD25 (IL2 receptor) and anti-CD62L (L-selectin) antibodies. The results reveal particular surface antigen profiles, giving new perspectives on the properties of rat brain-derived cells.
Collapse
|
786
|
Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007; 500:1007-33. [PMID: 17183554 PMCID: PMC2758702 DOI: 10.1002/cne.21229] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.
Collapse
Affiliation(s)
- Phuong B. Tran
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Anjen Chenn
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
787
|
Vergaño-Vera E, Yusta-Boyo MJ, de Castro F, Bernad A, de Pablo F, Vicario-Abejón C. Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development 2007; 133:4367-79. [PMID: 17038521 DOI: 10.1242/dev.02601] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During the embryonic period, many olfactory bulb (OB) interneurons arise in the lateral ganglionic eminence (LGE) from precursor cells expressing Dlx2, Gsh2 and Er81 transcription factors. Whether GABAergic and dopaminergic interneurons are also generated within the embryonic OB has not been studied thoroughly. In contrast to abundant Dlx2 and Gsh2 expression in ganglionic eminences (GE), Dlx2 and Gsh2 proteins are not expressed in the E12.5-13.5 mouse OB, whereas the telencephalic pallial domain marker Pax6 is abundant. We found GABAergic and dopaminergic neurons originating from dividing precursor cells in E13.5 OB and in short-term dissociated cultures prepared from the rostral half of E13.5 OB. In OB cultures, 22% of neurons were GAD+, of which 53% were Dlx2+, whereas none expressed Gsh2. By contrast, 70% of GAD+ cells in GE cultures were Dlx2+ and 16% expressed Gsh2. In E13.5 OB slices transplanted with EGFP-labeled E13.5 OB precursor cells, 31.7% of EGFP+ cells differentiated to GABAergic neurons. OB and LGE precursors transplanted into early postnatal OB migrated and differentiated in distinct patterns. Transplanted OB precursors gave rise to interneurons with dendritic spines in close proximity to synaptophysin-positive boutons. Interneurons were also abundant in differentiating OB neural stem cell cultures; the neurons responded to the neurotrophin Bdnf and expressed presynaptic proteins. In vivo, the Bdnf receptor TrkB colocalized with synaptic proteins at the glomeruli. These findings suggest that, in addition to receiving interneurons from the LGE, the embryonic OB contains molecularly distinct local precursor cells that generate mature GABAergic and dopaminergic neurons.
Collapse
Affiliation(s)
- Eva Vergaño-Vera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | | | | | | | | | | |
Collapse
|
788
|
Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtås S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 2007; 315:1243-9. [PMID: 17303719 DOI: 10.1126/science.1136281] [Citation(s) in RCA: 610] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone cells reach the olfactory bulb (OB) in rodents. However, the RMS in the adult human brain has been elusive. We demonstrate the presence of a human RMS, which is unexpectedly organized around a lateral ventricular extension reaching the OB, and illustrate the neuroblasts in it. The RMS ensheathing the lateral olfactory ventricular extension, as seen by magnetic resonance imaging, cell-specific markers, and electron microscopy, contains progenitor cells with migratory characteristics and cells that incorporate 5-bromo-2'-deoxyuridine and become mature neurons in the OB.
Collapse
Affiliation(s)
- Maurice A Curtis
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
789
|
Nicolis SK. Cancer stem cells and "stemness" genes in neuro-oncology. Neurobiol Dis 2007; 25:217-29. [PMID: 17141509 DOI: 10.1016/j.nbd.2006.08.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/27/2006] [Indexed: 11/29/2022] Open
Abstract
The main properties of stem cells include long-term self-renewal and the capacity to give rise to one or more types of differentiated progeny. Recently, much evidence was provided that leukemia and tumor maintenance and growth are sustained by a small proportion of cells exhibiting stem cell properties. In neural tumors, stem cells have been detected in glioblastoma, medulloblastoma and ependymoma. These observations imply that normal stem cells could be the origin of cancer stem cells; alternatively, a more differentiated progeny may revert to a "stem-like" status, and give rise to cancer stem cells. In adult brain residual stem cells are located in the hippocampus, the subventricular zone and possibly the cerebellum. However, evidence for the ability of more differentiated progeny (astroglia, oligodendroglia) to convert into "stem cells" in vitro has also been provided, thus greatly expanding the potential target of oncogenic mutations. In the framework of the cancer stem cell hypothesis, genes originally identified as important for normal neural stem cells may be essential to support cancer stem cells as well. Stem cell genes act in several ways: they stimulate stem cell self-replication, inhibit differentiation, control excessive replication that might lead to "exhaustion" of the stem cell pool. Mutations in man and mouse, in spontaneous or experimental brain tumors, often target stem cell genes or genes lying in their functional pathway, the main examples being the Sonic hedgehog and the Wnt pathways. Interestingly, several stem cell genes are often overexpressed in brain tumors, even if they are not mutated. This suggests that these genes may be important for the generation of cancer stem cells from more differentiated precursors, or for cancer stem cell maintenance. Cancer stem cells partially differentiate in vivo, and in vitro they also give rise to seemingly normal differentiated progeny, like normal stem cells: thus, their main defect, leading to cancer, may lie in the unbalance between self-replication and terminal differentiation of this minority cell population. Knowledge of extrinsic diffusible factors affecting the activity of stem cell genes may help identifying tools for inducing cancer stem cell differentiation, which might be of use in therapy.
Collapse
Affiliation(s)
- Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano Bicocca, piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
790
|
Abstract
Neural stem cells self-renew and give rise to neurons, astrocytes and oligodendrocytes. These cells hold great promise for neural repair after injury or disease. However, a great deal of information needs to be gathered before optimally using neural stem cells for neural repair. This brief review provides an introduction to neural stem cells and briefly describes some advances in neural stem-cell biology and biotechnology.
Collapse
Affiliation(s)
- Harley I Kornblum
- Semel Institute and Departments of Psychiatry, Pharmacology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angles, CA, USA.
| |
Collapse
|
791
|
Pluchino S, Zanotti L, Martino G. Rationale for the use of neural stem/precursor cells in immunemediated demyelinating disorders. J Neurol 2007. [DOI: 10.1007/s00415-007-1005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
792
|
Abstract
The generation and targeting of appropriate numbers and types of neurons to where they are needed in the brain is essential for the establishment, maintenance and modification of neural circuitry. This review aims to summarize the patterns, mechanisms and functional significance of neuronal migration in the postnatal brain, with an emphasis on the migratory events that persist in the mature brain.
Collapse
Affiliation(s)
- H Troy Ghashghaei
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, Room 7109B, 103 Mason Farm Road, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7250, USA
| | | | | |
Collapse
|
793
|
Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 2007; 26:13114-9. [PMID: 17167100 PMCID: PMC6674966 DOI: 10.1523/jneurosci.4667-06.2006] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adult human brain retains the capacity to generate new neurons in the hippocampal formation (Eriksson et al., 1998) and neuronal progenitor cells (NPCs) in the forebrain (Bernier et al., 2000), but to what extent it is capable of reacting to injuries, such as ischemia, is not known. We analyzed postmortem tissue from normal and pathological human brain tissue (n = 54) to study the cellular response to ischemic injury in the forebrain. We observed that cells expressing the NPC marker polysialylated neural adhesion cell molecule (PSA-NCAM) are continuously generated in the adult human subventricular zone (SVZ) and migrate along the olfactory tracts. These cells were not organized in migrating chains as in the adult rodent rostral migratory stream, and their number was lower in the olfactory tracts of brains from old (56-81 years of age) compared with young (29 + 36 years of age) individuals. Moreover, we show that in brains of patients of advanced age (60-87 years of age), ischemia led to an elevated number of Ki-67-positive cells in the ipsilateral SVZ without concomitant apoptotic cell death. Additionally, ischemia led to an increased number of PSA-NCAM-positive NPCs close to the lateral ventricular walls, compared with brains of comparable age without obvious neuropathologic changes. These results suggest that the adult human brain retains a capacity to respond to ischemic injuries and that this capacity is maintained even in old age.
Collapse
Affiliation(s)
- Jadranka Macas
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Christian Nern
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Karl H. Plate
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| |
Collapse
|
794
|
Zhu H, Dahlström A. Glial fibrillary acidic protein-expressing cells in the neurogenic regions in normal and injured adult brains. J Neurosci Res 2007; 85:2783-92. [PMID: 17394257 DOI: 10.1002/jnr.21257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the adult brain, neurogenic stem cells are prevalent in the subventricular zone (SVZ) of the lateral ventricle wall and the subgranular zone (SGZ) in the dentate gyrus. Cells that have structural and molecular characteristics of astrocytes function as neurogenic stem cells in these regions, in which these cells also participate in the creation of the microenvironment that stimulates neurogenesis. In the present paper, we review the phenotypic properties, subpopulations, and proliferation of glial fibrillary acidic protein (GFAP)-expressing cells in these two neurogenic regions and their responses to different brain injuries. Cells fulfilling the criteria for astrocytes, i.e., expressing GFAP, in the SVZ and SGZ respond differently to brain injuries or neurogenic stimuli. The importance of guidance by astrocytes of newly formed neuronal cells is emphasized. The assessment of GFAP-expressing cells in the neurogenic regions is of great importance for understanding the mechanism underlying the response of neural stem cells to brain injury.
Collapse
Affiliation(s)
- Hong Zhu
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
795
|
|
796
|
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11:69-82. [PMID: 17222791 DOI: 10.1016/j.ccr.2006.11.020] [Citation(s) in RCA: 1571] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/03/2006] [Accepted: 11/28/2006] [Indexed: 12/11/2022]
Abstract
Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain dependent upon the niche microenvironments that regulate normal stem cells. We show that endothelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are maintained within vascular niches that are important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Christopher Calabrese
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
797
|
Chaudhuri A, Hollands P, Bhattacharya N. Placental umbilical cord blood transfusion in acute ischaemic stroke. Med Hypotheses 2007; 69:1267-71. [DOI: 10.1016/j.mehy.2007.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/02/2007] [Indexed: 11/26/2022]
|
798
|
Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG. Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2007; 2:69-74. [PMID: 17465777 DOI: 10.2217/17460751.2.1.69] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.
Collapse
Affiliation(s)
- Stephen L Minger
- Stem Cell Biology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | | | | | | | | | | |
Collapse
|
799
|
Quiñones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. The Human Brain Subventricular Zone: Stem Cells in This Niche and Its Organization. Neurosurg Clin N Am 2007; 18:15-20, vii. [PMID: 17244550 DOI: 10.1016/j.nec.2006.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human brain harbors stem cells in the subventricular zone (SVZ). The authors have collected postmortem and intraoperative tissue from adult human patients and found that it contains a unique ribbon of astrocytes that proliferate in vivo and can function as neural stem cells in vitro. Furthermore, they have conducted an anatomic, cytoarchitectural, and ultrastructural study in complete postmortem brains to define the precise organization of the lateral walls of the human lateral ventricles. With immunohistochemistry, the authors mapped a proliferative glial fibrillary acidic protein (GFAP)--positive ribbon of astrocytic cells in the human SVZ. In this article, the authors report on four main types of SVZ walls in the human brain. Types A through C line the striatum from dorsal (type A), to middle (type B), to ventral (type C) regions along the lateral wall of the lateral ventricle. Type D wall lines the floor of the temporal horn over the hippocampus. Understanding the organization of the adult human SVZ represents a necessary first step in understanding cellular proliferation, precursor migration, and the neurogenic niche of the largest known germinal region in the adult human brain.
Collapse
Affiliation(s)
- Alfredo Quiñones-Hinojosa
- Stem Cell Laboratory, Brain Tumor Program, Department of Neurological Surgery, Johns Hopkins University School of Medicine, Cancer Research Building II, 1550 Orleans Street, Room 253, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
800
|
Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. ACTA ACUST UNITED AC 2007; 53:198-214. [DOI: 10.1016/j.brainresrev.2006.08.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/10/2006] [Accepted: 08/22/2006] [Indexed: 12/17/2022]
|