751
|
Thornton-Jones ZD, Kennett GA, Benwell KR, Revell DF, Misra A, Sellwood DM, Vickers SP, Clifton PG. The cannabinoid CB1 receptor inverse agonist, rimonabant, modifies body weight and adiponectin function in diet-induced obese rats as a consequence of reduced food intake. Pharmacol Biochem Behav 2006; 84:353-9. [PMID: 16814374 DOI: 10.1016/j.pbb.2006.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 05/09/2006] [Accepted: 06/01/2006] [Indexed: 11/26/2022]
Abstract
The cannabinoid CB1 receptor inverse agonist rimonabant induces hypophagia and body weight loss. Reduced body weight may potentially be due to decreased food intake or to direct metabolic effects of drug administration on energy expenditure. This study uses a paired-feeding protocol to quantify the contributions of energy intake to rimonabant-induced body weight loss. Diet-induced obese (DIO) rats were dosed with rimonabant (3, 10 mg/kg PO once daily) and matched with pair-fed controls. Food intake and body weight were measured daily. Blood samples and adipose tissue were collected on day 15 for measurement of plasma adiponectin and adiponectin mRNA levels. DIO rats treated with rimonabant and pair-fed controls showed very similar changes in body weight. Although tolerance developed to the anorectic effect of rimonabant, total food intake was significantly decreased over the 14-day study period and fully accounted for the observed reductions in body weight. Adiponectin mRNA and plasma adiponectin were elevated in vehicle-treated chow-fed animals compared to obese controls, and did not differ between rimonabant-treated and pair-fed animals. The similarities between rimonabant-treated and pair-fed animals in body weight loss and the absence of differences in measures of adiponectin activity between drug-treated and pair-fed animals suggest that the outcomes of this experiment were solely mediated by the drug-induced reduction in food intake.
Collapse
Affiliation(s)
- Zoë D Thornton-Jones
- Department of Psychology, John Maynard Smith Building, University of Sussex, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | | | |
Collapse
|
752
|
Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Marzo VD, Lutz B, Wotjak CT. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 2006; 26:6677-86. [PMID: 16793875 PMCID: PMC6673838 DOI: 10.1523/jneurosci.0153-06.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/05/2006] [Accepted: 04/25/2006] [Indexed: 11/21/2022] Open
Abstract
The interplay between fear expression and fear extinction provides an important prerequisite for adequate coping with aversive encounters. Current models propose that extinction of conditioned fear is mediated by associative safety learning. Here, we demonstrate that the cannabinoid CB1 receptor, which is crucially involved in fear extinction, is dispensable for associative safety learning. In fact, our results indicate that CB1 mediates fear extinction primarily via habituation-like processes. CB1 null-mutant mice were severely impaired not only in extinction of the fear response to a tone after fear conditioning but also in habituation of the fear response to a tone after sensitization with an inescapable footshock. Surprisingly, long-term habituation was generally affected even in situations with proper short-term adaptation, suggesting the existence of two separated CB1-dependent effector systems for short- and long-term fear adaptation. Our findings underscore the importance of habituation as a determinant of fear extinction in mice and characterize the cannabinoid CB1 receptor as an essential molecular correlate of this process.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Adaptation, Physiological/genetics
- Animals
- Behavior, Animal
- Conditioning, Psychological
- Evoked Potentials, Auditory/genetics
- Evoked Potentials, Auditory/physiology
- Extinction, Psychological/physiology
- Fear
- Habituation, Psychophysiologic/genetics
- Habituation, Psychophysiologic/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Time Factors
Collapse
|
753
|
Antel J, Gregory PC, Nordheim U. CB1 Cannabinoid Receptor Antagonists for Treatment of Obesity and Prevention of Comorbid Metabolic Disorders. J Med Chem 2006; 49:4008-16. [PMID: 16821760 DOI: 10.1021/jm058238r] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jochen Antel
- Solvay Pharmaceuticals Research Laboratories, Hans-Boeckler-Allee 20, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
754
|
Jensen MD. Potential role of new therapies in modifying cardiovascular risk in overweight patients with metabolic risk factors. Obesity (Silver Spring) 2006; 14 Suppl 3:143S-149S. [PMID: 16931496 DOI: 10.1038/oby.2006.294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serotonin, norepinephrine, dopamine, and endocannabinoid systems, as well as a host of other systems, mediate hunger and satiety signals. Weight loss agents that modulate appetite through pure central nervous system pathways (e.g., APD356, a selective serotonin receptor agonist) and peripheral signals to central nervous system pathways (e.g., cholecystokinin receptor agonists and ghrelin receptor antagonists) are in preclinical or early phase studies. Both devices and pharmacological compounds that facilitate weight loss and/or target multiple components of metabolic risk also are in development. One of the medications that has completed extensive phase III clinical trials and may become available in the foreseeable future is rimonabant, a selective cannabinoid 1-receptor antagonist. Drugs that improve adipose tissue function or fatty acid metabolism (e.g., AOD9604) also are in clinical trials. Some currently available medications may reduce metabolic complications without treating obesity per se (e.g., acipimox, pioglitazone). Surgically implanted gastric pacemaker systems that modulate vagus nerve activity and delay gastric emptying are under study.
Collapse
Affiliation(s)
- Michael D Jensen
- Endocrine Research Unit, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
755
|
Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, Serriere-Lanneau V, Ledent C, Mallat A, Lotersztajn S. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 2006; 12:671-6. [PMID: 16715087 DOI: 10.1038/nm1421] [Citation(s) in RCA: 420] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 04/28/2006] [Indexed: 01/06/2023]
Abstract
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/metabolism
- Disease Progression
- Female
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Piperidines/metabolism
- Piperidines/therapeutic use
- Pyrazoles/metabolism
- Pyrazoles/therapeutic use
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/metabolism
- Retrospective Studies
- Rimonabant
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
Collapse
|
756
|
Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 2006; 574:73-83. [PMID: 16709629 PMCID: PMC1817809 DOI: 10.1113/jphysiol.2006.113217] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a cellular fuel gauge that regulates metabolic pathways in glucose and fatty acid metabolism and protein synthesis. Recent data strongly implicate the AMPK-acetyl CoA carboxylase (ACC)-malonyl CoA pathway in the hypothalamus in the regulation of food intake, body weight and hepatic glucose production. Furthermore, data indicate that AMPK is a mediator of the effects of adipocyte-derived and gut-derived hormones and peptides on fatty acid oxidation and glucose uptake in peripheral tissues. Studies are now elucidating the potential role of kinases upstream of AMPK in these metabolic effects. In addition, recently, several novel downstream effectors of AMPK have been identified. The AMPK pathway in the hypothalamus and peripheral tissues coordinately integrates inputs from multiple hormones, peptides and nutrients to maintain energy homeostasis.
Collapse
Affiliation(s)
- Bingzhong Xue
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Research North 380C, Boston, MA 02215, USA
| | | |
Collapse
|
757
|
Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov 2006; 5:295-309. [PMID: 16582875 DOI: 10.1038/nrd2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The metabolic syndrome--a collection of factors associated with increased risk for cardiovascular disease and diabetes--is becoming increasingly common, largely as a result of the increase in the prevalence of obesity. Although it is generally agreed that first-line clinical intervention for the metabolic syndrome is lifestyle change, this is insufficient to normalize the risk factors in many patients, and so residual risk could be high enough to justify drug therapy. However, at present there are no approved drugs that can reliably reduce all of the metabolic risk factors over the long term, and so there is growing interest in therapeutic strategies that might target multiple risk factors more effectively, thereby minimizing problems with polypharmacy. This review summarizes current understanding of the nature of the metabolic syndrome, and discusses each of the risk factors of the metabolic syndrome as possible primary drug targets; potential secondary or tertiary targets are also considered.
Collapse
Affiliation(s)
- Scott M Grundy
- Center for Human Nutrition and Department of Clinical Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Y3.206, Dallas, Texas 75390-9052, USA.
| |
Collapse
|
758
|
Gelfand EV, Cannon CP. Rimonabant: A Cannabinoid Receptor Type 1 Blocker for Management of Multiple Cardiometabolic Risk Factors. J Am Coll Cardiol 2006; 47:1919-26. [PMID: 16697306 DOI: 10.1016/j.jacc.2005.12.067] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/14/2005] [Indexed: 11/20/2022]
Abstract
Rimonabant is a first selective blocker of the cannabinoid receptor type 1 (CB1) being developed for the treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking. In four large trials, after one year of treatment, rimonabant 20 mg led to greater weight loss and reduction in waist circumference compared with placebo. Therapy with rimonabant is also associated with favorable changes in serum lipid levels and an improvement in glycemic control in prediabetes patients and in type 2 diabetic patients. At the same dose, rimonabant significantly increased cigarette smoking quit rates as compared with placebo. Rimonabant seems to be well tolerated, with a primary side effect of mild nausea. As an agent with a novel mechanism of action, rimonabant has a potential to be a useful adjunct to lifestyle and behavior modification in treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking.
Collapse
Affiliation(s)
- Eli V Gelfand
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
759
|
Gelfand EV, Cannon CP. Rimonabant: a selective blocker of the cannabinoid CB1 receptors for the management of obesity, smoking cessation and cardiometabolic risk factors. Expert Opin Investig Drugs 2006; 15:307-15. [PMID: 16503766 DOI: 10.1517/13543784.15.3.307] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rimonabant is the first selective blocker of the cannabinoid CB1 receptors being developed for the treatment of obesity, tobacco smoking and cardiometabolic risk factors. Following 1 year of treatment, rimonabant 20 mg/day leads to greater weight loss compared with placebo. Therapy with rimonabant is also associated with favourable changes in serum lipids and an improvement in glycaemic control in Type 2 diabetics. At the same dose, rimonabant significantly increases the cigarette smoking quit rates compared with placebo. Rimonabant appears to be generally well tolerated, with primary side effects of mild nausea, diarrhoea, anxiety and depression. As an agent with a novel mechanism of action, rimonabant has the potential to be a useful adjunct to lifestyle modification in the treatment of obesity, metabolic syndrome and cigarette smoking.
Collapse
Affiliation(s)
- Eli V Gelfand
- Division of Cardiology/Baker 4, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
760
|
Davis MP, Walsh D, Lagman R, Yavuzsen T. Early satiety in cancer patients: a common and important but underrecognized symptom. Support Care Cancer 2006; 14:693-8. [PMID: 16773306 DOI: 10.1007/s00520-005-0015-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The severity of anorexia correlates with the presence of early satiety. The sense of fullness limits nutritional intake. The symptom is poorly understood because most assessment questionnaires do not include early satiety. METHODS Patients rarely volunteer early satiety. Central and peripheral mechanisms may be involved in the genesis of early satiety. These would include central sensory specific satiety, food aversions, diurnal changes in intake, gastric motility and accommodation and as gastrointestinal hormones. CONCLUSIONS Prokinetic medications, such as metoclopramide are used to treat early satiety. However, other medications which influence gastric accommodation such as clonidine, sumatriptan, or sildenafil, or diminish enteric afferent output such as kappa opioid receptor agonists, may favorably influence early satiety and should be subject to future research. Translational research is needed to understand the relationship of early satiety to gastric motility and accommodation.
Collapse
Affiliation(s)
- Mellar P Davis
- The Harry R Horvitz Center For Palliative Medicine, The Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA
| | | | | | | |
Collapse
|
761
|
|
762
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 698] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
763
|
de Godoy-Matos AF, Guedes EP, de Souza LL, Valério CM. O sistema endocanabinóide: novo paradigma no tratamento da síndrome metabólica. ACTA ACUST UNITED AC 2006; 50:390-9. [PMID: 16767305 DOI: 10.1590/s0004-27302006000200025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O balanço energético é um dos mais importantes mecanismos de homeostase e de sobrevivência das espécies. O sistema endocanabinóide é um novo e importante componente entre estes mecanismos. Os seus receptores e agonistas endógenos se expressam no sistema nervoso central (SNC) e perifericamente, em vários sítios, estabelecendo uma rede de comunicação periferiaSNC. Um aspecto marcante é a sua expressão no tecido adiposo, onde regula a lipogênese e aumenta a expressão de genes influentes no metabolismo dos lipídeos e dos carboidratos. Estes aspectos são importantes para o controle do peso corporal e da Síndrome Metabólica (SM). O sistema é ativado sob demanda e desativado rapidamente, atuando autócrina e paracrinamente, e as evidências sugerem que mantém-se hiperativado em estados de obesidade. Um antagonista específico do seu principal receptor (CB1), o Rimonabant, tem se mostrado importante ferramenta no controle do peso em modelos animais de obesidade e de SM. Da mesma forma, grandes estudos em humanos confirmam sua eficácia no controle do peso e das variáveis metabólicas, sugerindo um papel importante deste medicamento para o controle do risco cardiovascular associado à SM.
Collapse
Affiliation(s)
- Amélio F de Godoy-Matos
- Serviço de Metabologia e Nutrologia, Instituto Estadual de Diabetes e Endocrinologia, Rio de Janeiro, RJ.
| | | | | | | |
Collapse
|
764
|
Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. ACTA ACUST UNITED AC 2006; 50:27-56. [PMID: 15890410 DOI: 10.1016/j.brainresrev.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/04/2005] [Accepted: 04/05/2005] [Indexed: 12/18/2022]
Abstract
Although brain metabolism consumes high amounts of energy and is accompanied by intense heat production, brain temperature is usually considered a stable, tightly "regulated" homeostatic parameter. Current research, however, revealed relatively large and rapid brain temperature fluctuations (3-4 degrees C) in animals during various normal, physiological, and behavioral activities at stable ambient temperatures. This review discusses these data and demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production. Therefore, brain temperature is an important physiological parameter that both reflects alterations in metabolic neural activity and affects various neural functions. This work also shows that brain hyperthermia may be induced by various drugs of abuse that cause metabolic brain activation and impair heat dissipation. While individual drugs (i.e., heroin, cocaine, methamphetamine, MDMA) have specific, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by an individual's activity state and environmental conditions, and change dramatically during the development of drug self-administration. Thus, brain thermorecording may provide new information on the central effects of various addictive drugs, drug-activity-environment interactions in mediating drugs' adverse effects, and alterations in metabolic neural activity associated with the development of drug-seeking and drug-taking behavior. While ambient temperatures and impairment of heat dissipation may also affect brain temperature, these environmental conditions strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in pathological brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under activated conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock, Baltimore, MD 21224, USA.
| |
Collapse
|
765
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
766
|
Juan-Picó P, Fuentes E, Bermúdez-Silva FJ, Javier Díaz-Molina F, Ripoll C, Rodríguez de Fonseca F, Nadal A. Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 2006; 39:155-62. [PMID: 16321437 DOI: 10.1016/j.ceca.2005.10.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Insulin is the main hormone involved in the regulation of glycaemia, its impaired secretion is a hallmark of type I and type II diabetic individuals. Additionally, insulin is involved in lipogenesis and weight gain, provoking an anorexigenic action. The endocannabinoid system contributes to the physiological regulation of energy balance, food intake and lipid and glucose metabolisms. Despite that, an experimental link between the endocannabinoid system and the endocrine pancreas has not yet been described. Using quantitative real-time PCR and immunocytochemistry, we have demonstrated the existence of both CB1 and CB2 receptors in the endocrine pancreas. While the CB1 receptor is mainly expressed in non-beta-cells, the CB2 type exists in beta- and non-beta-cells within the islet. The endocannabinoid 2-arachidonylglycerol (2-AG) through CB2 receptors regulates [Ca(2+)](i) signals in beta-cells and as a consequence, it decreases insulin secretion. This effect may be a new component involved in the orexigenic effect of endocannabinoids and constitutes a potential target for pharmacologic manipulation of the energy balance.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Base Sequence
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Endocannabinoids
- Gene Expression
- Glycerides/pharmacology
- In Vitro Techniques
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Polyunsaturated Alkamides
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
Collapse
Affiliation(s)
- Pablo Juan-Picó
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Carretera Alicante-Valencia Km 87, Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
767
|
Hentges ST, Low MJ, Williams JT. Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 2006; 25:9746-51. [PMID: 16237178 PMCID: PMC6725733 DOI: 10.1523/jneurosci.2769-05.2005] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoid release from a single neuron has been shown to cause presynaptic inhibition of transmitter release at many different sites. Here, we demonstrate that hypothalamic proopiomelanocortin (POMC) neurons release endocannabinoids continuously under basal conditions, unlike other release sites at which endocannabinoid production must be stimulated. The basal endocannabinoid release selectively inhibited GABA release onto POMC neurons, although exogenous administration of cannabinoid agonists also inhibited glutamate release. The CB1 cannabinoid receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] blocked endocannabinoid-mediated inhibition of GABA release without affecting excitatory synaptic currents, whereas the CB1 receptor agonist WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol [1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate] inhibited both inhibitory and excitatory synaptic currents in POMC neurons. These data demonstrate that endogenously released cannabinoids and exogenously applied CB1 receptor agonists can have markedly different effects on synaptic inputs. Furthermore, the data suggest a novel form of endocannabinoid-mediated retrograde inhibition, whereby the regulation of a subset of inputs requires either the removal of tonic presynaptic inhibition caused by endocannabinoids or the engagement of a mechanism that actively inhibits endocannabinoid production.
Collapse
Affiliation(s)
- Shane T Hentges
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97329, USA.
| | | | | |
Collapse
|
768
|
Howard WJ. The metabolic syndrome: is a critical appraisal really necessary? The point of view of a practicing physician. Nutr Metab Cardiovasc Dis 2006; 16:85-87. [PMID: 16487907 DOI: 10.1016/j.numecd.2006.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 10/25/2022]
|
769
|
Tonstad S. Rimonabant: a cannabinoid receptor blocker for the treatment of metabolic and cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2006; 16:156-162. [PMID: 16487916 DOI: 10.1016/j.numecd.2005.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
AIMS The endocannabinoid system modulates synaptic neurotransmission centrally and peripherally and is involved in the brain pathways concerned with addiction, central regulation of body weight and adipose tissue function. The system is overactivated in animal models of obesity and nicotine use. This review discusses the role of rimonabant, a cannabinoid receptor 1 blocker, which has undergone Phase III clinical testing, in the treatment of obesity and tobacco dependence. DATA SYNTHESIS Results of Phase III clinical trials have shown that rimonabant has promising efficacy in the treatment of obesity, dyslipidaemia and diabetes associated with obesity, in preventing weight gain following smoking cessation, and possibly in smoking cessation. No critical problems with the tolerance and safety of the compound have appeared in studies to date. CONCLUSION Rimonabant may prove to be a useful aid in the treatment of the most widespread cardiometabolic risk factors.
Collapse
Affiliation(s)
- Serena Tonstad
- Department of Preventive Cardiology, Ullevål University Hospital, N-0407 Oslo, Norway.
| |
Collapse
|
770
|
Jo YH, Chen YJJ, Chua SC, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 2006; 48:1055-66. [PMID: 16364907 PMCID: PMC2280039 DOI: 10.1016/j.neuron.2005.10.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/22/2005] [Accepted: 10/05/2005] [Indexed: 12/18/2022]
Abstract
Recently developed therapeutics for obesity, targeted against cannabinoid receptors, result in decreased appetite and sustained weight loss. Prior studies have demonstrated CB1 receptors (CB1Rs) and leptin modulation of cannabinoid synthesis in hypothalamic neurons. Here, we show that depolarization of perifornical lateral hypothalamus (LH) neurons elicits a CB1R-mediated suppression of inhibition in local circuits thought to be involved in appetite and "natural reward." The depolarization-induced decrease in inhibitory tone to LH neurons is blocked by leptin. Leptin inhibits voltage-gated calcium channels in LH neurons via the activation of janus kinase 2 (JAK2) and of mitogen-activated protein kinase (MAPK). Leptin-deficient mice are characterized by both an increase in steady-state voltage-gated calcium currents in LH neurons and a CB1R-mediated depolarization-induced suppression of inhibition that is 6-fold longer than that in littermate controls. Our data provide direct electrophysiological support for the involvement of endocannabinoids and leptin as modulators of hypothalamic circuits underlying motivational aspects of feeding behavior.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Pathology and Cell Biology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
771
|
Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND. Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res 2006; 164:206-13. [PMID: 16140402 DOI: 10.1016/j.bbr.2005.06.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 06/06/2005] [Accepted: 06/12/2005] [Indexed: 10/25/2022]
Abstract
Cannabinoids are postulated to play a role in modulating the reinforcing effects of abused drugs, including alcohol. Experiment 1 examined alcohol self-administration in cannabinoid CB1 receptor knockout (KO), heterozygous (HT) and wild type (WT) mice in a two-bottle choice paradigm. Mice were trained in a limited 8 h access/day to 10% (v/v) EtOH (EtOH) versus water. After baseline drinking levels (% EtOH preference and total EtOH intake (g/kg)), results indicated that the CB1 knockout mice displayed significantly lower baseline EtOH consumption compared to wild type mice. Subsequently, treatment with SR141716A (5mg/kg) significantly attenuated EtOH intake in the WT and HT mice but had little effect on the knockout mice. Experiment 2 examined the CB1 WT and CB1 KO strains in a conditioned place preference (CPP) procedure between saline and 2g/kg EtOH. The CB1 WT mice spent significantly more time in the EtOH-paired versus saline-paired chambers, whereas no significant preference was observed in the CB1 KO mice. Finally, we observed that CB1 KO mice were significantly lighter than WT and HT and that SR141716A did not significantly alter body weight. These results demonstrate that the cannabinoid CB1 receptor is an essential component of the molecular pathways underlying the reinforcing effects of alcohol. Thus, medications targeting the CB1 receptors may be beneficial for the treatment of alcoholism.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Analysis of Variance
- Animals
- Central Nervous System Depressants/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Environment
- Ethanol/pharmacology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Reward
- Self Administration
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Pharmacology Lab, Department of Medicine, Brookhaven National Laboratory, Building 490, 30 Bell Avenue, Upton, NY 11973-5000, USA.
| | | | | | | | | |
Collapse
|
772
|
Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006; 27:73-100. [PMID: 16306385 DOI: 10.1210/er.2005-0009] [Citation(s) in RCA: 602] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases, including obesity.
Collapse
Affiliation(s)
- Uberto Pagotto
- Endocrinology Unit, Department of Internal Medicine and Gastroenterology, Sant' Orsola-Malpighi Hospital, Bologna, Italy, and Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | | | |
Collapse
|
773
|
Jobst EE, Enriori PJ, Sinnayah P, Cowley MA. Hypothalamic regulatory pathways and potential obesity treatment targets. Endocrine 2006; 29:33-48. [PMID: 16622291 DOI: 10.1385/endo:29:1:33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/08/2005] [Indexed: 12/25/2022]
Abstract
With an ever-growing population of obese people as well as comorbidities associated with obesity, finding effective weight loss strategies is more imperative than ever. One of the challenges in curbing the obesity crisis is designing successful strategies for long-term weight loss and weight-loss maintenance. Currently, weight-loss strategies include promotion of therapeutic lifestyle changes (diet and exercise), pharmacological therapy, and bariatric surgery. This review focuses on several pharmacological targets that activate central nervous system pathways that normally limit food intake and body weight. Though it is likely that no single therapy will prove effective for everyone, this review considers several recent pre-clinical targets, and several compounds that have been in human clinical trials.
Collapse
Affiliation(s)
- Erin E Jobst
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
774
|
Bermúdez-Siva FJ, Serrano A, Diaz-Molina FJ, Sánchez Vera I, Juan-Pico P, Nadal A, Fuentes E, Rodríguez de Fonseca F. Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur J Pharmacol 2006; 531:282-4. [PMID: 16423347 DOI: 10.1016/j.ejphar.2005.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/12/2005] [Indexed: 11/21/2022]
Abstract
Recent reports have described the presence of cannabinoid CB1 receptors in pancreatic islets. Here we show that administration of the endogenous cannabinoid anandamide or the selective cannabinoid CB1 receptor agonist Arachidonyl-2'-chloroethylamide (ACEA) results in glucose intolerance after a glucose load. This effect is reversed by the selective cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). These results suggest that targeting cannabinoid CB1 receptors may serve as new therapeutic alternatives for metabolic disorders such as diabetes.
Collapse
|
775
|
Wiley JL, Burston JJ, Leggett DC, Alekseeva OO, Razdan RK, Mahadevan A, Martin BR. CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 2006; 145:293-300. [PMID: 15778743 PMCID: PMC1576140 DOI: 10.1038/sj.bjp.0706157] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Marijuana's appetite-increasing effects have long been known. Recent research suggests that the CB(1) cannabinoid receptor antagonist SR141716A may suppress appetite. This study represents a further, systematic investigation of the role of CB(1) cannabinoid receptors in the pharmacological effects of cannabinoids on food intake. 2 Mice were food-restricted for 24 h and then allowed access to their regular rodent chow for 1 h. Whereas the CB(1) antagonist SR141716A dose-dependently decreased food consumption at doses that did not affect motor activity, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) increased food consumption at doses that had no effect on motor activity. O-3259 and O-3257, structural analogs of SR141716A, produced effects similar to those of the parent compound. 3 Amphetamine (a known anorectic) and diazepam (a benzodiazepine and CNS depressant) decreased food consumption, but only at doses that also increased or decreased motor activity, respectively. The CB(2) cannabinoid receptor antagonist SR144528 and the nonpsychoactive cannabinoid cannabidiol did not affect food intake nor activity. 4 SR141716A decreased feeding in wild-type mice, but lacked pharmacological activity in CB(1) knockout mice; however, basal food intake was lower in CB(1) knockout mice. Amphetamine decreased feeding in both mouse genotypes. 5 These results suggest that SR141716A may affect the actions of endogenous cannabinoids in regulating appetite or that it may have effects of its own aside from antagonism of cannabinoid effects (e.g., decreased feeding behavior and locomotor stimulation). In either case, these results strongly suggest that CB(1) receptors may play a role in regulation of feeding behavior.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Dronabinol/chemistry
- Dronabinol/pharmacology
- Eating/drug effects
- Eating/physiology
- Female
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Piperidines/chemistry
- Piperidines/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
Collapse
Affiliation(s)
- Jenny L Wiley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| | | | | | | | | | | | | |
Collapse
|
776
|
Hill MN, Gorzalka BB. Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 2006; 16:333-52. [PMID: 16148438 DOI: 10.1097/00008877-200509000-00006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With advances in basic and clinical neuroscience, many gaps have appeared in the traditional monoamine theory of depression that have led to reformulation of the hypotheses concerning the neurobiology of depression. The more recent hypotheses suggest that melancholic depression is characterized by central glucocorticoid resistance that results in hypercortisolemia, which in turn leads to down-regulation of neurotrophins and subsequent neurodegeneration. Examining the neurobiology of depression from this perspective suggests that the endocannabinoid system may play a role in the etiology of melancholic depression. Specifically, pharmacological and genetic blockade of the cannabinoid CB1 receptor induces a phenotypic state that is analogous to melancholic depression, including symptoms such as reduced food intake, heightened anxiety, increased arousal and wakefulness, deficits in extinction of aversive memories and supersensitivity to stress. These similarities between melancholic depression and an endocannabinoid deficiency become more interesting in light of recent findings that endocannabinoid activity is down-regulated by chronic stress and possibly increased by some antidepressant regimens. We propose that an endocannabinoid deficiency may underlie some of the symptoms of melancholic depression, and that enhancement of this system may ultimately be a novel form of pharmacotherapy for treatment-resistant depression.
Collapse
Affiliation(s)
- M N Hill
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
777
|
Abstract
The discovery of cannabinoid receptors, together with the development of selective cannabinoid receptor antagonists, has encouraged a resurgence of cannabinoid pharmacology. With the identification of endogenous agonists, such as anandamide, scientists have sought to uncover the biological role of endocannabinoid systems; initially guided by the long-established actions of cannabis and exogenous cannabinoids such as delta9-tetrahydrocannabinol (THC). In particular, considerable research has examined endocannabinoid involvement in appetite, eating behaviour and body weight regulation. It is now confirmed that endocannabinoids, acting at brain CB1 cannabinoid receptors, stimulate appetite and ingestive behaviours, partly through interactions with more established orexigenic and anorexigenic signals. Key structures such as the nucleus accumbens and hypothalamic nuclei are sensitive sites for the hyperphagic actions of these substances, and endocannabinoid activity in these regions varies in relation to nutritional status and feeding expression. Behavioural studies indicate that endocannabinoids increase eating motivation by enhancing the incentive salience and hedonic evaluation of ingesta. Moreover, there is strong evidence of an endocannabinoid role in energy metabolism and fuel storage. Recent developments point to potential clinical benefits of cannabinoid receptor antagonists in the management of obesity, and of agonists in the treatment of other disorders of eating and body weight regulation.
Collapse
Affiliation(s)
- T C Kirkham
- School of Psychology, University of Liverpool, Liverpool, England.
| |
Collapse
|
778
|
Järbe TUC, DiPatrizio NV. Delta9-THC induced hyperphagia and tolerance assessment: interactions between the CB1 receptor agonist delta9-THC and the CB1 receptor antagonist SR-141716 (rimonabant) in rats. Behav Pharmacol 2006; 16:373-80. [PMID: 16148441 DOI: 10.1097/00008877-200509000-00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examined effects of the CB1 receptor antagonist/inverse agonist SR-141716 and the CB1 receptor agonist delta9-tetrahydrocannabinol (delta9-THC) on feeding behavior in male Sprague-Dawley rats. Rats were housed individually with free access to regular pelletized laboratory chow [after a 2 weeks handling phase, animals had access to regular chow for 21 h (Study 1) or 22 h (Study 2); high-fat powder food for 3 h in Study 1 and 2 h in Study 2, respectively], and free access to water. Animals were maintained on a reversed 12-h light/dark cycle (dark beginning at noon). Rats were habituated to this type of feeding and light/dark schedule for 3 weeks until a stable baseline for food intake was achieved. In Study 1, animals were examined after administration of delta9-THC alone (dose range 0.1-1.8 mg/kg), SR-141716 alone (dose range 0.03-0.3 mg/kg), and the two drugs combined; injections were given i.p. at the beginning of the second hour after presenting the high-fat diet and drugs were given twice weekly. There was a dose-related increase in high-fat diet intake, peaking at 0.56-1 mg/kg delta9-THC. SR-141716 alone suppressed the high-fat diet intake below control levels. A combination of 0.3 mg/kg SR-141716 and 0.56 mg/kg delta9-THC counteracted the effects on consumption of either drug alone. In Study 2, experimental rats were treated initially with 0.56 mg/kg delta9-THC for six consecutive days; controls received vehicle. Attenuation of the hyperphagia (high-fat diet) was evident after the second injection. Increasing doses of delta9-THC (1 and 1.8 mg/kg, for two and three consecutive days, respectively) did not reinstate the initial hyperphagia. In conclusion, low-to-moderate doses of delta9-THC produced hyperphagia (to a high-fat food source), which was antagonized by SR-141716. SR-141716 singly suppressed intake of the high-fat diet. Delta9-THC-induced hyperphagia dissipated rapidly upon chronic treatment; however, it is unclear whether this reflects pharmacological tolerance or the emergence of a conditioned taste aversion in Study 2.
Collapse
Affiliation(s)
- T U C Järbe
- Temple University, Department of Psychology, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
779
|
Roche R, Hoareau L, Bes-Houtmann S, Gonthier MP, Laborde C, Baron JF, Haffaf Y, Cesari M, Festy F. Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem Cell Biol 2006; 126:177-87. [PMID: 16395612 DOI: 10.1007/s00418-005-0127-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2005] [Indexed: 02/06/2023]
Abstract
To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.
Collapse
Affiliation(s)
- Régis Roche
- LBGM, Laboratoire de Biochimie et de Génétique Moléculaire, Université de l'île de la Réunion, 15 avenue René Cassin, 97715 Saint Denis Messag Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
780
|
Adam J, Cowley PM, Kiyoi T, Morrison AJ, Mort CJW. Recent progress in cannabinoid research. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:207-329. [PMID: 16697899 DOI: 10.1016/s0079-6468(05)44406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Julia Adam
- Organon Research, Newhouse, Lanarkshire, Scotland, UK
| | | | | | | | | |
Collapse
|
781
|
Astarita G, Rourke BC, Andersen JB, Fu J, Kim JH, Bennett AF, Hicks JW, Piomelli D. Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus). Am J Physiol Regul Integr Comp Physiol 2005; 290:R1407-12. [PMID: 16373434 DOI: 10.1152/ajpregu.00664.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oleoylethanolamide (OEA) is an endogenous lipid mediator that inhibits feeding in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-alpha). In rodents, intestinal OEA levels increase about threefold upon refeeding, a response that may contribute to the induction of between-meal satiety. Here, we examined whether feeding-induced OEA mobilization also occurs in Burmese pythons (Python molurus), a species of ambush-hunting snakes that consume huge meals after months of fasting and undergo massive feeding-dependent changes in gastrointestinal hormonal release and gut morphology. Using liquid chromatography/mass spectrometry (LC/MS), we measured OEA levels in the gastrointestinal tract of fasted (28 days) and fed (48 h after feeding) pythons. We observed a nearly 300-fold increase in OEA levels in the small intestine of fed compared with fasted animals (322 +/- 121 vs. 1 +/- 1 pmol/mg protein, n = 3-4). In situ OEA biosynthesis was suggested by the concomitant increase of N-acyl phosphatidylethanolamine species that serve as potential biosynthetic precursors for OEA. Furthermore, we observed a concomitant increase in saturated, mono- and diunsaturated, but not polyunsaturated fatty-acid ethanolamides (FAE) in the small intestine of fed pythons. The identification of OEA and other FAEs in the gastrointestinal tract of Python molurus suggests that this class of lipid messengers may be widespread among vertebrate groups and may represent an evolutionarily ancient means of regulating energy intake.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Dept. of Psychiatry and Human Behavior, Univ. of California, Irvine, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
782
|
Cota D, Tschöp MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? ACTA ACUST UNITED AC 2005; 51:85-107. [PMID: 16364446 DOI: 10.1016/j.brainresrev.2005.10.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 01/07/2023]
Abstract
Obesity represents nowadays one of the most devastating health threats. Published reports even project a decline in life expectancy of US citizens due to the rapidly increasing prevalence of obesity. This alarming increase is intimately linked with recent changes of environment and lifestyle in western countries. In this context, the rewarding or even addictive properties of popular food may represent one of the most serious obstacles to overcome for an effective anti-obesity therapy. Therefore, in addition to molecular networks controlling energy homeostasis, now researchers are starting to define central nervous mechanisms governing hedonic and addictive components of food intake. A recently emerging body of data suggests that the endogenous cannabinoid and opioid systems both represent key circuits responding to the rewarding value of food. This review focuses on the role of these two systems for the homeostatic and hedonic aspects of eating behavior and includes their anatomical and functional interactions. Independent from the degree to which eating can be considered an addiction, cannabinoid and opioid receptor antagonists are promising anti-obesity drugs, since they are targeting both hedonic and homeostatic components of energy balance control.
Collapse
Affiliation(s)
- Daniela Cota
- Obesity Research Center, Department of Psychiatry, University of Cincinnati-Genome Research Institute, 2170 E Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | | | |
Collapse
|
783
|
Verty ANA, McGregor IS, Mallet PE. Paraventricular hypothalamic CB1 cannabinoid receptors are involved in the feeding stimulatory effects of Δ9-tetrahydrocannabinol. Neuropharmacology 2005; 49:1101-9. [PMID: 16098995 DOI: 10.1016/j.neuropharm.2005.03.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS The paraventricular nucleus of the hypothalamus (PVN) is the target of converging orexigenic and anorexigenic pathways originating from various hypothalamic sites and is, therefore, considered to be the chief site mediating hypothalamic regulation of energy homeostasis. Although a large body of evidence suggests that central CB(1) cannabinoid receptors mediate food intake, it is not clear whether PVN CB(1) receptors are involved in the control of feeding behaviour. The present study therefore examined the effects of intra-PVN administration of Delta(9)-tetrahydrocannabinol (THC) and the cannabinoid receptor antagonist SR 141716 on feeding. METHODS After being habituated to the test environment and injection procedure, sated rats were injected with SR 141716 (0.03-3.0 microg, Experiment 1) alone or in combination with THC (5.0 microg, Experiment 2) into the PVN. Food intake and locomotor activity then were recorded for 120 min. RESULTS Intra-PVN administration of THC produced a significant increase in food intake that was attenuated by SR 141716. Administration of SR 141716 alone did not affect feeding. Locomotor activity was not significantly affected by any drug treatments, suggesting that effects on feeding were not due to a non-specific reduction in motivated behaviour. These findings suggest an important role for PVN cannabinoid signalling in mediating THC-induced feeding behaviour. These results also demonstrate that the blockade of PVN CB(1) receptors alone is insufficient to reduce baseline feeding behaviour under these conditions.
Collapse
Affiliation(s)
- Aaron N A Verty
- School of Psychology, University of New England, Armidale, NSW 2351, Australia
| | | | | |
Collapse
|
784
|
Després JP, Golay A, Sjöström L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353:2121-34. [PMID: 16291982 DOI: 10.1056/nejmoa044537] [Citation(s) in RCA: 955] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Rimonabant, a selective cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factors in obese patients. The Rimonabant in Obesity-Lipids (RIO-Lipids) study examined the effects of rimonabant on metabolic risk factors, including adiponectin levels, in high-risk patients who are overweight or obese and have dyslipidemia. METHODS We randomly assigned 1036 overweight or obese patients (body-mass index [the weight in kilograms divided by the square of the height in meters], 27 to 40) with untreated dyslipidemia (triglyceride levels >1.69 to 7.90 mmol per liter, or a ratio of cholesterol to high-density lipoprotein [HDL] cholesterol of >4.5 among women and >5 among men) to double-blinded therapy with either placebo or rimonabant at a dose of 5 mg or 20 mg daily for 12 months in addition to a hypocaloric diet. RESULTS The rates of completion of the study were 62.6 percent, 60.3 percent, and 63.9 percent in the placebo group, the group receiving 5 mg of rimonabant, and the group receiving 20 mg of rimonabant, respectively. The most frequent adverse events resulting in discontinuation of the drug were depression, anxiety, and nausea. As compared with placebo, rimonabant at a dose of 20 mg was associated with a significant (P<0.001) mean weight loss (repeated-measures method, -6.7+/-0.5 kg, and last-observation-carried-forward analyses, -5.4+/-0.4 kg), reduction in waist circumference (repeated-measures method, -5.8+/-0.5 cm, and last-observation-carried-forward analyses, -4.7+/-0.5 cm), increase in HDL cholesterol (repeated-measures method, +10.0+/-1.6 percent, and last-observation-carried-forward analyses, +8.1+/-1.5 percent), and reduction in triglycerides (repeated-measures method, -13.0+/-3.5 percent, and last-observation-carried-forward analyses, -12.4+/-3.2 percent). Rimonabant at a dose of 20 mg also resulted in an increase in plasma adiponectin levels (repeated-measures method, 57.7 percent, and last-observation-carried-forward analyses, 46.2 percent; P<0.001), for a change that was partly independent of weight loss alone. CONCLUSIONS Selective CB1-receptor blockade with rimonabant significantly reduces body weight and waist circumference and improves the profile of several metabolic risk factors in high-risk patients who are overweight or obese and have an atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Jean-Pierre Després
- Quebec Heart Institute, Laval Hospital Research Center, and the Division of Kinesiology, Department of Social and Preventive Medicine, Laval University, Ste.-Foy, Que, Canada.
| | | | | |
Collapse
|
785
|
Debenham JS, Madsen-Duggan CB, Walsh TF, Wang J, Tong X, Doss GA, Lao J, Fong TM, Schaeffer MT, Xiao JC, Huang CRRC, Shen CP, Feng Y, Marsh DJ, Stribling DS, Shearman LP, Strack AM, MacIntyre DE, Van der Ploeg LHT, Goulet MT. Synthesis of functionalized 1,8-naphthyridinones and their evaluation as novel, orally active CB1 receptor inverse agonists. Bioorg Med Chem Lett 2005; 16:681-5. [PMID: 16263284 DOI: 10.1016/j.bmcl.2005.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 11/16/2022]
Abstract
Synthesis, SAR, and binding affinities are described for a new class of 1,8-naphthyridinone CB1 receptor specific inverse agonists. Food intake, knockout mouse, and pharmacokinetic evaluation of 14 indicate that this compound is an effective orally active modulator of CB1.
Collapse
Affiliation(s)
- John S Debenham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
786
|
|
787
|
Abstract
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
Collapse
Affiliation(s)
- Sarah Stanley
- Endocrine Unit, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
788
|
Sipe JC, Waalen J, Gerber A, Beutler E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes (Lond) 2005; 29:755-9. [PMID: 15809662 DOI: 10.1038/sj.ijo.0802954] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The brain endogenous cannabinoid system modulates reward and craving pathways and consequently may affect body weight. A naturally occurring missense polymorphism in the gene encoding fatty acid amide hydrolase (FAAH), the primary enzyme for inactivation of endocannabinoids, is associated with problem drug use. AIMS To investigate the relationship between the FAAH cDNA 385 A/A (P129T) polymorphism and overweight disorders in subjects of multiple ethnic backgrounds attending a medical screening clinic. SUBJECTS A total of 2667 subjects of white, black and Asian ancestry were genotyped and stratified by a standardized clinic-based assessment of body mass index (BMI, weight in kilograms/(height in meters)(2) or kg/m(2)). METHODS Subjects were genotyped for the FAAH cDNA 385 C --> A polymorphism using allele-specific oligonucleotide hybridization methods by investigators blinded to all clinical information. BMI was calculated based on exact clinical measurements and World Health Organization ranges were used to stratify subjects. Statistical methods included the Fisher exact test, Mann-Whitney U-test and multivariable logistic regression analysis. RESULTS The homozygous FAAH 385 A/A genotype was significantly associated with overweight and obesity in white subjects (P=0.005) and in black subjects (P=0.05) but not in a small group of Asians. The median BMI for all subjects was significantly greater in the FAAH 385 A/A genotype group compared to heterozygote and wild-type groups (P=0.0001). In white subjects, there was an increasing frequency of the FAAH 385 A/A genotype with increasing BMI categories of overweight (P=0.02) and obese (P=0.006) with the same trend in black subjects. CONCLUSIONS These results suggest a role for the FAAH 385 A/A missense polymorphism as an endocannabinoid risk factor in overweight/obesity and may provide indirect evidence to support cannabinoid antagonist treatment strategies in overweight disorders.
Collapse
Affiliation(s)
- J C Sipe
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
789
|
Abstract
Nicotine dependence is the leading preventable cause of adult morbidity and mortality in the world. New research on the treatment of this disorder ranges from studies evaluating access to treatment to studies elucidating the molecular mechanisms of nicotine addiction. As our understanding of the neurobiology of tobacco addiction grows, the number of potential therapeutic targets by which we can intervene in this pernicious disorder also increases. This paper presents an overview of recent research trends in the treatment of tobacco dependence. We review several novel mechanisms of action that may serve as therapeutic targets for the pharmacologic treatment of tobacco dependence, including drugs that affect monamine oxidase, selective nicotinic receptors, glutamate and gamma-aminobutyric acid receptors, and the endocannabinoid system. For each of these therapeutic targets, we discuss medications in development that affect these pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Debra S Harris
- Mental Health Care Line (116-A), Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| | | |
Collapse
|
790
|
|
791
|
Engeli S, Böhnke J, Feldpausch M, Gorzelniak K, Janke J, Bátkai S, Pacher P, Harvey-White J, Luft FC, Sharma AM, Jordan J. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005; 54:2838-43. [PMID: 16186383 PMCID: PMC2228268 DOI: 10.2337/diabetes.54.10.2838] [Citation(s) in RCA: 516] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is the main risk factor for the development of type 2 diabetes. Activation of the central endocannabinoid system increases food intake and promotes weight gain. Blockade of the cannabinoid type 1 (CB-1) receptor reduces body weight in animals by central and peripheral actions; the role of the peripheral endocannabinoid system in human obesity is now being extensively investigated. We measured circulating endocannabinoid concentrations and studied the expression of CB-1 and the main degrading enzyme, fatty acid amide hydrolase (FAAH), in adipose tissue of lean (n = 20) and obese (n = 20) women and after a 5% weight loss in a second group of women (n = 17). Circulating levels of anandamide and 1/2-arachidonoylglycerol were increased by 35 and 52% in obese compared with lean women (P < 0.05). Adipose tissue mRNA levels were reduced by -34% for CB-1 and -59% for FAAH in obese subjects (P < 0.05). A strong negative correlation was found between FAAH expression in adipose tissue and circulating endocannabinoids. Circulating endocannabinoids and CB-1 or FAAH expression were not affected by 5% weight loss. The expression of CB-1 and FAAH was increased in mature human adipocytes compared with in preadipocytes and was found in several human tissues. Our findings support the presence of a peripheral endocannabinoid system that is upregulated in human obesity.
Collapse
Affiliation(s)
- Stefan Engeli
- Franz Volhard Clinical Research Center, Charité Campus Buch, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
792
|
Gamber KM, Macarthur H, Westfall TC. Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus. Neuropharmacology 2005; 49:646-52. [PMID: 15949823 DOI: 10.1016/j.neuropharm.2005.04.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/15/2005] [Accepted: 04/21/2005] [Indexed: 11/29/2022]
Abstract
Little is known about the mechanism of action behind the orexigenic activity of cannabinoids. Neuropeptide Y (NPY) is one of the most potent orexigenic factors and is a key mediator in the hypothalamic control of food intake. We examined the effect of cannabinoids on NPY release using a rat hypothalamic explant model. The cannabinoid agonists anandamide (AEA) and CP55,940 both significantly augmented resting and KCl-evoked NPY release. AM251, a cannabinoid receptor antagonist, blocked the augmentation of NPY release elicited by AEA and CP55,940. Additionally, AM251 administered alone, in the absence of exogenous cannabinoid agonists, inhibited NPY release demonstrating the role of endogenous cannabinoids in NPY release. Combined, these findings demonstrate that cannabinoids augment NPY release in the hypothalamus and that this may be a potential mechanism behind the orexigenic activity of cannabinoids.
Collapse
Affiliation(s)
- Kevin M Gamber
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, MO 63104, USA
| | | | | |
Collapse
|
793
|
Abstract
The coexistence of type 2 diabetes and obesity presents a complex therapeutic challenge. Future combination tablets may include agents to address diabetes and any accompanying cardiovascular risk factors. Injectable agents that improve glycemic control and facilitate weight loss have recently become available: the soluble amylin analogue pramlintide provides an adjunct to insulin therapy in type 1 and type 2 diabetes, and the incretin mimetic exenatide can enhance prandial insulin release in type 2 diabetes. Orally active inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-IV, agonists of peroxisome proliferator-activated receptor (PPAR)-a and PPAR-g ("dual PPARs"), and the CB1 cannabinoid receptor inhibitor rimonabant are advanced in clinical development. Many novel antidiabetic and antiobesity compounds are emerging in preclinical development.
Collapse
Affiliation(s)
- Clifford J Bailey
- Diabetes Group, Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
794
|
Proulx K, Cota D, Castañeda TR, Tschöp MH, D'Alessio DA, Tso P, Woods SC, Seeley RJ. Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. Am J Physiol Regul Integr Comp Physiol 2005; 289:R729-37. [PMID: 15879057 DOI: 10.1152/ajpregu.00029.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oleoylethanolamide (OEA), a lipid synthesized in the intestine, reduces food intake and stimulates lipolysis through peroxisome proliferator-activated receptor-α. OEA also activates transient receptor potential vanilloid type 1 (TRPV1) in vitro. Because the anorexigenic effect of OEA is associated with delayed feeding onset and reduced locomotion, we examined whether intraperitoneal administration of OEA results in nonspecific behavioral effects that contribute to the anorexia in rats. Moreover, we determined whether circulating levels of other gut hormones are modulated by OEA and whether CCK is involved in OEA-induced anorexia. Our results indicate that OEA reduces food intake without causing a conditioned taste aversion or reducing sodium appetite. It also failed to induce a conditioned place aversion. However, OEA induced changes in posture and reduced spontaneous activity in the open field. This likely underlies the reduced heat expenditure and sodium consumption observed after OEA injection, which disappeared within 1 h. The effects of OEA on motor activity were similar to those of the TRPV1 agonist capsaicin and were also observed with the peroxisome proliferator-activated receptor-α agonist Wy-14643. Plasma levels of ghrelin, peptide YY, glucagon-like peptide 1, and apolipoprotein A-IV were not changed by OEA. Finally, antagonism of CCK-1 receptors did not affect OEA-induced anorexia. These results suggest that OEA suppresses feeding without causing visceral illness and that neither ghrelin, peptide YY, glucagon-like peptide 1, apolipoprotein A-IV, nor CCK plays a critical role in this effect. Despite that OEA-induced anorexia is unlikely to be due to impaired motor activity, our data raise a cautionary note in how specific behavioral and metabolic effects of OEA should be interpreted.
Collapse
Affiliation(s)
- Karine Proulx
- Genome Research Institute, ML 0506, University of Cincinnati, 2170 E. Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | | | | | | | | | | | |
Collapse
|
795
|
Angelopoulos N, Goula A, Tolis G. Current knowledge in the neurophysiologic modulation of obesity. Metabolism 2005; 54:1202-17. [PMID: 16125532 DOI: 10.1016/j.metabol.2005.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/05/2005] [Indexed: 01/21/2023]
Abstract
Obesity is today one of the commonest of life-threatening diseases in developed countries and generally results from an imbalance between energy intake and energy expenditure. Although there is increasing evidence for a genetic basis of obesity in some clinical syndromes, this seems to be the cause only in a limited number of patients and obesity is far from being considered as a gene-related disease. Eating is a complex and multifactorial process involving autonomous pathways that transfer sensory and motor information between the entire length of the digestive tract and the central nervous system. Modulation of the amount of energy that we take in as food involves several mechanisms and networks that connect the brain with the gut, this process being key to the regulation of body weight over time, as well as to the modification of long-term eating behaviors. Furthermore, this axis is closely coupled to other systems that are involved in energy homeostasis, namely, food preference, energy expenditure, and lifestyle. The identification of several neuropeptides that modulate eating behavior in various ways, along with studies performed in animal models, have focused attention on the role of these molecules and their clinical implications in the development of obesity in humans.
Collapse
Affiliation(s)
- Nicholas Angelopoulos
- Department of Endocrinology and Metabolism, Hippocration Hospital of Athens, 115 27 Athens, Greece.
| | | | | |
Collapse
|
796
|
Abstract
Neural and behavioral development arises from an integration of genetic and environmental influences, yet specifying the nature of this interaction remains a primary problem in neuroscience. Here, we review molecular and behavioral studies that focus on the role of singing-driven gene expression during neural and vocal development in the male zebra finch (Taeniopygia guttata), a songbird that learns a species-typical vocal pattern during juvenile development by imitating an adult male tutor. A primary aim of our lab has been to identify naturally-occurring environmental influences that shape the propensity to sing. This ethological approach underlies our theoretical perspective, which is to integrate the significance of singing-driven gene expression into a broader ecological context.
Collapse
Affiliation(s)
- Frank Johnson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida 32306-1270, USA.
| | | |
Collapse
|
797
|
Massa F, Storr M, Lutz B. The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J Mol Med (Berl) 2005; 83:944-54. [PMID: 16133420 DOI: 10.1007/s00109-005-0698-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/06/2005] [Indexed: 12/18/2022]
Abstract
Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn's disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood-brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.
Collapse
Affiliation(s)
- Federico Massa
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | | | | |
Collapse
|
798
|
Orlando FA, Goncalves CG, George ZM, Halverson JD, Cunningham PR, Meguid MM. Neurohormonal pathways regulating food intake and changes after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2005; 1:486-95. [PMID: 16925275 DOI: 10.1016/j.soard.2005.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 05/24/2005] [Accepted: 05/29/2005] [Indexed: 12/22/2022]
Affiliation(s)
- Frank A Orlando
- Surgical Metabolism and Nutrition Laboratory, Department of Surgery, Neuroscience Program, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | |
Collapse
|
799
|
Lichtman AH, Cravatt BF. Food for thought: endocannabinoid modulation of lipogenesis. J Clin Invest 2005; 115:1130-3. [PMID: 15864340 PMCID: PMC1087183 DOI: 10.1172/jci25076] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An emerging body of evidence implicates peripheral and central endocannabinoid pathways in the regulation of feeding behavior and body weight. A report in this issue of the JCI demonstrates the presence of a common endocannabinoid-regulated molecular pathway for peripheral lipogenic and central appetitive regulation. This pathway involves the activation of the transcription factor SREBP-1c and its associated enzymes, acetyl-CoA carboxylase-1 and fatty acid synthase, in the liver and hypothalamus. Activation of cannabinoid receptor 1 (CB(1)) in liver plays a key role in increased serum lipid production, fatty liver, and possibly diet-induced obesity. Conversely, stimulation of these receptors in the hypothalamus may lead to an increase in food consumption. Thus, targeting both of these pathways with CB(1) antagonists could promote sustained weight loss and favorable serum lipid profiles in obese patients.
Collapse
Affiliation(s)
- Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, 23298, USA.
| | | |
Collapse
|
800
|
Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S, Harvey-White J, Mackie K, Offertáler L, Wang L, Kunos G. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115:1298-305. [PMID: 15864349 PMCID: PMC1087161 DOI: 10.1172/jci23057] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 02/15/2005] [Indexed: 01/12/2023] Open
Abstract
Endogenous cannabinoids acting at CB(1) receptors stimulate appetite, and CB(1) antagonists show promise in the treatment of obesity. CB(1) (-/-) mice are resistant to diet-induced obesity even though their caloric intake is similar to that of wild-type mice, suggesting that endocannabinoids also regulate fat metabolism. Here, we investigated the possible role of endocannabinoids in the regulation of hepatic lipogenesis. Activation of CB(1) in mice increases the hepatic gene expression of the lipogenic transcription factor SREBP-1c and its targets acetyl-CoA carboxylase-1 and fatty acid synthase (FAS). Treatment with a CB(1) agonist also increases de novo fatty acid synthesis in the liver or in isolated hepatocytes, which express CB(1). High-fat diet increases hepatic levels of the endocannabinoid anandamide (arachidonoyl ethanolamide), CB(1) density, and basal rates of fatty acid synthesis, and the latter is reduced by CB(1) blockade. In the hypothalamus, where FAS inhibitors elicit anorexia, SREBP-1c and FAS expression are similarly affected by CB(1) ligands. We conclude that anandamide acting at hepatic CB(1) contributes to diet-induced obesity and that the FAS pathway may be a common molecular target for central appetitive and peripheral metabolic regulation.
Collapse
Affiliation(s)
- Douglas Osei-Hyiaman
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|