801
|
Tsai AYL, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:809-21. [PMID: 22026387 DOI: 10.1111/j.1365-313x.2011.04832.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Snf1 (sucrose non-fermenting-1)/AMPK (AMP-activated protein kinase)/SnRK1 (Snf1-related protein kinase 1) kinases act as sensors of energy status in eukaryotes. Despite the important role of these kinases in regulation of cellular responses to metabolic stress, only a few SnRK1 substrates have been identified. Using yeast two-hybrid screens, we isolated AKIN10 as an interactor of the B3-domain transcription factor FUSCA3 (FUS3), an essential regulator of seed maturation in Arabidopsis. Pull-down and bi-molecular fluorescence complementation (BiFC) assays confirm the interaction in vitro and in planta, respectively. In-gel kinase assays show that AKIN10 phosphorylates FUS3 and that the N-terminal domain of FUS3 is required for AKIN10 phosphorylation. Mutations of three serines (fus3(S55A/S56A/S57A) ) within a partial SnRK1 consensus sequence in the N-terminal region of FUS3 reduce greatly FUS3 phosphorylation by AKIN10, which indicates that these serines are the predominant AKIN10 target sites. In a cell-free system, AKIN10 positively regulates FUS3 stability, as overexpression of AKIN10 delayed the degradation of the recombinant FUS3. Plants over-expressing AKIN10 show delayed seed germination, vegetative growth and flowering time, indicating that AKIN10 antagonizes the embryonic-to-vegetative and vegetative-to-reproductive phase transitions. Furthermore, overexpression of AKIN10 alters cotyledon, silique and floral organ development, suggesting that AKIN10 regulates lateral organ development. Genetic interaction studies show that the fus3-3 mutation partially rescues the phase transition and organ development defects caused by AKIN10 overexpression. Taken together, these findings indicate that FUS3 and AKIN10 interact physically and share overlapping pathways to regulate developmental phase transitions and organogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
802
|
Tsugama D, Liu S, Takano T. A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis. FEBS Lett 2012; 586:693-8. [PMID: 22449965 DOI: 10.1016/j.febslet.2012.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 11/24/2022]
Abstract
N-myristoylation is a lipid modification of many signaling proteins in which myristate is added to an N-terminal glycine residue. Here we show that PP2C74, a putative myristoylated 2C-type protein phosphatase (PP2C) in Arabidopsis, is transcribed in various tissues and has protein phosphatase activity. GFP-fused PP2C74 localized to the plasma membrane, but not when a glycine residue at position 2, which is the putative myristoylation site, was substituted with an alanine residue. Yeast two-hybrid analysis and GST pull-down analysis showed that PP2C74 interacts with AKIN10, the catalytic α subunit of the SnRK1 protein kinase complex, the β subunits of which are known targets of myristoylation.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
803
|
How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One 2012; 7:e30537. [PMID: 22347382 PMCID: PMC3276496 DOI: 10.1371/journal.pone.0030537] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/18/2011] [Indexed: 12/22/2022] Open
Abstract
Background Animal-derived elicitors can be used by plants to detect herbivory but they function only in specific insect–plant interactions. How can plants generally perceive damage caused by herbivores? Damaged-self recognition occurs when plants perceive molecular signals of damage: degraded plant molecules or molecules localized outside their original compartment. Methodology/Principal Findings Flame wounding or applying leaf extract or solutions of sucrose or ATP to slightly wounded lima bean (Phaseolus lunatus) leaves induced the secretion of extrafloral nectar, an indirect defense mechanism. Chemically related molecules that would not be released in high concentrations from damaged plant cells (glucose, fructose, salt, and sorbitol) did not elicit a detectable response, excluding osmotic shock as an alternative explanation. Treatments inducing extrafloral nectar secretion also enhanced endogenous concentrations of the defense hormone jasmonic acid (JA). Endogenous JA was also induced by mechanically damaging leaves of lima bean, Arabidopsis, maize, strawberry, sesame and tomato. In lima bean, tomato and sesame, the application of leaf extract further increased endogenous JA content, indicating that damaged-self recognition is taxonomically widely distributed. Transcriptomic patterns obtained with untargeted 454 pyrosequencing of lima bean in response to flame wounding or the application of leaf extract or JA were highly similar to each other, but differed from the response to mere mechanical damage. We conclude that the amount or concentration of damaged-self signals can quantitatively determine the intensity of the wound response and that the full damaged-self response requires the disruption of many cells. Conclusions/Significance Numerous compounds function as JA-inducing elicitors in different plant species. Most of them are, contain, or release, plant-derived molecular motifs. Damaged-self recognition represents a taxonomically widespread mechanism that contributes to the perception of herbivore feeding by plants. This strategy is independent of insect-derived elicitors and, therefore, allows plants to maintain evolutionary control over their interaction with herbivores.
Collapse
|
804
|
Saumonneau A, Laloi M, Lallemand M, Rabot A, Atanassova R. Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1495-1510. [PMID: 22140241 DOI: 10.1093/jxb/err391] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism.
Collapse
Affiliation(s)
- Amélie Saumonneau
- University of Poitiers, UMR CNRS 6503 LACCO, Physiologie Moléculaire du Transport des Sucres chez les Plantes, Bâtiment Botanique B31, 3 rue Jacques Fort, 86022 Poitiers, France
| | | | | | | | | |
Collapse
|
805
|
Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M. Chloroplast-localized protein kinases: a step forward towards a complete inventory. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1713-23. [PMID: 22282538 PMCID: PMC3971369 DOI: 10.1093/jxb/err377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to better understand chloroplast function, it is therefore crucial to obtain a complete picture of the chloroplast kinome, which is currently constrained by two effects: first, recent observations showed that the bioinformatics-based prediction of chloroplast-localized protein kinases from available sequence data is strongly biased; and, secondly, protein kinases are of very low abundance, which makes their identification by proteomics approaches extremely difficult. Therefore, the aim of this study was to obtain a complete list of chloroplast-localized protein kinases from different species. Evaluation of protein kinases which were either highly predicted to be chloroplast localized or have been identified in different chloroplast proteomic studies resulted in the confirmation of only three new kinases. Considering also all reports of experimentally verified chloroplast protein kinases to date, compelling evidence was found for a total set of 15 chloroplast-localized protein kinases in different species. This is in contrast to a much higher number that would be expected based on targeting prediction or on the general abundance of protein kinases in relation to the entire proteome. Moreover, it is shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.
Collapse
Affiliation(s)
- Roman G. Bayer
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
806
|
Coello P, Hirano E, Hey SJ, Muttucumaru N, Martinez-Barajas E, Parry MAJ, Halford NG. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:913-24. [PMID: 21994172 PMCID: PMC3254688 DOI: 10.1093/jxb/err320] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 05/17/2023]
Abstract
Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) form a major family of signalling proteins in plants and have been associated with metabolic regulation and stress responses. They comprise three subfamilies: SnRK1, SnRK2, and SnRK3. SnRK1 plays a major role in the regulation of carbon metabolism and energy status, while SnRKs 2 and 3 have been implicated in stress and abscisic acid (ABA)-mediated signalling pathways. The burgeoning and divergence of this family of protein kinases in plants may have occurred to enable cross-talk between metabolic and stress signalling, and ABA-response-element-binding proteins (AREBPs), a family of transcription factors, have been shown to be substrates for members of all three subfamilies. In this study, levels of SnRK1 protein were shown to decline dramatically in wheat roots in response to ABA treatment, although the amount of phosphorylated (active) SnRK1 remained constant. Multiple SnRK2-type protein kinases were detectable in the root extracts and showed differential responses to ABA treatment. They included a 42 kDa protein that appeared to reduce in response to 3 h of ABA treatment but to recover after longer treatment. There was a clear increase in phosphorylation of this SnRK2 in response to the ABA treatment. Fractions containing this 42 kDa SnRK2 were shown to phosphorylate synthetic peptides with amino acid sequences based on those of conserved phosphorylation sites in AREBPs. The activity increased 8-fold with the addition of calcium chloride, indicating that it is calcium-dependent. The activity assigned to the 42 kDa SnRK2 also phosphorylated a heterologously expressed wheat AREBP.
Collapse
Affiliation(s)
- Patricia Coello
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico
| | - Emi Hirano
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Sandra J. Hey
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Nira Muttucumaru
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Eleazar Martinez-Barajas
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico
| | - Martin A. J. Parry
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Nigel G. Halford
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
807
|
Alford SR, Rangarajan P, Williams P, Gillaspy GE. myo-Inositol Oxygenase is Required for Responses to Low Energy Conditions in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:69. [PMID: 22639659 PMCID: PMC3355591 DOI: 10.3389/fpls.2012.00069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 05/03/2023]
Abstract
myo-Inositol is a precursor for cell wall components, is used as a backbone of myo-inositol trisphosphate (Ins(1,4,5)P(3)) and phosphatidylinositol phosphate signaling molecules, and is debated about whether it is also a precursor in an alternate ascorbic acid synthesis pathway. Plants control inositol homeostasis by regulation of key enzymes involved in myo-inositol synthesis and catabolism. Recent transcriptional profiling data indicate up-regulation of the myo-inositol oxygenase (MIOX) genes under conditions in which energy or nutrients are limited. To test whether the MIOX genes are required for responses to low energy, we first examined MIOX2 and MIOX4 gene expression regulation by energy/nutrient conditions. We found that both MIOX2 and MIOX4 expression are suppressed by exogenous glucose addition in the shoot, but not in the root. Both genes were abundantly expressed during low energy/nutrient conditions. Loss-of-function mutants in MIOX genes contain alterations in myo-inositol levels and growth changes in the root. Miox2 mutants can be complemented with a MIOX2:green fluorescent protein fusion. Further we show here that MIOX2 is a cytoplasmic protein, while MIOX4 is present mostly in the cytoplasm, but also occasionally in the nucleus. Together, these data suggest that MIOX catabolism in the shoot may influence root growth responses during low energy/nutrient conditions.
Collapse
Affiliation(s)
| | | | - Phoebe Williams
- Department of Biochemistry, Virginia TechBlacksburg, VA, USA
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia TechBlacksburg, VA, USA
- *Correspondence: Glenda E. Gillaspy, Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA. e-mail:
| |
Collapse
|
808
|
Abstract
Plants have developed sophisticated mechanisms to survive when in unfavorable environments. Autophagy is a macromolecule degradation pathway that recycles damaged or unwanted cell materials upon encountering stress conditions or during specific developmental processes. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly increased. Most of the essential machinery required for autophagy seems to be conserved from yeast to plants. Plant autophagy has been shown to function in various stress responses, pathogen defense, and senescence. Some of its potential upstream regulators have also been identified. Here, we describe recent advances in our understanding of autophagy in plants, discuss areas of controversy, and highlight potential future directions in autophagy research.
Collapse
Affiliation(s)
- Yimo Liu
- Department of Genetics, Development, and Cell Biology and Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
809
|
Abstract
The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.
Collapse
|
810
|
Funck D, Clauß K, Frommer WB, Hellmann HA. The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control. FRONTIERS IN PLANT SCIENCE 2012; 3:80. [PMID: 22629280 PMCID: PMC3355569 DOI: 10.3389/fpls.2012.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/10/2012] [Indexed: 05/03/2023]
Abstract
Mechanisms for sensing and regulating metabolic processes at the cellular level are critical for the general physiology and development of living organisms. In higher plants, sugar signaling is crucial for adequate regulation of carbon and energy metabolism and affects virtually every aspect of development. Although many genes are regulated by sugar levels, little is known on how sugar levels are measured by plants. Several components of the sugar signaling network have been unraveled and demonstrated to have extensive overlap with hormone signaling networks. Here we describe the reduced sugar response1-1 (rsr1-1) mutant as a new early flowering mutant that displays decreased sensitivity to abscisic acid. Both hexokinase1 (HXK1)-dependent and glucose phosphorylation-independent signaling is reduced in rsr1-1. Map-based identification of the affected locus demonstrated that rsr1-1 carries a premature stop codon in the gene for a CstF64-like putative RNA processing factor, ESP1, which is involved in mRNA 3'-end formation. The identification of RSR1/ESP1 as a nuclear protein with a potential threonine phosphorylation site may explain the impact of protein phosphorylation cascades on sugar-dependent signal transduction. Additionally, RSR1/ESP1 may be a crucial factor in linking sugar signaling to the control of flowering time.
Collapse
Affiliation(s)
- Dietmar Funck
- Department of Plant Physiology and Biochemistry, University KonstanzKonstanz, Germany
| | - Karen Clauß
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- *Correspondence: Wolf B. Frommer, Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94306, USA. e-mail:
| | - Hanjo A. Hellmann
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
811
|
Schröder F, Lisso J, Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:22-7. [PMID: 22301961 PMCID: PMC3357360 DOI: 10.4161/psb.7.1.18369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis EXORDIUM-LIKE1 (EXL1) gene (At1g35140) is required for adaptation to carbon (C)- and energy-limiting growth conditions. An exl1 loss of function mutant showed diminished biomass production in a low total irradiance growth regime, impaired survival during extended night, and impaired survival of anoxia stress. We show here additional expression data and discuss the putative roles of EXL1. We hypothesize that EXL1 suppresses brassinosteroid-dependent growth and controls C allocation in the cell. In-depth expression analysis of homologous genes suggests that the EXL2 (At5g64260) and EXL4 (At5g09440) genes play similar roles.
Collapse
Affiliation(s)
- Florian Schröder
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer; Golm, Germany
| | - Janina Lisso
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer; Golm, Germany
| | | |
Collapse
|
812
|
Chang R, Jang CJH, Branco-Price C, Nghiem P, Bailey-Serres J. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 78:109-22. [PMID: 22086331 DOI: 10.1007/s11103-011-9850-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/30/2011] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinases (MPKs) are regulated by diverse stresses with a reactive oxygen species (ROS) component. Here, we report the rapid and transient activation of MPK3, MPK4 and MPK6 upon oxygen deprivation as well as reoxygenation in seedlings of Arabidopsis thaliana. MPK activation peaked within 2 h of oxygen deprivation and again at a higher magnitude within 5 min of reoxygenation. MPK6 was the predominant kinase regulated by oxygen availability in both aerial and root tissue, except in mpk6 mutants, which displayed compensatory activation of MPK3. A universal consequence of oxygen deprivation in eukaryotes is inhibition of the terminal step of the mitochondrial electron transport chain (mETC). We demonstrate that treatment of seedlings with the mETC inhibitors antimycin A and potassium cyanide under normoxia promotes transient MPK6 and MPK3 activation. Confocal imaging of seedlings provided evidence that both oxygen deprivation and mETC inhibitors stimulate mitochondria-associated ROS production. We found that seedling survival of prolonged oxygen deprivation was improved in transgenics that ectopically overexpress MPK3, MPK4 and MPK6, but the induction of mRNAs associated with low oxygen acclimation responses were not markedly altered in MPK6 overexpression lines or mpk6 loss-of-function mutants. However, distinctions in MPK6 activation potential were correlated with other differences in mRNAs accumulation. Our findings suggest that oxygen deprivation and reoxygenation trigger mitochondrial ROS production to activate MPK signaling, which in turn regulate reversible processes that aid survival of transient oxygen deprivation.
Collapse
Affiliation(s)
- Ruth Chang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
813
|
Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC. Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 2011; 6:e28888. [PMID: 22194941 PMCID: PMC3240646 DOI: 10.1371/journal.pone.0028888] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/16/2011] [Indexed: 01/08/2023] Open
Abstract
We have adopted a hypoxic treatment system in which only roots were under hypoxic conditions. Through analyzing global transcriptional changes in both shoots and roots, we found that systemic signals may be transduced from roots to trigger responses in tissues not directly subjected to hypoxia. The molecular mechanisms of such systemic responses under flooding are currently largely unknown. Using ontological categorization for regulated genes, a systemic managing program of carbohydrate metabolism was observed, providing an example of how systemic responses might facilitate the survival of plants under flooding. Moreover, a proportion of gene expressions that regulated in shoots by flooding was affected in an ethylene signaling mutation, ein2-5. Many systemic-responsive genes involved in the systemic carbohydrate managing program, hormone responses and metabolism, ubiquitin-dependent protein degradation were also affected in ein2-5. These results suggested an important role of ethylene in mediation of hypoxic systemic responses. Genes associated with abscisic acid (ABA) biosynthesis are upregulated in shoots and down regulated in roots. An ABA signaling mutation, abi4-1, affects expression of several systemic responsive genes. These results suggested that regulation of ABA biosynthesis could be required for systemic responses. The implications of these results for the systemic responses of root-flooded Arabidopsis are discussed.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
814
|
Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases--key regulators of plant response to abiotic stresses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:859-72. [PMID: 22136638 DOI: 10.1089/omi.2011.0091] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SnRK2 family members are plant-specific serine/threonine kinases involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. SnRK2s have been classed into three groups; group 1 comprises kinases not activated by ABA, group 2 comprises kinases not activated or activated very weakly by ABA, and group 3 comprises kinases strongly activated by ABA. So far, the ABA-dependent kinases belonging to group 3 have been studied most thoroughly. They are considered major regulators of plant response to ABA. The regulation of the plant response to ABA via SnRK2s pathways occurs by direct phosphorylation of various downstream targets, for example, SLAC1, KAT1, AtRbohF, and transcription factors required for the expression of numerous stress response genes. Members of group 2 share some cellular functions with group 3 kinases; however, their contribution to ABA-related responses is not clear. There are strong indications that they are positive regulators of plant responses to water deficit. Most probably they complement the ABA-dependent kinases in plant defense against environmental stress. So far, data concerning the physiological role of ABA-independent SnRK2s are very limited; it is to be expected they will be studied extensively in the nearest future.
Collapse
Affiliation(s)
- Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
815
|
Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. TRENDS IN PLANT SCIENCE 2011; 16:656-65. [PMID: 21937256 DOI: 10.1016/j.tplants.2011.08.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is an efficient tool for gene function studies. It has been used to perform both forward and reverse genetics to identify plant genes involved in several plant processes. However, this technology has not yet been used to its full potential. This can be attributed to several of its limitations such as inability to silence genes during seed germination and the non-stable nature of silencing. However, several recent studies have shown that these limitations can now be overcome. In this review, we will discuss the limitations of VIGS and suitable solutions. In addition, we also describe the recent improvements and future prospects of using VIGS in plant biology.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|
816
|
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, Wic S, Neuhaus HE, Büttner M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. PLANT PHYSIOLOGY 2011; 157:1664-76. [PMID: 21984725 PMCID: PMC3327193 DOI: 10.1104/pp.111.186825] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/18/2023]
Abstract
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
Collapse
|
817
|
Abstract
The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Collapse
Affiliation(s)
- Glenda E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
818
|
Fukumoto T, Kano A, Ohtani K, Yamasaki-Kokudo Y, Kim BG, Hosotani K, Saito M, Shirakawa C, Tajima S, Izumori K, Ohara T, Shigematsu Y, Tanaka K, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Akimitsu K. Rare sugar D-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L. PLANTA 2011; 234:1083-95. [PMID: 21717189 DOI: 10.1007/s00425-011-1463-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/10/2011] [Indexed: 05/04/2023]
Abstract
One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Faculty of Agriculture, Rare Sugar Research Center and Gene Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
819
|
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC PLANT BIOLOGY 2011; 11:163. [PMID: 22094046 PMCID: PMC3252258 DOI: 10.1186/1471-2229-11-163] [Citation(s) in RCA: 569] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 05/18/2023]
Abstract
The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynamic activities of that organism in different environments. In this review, research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are identified, providing additional focus areas for crop improvement research in the future.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, Mail Stop 330, University of Nevada, Reno, Nevada 89557, USA
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | - Serge Delrot
- Univ. Bordeaux, ISVV, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33882 Villenave d'Ornon, France
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| |
Collapse
|
820
|
Ponnu J, Wahl V, Schmid M. Trehalose-6-phosphate: connecting plant metabolism and development. FRONTIERS IN PLANT SCIENCE 2011; 2:70. [PMID: 22639606 PMCID: PMC3355582 DOI: 10.3389/fpls.2011.00070] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/12/2011] [Indexed: 05/18/2023]
Abstract
Beyond their metabolic roles, sugars can also act as messengers in signal transduction. Trehalose, a sugar found in many species of plants and animals, is a non-reducing disaccharide composed of two glucose moieties. Its synthesis in plants is a two-step process, involving the production of trehalose-6-phosphate (T6P) catalyzed by trehalose-6-phosphate synthase (TPS) and its consecutive dephosphorylation to trehalose, catalyzed by trehalose-6-phosphate phosphatase (TPP). T6P has recently emerged as an important signaling metabolite, regulating carbon assimilation and sugar status in plants. In addition, T6P has also been demonstrated to play an essential role in plant development. This review recapitulates the recent advances we have made in understanding the role of T6P in coordinating diverse metabolic and developmental processes.
Collapse
Affiliation(s)
- Jathish Ponnu
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| |
Collapse
|
821
|
Sulmon C, Gouesbet G, Ramel F, Cabello-Hurtado F, Penno C, Bechtold N, Couée I, El Amrani A. Carbon dynamics, development and stress responses in Arabidopsis: involvement of the APL4 subunit of ADP-glucose pyrophosphorylase (starch synthesis). PLoS One 2011; 6:e26855. [PMID: 22073207 PMCID: PMC3207819 DOI: 10.1371/journal.pone.0026855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/05/2011] [Indexed: 12/04/2022] Open
Abstract
An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses.
Collapse
Affiliation(s)
- Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIO, Rennes, France.
| | | | | | | | | | | | | | | |
Collapse
|
822
|
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-908. [PMID: 21937710 DOI: 10.1101/gad.17420111] [Citation(s) in RCA: 1264] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. It arose very early during eukaryotic evolution, and its ancestral role may have been in the response to starvation. Recent work shows that the kinase is activated by increases not only in AMP, but also in ADP. Although best known for its effects on metabolism, AMPK has many other functions, including regulation of mitochondrial biogenesis and disposal, autophagy, cell polarity, and cell growth and proliferation. Both tumor cells and viruses establish mechanisms to down-regulate AMPK, allowing them to escape its restraining influences on growth.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Science, University of Dundee, Scotland, United Kingdom.
| |
Collapse
|
823
|
Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez- Zapater JM, Verpoorte R, Pais MS. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC PLANT BIOLOGY 2011; 11:149. [PMID: 22047180 PMCID: PMC3215662 DOI: 10.1186/1471-2229-11-149] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/02/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses. RESULTS Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. CONCLUSIONS Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.
Collapse
Affiliation(s)
- Ana M Fortes
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| | - Patricia Agudelo-Romero
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| | - Marta S Silva
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, FCUL, Lisbon, Portugal
| | - Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Lisete Sousa
- Department of Statistics and Operational Research, CEAUL (Centro de Estatística e Aplicações da UL), FCUL, Lisbon, Portugal
| | - Federica Maltese
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Young H Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jerome Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), CCT, C/Madre de Dios 51, 26006 Logroño, Spain
| | - José M Martinez- Zapater
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), CCT, C/Madre de Dios 51, 26006 Logroño, Spain
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maria S Pais
- Plant Systems Biology Lab, Departmento de Biologia Vegetal/ICAT, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), FCUL, 1749-016 Lisboa, Portugal
| |
Collapse
|
824
|
Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. PLANT PHYSIOLOGY 2011; 157:1394-406. [PMID: 21885668 PMCID: PMC3252149 DOI: 10.1104/pp.111.184648] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/29/2011] [Indexed: 05/19/2023]
Abstract
The βC1 protein of tomato yellow leaf curl China β-satellite functions as a pathogenicity determinant. To better understand the molecular basis of βC1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using βC1 as bait. βC1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that βC1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the βC1 protein.
Collapse
|
825
|
Wehner N, Hartmann L, Ehlert A, Böttner S, Oñate-Sánchez L, Dröge-Laser W. High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:560-9. [PMID: 21749507 DOI: 10.1111/j.1365-313x.2011.04704.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genomic approaches have generated large Arabidopsis open reading frame (ORF) collections. However, molecular tools are required to characterize this ORFeome functionally. A high-throughput microtiter plate-based protoplast transactivation (PTA) system has been established that can be used in a screening approach to define which transcription factor (TF) regulates a given promoter in planta. Using to this procedure, the transactivation properties of 96 TFs can be analyzed rapidly, making use of promoter:Luciferase (LUC)-reporters and luciferase imaging. Applying GATEWAY® technology, we have established a platform to assay more than 700 Arabidopsis TFs. As a proof-of-principle, the ethylene response factor (ERF) family has been studied to evaluate this system. Importantly, distinct subsets of related ERF factors were found to activate specifically the well described target promoters RD29A and PDF1.2 that are under control of DRE or GCC box cis-elements, respectively. Furthermore, several applications of the PTA system have been demonstrated, such as analysis of transcriptional repressors, salt-inducible gene expression or functional interaction of signaling molecules like kinases and TFs. This novel molecular tool will improve functional studies on transcriptional regulation in plants significantly.
Collapse
Affiliation(s)
- Nora Wehner
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
826
|
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1165-78. [PMID: 21649509 DOI: 10.1094/mpmi-05-11-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbial volatiles promote the accumulation of exceptionally high levels of starch in leaves. Time-course analyses of starch accumulation in Arabidopsis leaves exposed to fungal volatiles (FV) emitted by Alternaria alternata revealed that a microbial volatile-induced starch accumulation process (MIVOISAP) is due to stimulation of starch biosynthesis during illumination. The increase of starch content in illuminated leaves of FV-treated hy1/cry1, hy1/cry2, and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of wild-type (WT) leaves, indicating that MIVOISAP is subjected to photoreceptor-mediated control. This phenomenon was inhibited by cordycepin and accompanied by drastic changes in the Arabidopsis transcriptome. MIVOISAP was also accompanied by enhancement of the total 3-phosphoglycerate/Pi ratio, and a two- to threefold increase of the levels of the reduced form of ADP-glucose pyrophosphorylase. Using different Arabidopsis knockout mutants, we investigated the impact in MIVOISAP of downregulation of genes directly or indirectly related to starch metabolism. These analyses revealed that the magnitude of the FV-induced starch accumulation was low in mutants impaired in starch synthase (SS) classes III and IV and plastidial NADP-thioredoxin reductase C (NTRC). Thus, the overall data showed that Arabidopsis MIVOISAP involves a photocontrolled, transcriptionally and post-translationally regulated network wherein photoreceptor-, SSIII-, SSIV-, and NTRC-mediated changes in redox status of plastidial enzymes play important roles.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
827
|
Valluru R, Van den Ende W. Myo-inositol and beyond--emerging networks under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:387-400. [PMID: 21889044 DOI: 10.1016/j.plantsci.2011.07.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 05/18/2023]
Abstract
Myo-inositol is a versatile compound that generates diversified derivatives upon phosphorylation by lipid-dependent and -independent pathways. Phosphatidylinositols form one such group of myo-inositol derivatives that act both as membrane structural lipid molecules and as signals. The significance of these compounds lies in their dual functions as signals as well as key metabolites under stress. Several stress- and non-stress related pathways regulated by phosphatidylinositol isoforms and associated enzymes, kinases and phosphatases, appear to function in parallel to coordinatively adapt growth and stress responses in plants. Recent evidence also postulates their crucial roles in nuclear functions as they interact with the key players of chromatin structure, yet other nuclear functions remain largely unknown. Phosphatidylinositol monophosphate 5-kinase interacts with and represses a cytosolic neutral invertase, a key enzyme of sugar metabolism suggesting a crosstalk between lipid and sugar signaling. Besides phosphatidylinositol, myo-inositol derived galactinol and associated raffinose-family oligosaccharides are emerging as antioxidants and putative signaling compounds too. Importantly, myo-inositol polyphosphate 5-phosphatase (5PTase) acts, depending on sugar status, as a positive or negative regulator of a global energy sensor, SnRK1. This implies that both myo-inositol- and sugar-derived (e.g. trehalose 6-phosphate) molecules form part of a broad regulatory network with SnRK1 as the central regulator. Recently, it was shown that the transcription factor bZIP11 also takes part in this network. Moreover, a functional coordination between neutral invertase and hexokinase is emerging as a sweet network that contributes to oxidative stress homeostasis in plants. In this review, we focus on myo-inositol, its direct and more downstream derivatives (galactinol, raffinose), and the contribution of their associated networks to plant stress tolerance.
Collapse
Affiliation(s)
- Ravi Valluru
- Ecophysiology of Plants Under Environmental Stress, INRA-SUPAGRO, Institute of Integrative Plant Biology, 2 Place Viala, Montpellier, France
| | | |
Collapse
|
828
|
Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Del Bem LEV, Silveira AB, Gauer L, Corrêa LGG, Drumond RD, Viana AJC, Di Mascio P, Meyer C, Vincentz M. The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals. PLANT PHYSIOLOGY 2011; 157:692-705. [PMID: 21844310 PMCID: PMC3192551 DOI: 10.1104/pp.111.181743] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/13/2011] [Indexed: 05/18/2023]
Abstract
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::β-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Collapse
|
829
|
Xiang L, Li Y, Rolland F, Van den Ende W. Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synthesis. PLANT SIGNALING & BEHAVIOR 2011; 6:1567-73. [PMID: 21918379 PMCID: PMC3256386 DOI: 10.4161/psb.6.10.17036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 05/18/2023]
Abstract
Alkaline/neutral invertases (A/N-Invs) are unique to plants and photosynthetic bacteria. Although considerable advances have been made in our understanding of sucrose metabolic enzymes in plants, the function of A/N-Invs remained puzzling. In a recent study, we have analyzed the subcellullar localization of a cytosolic (At-A/N-InvG, At1g35580) and a mitochondrial (At-A/N-InvA, At1g56560) Arabidopsis A/N-Inv. Unexpectedly, At-A/N-InvA knockout plants showed a more severe growth defect than At-A/N-InvG knockout plants and a link between the two A/N-Invs and oxidative stress defence was found. Overexpression of At-A/N-InvA and At-A/N-InvG in leaf mesophyll protoplasts reduced the activity of the ascorbate peroxidase 2 (APX2) promoter, that was stimulated by hydrogen peroxide and abscisic acid. It is discussed here how sugars and ascorbate might contribute to mitochondrial reactive oxygen species homeostasis. We hypothesize that both mitochondrial and cytosolic A/N-Invs and mitochondria-associated hexokinases are key mediators, integrating metabolic and sugar signalling processes.
Collapse
Affiliation(s)
- Li Xiang
- KULeuven; Lab of Molecular Plant Physiology Kasteelpark Arenberg; Leuven, Belgium
| | - Yi Li
- Functional Biology; Kasteelpark Arenberg; Leuven, Belgium
| | - Filip Rolland
- Functional Biology; Kasteelpark Arenberg; Leuven, Belgium
| | - Wim Van den Ende
- KULeuven; Lab of Molecular Plant Physiology Kasteelpark Arenberg; Leuven, Belgium
| |
Collapse
|
830
|
Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 2011; 278:3978-90. [PMID: 21883929 DOI: 10.1111/j.1742-4658.2011.08315.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.
Collapse
Affiliation(s)
- Ruben Ghillebert
- Department of Biology, Laboratory for Functional Biology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
831
|
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13:1016-23. [PMID: 21892142 DOI: 10.1038/ncb2329] [Citation(s) in RCA: 2292] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the central regulators of cellular and organismal metabolism in eukaryotes is AMP-activated protein kinase (AMPK), which is activated when intracellular ATP production decreases. AMPK has critical roles in regulating growth and reprogramming metabolism, and has recently been connected to cellular processes such as autophagy and cell polarity. Here we review a number of recent breakthroughs in the mechanistic understanding of AMPK function, focusing on a number of newly identified downstream effectors of AMPK.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
832
|
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. PLANT & CELL PHYSIOLOGY 2011; 52:1569-82. [PMID: 21828105 DOI: 10.1093/pcp/pcr106] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intensive research over the last decade has gradually unraveled the mechanisms that underlie how plants react to environmental adversity. Genes involved in many of the essential steps of the stress response have been identified and characterized. In particular, the recent discovery of ABA receptors, progress in understanding the transcriptional and post-transcriptional regulation of stress-responsive gene expression, and studies on hormone interactions under stress have facilitated addressing the molecular basis of how plant cells respond to abiotic stress. Here, we summarize recent research progress on these issues, especially focusing on progress related to the essential and classically important signaling pathways and genes. Despite this wealth of achievements, many challenges remain not only for the further elucidation of stress response mechanisms but also for evaluation of the natural genetic variations and associating them with specific gene functions. Finally, the proper application of this knowledge to benefit humans and agriculture is another important issue that lies ahead. Collaborative wisdom and efforts are needed to confront these challenges.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | | | | |
Collapse
|
833
|
Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:747-58. [PMID: 21284800 DOI: 10.1111/j.1467-7652.2010.00584.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).
Collapse
Affiliation(s)
- Zvi Peleg
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
834
|
Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H. Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. PLANT PHYSIOLOGY 2011; 157:160-74. [PMID: 21753116 PMCID: PMC3165867 DOI: 10.1104/pp.111.180422] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/13/2011] [Indexed: 05/17/2023]
Abstract
The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Henriette Schluepmann
- Molecular Plant Physiology, Utrecht University, 3584CH Utrecht, The Netherlands (T.L.D., P.S., H.S.); Department of Biomedical Analysis, Utrecht University, 3584CA Utrecht, The Netherlands (T.L.D., G.J.d.J., G.W.S.); RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230–0045, Japan (Y.K., M.M.); Institute for Chemistry and Dynamics of the Geosphere III, Phytosphere, Research Centre Juelich, 52425 Juelich, Germany (A.W.-K.); Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (L.F.P., M.J.P.)
| |
Collapse
|
835
|
Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, Fernie AR, Börnke F. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. PLANT PHYSIOLOGY 2011; 156:1754-71. [PMID: 21670224 PMCID: PMC3149945 DOI: 10.1104/pp.111.179903] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/10/2011] [Indexed: 05/17/2023]
Abstract
Trehalose-6-phosphate (T6P) is a signaling metabolite that regulates carbon metabolism, developmental processes, and growth in plants. In Arabidopsis (Arabidopsis thaliana), T6P signaling is, at least in part, mediated through inhibition of the SNF1-related protein kinase SnRK1. To investigate the role of T6P signaling in a heterotrophic, starch-accumulating storage organ, transgenic potato (Solanum tuberosum) plants with altered T6P levels specifically in their tubers were generated. Transgenic lines with elevated T6P levels (B33-TPS, expressing Escherichia coli osmoregulatory trehalose synthesis A [OtsA], which encodes a T6P synthase) displayed reduced starch content, decreased ATP contents, and increased respiration rate diagnostic for high metabolic activity. On the other hand, lines with significantly reduced T6P (B33-TPP, expressing E. coli OtsB, which encodes a T6P phosphatase) showed accumulation of soluble carbohydrates, hexose phosphates, and ATP, no change in starch when calculated on a fresh weight basis, and a strongly reduced tuber yield. [¹⁴C]glucose feeding to transgenic tubers indicated that carbon partitioning between starch and soluble carbohydrates was not altered. Transcriptional profiling of B33-TPP tubers revealed that target genes of SnRK1 were strongly up-regulated and that T6P inhibited potato tuber SnRK1 activity in vitro. Among the SnRK1 target genes in B33-TPP tubers, those involved in the promotion of cell proliferation and growth were down-regulated, while an inhibitor of cell cycle progression was up-regulated. T6P-accumulating tubers were strongly delayed in sprouting, while those with reduced T6P sprouted earlier than the wild type. Early sprouting of B33-TPP tubers correlated with a reduced abscisic acid content. Collectively, our data indicate that T6P plays an important role for potato tuber growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frederik Börnke
- Friedrich-Alexander-Universität, Department of Biology, Division of Biochemistry, 91058 Erlangen, Germany (S.D., J.H., U.S., F.B.); Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.N.-N., A.R.F.); Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (M.R.H.); ECROPS Erlangen, Center of Plant Sciences, 91058 Erlangen, Germany (U.S., F.B.)
| |
Collapse
|
836
|
Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H, Dröge-Laser W, Moritz T, Smeekens S, Hanson J. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. THE NEW PHYTOLOGIST 2011; 191:733-745. [PMID: 21534971 DOI: 10.1111/j.1469-8137.2011.03735.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• The Arabidopsis basic region-leucine zipper transcription factor 11 (bZIP11) is known to be repressed by sucrose through a translational inhibition mechanism that requires the conserved sucrose control peptide encoded by the mRNA leader. The function of bZIP11 has been investigated in over-expression studies, and bZIP11 has been found to inhibit plant growth. The addition of sugar does not rescue the growth inhibition phenotype. Here, the function of the bZIP11 transcription factor was investigated. • The mechanism by which bZIP11 regulates growth was studied using large-scale and dedicated metabolic analysis, biochemical assays and molecular studies. • bZIP11 induction results in a reprogramming of metabolism and activation of genes involved in the metabolism of trehalose and other minor carbohydrates such as myo-inositol and raffinose. bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). • The metabolic changes detected mimic in part those observed in carbon-starved plants. It is proposed that bZIP11 is a powerful regulator of carbohydrate metabolism that functions in a growth regulatory network that includes T6P and the sucrose non-fermenting-1 related protein kinase 1 (SnRK1).
Collapse
Affiliation(s)
- Jingkun Ma
- Centre for Signal Transduction and Metabolomics, Institute of Botany, The Chinese Academy of Sciences, Naxincun 20, Beijing 100093, China
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Micha Hanssen
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Krister Lundgren
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Lázaro Hernández
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, CP 10600, Havana, Cuba
| | - Thierry Delatte
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Department of Biomedical Analysis, Utrecht University, 3584 CA Utrecht, the Netherlands
| | - Andrea Ehlert
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Molekularbiologie und Biotechnologie der Pflanze, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Chun-Ming Liu
- Centre for Signal Transduction and Metabolomics, Institute of Botany, The Chinese Academy of Sciences, Naxincun 20, Beijing 100093, China
| | - Henriette Schluepmann
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Wolfgang Dröge-Laser
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Molekularbiologie und Biotechnologie der Pflanze, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Thomas Moritz
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB Wageningen, the Netherlands
| | - Johannes Hanson
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB Wageningen, the Netherlands
- Umeå Plant Science Center, Department of Physiological Botany, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
837
|
Zang B, Li H, Li W, Deng XW, Wang X. Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. PLANT MOLECULAR BIOLOGY 2011; 76:507-22. [PMID: 21598083 DOI: 10.1007/s11103-011-9781-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 04/19/2011] [Indexed: 05/04/2023]
Abstract
Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.
Collapse
Affiliation(s)
- Baisheng Zang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
838
|
AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 2011; 36:470-7. [PMID: 21782450 DOI: 10.1016/j.tibs.2011.06.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 12/11/2022]
Abstract
AMPK is a ubiquitous sensor of cellular energy status in eukaryotic cells. It is activated by stresses causing ATP depletion and, once activated, maintains energy homeostasis by phosphorylating targets that activate catabolism and inhibit energy-consuming processes. Evidence derived from non-mammalian orthologs suggests that its ancestral role was in the response to starvation for a carbon source. We review recent findings showing that AMPK is activated by ADP as well as AMP, and discuss the mechanism by which binding of these nucleotides prevent its dephosphorylation and inactivation. We also discuss the role of the carbohydrate-binding module on the β subunit and the mechanisms by which it is activated by drugs and xenobiotics such as metformin and resveratrol.
Collapse
|
839
|
Schröder F, Lisso J, Müssig C. EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1620-30. [PMID: 21543728 PMCID: PMC3135934 DOI: 10.1104/pp.111.177204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/01/2011] [Indexed: 05/18/2023]
Abstract
Little is known about genes that control growth and development under low carbon (C) availability. The Arabidopsis (Arabidopsis thaliana) EXORDIUM-LIKE1 (EXL1) gene (At1g35140) was identified as a brassinosteroid-regulated gene in a previous study. We show here that the EXL1 protein is required for adaptation to C- and energy-limiting growth conditions. In-depth analysis of EXL1 transcript levels under various environmental conditions indicated that EXL1 expression is controlled by the C and energy status. Sugar starvation, extended night, and anoxia stress induced EXL1 gene expression. The C status also determined EXL1 protein levels. These results suggested that EXL1 is involved in the C-starvation response. Phenotypic changes of an exl1 loss-of-function mutant became evident only under corresponding experimental conditions. The mutant showed diminished biomass production in a short-day/low-light growth regime, impaired survival during extended night, and impaired survival of anoxia stress. Basic metabolic processes and signaling pathways are presumed to be barely impaired in exl1, because the mutant showed wild-type levels of major sugars, and transcript levels of only a few genes such as QUA-QUINE STARCH were altered. Our data suggest that EXL1 is part of a regulatory pathway that controls growth and development when C and energy supply is poor.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/radiation effects
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biomass
- Blotting, Western
- Brassinosteroids
- Carbon/pharmacology
- Cholestanols/pharmacology
- Darkness
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Light
- Mutation/genetics
- Phenotype
- Photoperiod
- Plant Leaves/drug effects
- Plant Leaves/growth & development
- Plant Leaves/radiation effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Steroids, Heterocyclic/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Sucrose/pharmacology
Collapse
Affiliation(s)
| | | | - Carsten Müssig
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer, 14476 Golm, Germany (F.S., J.L.); GoFORSYS, Universität Potsdam, 14476 Golm, Germany (C.M.)
| |
Collapse
|
840
|
Piattoni CV, Bustos DM, Guerrero SA, Iglesias AÁ. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. PLANT PHYSIOLOGY 2011; 156:1337-50. [PMID: 21546456 PMCID: PMC3135918 DOI: 10.1104/pp.111.177261] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 05/17/2023]
Abstract
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Collapse
Affiliation(s)
| | | | | | - Alberto Álvaro Iglesias
- Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Litoral), Facultad de Bioquímica y Ciencias Biológicas, Paraje “El Pozo,” S3000ZAA Santa Fe, Argentina (C.V.P., S.A.G., A.A.I.); Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicas y Técnicas), 7130 Chascomus, Argentina (D.M.B.)
| |
Collapse
|
841
|
Abstract
CONTENTS Summary 319 I. Introduction 320 II. The cell biology and biophysics of growth 320 III. Timing is everything: what determines when proliferation gives way to expansion? 323 IV. Anisotropic growth and the importance of polarity 325 V. How does organ identity and developmental patterning modulate growth behaviour? 326 VI. Coordination of growth at different scales 327 VII. Conclusions 329 Acknowledgements 329 References 330 SUMMARY The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling.
Collapse
Affiliation(s)
- Kim Johnson
- Cell & Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
842
|
|
843
|
Tardieu F, Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:283-9. [PMID: 21388861 DOI: 10.1016/j.pbi.2011.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 05/20/2023]
Abstract
Water deficit affects plant growth via reduced carbon accumulation, cell number and tissue expansion. We review the ways in which these processes are co-ordinated. Tissue expansion and its sensitivity to water deficit may be the most crucial process, involving tight co-ordination between the mechanisms which govern cell wall mechanical properties and plant hydraulics. The analyses of sensitivities, time constants and genetic correlations suggest that tissue expansion is loosely co-ordinated with cell division and carbon accumulation which may have limited direct effects on growth under water deficit. We therefore argue for essentially uncoupled mechanisms with feedbacks between them, rather than for a co-ordinated re-programming of all processes. Consequences on plant modelling and plant breeding in dry environment are discussed.
Collapse
Affiliation(s)
- François Tardieu
- Institut National de la Recherche Agronomique/LEPSE, 2 place Viala, Montpellier, France.
| | | | | |
Collapse
|
844
|
Martínez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, Nunes C, Primavesi LF, Coello P, Mitchell RA, Paul MJ. Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. PLANT PHYSIOLOGY 2011; 156:373-81. [PMID: 21402798 PMCID: PMC3091070 DOI: 10.1104/pp.111.174524] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/11/2010] [Indexed: 05/17/2023]
Abstract
Trehalose 6-phosphate (T6P) is a sugar signal that regulates metabolism, growth, and development and inhibits the central regulatory SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11). To better understand the mechanism in wheat (Triticum aestivum) grain, we analyze T6P content and SnRK1 activities. T6P levels changed 178-fold 1 to 45 d after anthesis (DAA), correlating with sucrose content. T6P ranged from 78 nmol g(-1) fresh weight (FW) pregrain filling, around 100-fold higher than previously reported in plants, to 0.4 nmol g(-1) FW during the desiccation stage. In contrast, maximum SnRK1 activity changed only 3-fold but was inhibited strongly by T6P in vitro. To assess SnRK1 activity in vivo, homologs of SnRK1 marker genes in the wheat transcriptome were identified using Wheat Estimated Transcript Server. SnRK1-induced and -repressed marker genes were expressed differently pregrain filling compared to grain filling consistent with changes in T6P. To investigate this further maternal and filial tissues were compared pre- (7 DAA) and during grain filling (17 DAA). Strikingly, in vitro SnRK1 activity was similar in all tissues in contrast to large changes in tissue distribution of T6P. At 7 DAA T6P was 49 to 119 nmol g(-1) FW in filial and maternal tissues sufficient to inhibit SnRK1; at 17 DAA T6P accumulation was almost exclusively endospermal (43 nmol g(-1) FW) with 0.6 to 0.8 nmol T6P g(-1) FW in embryo and pericarp. The data show a correlation between T6P and sucrose overall that belies a marked effect of tissue type and developmental stage on T6P content, consistent with tissue-specific regulation of SnRK1 by T6P in wheat grain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Matthew J. Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (E.M.-B., C.N., L.F.P., P.C., R.A.C.M., M.J.P.); Molecular Plant Physiology, Utrecht University, 3584–CH Utrecht, The Netherlands (T.D., H.S.); Biomolecular Analysis, Utrecht University, 3584–CG Utrecht, The Netherlands (T.D., G.J.d.J., G.W.S.); Instituto de Tecnologia Química e Biológica, Laboratório de Biotecnologia de Células Vegetais, Universidade Nova de Lisboa, 2781–901 Oeiras, Portugal (C.N.)
| |
Collapse
|
845
|
Licausi F. Regulation of the molecular response to oxygen limitations in plants. THE NEW PHYTOLOGIST 2011; 190:550-555. [PMID: 21091695 DOI: 10.1111/j.1469-8137.2010.03562.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The oxygen availability to plant tissues can vary strongly in time and space. To endure short- or long-term oxygen deprivation, plants evolved a series of metabolic and morphological adaptations that have been extensively studied. However, our knowledge of the molecular regulation of these processes is not as well understood. In this review, the recent findings on the molecular effectors that regulate the response of higher plants to oxygen deficiency are discussed. Although no direct oxygen sensor has been discovered in plants so far, mechanisms that perceive low-oxygen derived signals have been reported, involving different sets of transcription factors (TFs). The ERF (Ethylene Responsive Factor) family especially appears to play a crucial role in the determination of survival to reduced oxygen availability in Arabidopsis and rice. This class of TFs displays a broad range of targets, being involved in both the metabolic reprogramming and the morphological adaptations exploited by plants when subjected to low-oxygen conditions.
Collapse
Affiliation(s)
- Francesco Licausi
- Max Planck Institute of Molecular Plant Physiology, Energy Metabolism Research Group, Potsdam-Golm, Germany.
| |
Collapse
|
846
|
Wang YH, Gehring C, Irving HR. Plant natriuretic peptides are apoplastic and paracrine stress response molecules. PLANT & CELL PHYSIOLOGY 2011; 52:837-50. [PMID: 21478192 DOI: 10.1093/pcp/pcr036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Yu Hua Wang
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, Vic 3052, Australia
| | | | | |
Collapse
|
847
|
Ufaz S, Shukla V, Soloveichik Y, Golan Y, Breuer F, Koncz Z, Galili G, Koncz C, Zilberstein A. Transcriptional control of aspartate kinase expression during darkness and sugar depletion in Arabidopsis: involvement of bZIP transcription factors. PLANTA 2011; 233:1025-40. [PMID: 21279647 DOI: 10.1007/s00425-011-1360-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/10/2011] [Indexed: 05/06/2023]
Abstract
Initial steps of aspartate-derived biosynthesis pathway (Asp pathway) producing Lys, Thr, Met and Ile are catalyzed by bifunctional (AK/HSD) and monofunctional (AK-lys) aspartate kinase (AK) enzymes. Here, we show that transcription of all AK genes is negatively regulated under darkness and low sugar conditions. By using yeast one-hybrid assays and complementary chromatin immunoprecipitation analyses in Arabidopsis cells, the bZIP transcription factors ABI5 and DPBF4 were identified, capable of interacting with the G-box-containing enhancer of AK/HSD1 promoter. Elevated transcript levels of DPBF4 and ABI5 under darkness and low sugar conditions coincide with the repression of AK gene expression. Overexpression of ABI5, but not DPBF4, further increases this AK transcription suppression. Concomitantly, it also increases the expression of asparagines synthetase 1 (ASN1) that shifts aspartate utilization towards asparagine formation. However, in abi5 or dpbf4 mutant and abi5, dpbf4 double mutant the repression of AK expression is maintained, indicating a functional redundancy with other bZIP-TFs. A dominant-negative version of DPBF4 fused to the SRDX repressor domain of SUPERMAN could counteract the repression and stimulate AK expression under low sugar and darkness in planta. This effect was verified by showing that DPBF4-SRDX fails to recognize the AK/HSD1 enhancer sequence in yeast one-hybrid assays, but increases heterodimmer formation with DPBF4 and ABI5, as estimated by yeast two-hybrid assays. Hence it is likely that heterodimerization with DPBF4-SRDX inhibits the binding of redundantly functioning bZIP-TFs to the promoters of AK genes and thereby releases the repressing effect. These data highlight a novel transcription control of the chloroplast aspartate pathway that operates under energy limiting conditions.
Collapse
Affiliation(s)
- Shai Ufaz
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
848
|
Soitamo AJ, Jada B, Lehto K. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC PLANT BIOLOGY 2011; 11:68. [PMID: 21507209 PMCID: PMC3111369 DOI: 10.1186/1471-2229-11-68] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/20/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). RESULTS Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity. CONCLUSION Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV). The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.
Collapse
Affiliation(s)
- Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Vesilinnantie 5, Turku, 20014, Finland
| | - Balaji Jada
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Vesilinnantie 5, Turku, 20014, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Vesilinnantie 5, Turku, 20014, Finland
| |
Collapse
|
849
|
Less H, Angelovici R, Tzin V, Galili G. Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. THE PLANT CELL 2011; 23:1264-71. [PMID: 21487096 PMCID: PMC3101534 DOI: 10.1105/tpc.110.082867] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/03/2011] [Accepted: 03/12/2011] [Indexed: 05/18/2023]
Abstract
The expression pattern of any pair of genes may be negatively correlated, positively correlated, or not correlated at all in response to different stresses and even different progression stages of the stress. This makes it difficult to identify such relationships by classical statistical tools such as the Pearson correlation coefficient. Hence, dedicated bioinformatics approaches that are able to identify groups of cues in which there is a positive or negative expression correlation between pairs or groups of genes are called for. We herein introduce and discuss a bioinformatics approach, termed Gene Coordination, that is devoted to the identification of specific or multiple cues in which there is a positive or negative coordination between pairs of genes and can further incorporate additional coordinated genes to form large coordinated gene networks. We demonstrate the utility of this approach by providing a case study in which we were able to discover distinct expression behavior of the energy-associated gene network in response to distinct biotic and abiotic stresses. This bioinformatics approach is suitable to a broad range of studies that compare treatments versus controls, such as effects of various cues, or expression changes between a mutant and the control wild-type genotype.
Collapse
Affiliation(s)
| | | | | | - Gad Galili
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
850
|
Reinhold H, Soyk S, Šimková K, Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. THE PLANT CELL 2011; 23:1391-403. [PMID: 21487098 PMCID: PMC3101533 DOI: 10.1105/tpc.110.081950] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.
Collapse
Affiliation(s)
- Heike Reinhold
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sebastian Soyk
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Klára Šimková
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - John Marafino
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807
| | - Samantha Mainiero
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807
| | - Cara K. Vaughan
- School of Crystallography, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Jonathan D. Monroe
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807
| | - Samuel C. Zeeman
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
- Address correspondence to
| |
Collapse
|