51
|
Mutonga MBG, Shewarega A, Gross M, Kahl VH, Madoff DC. Investigating synergy between beta-blockers and transarterial chemoembolization in the treatment of hepatocellular carcinoma: preliminary data from a propensity matched analysis. Clin Imaging 2024; 115:110283. [PMID: 39278042 DOI: 10.1016/j.clinimag.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Favorable clinical outcomes have been reported with the adjunct use of beta-blockers in cancer treatment, hypothetically secondary to their anti-angiogenic/anti-proliferative effects. Hereby, we investigate whether there is synergy between beta-blockers and TACE in the treatment of HCC. METHODS 36 HCC patients on beta-blockers (mean dose of 48 mg daily) at the time of first-line treatment with TACE at our institution were retrospectively identified out of a cohort of 221 patients between 2008 and 2019. Using propensity scoring, a matched cohort of 36 patients not exposed to beta-blockers was generated based on age, gender, ethnicity, etiology of liver disease, BCLC, child Pugh score, PS/ECOG, cirrhosis, largest mass treated, type of TACE and treated liver segments. Tumor response was assessed at 1st and 2nd post-TACE imaging timepoints (1.4 and 4.1 months on average respectively). Variables were compared using chi-square test and Student's t-test. Kaplan-Meier transplant-free survival plots were generated using IBM® SPSS® software. Cox regression analysis was used to evaluate survival predictors. A p values < 0.05 was considered significant. RESULTS Comparing the control and beta-blocker cohorts, there were no differences in baseline characteristics, post-TACE imaging timepoints, tumor response or transplant free survival (p > 0.05). Tumor size was found to be a predictor of survival when the two cohorts were combined (p = 0.03). CONCLUSION Transplant-free survival and HCC response to first-line TACE treatment were similar in the control and beta-blocker groups. Large tumor sizes were associated with higher mortality in combined analysis of the cohorts.
Collapse
Affiliation(s)
- Martin B G Mutonga
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States
| | - Annabella Shewarega
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (ÄoR), Essen, Germany
| | - Moritz Gross
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Vinzent H Kahl
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States; Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, United States; Department of Surgery, Section of Surgical Oncology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
52
|
Mravec B, Szantova M. The role of the nervous system in liver diseases. Hepatol Res 2024; 54:970-980. [PMID: 39392763 DOI: 10.1111/hepr.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
The nervous system significantly participates in maintaining homeostasis, and modulating repair and regeneration processes in the liver. Moreover, the nervous system also plays an important role in the processes associated with the development and progression of liver disease, and can either potentiate or inhibit these processes. The aim of this review is to describe the mechanisms and pathways through which the nervous system influences the development and progression of liver diseases, such as alcohol-associated liver disease, nonalcoholic fatty liver disease, cholestatic liver disease, hepatitis, cirrhosis, and hepatocellular carcinoma. Possible therapeutic implications based on modulation of signals transduction between the nervous system and the liver are also discussed.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
53
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
54
|
Liu MW, Zhang CH, Ma SH, Zhang DQ, Jiang LQ, Tan Y. Protective Effects of Baicalein on Lipopolysaccharide-Induced AR42J PACs through Attenuation of Both Inflammation and Pyroptosis via Downregulation of miR-224-5p/PARP1. Mediators Inflamm 2024; 2024:6618927. [PMID: 39421730 PMCID: PMC11486537 DOI: 10.1155/2024/6618927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/22/2024] [Accepted: 08/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Baicalein has been used to treat inflammation-related diseases; nevertheless, its specific mechanism of action is unclear. Therefore, we examined the protective effects of baicalein on lipopolysaccharide-induced damage to AR42J pancreatic acinar cells (PACs) and determined its mechanism of action for protection. Methods An in vitro cell model of acute pancreatitis (AP) was established using lipopolysaccharide (LPS) (1 mg/L)-induced PACs (AR42J), and the relative survival rate was determined using the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) technique. Flow cytometry was applied to evaluate the apoptotic rates of AR42J PACs. The RNA and protein expression of miR-224-5p, poly ADP-ribose polymerase-1 (PARP1), nuclear transcription factor-κB65 (NF-κB65), phospho-kappa B alpha(p-IκB-α), interleukin(IL)-18R, NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), gasdermin D (GSDMD), apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 was detected based on the WB and RT-PCR assays. IL-1β, IL-6, IL-18, and TNF-α expression levels in AR42J cells were measured via ELISA method. The cell morphology was examined using the AO/EB method. Results The experiment confirmed a significant increase in the activity of AR42J cells treated with various doses of baicalein. Moreover, IL-1β, IL-6, TNF-α, and IL-18 expression levels in AR42J cells were dramatically reduced (P < 0.05), while miR-224-5p level was obviously enhanced. The protein and gene expression of PARP1, NF-κB65, p-IκB-α, IL-18R, GSDMD, ASC, NLRP3, and caspase-1 was obviously decreased (P < 0.05). Apoptosis in AR42J cells was significantly reduced with significant improvement in cell morphology. Conclusion Baicalein may significantly alleviate LPS-induced AR42J PAC damage by inhibiting the inflammatory response and pyroptosis. Its mode of action might be linked to higher miR-224-5p expression, which inhibits the PARP1/NF-κB and NLPR3/ASC/caspase-1/GSDMD pathways.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China
| | - Chun-Hai Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shou-Hong Ma
- Department of Medical Affairs, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, China
| | - De-Qiong Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li-Qiong Jiang
- Physical Examination Center, Yunnan Fuwai Cardiovascular Hospital, Kunming 650032, China
| | - Yang Tan
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
55
|
Li J, Wang H, Zhang S, Quan L, Zhou X. Identification and validation of an m7G-related lncRNAs signature for predicting prognosis, immune response and therapy landscapes in ovarian cancer. Front Genet 2024; 15:1466422. [PMID: 39440245 PMCID: PMC11493627 DOI: 10.3389/fgene.2024.1466422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Ovarian cancer is the most mortality malignancy in gynecology. N7-methylguanosine (m7G) is one of the most prevalent RNA modifications in the development and progression of cancer. The aim of this study is to investigate the effect of m7G-related lncRNA on ovarian cancer in terms of instruction prognosis and immunotherapy. Methods After integrating and processing the RNA expression profiles with the clinical sample information in the TCGA database, we initially screened to the m7G-related lncRNAs by Spearman correlation analysis, and subsequently obtained a prognostic model constructed by five m7G-related lncRNAs with Univariate Cox analysis, LASSO regression analysis, and Multivariate Cox regression analysis, after which we further evaluated and validated the prognostic value of the model using Kaplan-Meier survival analysis, Principal component analysis, Nomogram, and ROC curve. In addition, based on this risk model, we explored the differentially enriched pathways and functions of the high and low risk groups, and characterized the immune cells, immune functions, gene mutations, and drug sensitivity between the two groups. Results After a series of rigorous filtering, we finally attained a prognostic risk model consisting of KRT7-AS, USP30-AS1, ZFHX4-AS1, ACAP2-IT1, and TWSG1-DT which is excellent in predicting the prognostic survival of ovarian cancer patients as well as existing as an independent prognostic factor. Moreover, the model has certain relevance in the immune cells and functions between high and low risk groups, and simultaneously, the signature has the role of guiding the option of immunotherapy and chemotherapeutic drugs. Conclusion Altogether, our study established a tight connection between m7G-associated lncRNAs and ovarian cancer, with potential that the prognostic patterns contribute to steering the prognosis of ovarian cancer patients, measuring the efficacy of immunotherapeutic approaches, and detecting effective chemotherapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
56
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
57
|
Rocha M, Daniels K, Chandrasekaran S, Michopoulos V. Trauma and Posttraumatic Stress Disorder as Important Risk Factors for Gestational Metabolic Dysfunction. Am J Perinatol 2024; 41:1895-1907. [PMID: 38307105 PMCID: PMC11436347 DOI: 10.1055/a-2260-5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Gestational metabolic diseases adversely impact the health of pregnant persons and their offspring. Pregnant persons of color are impacted disproportionately by gestational metabolic disease, highlighting the need to identify additional risk factors contributing to racial-ethnic pregnancy-related health disparities. Trauma exposure and posttraumatic stress disorder (PTSD) are associated with increased risk for cardiometabolic disorders in nonpregnant persons, making them important factors to consider when identifying contributors to gestational metabolic morbidity and mortality health disparities. Here, we review current literature investigating trauma exposure and posttraumatic stress disorder as psychosocial risk factors for gestational metabolic disorders, inclusive of gestational diabetes, low birth weight and fetal growth restriction, gestational hypertension, and preeclampsia. We also discuss the physiological mechanisms by which trauma and PTSD may contribute to gestational metabolic disorders. Ultimately, understanding the biological underpinnings of how trauma and PTSD, which disproportionately impact people of color, influence risk for gestational metabolic dysfunction is critical to developing therapeutic interventions that reduce complications arising from gestational metabolic disease. KEY POINTS: · Gestational metabolic diseases disproportionately impact the health of pregnant persons of color.. · Trauma and PTSD are associated with increased risk for cardiometabolic disorders in nonpregnant per.. · Trauma and PTSD impact physiological cardiometabolic mechanisms implicated in gestational metabolic..
Collapse
Affiliation(s)
- Mariana Rocha
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| | | | - Suchitra Chandrasekaran
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
58
|
Manoleras AV, Sloan EK, Chang A. The sympathetic nervous system shapes the tumor microenvironment to impair chemotherapy response. Front Oncol 2024; 14:1460493. [PMID: 39381049 PMCID: PMC11458372 DOI: 10.3389/fonc.2024.1460493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The tumor microenvironment influences cancer progression and response to treatments, which ultimately impacts the survival of patients with cancer. The sympathetic nervous system (SNS) is a core component of solid tumors that arise in the body. In addition to influencing cancer progression, a role for the SNS in the effectiveness of cancer treatments is beginning to emerge. This review explores evidence that the SNS impairs chemotherapy efficacy. We review findings of studies that evaluated the impact of neural ablation on chemotherapy outcomes and discuss plausible mechanisms for the impact of neural signaling on chemotherapy efficacy. We then discuss implications for clinical practice, including opportunities to block neural signaling to improve response to chemotherapy.
Collapse
Affiliation(s)
| | | | - Aeson Chang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
59
|
Bennett N, Lawrence-Wood E, McFarlane A. Is inflammatory change associated with psychological risk and resilience in high-risk military personnel? BMJ Mil Health 2024; 170:396-401. [PMID: 39043474 DOI: 10.1136/military-2024-002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In military populations, the potential for under-reporting of Post-traumatic Stress Disorder (PTSD) symptoms and challenges in recognising early changes can make it difficult to detect an emerging disorder. However, early identification of PTSD symptoms would improve opportunities for intervention, and potentially reduce the likelihood of chronic mental health problems. METHOD This study explored if changes in levels of inflammation, measured by C reactive protein (CRP) and interleukin 6 (IL-6), were associated with the onset of psychological symptoms associated with PTSD. It also examined if changes in inflammation over time contributed to psychological risk and resilience, which was defined by psychological reactivity to deployment-related combat exposures. Participants were special forces personnel who completed psychological self-report questionnaires and had measures of CRP and IL-6 taken pre and post deployment. Regression analysis was used to examine how psychological symptoms predicted change in inflammation, and Analysis of Variance (ANOVA) were used to examine differences between identified subgroups. RESULTS Results identify this population as having high levels of combat and trauma exposures, with low-level psychological symptoms. The results also identified a decrease in CRP and an increase in IL-6 over time. A significant difference in inflammation was identified between subgroups (p<0.05). An association between inflammatory markers and subthreshold symptoms related to anger (p<0.01) and sleep (p<0.05) was also identified. CONCLUSION These preliminary findings suggest inflammatory markers may help to identify adaptive responses post deployment. In addition, low-level increases in inflammatory markers may be associated with subthreshold PTSD symptoms. These findings offer potential insights for prevention, early identification and treatment in military and veteran populations.
Collapse
Affiliation(s)
- Neanne Bennett
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- Department of Defence, Defence People Group, Canberra, Australian Capital Territory, Australia
| | - E Lawrence-Wood
- Phoenix Australia Centre for Post-traumatic Mental Health, Carlton, Victoria, Australia
| | - A McFarlane
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
60
|
Yang J, Wei W, Zhang S, Jiang W. Chronic stress influences the macrophage M1-M2 polarization balance through β-adrenergic signaling in hepatoma mice. Int Immunopharmacol 2024; 138:112568. [PMID: 38936055 DOI: 10.1016/j.intimp.2024.112568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Chronic stress negatively affects the immune system and promotes tumor progression. Tumor-associated macrophage (TAM) is an important component of the tumor immune microenvironment. However, the influence of chronic stress on M1-M2 polarization of TAM is unclear. We used flow cytometry to measure the M1-M2 polarization of TAM in chronic stress hepatocellular carcinoma (HCC) bearing mice. We also measured the level of norepinephrine and blocked β-adrenergic signaling to explore the role of β-adrenergic receptor in the effect of chronic stress on M1-M2 polarization of TAM. We found that chronic stress disrupts the M1-M2 polarization in tumor tissues, increased the level of CD11b+Ly6C+CCR2+ monocyte and interleukin-1beta in blood and promoted the growth of HCC. Furthermore, chronic stress upregulated the level of CCL2 in tumor tissues. Finally, we found chronic stress increased norepinephrine level in serum and propranolol, a blocker of β-adrenergic signaling, inhibited HCC growth, recovered the M1-M2 polarization balance of TAM in tumor tissues, blocked the increase of CD11b+Ly6C+CCR2+ monocytes in blood, and blocked the increase of CCL2 in tumor tissues induced by chronic stress. Our study indicated that chronic stress disrupts the M1-M2 polarization balance of TAMs through β-adrenergic signaling, thereby promoting the growth of HCC.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wei
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
61
|
Shehabeldin M, Gao J, Cho Y, Chong R, Tabib T, Li L, Smardz M, Gaffen SL, Diaz PI, Lafyatis R, Little SR, Sfeir C. Therapeutic delivery of CCL2 modulates immune response and restores host-microbe homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2400528121. [PMID: 39186644 PMCID: PMC11388407 DOI: 10.1073/pnas.2400528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/11/2024] [Indexed: 08/28/2024] Open
Abstract
Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.
Collapse
Affiliation(s)
- Mostafa Shehabeldin
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Jin Gao
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Yejin Cho
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Rong Chong
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Matthew Smardz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Patricia I. Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Steven R. Little
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15261
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
| |
Collapse
|
62
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
63
|
Dzięcioł M, Wala K, Wróblewska A, Janda-Milczarek K. The Effect of the Extraction Conditions on the Antioxidant Activity and Bioactive Compounds Content in Ethanolic Extracts of Scutellaria baicalensis Root. Molecules 2024; 29:4153. [PMID: 39275001 PMCID: PMC11397618 DOI: 10.3390/molecules29174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Ethanolic extracts of Baikal skullcap (Scutellaria baicalensis) root were obtained using various techniques, such as maceration, maceration with shaking, ultrasound-assisted extraction, reflux extraction, and Soxhlet extraction. The influence of the type and time of isolation technique on the extraction process was studied, and the quality of the obtained extracts was determined by spectrophotometric and chromatographic methods to find the optimal extraction conditions. Radical scavenging activity of the extracts was analyzed using DPPH assay, while total phenolic content (TPC) was analyzed by the method with the Folin-Ciocalteu reagent. Application of gas chromatography with mass selective detector (GC-MS) enabled the identification of some bioactive substances and a comparison of the composition of the particular extracts. The Baikal skullcap root extracts characterized by both the highest antioxidant activity and content of phenolic compounds were obtained in 2 h of reflux and Soxhlet extraction. The main biologically active compounds identified in extracts by the GC-MS method were wogonin and oroxylin A, known for their broad spectrum of biological effects, including antioxidant, anti-inflammatory, antiviral, anticancer, and others.
Collapse
Affiliation(s)
- Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Klaudia Wala
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland
| |
Collapse
|
64
|
Li L, Li J, Li W, Ma Y, Li S. Spleen derived monocytes regulate pulmonary vascular permeability in Hepatopulmonary syndrome through the OSM-FGF/FGFR1 signaling. Transl Res 2024; 271:93-104. [PMID: 38797433 DOI: 10.1016/j.trsl.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Wendeng Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
65
|
Sun J, Cao Y, Liu Q, Zhou Z, Xu Y, Liu C. Chemical Constituents, Anti-Tumor Mechanisms, and Clinical Application: A Comprehensive Review on Scutellaria barbata. Molecules 2024; 29:4134. [PMID: 39274982 PMCID: PMC11397148 DOI: 10.3390/molecules29174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.
Collapse
Affiliation(s)
- Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Qiqi Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
66
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
67
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
68
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
69
|
Ren H, Feng J, Hong M, Liu Z, Muyey DM, Zhang Y, Xu Z, Tan Y, Ren F, Chang J, Chen X, Wang H. Baicalein attenuates oxidative damage in mice haematopoietic cells through regulation of PDGFRβ. Mol Cell Probes 2024; 76:101966. [PMID: 38866345 DOI: 10.1016/j.mcp.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) plays a crucial role in murine haematopoiesis. Baicalein (BAI), a naturally occurring flavonoid, can alleviate disease damage through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms. However, whether BAI attenuates oxidative damage in murine haematopoietic cells by PDGFRβ remains unexplored. In this study, we utilized a tert-butyl hydroperoxide (TBHP)-induced BaF3 cell injury model and an ionising radiation (IR)-induced mice injury model to investigate the impact of the presence or absence of PDGFRβ on the pharmacological effects of BAI. In addition, the BAI-PDGFRβ interaction was characterized by molecular docking and dynamics simulations. The results show that a specific concentration of BAI led to increased cell viability, reduced reactive oxygen species (ROS) content, upregulated nuclear factor erythroid 2-related factor 2 (NRF2) expression, and its downstream target genes heme oxygenase 1 (HO-1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and activated protein kinase B (AKT) pathway in cells expressing PDGFRβ plasmid and experiencing damage. Similarly, BAI elevated lineage-Sca1+cKIT+ (LSK) cell proportion, promoted haematopoietic restoration, enhanced NRF2-mediated antioxidant response in PDGFRβ+/+ mice. However, despite BAI usage, PDGFRβ knockout mice (PDGFRβ-/-) showed lower LSK proportion and less antioxidant capacity than the total body irradiation (TBI) group. Furthermore, we demonstrated an interaction between BAI and PDGFRβ at the molecular level. Collectively, our results indicate that BAI attenuates oxidative stress injury and helps promote haematopoietic cell recovery through regulation of PDGFRβ.
Collapse
Affiliation(s)
- Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhuang Liu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
70
|
Scott OW, TinTin S, Cavadino A, Elwood JM. Beta-blocker use and breast cancer outcomes: a meta-analysis. Breast Cancer Res Treat 2024; 206:443-463. [PMID: 38837086 PMCID: PMC11208256 DOI: 10.1007/s10549-024-07263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Beta blockers (BBs) are commonly used cardiovascular medications, and their association with breast cancer outcomes has been examined in several previous observational studies and meta-analyses. In this study, an updated meta-analysis was undertaken to ascertain the association between BBs and both breast cancer death (BCD) and breast cancer recurrence (BCR). METHODS Articles were sourced from various databases up until the 14th of August 2023. Effect estimates were pooled using the random effects model, and the Higgins I2 statistic was computed to ascertain heterogeneity. Subgroup analyses were conducted by the potential for immortal time bias (ITB), the exposure period (prediagnosis vs postdiagnosis), and type of BB (selective vs non-selective). Publication bias was assessed using funnel plots and Egger's regression tests. RESULTS Twenty-four studies were included. Pooled results showed that there was no statistically significant association between BB use and both BCD (19 studies, hazard ratio = 0.90, 95% CI 0.78-1.04) and BCR (16 studies, HR = 0.87, 95% CI 0.71-1.08). After removing studies with ITB, the associations were attenuated towards the null. There was no effect modification for either outcome when stratifying by the exposure period or type of BB. There was clear evidence of publication bias for both outcomes. CONCLUSION In this meta-analysis, we found no evidence of an association between BB use and both BCD and BCR. Removing studies with ITB attenuated the associations towards the null, but there was no effect modification by the exposure period or type of BB.
Collapse
Affiliation(s)
- Oliver William Scott
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| | - Sandar TinTin
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Alana Cavadino
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - J Mark Elwood
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
71
|
Yang K, Liu H, Li JH. A methylation-related lncRNA-based prediction model in lung adenocarcinomas. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13753. [PMID: 39187946 PMCID: PMC11347386 DOI: 10.1111/crj.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 03/31/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND The collaboration between methylation and the lung adenocarcinoma (LUAD) occurrence and development is closes. Long noncoding RNA (lncRNA), as a regulatory factor of various biological functions, can be used for cancer diagnosis. Our study aimed to construct a robust methylation-related lncRNA signature of LUAD. METHODS In the Cancer Genome Atlas (TCGA) dataset, we download the RNA expression data and clinical information of LUAD cases. To develop the best prognostic signature based on methylation-related lncRNAs, Cox regression analyses were utilized. Using Kaplan-Meier analysis, overall survival rates were compared between risk category included both low- and high-risk patients. To categorize genes according to their functional significance, GSEA (Subramanian et al, 2005) was used. Single-sample gene set enrichment analysis (ssGSEA) was used to further reveal the potential molecular mechanism of the methylation-related lncRNA prognostic model in immune infiltration. Using TRLnc (http://www.licpathway.net/TRlnc) and lncRNASNP to analyse the SNP sites and TRLnc of these 18 lncRNAs. LncSEA website was used to analyse 18 lncRNA in the process of tumour development and development. Go was used to analyse the enriched pathways enriched by TFs (transcription factors), Cerna networks, and proteins bound to each other of these 18 lncRNAs. The 'prophetic' package was used to analyse the value of this prognostic model in guiding personalized immunotherapy. RESULTS In this study, we identified 18 methylation-related lncRNAs (AP002761.1, AL118558.3, CH17-340M24.3, AL353150.1, AC004687.1, LINC00996, AF186192.1, HSPC324, AC087752.3, FAM30A, AC106047.1, AC026355.1, ABALON, LINC01843, AL606489.1, NKILA, AP001453.2, GSEC) to establish a methylation-related lncRNA signature that can detect patients prognosis in LUAD. The enriched pathways enriched by proteins interacting with 18 lncRNAs are mainly EMT, hypoxia, stemness and proliferation, among which LINC00996 and AF186192.1 are regulated by multiple tumour associated transcription factors, such as TP53 and TP63, and fam30a and mRNA form a Cerna network. There are 2319 SNP loci in LINC00996, 36 of which are risk SNP loci and 205 SNP loci in af186192.1; AF186192.1 affects 95 conserved miRNAs and 123 non-conserved miRNAs, promotes the binding of 149 pairs of miRNAs: lncRNAs and inhibits the binding of 95 pairs of miRNAs: lncRNAs. The ROC curve demonstrated that the established methylation-related lncRNA signature was more effective in predicting the prognosis of patients in LUAD than the clinicopathological parameters. Our research has confirmed that patients in the high-risk group which was separated by the risk score model based on methylation-related lncRNA had shorter OS. According to GSEA, the high-risk group had a predominantly tumour- and immune-related pathway enrichment. A significant association was shown by ssGSEA between predictive signature and immune status in LUAD patients. In addition, principal component analysis (PCA) demonstrated the prognostic and predictive value of our signature. The correlation between the predictive signature of methylation-related lncRNA and IC50 of conventional chemotherapy drugs can provide personalized chemotherapy regimens for LUAD patients. Methylation-related lncRNA signature can effectively predict DFS of patients in LUAD.
Collapse
Affiliation(s)
- Kun Yang
- Thoracic SurgeryThe Thirteenth People's Hospital of Chongqing CityChongqing CityChina
- Thoracic SurgeryNuclear Industry 215 HospitalXianyang CityShaanxi ProvinceChina
| | - Hao Liu
- Department of Clinical MedicineShaanxi University of Chinese MedicineXianyang CityChina
| | - Jun Hai Li
- Thoracic SurgeryNuclear Industry 215 HospitalXianyang CityShaanxi ProvinceChina
- Department of Clinical MedicineShaanxi University of Chinese MedicineXianyang CityChina
| |
Collapse
|
72
|
Chen T, Zhang P, Cong XF, Wang YY, Li S, Wang H, Zhao SR, Sun XJ. Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway. Front Pharmacol 2024; 15:1405521. [PMID: 39144617 PMCID: PMC11322074 DOI: 10.3389/fphar.2024.1405521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Almonertinib is an important third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) exhibiting high selectivity to EGFR-sensitizing and T790M-resistant mutations. Almonertinib resistance is a major obstacle in clinical use. Baicalein possesses antitumor properties, but its mechanism of antitumor action against almonertinib-resistant non-small cell lung cancer (NSCLC) remains unelucidated. Methods CCK-8 assay was used to examine the survival rate of H1975/AR and HCC827/AR cells following treatment for 24 h with different concentrations of baicalein, almonertinib or their combination. The changes in colony formation ability, apoptosis, and intracellular reactive oxygen species (ROS) levels of the treated cells were analyzed using colony formation assay and flow cytometry. Western blotting was performed to detect the changes in protein expressions in the cells. The effects of pre-treatment with NAC on proliferation, apoptosis, and PI3K/Akt signaling pathway were observed in baicalein- and/or almonertinib-treated cells. A nude mouse model bearing subcutaneous HCC827/AR cell xenograft were treated with baicalein (20 mg/kg) or almonertinib (15 mg/kg), and the tumor volume and body mass changes was measured. Results Both baicalein and almonertinib represses the viability of HCC827/AR and H1975/AR cells in a concentration-dependent manner. Compared with baicalein or almonertinib alone, the combined application of the two drugs dramatically attenuates cell proliferation; triggers apoptosis; causes cleavage of Caspase-3, PARP, and Caspase-9; downregulates the protein expressions of p-PI3K and p-Akt; and significantly inhibits tumor growth in nude mice. Furthermore, baicalein combined with almonertinib results in massive accumulation of reactive oxygen species (ROS) and preincubation with N-acetyl-L-cysteine (ROS remover) prevents proliferation as well as inhibits apoptosis induction, with partial recovery of the decline of p-PI3K and p-Akt. Discussion The combination of baicalein and almonertinib can improve the antitumor activity in almonertinib-resistant NSCLC through the ROS-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Teng Chen
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Pei Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| | - Xiao-Fan Cong
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yuan-Yuan Wang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Shuo Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Hao Wang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Su-Rong Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| | - Xiao-Jin Sun
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| |
Collapse
|
73
|
Su Q, Pan J, Wang C, Zhang M, Cui H, Zhao X. Curcumin and Baicalin Co-Loaded Nanoliposomes for Synergistic Treatment of Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:973. [PMID: 39204318 PMCID: PMC11359521 DOI: 10.3390/pharmaceutics16080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, the treatment of patients with advanced non-small cell lung cancer (NSCLC) mainly relies on traditional chemotherapeutic drugs; however, most of them have limited therapeutic effects and high toxicity. Some natural products with good therapeutic efficacy and low toxicity and side effects are limited in clinical application due to their low solubility and bioavailability. In this study, a nanoliposome drug-carrying system (Lip-Cur/Ba) was developed for the co-delivery of curcumin (Cur) and baicalin (Ba) using the thin-film hydration method. In vitro experiments demonstrated that Lip-Cur/Ba had a strong killing effect on A549 cells, and the inhibitory effect of Lip-Cur/Ba on A549 cells was enhanced by 67.8% and 51.9% relative to that of the single-carrier system, which could reduce the use of a single-drug dose (Lip-Cur and Lip-Ba), delay the release rate of the drug and improve the bioavailability. In vivo experiments demonstrated the antitumor activity of Lip-Cur/Ba by intravitreal injection in BALB/c mice, and there were no obvious toxic side effects. This study provides a new idea for curcumin and baicalin to be used in the co-treatment of NSCLC by constructing a new vector.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (J.P.); (C.W.); (M.Z.); (H.C.)
| |
Collapse
|
74
|
Sun D, Tan L, Chen Y, Yuan Q, Jiang K, Liu Y, Xue Y, Zhang J, Cao X, Xu M, Luo Y, Xu Z, Xu Z, Xu W, Shen M. CXCL5 impedes CD8 + T cell immunity by upregulating PD-L1 expression in lung cancer via PXN/AKT signaling phosphorylation and neutrophil chemotaxis. J Exp Clin Cancer Res 2024; 43:202. [PMID: 39034411 PMCID: PMC11264977 DOI: 10.1186/s13046-024-03122-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lipin Tan
- Department of nursing administration, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiang Yuan
- Department of interventional medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kanqiu Jiang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yangyang Liu
- Department of Vascular Surgery, Hospital of Zhangjiagang, Suzhou, 215600, China
| | - Yuhang Xue
- Department of Thoracic Surgery, Hospital of Yancheng, Yancheng, 224000, China
| | - Jinzhi Zhang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xianbao Cao
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Minzhao Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Luo
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghen Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Weihua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mingjing Shen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
75
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Michael A Hauser, Hayes JP, Hemmings SM, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: A meta-analysis of 23 military and civilian cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310422. [PMID: 39072012 PMCID: PMC11275670 DOI: 10.1101/2024.07.15.24310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
| | - Agaz H Wani
- University of South Florida, Genomics Program, College of Public Health, Tampa, FL, US
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Andrew Ratanatharathorn
- Columbia University Mailmain School of Public Health, Department of Epidemiology, New York, NY, US
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, US
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Xiang Zhao
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, US
| | | | - Diana Avetyan
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
| | - Jean C Beckham
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht, UT, NL
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, US
| | | | - Chia-Yen Chen
- Biogen Inc., Translational Sciences, Cambridge, MA, US
| | - Shareefa Dalvie
- University of Cape Town, Department of Pathology, Cape Town, Western Province, ZA
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, ZA
| | - Michelle F Dennis
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, TRACTS/GRECC, Boston, MA, US
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, US
| | - Melanie E Garrett
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, US
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, NL
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, NL
| | - Gerald Grant
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, US
| | - Michael A Hauser
- Duke University School of Medicine, Department of Medicine, Durham, NC, US
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, US
| | - Sian Mj Hemmings
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SAMRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Bertrand Russel Huber
- Boston University School of Medicine, Department of Neurology, Boston, MA, US
- VA Boston Healthcare System, Pathology and Laboratory Medicine, Boston, MA, US
| | - Aarti Jajoo
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
| | - Stefan Jansen
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, US
| | - Nathan A Kimbrel
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, US
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, US
- The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, US
| | - Joel E Kleinman
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
- Lieber Institute for Brain Development, Baltimore, MD, US
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, NY, US
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, US
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, UNC Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Adriana Lori
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Benjamin J Luft
- Stony Brook University, Department of Medicine, Stony Brook, NY, US
| | - Jurjen J Luykx
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam, NH, NL
| | - Christine E Marx
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC, US
| | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Psychiatry, Chapel Hill, NC, US
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, AU
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, ZA
| | - Clarisse Musanabaganwa
- Rwanda Biomedical Center, Research Innovation and Data Science Division, Kigali, RW
- University of Rwanda, Center of Human Genetics, Kigali, RW
| | - Jean Mutabaruka
- University of Rwanda, Department of Clinical Psychology, Huye, RW
| | - Leon Mutesa
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
- University of Rwanda, Center for Human Genetics, Kigali, RW
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychology, Austin, TX, US
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Austin, TX, US
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, US
- Alpert Brown Medical School, Department of Pediatrics, Providence, RI, US
- Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, US
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, US
| | - Sheila A M Rauch
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, US
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, US
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | | | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL
| | - Soraya Seedat
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
- University of California San Diego, School of Public Health, La Jolla, CA, US
| | - Sylvanus Toikumo
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Robert J Ursano
- Uniformed Services University, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, Maryland, US
| | - Annette Uwineza
- University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, US
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL
- New York University School of Medicine, Department of Psychiatry, New York, NY, US
| | - Christiaan H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, Holland, NL
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, NL
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, Holland, NL
| | - Erin B Ware
- University of Michigan, Survey Research Center, Ann Arbor, MI, US
| | - Derek E Wildman
- University of South Florida, College of Public Health, Tampa, FL, US
- University of South Florida, Genomics Program, Tampa, FL, US
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, US
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, AU
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, AU
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
| | - Leigh L van den Heuvel
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, US
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
- Emory University, Department of Human Genetics, Atlanta, GA, US
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| |
Collapse
|
76
|
Karaca ZM, Karaca G, Kayhan B, Gül M, Ersan V, Gözükara Bağ H, Yeşilada E. Chronic liver fibrosis induction in aging causes significant ultra-structural deterioration in liver and alteration on immune response gene expressions in liver-spleen axis. Ultrastruct Pathol 2024; 48:261-273. [PMID: 38842161 DOI: 10.1080/01913123.2024.2360447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The relationship between damage to the liver and spleen by aging and the immune response status in these two organs, which are anatomically and immunologically interconnected, is unknown. The authors investigated the histopathological, ultrastructural, and immunological effects of aging in young and aged fibrotic mice by using an experimental model. Four groups were planned, with 10 mice in each experimental group. The levels of fibrosis and ultrastructural destruction in the liver were determined by α-SMA staining and TEM analysis. Expression levels of immunity genes (Il2, Il4, Il6, Il10, Il12, Il17, Tnf, Ifng, Tgfb1, Gata3, Rorc, Tbx21, Foxp3, Ccl2, Ccr2, Cxcr3, Pf4, Cxcl10) were carried out by qRT-PCR. While structural disorders were detected in the mitochondria of aged healthy group, cellular destruction in the fibrosis-induced elderly group was at a dramatic level. Fibrosis induction in aged mice caused an elevation in the expression of chemokines (CCl2, CXCL10, CCR2) and cytokine (IL-17a) genes that induce autoinflammatory response in the liver. Unlike the cellular pathology and genes activated in fibrosis in youth and the natural occurrence of fibrosis with aging, induction of fibrosis during aging causes deterioration in the liver and expression of genes responsible for autoimmunity in both the liver and spleen.
Collapse
Affiliation(s)
- Zeynal Mete Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
- Department of Genetıcs, Faculty of Medıcıne, Kırklarel' Unıversıty, Kırklarelı, Türkıye
| | - Gamze Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Başak Kayhan
- Liver Transplantation Institute, Transplantation Immunology Laboratory, İnönü University, Malatya, Türkiye
- Department of Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Veysel Ersan
- Liver Transplantation Institute, Department of General Surgery, İnönü University, Malatya, Türkiye
| | - Harika Gözükara Bağ
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Elif Yeşilada
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
77
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
78
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
79
|
Lee AR, Lee SM, Kang WS, Cho AR, Kim JW, Park JK. Can Pre-Transplant Psychometric Testing Predict Tacrolimus Intrapatient Variability After Living Kidney Transplantation? Psychiatry Investig 2024; 21:718-725. [PMID: 39089697 PMCID: PMC11298269 DOI: 10.30773/pi.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Tacrolimus intrapatient variability (Tac IPV) has been considered a marker for post-graft risk. We investigated pre-transplant psychometric testing to predict Tac IPV after living kidney transplantation. METHODS Minnesota Multiphasic Personality Inventory-2 (MMPI-2) examined during pre-transplant evaluation by 102 recipients were analyzed. Subjects were divided into two groups, low IPV (L-IPV) and high IPV (H-IPV), by cutoffs of Tac IPV: median of 24 and value of 30. T-scores of MMPI-2 scales were used to analyze difference between L-IPV and H-IPV using independent t-tests. Stepwise multiple logistic regression was used to test whether MMPI-2 scales affected Tac IPV. Confusion matrix of logistic regression was used to explain statistical power. Cutoff values of significant scales for H-IPV were analyzed by constructing receiver operating characteristic curves. RESULTS Hysteria (Hy) and depression (D) scale scores and Tac IPV were associated in IPV 24 (odds ratio [OR]: 1.08, p<0.01 for Hy; OR: 0.93, p<0.01 for D) and IPV 30 models (OR: 1.09, p<0.01 for Hy; OR: 0.92, p<0.01 for D). Paranoia (Pa) scale scores were associated with Tac IPV in IPV 24 model (OR=1.10, p<0.01) and were significantly higher in H-IPV 24 (p<0.01). F1 scores of confusion matrix in IPV 24 and 30 models were 0.70 and 0.71, respectively. Cutoffs of Hy, D, and Pa scales were 51, 57, and 47, respectively. CONCLUSION MMPI-2 profile is suggested as a predictor for high Tac IPV after living kidney transplantation.
Collapse
Affiliation(s)
- Ah Rah Lee
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Won Sub Kang
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Woo Kim
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Jin Kyung Park
- Department of Psychiatry, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
80
|
Rhein C, Apelt I, Werner F, Schäflein E, Adler W, Reichel M, Schug C, Morawa E, Erim Y. Paradoxical effect of anti-inflammatory drugs on IL-6 mRNA expression in patients with PTSD during treatment. J Neural Transm (Vienna) 2024; 131:813-821. [PMID: 38613673 PMCID: PMC11199235 DOI: 10.1007/s00702-024-02770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
The pathophysiology of posttraumatic stress disorder (PTSD) is associated with the activation of the innate immune system, including cytokines like interleukin 6 (IL-6). However, the role of IL-6 in the etiology and treatment of PTSD still remains elusive. We conducted a prospective controlled trial to investigate the development of IL-6 during psychosomatic treatment in individuals with PTSD in comparison with individuals without PTSD. We assessed IL-6 mRNA expression before and after 2 months of psychosomatic treatment in individuals with and without PTSD. Severities of PTSD and depressive symptoms were assessed in parallel. Linear mixed regression was applied for statistical analysis, including the factors diagnosis PTSD and pre-post treatment after subgrouping for intake of anti-inflammatory drugs. The development of IL-6 mRNA expression during treatment was affected by the use of anti-inflammatory drugs. In the subgroup without intake of anti-inflammatory drugs, no significant statistical treatment effect in individuals with and without PTSD emerged. In the subgroup of individuals taking anti-inflammatory drugs, a significant interaction effect of the factors pre-post treatment and diagnosis PTSD was observed. Whereas IL-6 mRNA expression in individuals without PTSD decreased according to amelioration of symptoms, IL-6 mRNA expression in individuals with PTSD increased significantly during treatment, in opposite direction to symptom severity. Anti-inflammatory drugs might affect IL-6 mRNA expression in individuals with PTSD in a paradoxical way. This study offers a further piece of evidence that IL-6 could be involved in the pathophysiology of PTSD and PTSD-specific immunologic molecular mechanisms.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany.
| | - Isabella Apelt
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Franziska Werner
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Eva Schäflein
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden (TUD), Dresden, Germany
| | - Werner Adler
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caterina Schug
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Eva Morawa
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Yesim Erim
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| |
Collapse
|
81
|
Cao B, Li Y, Xu J, Zhang Y, Wang C. Dynamic changes of complete blood cell count parameters among airport workers during the COVID-19 pandemic in Chongqing, China: A retrospective longitudinal study. Heliyon 2024; 10:e32734. [PMID: 39183824 PMCID: PMC11341334 DOI: 10.1016/j.heliyon.2024.e32734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background and aims This study aimed to examine the dynamic changes in the complete blood counts of airport staff from 2019 to 2021 and assess the impact of the coronavirus disease 2019 (COVID-19) on their overall health status during the first pandemic wave. Materials and methods A total of 2144 airport staff members from Chongqing Jiangbei International Airport who underwent health examinations for three consecutive years from 2019 to 2021 were recruited for this study. Venous blood samples were collected for a complete blood cell count. Results Changes were observed in blood routine parameters from airport staff over three consecutive years. After adjusting for age, body mass index, and systolic blood pressure, the red blood cell count decreased consecutively during the COVID-19 pandemic. Hemoglobin and basophil counts decreased significantly during COVID-19 year 1. Lymphocyte and platelet counts decreased, whereas the monocyte-to-lymphocyte ratio increased in COVID-19 year 2. However, the white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, and eosinophil count did not change from 2019 to 2021. Conclusion This study showed changes in complete blood counts in frontline airport workers, especially men, during the COVID-19 pandemic. Therefore, paying more attention to the overall health conditions and immune function of airport staff engaged in intensive work is necessary.
Collapse
Affiliation(s)
- Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingchao Li
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of First Aid Center, Chongqing Jiangbei International Airport, Chongqing, China
| | - Jinfang Xu
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yinan Zhang
- The Metabolic Disease Biobank, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
82
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
83
|
Shu LZ, Ding YD, Zhang JY, He RS, Xiao L, Pan BX, Deng H. Interactions between MDSCs and the Autonomic Nervous System: Opportunities and Challenges in Cancer Neuroscience. Cancer Immunol Res 2024; 12:652-662. [PMID: 38568775 DOI: 10.1158/2326-6066.cir-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui-Shan He
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
84
|
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, Li W, Li X, Chen M, Gu L, Sun Y, Xiao Z, Shen J. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther 2024; 31:816-830. [PMID: 38351139 PMCID: PMC11192634 DOI: 10.1038/s41417-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Linwei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
85
|
Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J. Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 2024; 370:773-797. [PMID: 38734313 DOI: 10.1016/j.jconrel.2024.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The spleen, body's largest secondary lymphoid organ, is also a vital hematopoietic and immunological organ. It is regarded as one of the most significant organs in humans. As more researchers recognize the functions of the spleen, clinical methods for treating splenic diseases and spleen-targeted drug delivery systems to improve the efficacy of spleen-related therapies have gradually developed. Many modification strategies (size, charge, ligand, protein corona) and hitchhiking strategies (erythrocytes, neutrophils) of nanoparticles (NPs) have shown a significant increase in spleen targeting efficiency. However, most of the targeted drug therapy strategies for the spleen are to enhance or inhibit the immune function of the spleen to achieve therapeutic effects, and there are few studies on spleen-related diseases. In this review, we not only provide a detailed summary of the design rules for spleen-targeted drug delivery systems in recent years, but also introduce common spleen diseases (splenic tumors, splenic injuries, and splenomegaly) with the hopes of generating more ideas for future spleen research.
Collapse
Affiliation(s)
- Ziyao Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Kedong Sun
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhile Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 LongMian road, NanJing, JiangSu 211198, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
86
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, PTSD Working Group of Psychiatric Genomics Consortium, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
Collaborators
Caroline M Nievergelt, Adam X Maihofer, Elizabeth G Atkinson, Chia-Yen Chen, Karmel W Choi, Jonathan R I Coleman, Nikolaos P Daskalakis, Laramie E Duncan, Renato Polimanti, Cindy Aaronson, Ananda B Amstadter, Soren B Andersen, Ole A Andreassen, Paul A Arbisi, Allison E Ashley-Koch, S Bryn Austin, Esmina Avdibegoviç, Dragan Babić, Silviu-Alin Bacanu, Dewleen G Baker, Anthony Batzler, Jean C Beckham, Sintia Belangero, Corina Benjet, Carisa Bergner, Linda M Bierer, Joanna M Biernacka, Laura J Bierut, Jonathan I Bisson, Marco P Boks, Elizabeth A Bolger, Amber Brandolino, Gerome Breen, Rodrigo Affonseca Bressan, Richard A Bryant, Angela C Bustamante, Jonas Bybjerg-Grauholm, Marie Bækvad-Hansen, Anders D Børglum, Sigrid Børte, Leah Cahn, Joseph R Calabrese, Jose Miguel Caldas-de-Almeida, Chris Chatzinakos, Sheraz Cheema, Sean A P Clouston, Lucía Colodro-Conde, Brandon J Coombes, Carlos S Cruz-Fuentes, Anders M Dale, Shareefa Dalvie, Lea K Davis, Jürgen Deckert, Douglas L Delahanty, Michelle F Dennis, Frank Desarnaud, Christopher P DiPietro, Seth G Disner, Anna R Docherty, Katharina Domschke, Grete Dyb, Alma Džubur Kulenović, Howard J Edenberg, Alexandra Evans, Chiara Fabbri, Negar Fani, Lindsay A Farrer, Adriana Feder, Norah C Feeny, Janine D Flory, David Forbes, Carol E Franz, Sandro Galea, Melanie E Garrett, Bizu Gelaye, Joel Gelernter, Elbert Geuze, Charles F Gillespie, Slavina B Goleva, Scott D Gordon, Aferdita Goçi, Lana Ruvolo Grasser, Camila Guindalini, Magali Haas, Saskia Hagenaars, Michael A Hauser, Andrew C Heath, Sian M J Hemmings, Victor Hesselbrock, Ian B Hickie, Kelleigh Hogan, David Michael Hougaard, Hailiang Huang, Laura M Huckins, Kristian Hveem, Miro Jakovljević, Arash Javanbakht, Gregory D Jenkins, Jessica Johnson, Ian Jones, Tanja Jovanovic, Karen-Inge Karstoft, Milissa L Kaufman, James L Kennedy, Ronald C Kessler, Alaptagin Khan, Nathan A Kimbrel, Anthony P King, Nastassja Koen, Roman Kotov, Henry R Kranzler, Kristi Krebs, William S Kremen, Pei-Fen Kuan, Bruce R Lawford, Lauren A M Lebois, Kelli Lehto, Daniel F Levey, Catrin Lewis, Israel Liberzon, Sarah D Linnstaedt, Mark W Logue, Adriana Lori, Yi Lu, Benjamin J Luft, Michelle K Lupton, Jurjen J Luykx, Iouri Makotkine, Jessica L Maples-Keller, Shelby Marchese, Charles Marmar, Nicholas G Martin, Gabriela A Martínez-Levy, Kerrie McAloney, Alexander McFarlane, Katie A McLaughlin, Samuel A McLean, Sarah E Medland, Divya Mehta, Jacquelyn Meyers, Vasiliki Michopoulos, Elizabeth A Mikita, Lili Milani, William Milberg, Mark W Miller, Rajendra A Morey, Charles Phillip Morris, Ole Mors, Preben Bo Mortensen, Mary S Mufford, Elliot C Nelson, Merete Nordentoft, Sonya B Norman, Nicole R Nugent, Meaghan O'Donnell, Holly K Orcutt, Pedro M Pan, Matthew S Panizzon, Gita A Pathak, Edward S Peters, Alan L Peterson, Matthew Peverill, Robert H Pietrzak, Melissa A Polusny, Bernice Porjesz, Abigail Powers, Xue-Jun Qin, Andrew Ratanatharathorn, Victoria B Risbrough, Andrea L Roberts, Alex O Rothbaum, Barbara O Rothbaum, Peter Roy-Byrne, Kenneth J Ruggiero, Ariane Rung, Heiko Runz, Bart P F Rutten, Stacey Saenz de Viteri, Giovanni Abrahão Salum, Laura Sampson, Sixto E Sanchez, Marcos Santoro, Carina Seah, Soraya Seedat, Julia S Seng, Andrey Shabalin, Christina M Sheerin, Derrick Silove, Alicia K Smith, Jordan W Smoller, Scott R Sponheim, Dan J Stein, Synne Stensland, Jennifer S Stevens, Jennifer A Sumner, Martin H Teicher, Wesley K Thompson, Arun K Tiwari, Edward Trapido, Monica Uddin, Robert J Ursano, Unnur Valdimarsdóttir, Miranda Van Hooff, Eric Vermetten, Christiaan H Vinkers, Joanne Voisey, Yunpeng Wang, Zhewu Wang, Monika Waszczuk, Heike Weber, Frank R Wendt, Thomas Werge, Michelle A Williams, Douglas E Williamson, Bendik S Winsvold, Sherry Winternitz, Christiane Wolf, Erika J Wolf, Yan Xia, Ying Xiong, Rachel Yehuda, Keith A Young, Ross McD Young, Clement C Zai, Gwyneth C Zai, Mark Zervas, Hongyu Zhao, Lori A Zoellner, John-Anker Zwart, Terri deRoon-Cassini, Sanne J H van Rooij, Leigh L van den Heuvel, Murray B Stein, Kerry J Ressler, Karestan C Koenen,
Collapse
|
87
|
Wang L, Wang T, Zhuo Y, Xu S, Liu H, Jiang X, Lu Z, Wang X, Rao H, Wu D, Wang Y, Feng B, Sun M. Cascade Co 8FeS 8@Co 1-xS nano-enzymes trigger efficiently apoptosis-ferroptosis combination tumor therapy. J Colloid Interface Sci 2024; 662:962-975. [PMID: 38382379 DOI: 10.1016/j.jcis.2024.01.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
This study involved the preparation of Metal Organic Frameworks (MOF)-derived Co8FeS8@Co1-xS nanoenzymes with strong interfacial interactions. The nanoenzymes presented the peroxidase (POD)-like activity and the oxidation activity of reduced glutathione (GSH). Accordingly, the dual activities of Co8FeS8@Co1-xS provided a self-cascading platform for producing significant amounts of hydroxyl radical (•OH) and depleting reduced glutathione, thereby inducing tumor cell apoptosis and ferroptosis. More importantly, the Co8FeS8@Co1-xS inhibited the anti-apoptosis protein B-cell lymphoma-2 (Bcl-2) and activated caspase family proteins, which caused tumor cell apoptosis. Simultaneously, Co8FeS8@Co1-xS affected the iron metabolism-related genes such as Heme oxygenase-1 (Hmox-1), amplifying the Fenton response and promoting apoptosis and ferroptosis. Therefore, the nanoenzyme synergistically killed anti-apoptotic tumor cells carrying Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. Furthermore, Co8FeS8@Co1-xS demonstrated good biocompatibility, which paved the way for constructing a synergistic catalytic nanoplatform for an efficient tumor treatment.
Collapse
Affiliation(s)
- Liling Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
88
|
Munalisa R, Lien TS, Tsai PY, Sun DS, Cheng CF, Wu WS, Li CC, Hu CT, Tsai KW, Lee YL, Chou YC, Chang HH. Restraint Stress-Induced Neutrophil Inflammation Contributes to Concurrent Gastrointestinal Injury in Mice. Int J Mol Sci 2024; 25:5261. [PMID: 38791301 PMCID: PMC11121713 DOI: 10.3390/ijms25105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Ping-Yeh Tsai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddha Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddha Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology and Department of Gastroenterology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Yungling Leo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
- College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| |
Collapse
|
89
|
Yang H, Shi Y, Lin A, Qi C, Liu Z, Cheng Q, Miao K, Zhang J, Luo P. PESSA: A web tool for pathway enrichment score-based survival analysis in cancer. PLoS Comput Biol 2024; 20:e1012024. [PMID: 38717988 PMCID: PMC11078417 DOI: 10.1371/journal.pcbi.1012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
The activation levels of biologically significant gene sets are emerging tumor molecular markers and play an irreplaceable role in the tumor research field; however, web-based tools for prognostic analyses using it as a tumor molecular marker remain scarce. We developed a web-based tool PESSA for survival analysis using gene set activation levels. All data analyses were implemented via R. Activation levels of The Molecular Signatures Database (MSigDB) gene sets were assessed using the single sample gene set enrichment analysis (ssGSEA) method based on data from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), The European Genome-phenome Archive (EGA) and supplementary tables of articles. PESSA was used to perform median and optimal cut-off dichotomous grouping of ssGSEA scores for each dataset, relying on the survival and survminer packages for survival analysis and visualisation. PESSA is an open-access web tool for visualizing the results of tumor prognostic analyses using gene set activation levels. A total of 238 datasets from the GEO, TCGA, EGA, and supplementary tables of articles; covering 51 cancer types and 13 survival outcome types; and 13,434 tumor-related gene sets are obtained from MSigDB for pre-grouping. Users can obtain the results, including Kaplan-Meier analyses based on the median and optimal cut-off values and accompanying visualization plots and the Cox regression analyses of dichotomous and continuous variables, by selecting the gene set markers of interest. PESSA (https://smuonco.shinyapps.io/PESSA/ OR http://robinl-lab.com/PESSA) is a large-scale web-based tumor survival analysis tool covering a large amount of data that creatively uses predefined gene set activation levels as molecular markers of tumors.
Collapse
Affiliation(s)
- Hong Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong, China
| | - Ying Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| | - Chang Qi
- Institute of Logic and Computation, TU Wien, Austria
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Haizhu District, Guangzhou, Guangdong, China
| |
Collapse
|
90
|
Li Z, Cai X. Baicalein targets STMN1 to inhibit the progression of nasopharyngeal carcinoma via regulating the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3003-3013. [PMID: 38317500 DOI: 10.1002/tox.24173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUNDS Nasopharyngeal carcinoma is a common malignancy in the head and neck. Baicalein has been reported to exert the anticancer effects on various cancers. In this study, our aim was to explore the function of baicalein in the development of nasopharyngeal carcinoma and further investigate the potential underlying mechanisms. METHODS Cell Counting Kit (CCK)-8 assay, EdU assay, sphere formation assay, flow cytometry, and transwell invasion assay were conducted to determine cell proliferation, stemness, apoptosis, and invasion, respectively. Western blot was performed to examine the protein levels of PCNA, MMP9, STMN1, β-catenin, and Wnt3A. The mRNA level of STMN1 was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Xenograft tumor model was carried out to evaluate the effects of baicalein on tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect the levels of PCNA, MMP9, and STMN1 in tumor tissues from mice. RESULTS Baicalein significantly induced cell apoptosis and impeded cell proliferation, invasion, and stemness of nasopharyngeal carcinoma cells. STMN1 was highly expressed in nasopharyngeal carcinoma, and baicalein could directly downregulate STMN1 expression. STMN1 knockdown hampered the progression of nasopharyngeal carcinoma cells. Moreover, the effects of baicalein on cell proliferation, stemness, invasion, and apoptosis in nasopharyngeal carcinoma cells were harbored by STMN1 overexpression. Baicalein regulated STMN1 to inhibit the activation of the Wnt/β-catenin pathway. SKL2001, an agonist of the Wnt/β-catenin pathway, could reverse the effects of STMN1 knockdown on the progression of nasopharyngeal carcinoma. In addition, baicalein markedly impeded tumor growth in vivo. CONCLUSION Baicalein regulated the STMN1/Wnt/β-catenin pathway to restrain the development of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Otolaryngology, Nanyang First People's Hospital, Nanyang, China
| | - Xiaohang Cai
- The Second Department of Cardiology, Nanyang First People's Hospital, Nanyang, China
| |
Collapse
|
91
|
Rossetti A, Chonco L, Alegría N, Zelli V, García AJ, Ramírez-Castillejo C, Tessitore A, de Cabo C, Landete-Castillejos T, Festuccia C. General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics 2024; 16:610. [PMID: 38794272 PMCID: PMC11125008 DOI: 10.3390/pharmaceutics16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Louis Chonco
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Nicolas Alegría
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Andrés J. García
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Carlos de Cabo
- Research Department, Neuropsychopharmacology Unit, Complejo Hospitalario Universitario de Albacete (CHUA), 02071 Albacete, Spain;
| | - Tomás Landete-Castillejos
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| |
Collapse
|
92
|
Maihofer AX, Ratanatharathorn A, Hemmings SMJ, Costenbader KH, Michopoulos V, Polimanti R, Rothbaum AO, Seedat S, Mikita EA, Smith AK, Salem RM, Shaffer RA, Wu T, Sebat J, Ressler KJ, Stein MB, Koenen KC, Wolf EJ, Sumner JA, Nievergelt CM. Effects of genetically predicted posttraumatic stress disorder on autoimmune phenotypes. Transl Psychiatry 2024; 14:172. [PMID: 38561342 PMCID: PMC10984931 DOI: 10.1038/s41398-024-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
93
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
94
|
Hasby Saad MA, El-Saadi EG, Ali DA, Watany MM, Eid MM. Potential i-Nos/Arg-1 Switch with NLRP3 and Parasitic Load Down Regulation in Experimental Schistosoma mansoni Infection via Chloroquine Repurposing. Parasite Immunol 2024; 46:e13030. [PMID: 38498004 DOI: 10.1111/pim.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
In previous studies, the inhibitory effect of chloroquine on NLRP3 inflammasome and heme production was documented. This may be employed as a double-bladed sword in schistosomiasis (anti-inflammatory and parasiticidal). In this study, chloroquine's impact on schistosomiasis mansoni was investigated. The parasitic load (worm/egg counts and reproductive capacity index [RCI]), i-Nos/Arg-1 expression, splenomegaly, hepatic insult and NLRP3-immunohistochemical expression were assessed in infected mice after receiving early and late repeated doses of chloroquine alone or dually with praziquantel. By early treatment, the least RCI was reported in dually treated mice (41.48 ± 28.58) with a significant reduction in worm/egg counts (3.50 ± 1.29/2550 ± 479.58), compared with either drug alone. A marked reduction in the splenic index was achieved by prolonged chloroquine administration (alone: 43.15 ± 5.67, dually: 36.03 ± 5.27), with significantly less fibrosis (15 ± 3.37, 14.25 ± 2.22) than after praziquantel alone (20.5 ± 2.65). Regarding inflammation, despite the praziquantel-induced significant decrease in NLRP3 expression, the inhibitory effect was marked after dual and chloroquine administration (liver: 3.13 ± 1.21/3.45 ± 1.23, spleen: 5.7 ± 1.6/4.63 ± 2.41). i-Nos RNA peaked with early/late chloroquine administration (liver: 68.53 ± 1.8/57.78 ± 7.14, spleen: 63.22 ± 2.06/62.5 ± 3.05). High i-Nos echoed with a parasiticidal and hepatoprotective effect and may indicate macrophage-1 polarisation. On the flip side, the chloroquine-induced low Arg-1 seemed to abate immune tolerance and probably macrophage-2 polarisation. Collectively, chloroquine synergised the praziquantel-schistosomicidal effect and minimised tissue inflammation, splenomegaly and hepatic fibrosis.
Collapse
Affiliation(s)
- Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Esraa G El-Saadi
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Ali
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona M Watany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
95
|
Kaneko Y, Miyato H, Tojo M, Futoh Y, Takahashi K, Kimura Y, Saito A, Ohzawa H, Yamaguchi H, Sata N, Kitayama J, Hosoya Y. Splenectomy has opposite effects on the growth of primary compared with metastatic tumors in a murine colon cancer model. Sci Rep 2024; 14:4496. [PMID: 38402307 PMCID: PMC10894273 DOI: 10.1038/s41598-024-54768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
The spleen is a key source of circulating and tumor-infiltrating immune cells. However, the effect of splenectomy on tumor growth remains unclear. At 3 weeks after splenectomy, we subcutaneously injected LuM1 cells into BALB/c mice and evaluated the growth of primary tumors and lung metastases at 4 weeks after tumor inoculation. In addition, we examined the phenotypes of immune cells in peripheral blood by using flow cytometry and in tumor tissue by using multiplex immunohistochemistry. The growth of primary tumors was reduced in splenectomized mice compared with the sham-operated group. Conversely, splenectomized mice had more lung metastases. Splenectomized mice had fewer CD11b+cells, especially monocytic MDSCs (CD11b+Gr-1neg-lowLy6chigh), and NK cells (CD49b+CD335+). The proportion of NK cells was inversely correlated with the number of lung metastases. In splenectomized mice, the density of CD3+ and granzyme B+ CD8+ T cells was increased, with fewer M2-type macrophages in primary tumors, but NK cells were decreased markedly in lung. Splenectomy concurrently enhances T cell-mediated acquired immunity by reducing the number of monocytic MDSCs and suppresses innate immunity by decreasing the number of NK cells. Splenectomy has opposite effects on primary and metastatic lesions through differential regulation on these two immune systems.
Collapse
Affiliation(s)
- Yuki Kaneko
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yurie Futoh
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Kimura
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
96
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the interplay between posttraumatic stress disorder, gut microbiota, and inflammatory biomarkers: a comprehensive meta-analysis. Front Immunol 2024; 15:1349883. [PMID: 38410510 PMCID: PMC10895958 DOI: 10.3389/fimmu.2024.1349883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is the most common mental health disorder to develop following exposure to trauma. Studies have reported conflicting results regarding changes in immune biomarkers and alterations in the abundance of bacterial taxa and microbial diversity in patients with PTSD. Aim The purpose of this meta-analysis is to summarize existing studies examining gut microbiota characteristics and changes in immune biomarkers in patients with PTSD. Methods Relevant studies were systematically searched in PubMed, Scopus, and Embase, published in English between January 1, 1960, and December 1, 2023. The outcomes included changes in abundance and diversity in gut microbiota (gut microbiota part) and changes in immune biomarkers (immune part). Results The meta-analysis included a total of 15 studies, with 9 focusing on changes in inflammatory biomarkers and 6 focusing on changes in gut microbiota composition in patients with PTSD. No differences were observed between groups for all inflammatory biomarkers (P≥0.05). Two of the six studies found that people with PTSD had less alpha diversity. However, the overall Standardized Mean Difference (SMD) for the Shannon Diversity Index was not significant (SMD 0.27, 95% CI -0.62-0.609, p = 0.110). Regarding changes in abundance, in two of the studies, a significant decrease in Lachnospiraceae bacteria was observed. Conclusion This meta-analysis provides a comprehensive overview of gut microbiota characteristics in PTSD, suggesting potential associations with immune dysregulation. Future research should address study limitations, explore causal relationships, and consider additional factors influencing immune function in individuals with PTSD. Systematic review registration https://www.crd.york.ac.uk, identifier CRD42023476590.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
97
|
Daria C, Lancaster G, Murphy AJ, Henderson LA, Dawood T, Macefield VG. Relationship between muscle sympathetic nerve activity and rapid increases in circulating leukocytes during experimental muscle pain. Clin Auton Res 2024; 34:227-231. [PMID: 38227276 DOI: 10.1007/s10286-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Affiliation(s)
- Camille Daria
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Graeme Lancaster
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Monash University Central Clinical School, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
98
|
Li Y, Jin X, Wang F, Zhou H, Gu Y, Yang Y, Qian Z, Li W. Multi-channel Small Animal Drug Metabolism Real-Time Monitoring Fluorescence System. Mol Imaging Biol 2024; 26:138-147. [PMID: 38114709 DOI: 10.1007/s11307-023-01883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The data acquisition of drug metabolism analysis requires a lot of time and animal resources. However, there are often many deviations in the results of pharmacokinetic analysis. Conventional methods cannot measure the blood drug concentration data in multiple tissues at the same time, and the data is obtained by in vitro measurement, which produces time errors, in vitro data errors, and individual differences between animals. In the analysis of pharmacokinetic parameters, it will seriously affect the pass rate of clinical trials of R&D drugs and the accuracy of the dosing schedule. To the best of our knowledge, we have not found the study of in vivo blood drug concentration using multi-channel equipment. Therefore, the purpose of this paper is to build a set of multi-organ monitoring and analysis instruments for synchronously monitoring the metabolism of drugs in various tissues of small animals, so as to obtain real in vivo data of blood drug concentration in real time. PROCEDURES Using the fluorescence properties and laser-induced fluorescence principle of drugs, we designed six channels to monitor the changes of fluorescence-labeled drugs in their main metabolic organs, a multi-channel calibration method was proposed to improve the accuracy of the time-division multiplexing, the real-time collection of drug concentration in vivo is realized, and the drug metabolism curve in vivo can be observed. RESULTS The instrument satisfies the collection of small doses of drugs such as microgram; the detection sensitivity can reach 10 ng/ml, and can monitor and collect the drug metabolism of multiple small animal tissues at the same time, which greatly reduces the use of animals, reduces the differences between individuals, and reduces consumption cost and improve the detection efficiency of parameters, and obtain data information that is closer to the real biology. CONCLUSION The real-time continuous monitoring and data collection of the drug metabolism in the plasma of living small animals and the important organs such as kidney, liver, and spleen were realized. The research and development of new drugs and clinical research have higher practical value.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Feilong Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Huijing Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yueqing Gu
- Engineering College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
99
|
Boyle SH, Upchurch J, Gifford EJ, Redding TS, Hauser ER, Malhotra D, Press A, Sims KJ, Williams CD. Military exposures and Gulf War illness in veterans with and without posttraumatic stress disorder. J Trauma Stress 2024; 37:80-91. [PMID: 37997023 DOI: 10.1002/jts.22994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023]
Abstract
Gulf War illness (GWI) is a chronic multisymptom disorder of unknown etiology that is believed to be caused by neurotoxicant exposure experienced during deployment to the Gulf War. Posttraumatic stress disorder (PTSD) covaries with GWI and is believed to play a role in GWI symptoms. The present study examined the association between self-reported military exposures and GWI, stratified by PTSD status, in veterans from the Gulf War Era Cohort and Biorepository who were deployed to the Persian Gulf during the war. Participants self-reported current GWI and PTSD symptoms as well as military exposures (e.g., pyridostigmine [PB] pills, pesticides/insecticides, combat, chemical attacks, and oil well fires) experienced during the Gulf War. Deployed veterans' (N = 921) GWI status was ascertained using the Centers for Disease Control and Prevention definition. Individuals who met the GWI criteria were stratified by PTSD status, yielding three groups: GWI-, GWI+/PTSD-, and GWI+/PTSD+. Multivariable logistic regression, adjusted for covariates, was used to examine associations between GWI/PTSD groups and military exposures. Apart from insect bait use, the GWI+/PTSD+ group had higher odds of reporting military exposures than the GWI+/PTSD- group, adjusted odds ratio (aOR) = 2.15, 95% CI [1.30, 3.56]-aOR = 6.91, 95% CI [3.39, 14.08]. Except for PB pills, the GWI+/PTSD- group had a higher likelihood of reporting military exposures than the GWI- group, aOR = 2.03, 95% CI [1.26, 3.26]-aOR = 4.01, 95% CI [1.57, 10.25]. These findings are consistent with roles for both PTSD and military exposures in the etiology of GWI.
Collapse
Affiliation(s)
- Stephen H Boyle
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Julie Upchurch
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth J Gifford
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Center for Child and Family Policy, Duke Margolis Center for Health Policy, Duke University Sanford School of Public Policy, Durham, North Carolina, USA
| | - Thomas S Redding
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth R Hauser
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Kellie J Sims
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Christina D Williams
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| |
Collapse
|
100
|
Frank N, Herrmann MJ, Lauer M, Förster CY. Exploratory Review of the Takotsubo Syndrome and the Possible Role of the Psychosocial Stress Response and Inflammaging. Biomolecules 2024; 14:167. [PMID: 38397404 PMCID: PMC10886847 DOI: 10.3390/biom14020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Takotsubo syndrome (TTS) is a cardiomyopathy that clinically presents as a transient and reversible left ventricular wall motion abnormality (LVWMA). Recovery can occur spontaneously within hours or weeks. Studies have shown that it mainly affects older people. In particular, there is a higher prevalence in postmenopausal women. Physical and emotional stress factors are widely discussed and generally recognized triggers. In addition, the hypothalamic-pituitary-adrenal (HPA) axis and the associated glucocorticoid-dependent negative feedback play an important role in the resulting immune response. This review aims to highlight the unstudied aspects of the trigger factors of TTS. The focus is on emotional stress/chronic unpredictable mild stress (CUMS), which is influenced by estrogen concentration and noradrenaline, for example, and can lead to changes in the behavioral, hormonal, and autonomic systems. Age- and gender-specific aspects, as well as psychological effects, must also be considered. We hypothesize that this leads to a stronger corticosteroid response and altered feedback of the HPA axis. This may trigger proinflammatory markers and thus immunosuppression, inflammaging, and sympathetic overactivation, which contributes significantly to the development of TTS. The aim is to highlight the importance of CUMS and psychological triggers as risk factors and to make an exploratory proposal based on the new knowledge. Based on the imbalance between the sympathetic and parasympathetic nervous systems, transcutaneous vagus nerve stimulation (tVNS) is presented as a possible new therapeutic approach.
Collapse
Affiliation(s)
- Niklas Frank
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| | - Martin J. Herrmann
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Martin Lauer
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|