51
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
52
|
Ribeiro-Dasilva MC, Fillingim RB, Wallet SM. Estrogen-Induced Monocytic Response Correlates with TMD Pain: A Case Control Study. J Dent Res 2016; 96:285-291. [PMID: 27856968 DOI: 10.1177/0022034516678599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Temporomandibular disorders (TMD) are a set of conditions characterized by pain and dysfunction in the temporomandibular joint and muscles of mastication. These pain conditions are associated with considerable morbidity, societal costs, and reduced quality of life. The prevalence varies between 4% and 10%, with females at higher risk, and a higher prevalence occurs during reproductive years. The increased prevalence of TMD in females and low prevalence in childhood reinforce that sex hormones, like estrogen, play an important, complex role in the pathophysiology of these disorders. The goal of this study was to determine whether women with TMD exhibit a monocytic hyperinflammatory response compared with control women, and to examine associations of monocytic inflammatory responses with clinical pain. Eighteen women, aged 18 to 35 y, were seen during their follicular menstrual phase. A blood sample was collected, a clinical questionnaire about pain history was administered, and a Research Diagnostic Criteria (RDC) exam was performed. Extracted monocytes were stimulated with the toll-like receptor (TLR)-4 ligand, lipopolysaccharide (LPS), in the presence and absence of estrogen, and the levels of IL6 expression evaluated. Women with TMD showed a systemic hyperinflammatory phenotype, manifested by an increased monocytic release of cytokines after an inflammatory insult, and this was further increased by estrogen. In addition, monocytes from participants who self-reported more pain on the VAS scale produced higher levels of IL6 compared with those from participants who self-reported lower pain sensitivity. These data suggest that an estrogen-induced hyperinflammatory phenotype in women with TMD may at least in part contribute to heightened clinical pain, perhaps via central sensitization.
Collapse
Affiliation(s)
- M C Ribeiro-Dasilva
- 1 Department of Restorative Dental Science, University of Florida, Gainesville, FL, USA.,2 Department of Community Density and Behavioral Sciences, University of Florida, Gainesville, FL, USA
| | - R B Fillingim
- 2 Department of Community Density and Behavioral Sciences, University of Florida, Gainesville, FL, USA
| | - S M Wallet
- 3 Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
53
|
Labandeira-Garcia JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ. Menopause and Parkinson's disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 2016; 43:44-59. [PMID: 27693730 DOI: 10.1016/j.yfrne.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
54
|
Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery. J Cardiovasc Pharmacol 2016; 68:313-321. [DOI: 10.1097/fjc.0000000000000418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
55
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
56
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
57
|
Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J Chem Neuroanat 2016; 83-84:50-58. [PMID: 27585851 DOI: 10.1016/j.jchemneu.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Although best known as a selective estrogen receptor modulator (SERM), tamoxifen is a drug with a wide range of activities. Tamoxifen has demonstrated some efficacy has a therapeutic for bipolar mania and is believed to exert these effects through inhibition of protein kinase C (PKC). As the symptoms of amphetamine treatment in rodents are believed to mimic the symptoms of a manic episode, many of the preclinical studies for this indication have demonstrated that tamoxifen inhibits amphetamine action. The amphetamine-induced increase in extracellular dopamine which gives rise to the 'manic' effects is due to interaction of amphetamine with the dopamine transporter. We and others have demonstrated that PKC reduces amphetamine-induced reverse transport through the dopamine transporter. In this review, we will outline the actions of tamoxifen as a SERM and further detail another known action of tamoxifen-inhibition of PKC. We will summarize the literature showing how tamoxifen affects amphetamine action. Finally, we will present our hypothesis that tamoxifen, or an analog, could be used therapeutically to reduce amphetamine abuse in addition to treating mania.
Collapse
Affiliation(s)
- Sarah Mikelman
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Natalie Mardirossian
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Margaret E Gnegy
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States.
| |
Collapse
|
58
|
Khan MM. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 2016; 30:589-601. [PMID: 27193386 DOI: 10.1007/s40263-016-0343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raloxifene is a selective estrogen receptor modulator that has been approved for treating osteoporosis and breast cancer in high-risk postmenopausal women. However, recent evidence suggests that raloxifene adjunct therapy improves cognition and reduces symptom severity in men and women with schizophrenia. In animal models, raloxifene increases forebrain neurogenesis and enhances working memory and synaptic plasticity. It may consequently repair the neuronal and synaptic connectivity that is disrupted in schizophrenia. It also reduces oxidative stress and neuroinflammation, which are potent etiological factors in the neuropathology of schizophrenia. Furthermore, in postmenopausal women, raloxifene reduces the risks for atherosclerosis, diabetes mellitus, and weight gain, which are serious adverse effects associated with long-term antipsychotic treatment in schizophrenia; therefore, it may improve the safety and efficacy of antipsychotic drugs. In this review, recent insights into the neurocognitive, neuroprotective, and cardiometabolic effects of raloxifene in relation to therapeutic outcomes in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, Jamal Abdul Nassre Street, P.O. Box 16418, Az-Zawiyah, Libya.
| |
Collapse
|
59
|
TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. Int J Mol Sci 2016; 17:ijms17071028. [PMID: 27367681 PMCID: PMC4964404 DOI: 10.3390/ijms17071028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.
Collapse
|
60
|
Jafarzadeh A, Fooladseresht H, Nemati M, Assadollahi Z, Sheikhi A, Ghaderi A. Higher circulating levels of chemokine CXCL10 in patients with breast cancer: Evaluation of the influences of tumor stage and chemokine gene polymorphism. Cancer Biomark 2016; 16:545-54. [DOI: 10.3233/cbm-160596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- A. Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H. Fooladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Nemati
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Z. Assadollahi
- Department of Epidemiology and Biostatistics, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A. Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - A. Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
61
|
Usall J, Huerta-Ramos E, Labad J, Cobo J, Núñez C, Creus M, Parés GG, Cuadras D, Franco J, Miquel E, Reyes JC, Roca M. Raloxifene as an Adjunctive Treatment for Postmenopausal Women With Schizophrenia: A 24-Week Double-Blind, Randomized, Parallel, Placebo-Controlled Trial. Schizophr Bull 2016; 42:309-17. [PMID: 26591005 PMCID: PMC4753610 DOI: 10.1093/schbul/sbv149] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The potential therapeutic utility of estrogens in schizophrenia is increasingly being recognized. Raloxifene, a selective estrogen receptor modulator, appears to act similarly to estrogens on dopamine and serotonin brain systems. One previous trial by our team found that raloxifene was useful to improve negative, positive, and general psychopathological symptoms, without having the negative side effects of estrogens. In this study, we assess the utility of raloxifene in treating negative and other psychotic symptoms in postmenopausal women with schizophrenia exhibiting prominent negative symptoms. This was a 24-week, randomized, parallel, double-blind, placebo-controlled study. Patients were recruited from the inpatient and outpatient departments of Parc Sanitari Sant Joan de Déu, Hospital Universitari Institut Pere Mata, and Corporació Sanitària Parc Taulí. Seventy postmenopausal women with schizophrenia (DSM-IV) were randomized to either adjunctive raloxifene (38 women) or adjunctive placebo (32 women). Psychopathological symptoms were assessed at baseline and at weeks 4, 12, and 24 with the Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS). The addition of raloxifene (60 mg/d) to regular antipsychotic treatment significantly reduced negative (P = .027), general (P = .003), and total symptomatology (P = .005) measured with the PANSS during the 24-week trial, as compared to women receiving placebo. Also Alogia SANSS subscale improved more in the raloxifene (P = .048) than the placebo group. In conclusion, raloxifene improved negative and general psychopathological symptoms, compared with antipsychotic medication alone, in postmenopausal women with schizophrenia. These data replicate our previous results with a larger sample and a longer follow-up. TRIAL REGISTRATION NCT01573637.
Collapse
Affiliation(s)
| | | | | | - Jesús Cobo
- Catalan Group in Women’s Mental Health Research (GTRDSM), Barcelona, Spain;,Corporació Sanitària i Universitària Parc Taulí, Psychiatry Department, Sabadell, Spain
| | - Christian Núñez
- Parc Sanitari Sant Joan de Déu, Research and Development Unit, Sant Boi de Llobregat, Spain
| | - Marta Creus
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Psychiatry Department, Reus, Spain
| | - Gemma García Parés
- Catalan Group in Women’s Mental Health Research (GTRDSM), Barcelona, Spain;,Corporació Sanitària i Universitària Parc Taulí, Psychiatry Department, Sabadell, Spain;,CAP EAE SALUT MENTAL, Andorra
| | - Daniel Cuadras
- Parc Sanitari Sant Joan de Déu, Research and Development Unit, Sant Boi de Llobregat, Spain
| | - José Franco
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain;,Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Psychiatry Department, Reus, Spain
| | - Eva Miquel
- Parc Sanitari Sant Joan de Déu, Research and Development Unit, Sant Boi de Llobregat, Spain
| | - Julio César Reyes
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain;,Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Psychiatry Department, Reus, Spain
| | - Mercedes Roca
- Parc Sanitari Sant Joan de Déu, Research and Development Unit, Sant Boi de Llobregat, Spain
| | | |
Collapse
|
62
|
Ho MF, Bongartz T, Liu M, Kalari KR, Goss PE, Shepherd LE, Goetz MP, Kubo M, Ingle JN, Wang L, Weinshilboum RM. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation. Mol Endocrinol 2016; 30:382-98. [PMID: 26866883 DOI: 10.1210/me.2015-1267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion.
Collapse
Affiliation(s)
- Ming-Fen Ho
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Tim Bongartz
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Mohan Liu
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Krishna R Kalari
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Paul E Goss
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Lois E Shepherd
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Matthew P Goetz
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Michiaki Kubo
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - James N Ingle
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Liewei Wang
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| |
Collapse
|
63
|
Wong SY, Tan MGK, Banks WA, Wong WSF, Wong PTH, Lai MKP. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes. J Neuroinflammation 2016; 13:34. [PMID: 26860080 PMCID: PMC4748554 DOI: 10.1186/s12974-016-0498-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
Abstract
Background Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide’s potential utility as an anti-neuroinflammatory therapeutic. Methods The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Results Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. Conclusions These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0498-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siew Ying Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| | - Michelle G K Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore. .,Department of Clinical Research, Singapore General Hospital, Outram, Singapore.
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore. .,Immunology Program, Life Science Institute, National University of Singapore, Kent Ridge, Singapore.
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| |
Collapse
|
64
|
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 2016; 13:27. [PMID: 26838598 PMCID: PMC4736186 DOI: 10.1186/s12974-016-0486-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background IL-1β, also known as “the master regulator of inflammation”, is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1β has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1β are still poorly understood. The objective of our study is the comprehensive identification of molecular circuitry involved in IL-1β-induced inflammation in microglia through protein profiling. Methods To achieve our aim, we performed the proteomic analysis of N9 microglial cells with and without IL-1β treatment at different time points. Expression of HSP60 in response to IL-1β administration was checked by quantitative real-time PCR, immunoblotting, and immunofluorescence. Interaction of HSP60 with TLR4 was determined by co-immunoprecipitation. Inhibition of TLR4 was done using TLR4 inhibitor to reveal its effect on IL-1β-induced inflammation. Further, effect of HSP60 knockdown and overexpression were assessed on the inflammation in microglia. Specific MAPK inhibitors were used to reveal the downstream MAPK exclusively involved in HSP60-induced inflammation in microglia. Results Total 21 proteins were found to be differentially expressed in response to IL-1β treatment in N9 microglial cells. In silico analysis of these proteins revealed unfolded protein response as one of the most significant molecular functions, and HSP60 turned out to be a key hub molecule. IL-1β induced the expression as well as secretion of HSP60 in extracellular milieu during inflammation of N9 cells. Secreted HSP60 binds to TLR4 and inhibition of TLR4 suppressed IL-1β-induced inflammation to a significant extent. Our knockdown and overexpression studies demonstrated that HSP60 increases the phosphorylation of ERK, JNK, and p38 MAPKs in N9 cells during inflammation. Specific inhibition of p38 by inhibitors suppressed HSP60-induced inflammation, thus pointed towards the major role of p38 MAPK rather than ERK1/2 and JNK in HSP60-induced inflammation. Furthermore, silencing of upstream modulator of p38, i.e., MEK3/6 also reduced HSP60-induced inflammation. Conclusions IL-1β induces expression of HSP60 in N9 microglial cells that further augments inflammation via TLR4-p38 MAPK axis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0486-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalini Swaroop
- National Brain Research Centre, Manesar, Haryana, 122051, India
| | | | | | - Yogita K Adlakha
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| |
Collapse
|
65
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
66
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
67
|
The hippocampus participates in the control of locomotion speed. Neuroscience 2015; 311:207-15. [PMID: 26597762 DOI: 10.1016/j.neuroscience.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022]
Abstract
The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery.
Collapse
|
68
|
Grassi D, Ghorbanpoor S, Acaz-Fonseca E, Ruiz-Palmero I, Garcia-Segura LM. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling. Endocrinology 2015. [PMID: 26200092 DOI: 10.1210/en.2014-2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).
Collapse
Affiliation(s)
- Daniela Grassi
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Samar Ghorbanpoor
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Estefania Acaz-Fonseca
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Isabel Ruiz-Palmero
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Luis M Garcia-Segura
- Instituto Cajal (D.G., S.G., E.A.-F., I.R.P., L.M.G.-S.), Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain; Institute of Anatomy and Cell Biology (D.G.), Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; and Department of Cell and Molecular Biology (S.G.), School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
69
|
Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA. Sex differences in glia reactivity after cortical brain injury. Glia 2015; 63:1966-1981. [DOI: 10.1002/glia.22867] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Juan C. Duran
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Paloma Carrero
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Luis M. Garcia-Segura
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - M. Angeles Arevalo
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| |
Collapse
|
70
|
Kim TH, Vemuganti R. Effect of sex and age interactions on functional outcome after stroke. CNS Neurosci Ther 2015; 21:327-36. [PMID: 25404174 PMCID: PMC6495347 DOI: 10.1111/cns.12346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/18/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Experimental and clinical studies showed that sex and age play an important role in deciding the outcome after stroke. At younger ages, males were shown to have a higher risk for stroke than females. However, this trend reverses in older ages particularly when females reach menopause. Many preclinical studies indicate that steroid hormones modulate the age-dependent differential stroke outcome. In addition, patterns of cell death pathways activated following cerebral ischemia are distinct between males and females, but independent of steroid hormones. Recent studies also indicate that microRNAs play important roles in mediating sex-specific stroke outcome by regulating stroke-related genes. This review discusses the contribution of sex and age to outcome after stroke with particular emphasis on the experimental studies that examined the effects of steroid hormones, differential cell death pathways, and involvement of sex-specific microRNAs following cerebral ischemia. Current understanding of the role of thrombolytic agents in stroke therapy is also discussed.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
71
|
Ishihara Y, Itoh K, Ishida A, Yamazaki T. Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol 2015; 145:85-93. [PMID: 25305410 DOI: 10.1016/j.jsbmb.2014.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/25/2014] [Accepted: 10/05/2014] [Indexed: 01/02/2023]
Abstract
Growing evidence shows that steroid hormones, especially 17β-estradiol (E2), protect neuronal cells by attenuating excess activation of microglia. However, the use of E2 in the clinic is controversial because of its peripheral actions in reproductive organs and its potential to increase risk for endometrial cancer and breast cancer. Selective estrogen-receptor modulators (SERMs) bind to estrogen receptors (ERs), but their effects as ER agonists or antagonists are dependent on the target tissue. SERMs pose very little cancer risk as a result of their anti-estrogen action in reproductive organs, but their action in the brain is not well understood. In this study, we investigated the effects of SERMs tamoxifen (Tam) and raloxifene (Rlx) on microglial activation and subsequent neuronal injury. Tam and Rlx suppressed the increases in proinflammatory cytokines and chemokine expression that were induced by lipopolysaccharide (LPS) in rat primary microglia cultures. The microglial-conditioned media pretreated with Tam or Rlx significantly attenuated cellular injury in SH-SY5Y cells elicited by microglial-conditioned media treated with LPS alone. Rat primary microglia expressed ERα and ERβ primarily in the nucleus, and thus we examined the involvement of ERs in the suppressive action of Tam and Rlx on microglial activation using a pure ER antagonist, ICI182,780. Pretreatment with ICI182,780 abolished the suppressive effects of SERMs on microglial activation, as well as their protective action on SH-SY5Y cells. A luciferase assay using a vector with three estrogen response elements (EREs) revealed that Tam and Rlx activated ERE-mediated transcription in rat primary microglia. Taken together, these results suggest that Tam and Rlx suppress microglial activation and subsequent neuronal cell death via an ER-mediated transcription pathway. SERMs could represent a novel therapeutic strategy for disorders of the central nervous system based on their ability to suppress neuroinflammation.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Kouichi Itoh
- Laboratory for Brain Science, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
72
|
Pinkerton JV, Stanczyk FZ. Clinical effects of selective estrogen receptor modulators on vulvar and vaginal atrophy. Menopause 2014; 21:309-19. [PMID: 23777900 DOI: 10.1097/gme.0b013e31829755ed] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Vaginal estrogen therapy at the lowest effective dose is generally recommended for the treatment of vulvar and vaginal atrophy (VVA), but not all women are candidates. Selective estrogen receptor modulators (SERMs) aim to elicit specific positive effects on targeted tissues with neutral or minimal negative effects on other tissues. This review compares the vaginal effects of currently available and investigational SERMs. METHODS Relevant English-language articles published between 1980 and 2012 were identified through the PubMed database (search string "[Selective Estrogen Receptor Modulator OR SERM] AND [Vulvar OR Vaginal] AND Atrophy"), article reference lists, and EMBASE searches for individual SERMs. Both authors reviewed all articles, which formed the basis of this narrative literature review. RESULTS Activity profiles of SERMs in various tissues are distinct. Tamoxifen and arzoxifene have no specific positive vaginal effects but have reported variable or adverse gynecologic effects. Raloxifene does not improve VVA but can be used safely in combination with vaginal estrogen. Bazedoxifene has no demonstrated efficacy for VVA but, in combination with oral conjugated equine estrogens, improves the signs and symptoms of VVA. SERMs with positive vaginal effects (such as improvement in the vaginal maturation index, reduced vaginal pH, and improvement in the signs and symptoms of VVA) on postmenopausal symptomatic women include lasofoxifene (clinical development on hold) and ospemifene, which was recently approved for the treatment of VVA-related dyspareunia, with a class effect warning of potential venous thrombosis risk. CONCLUSIONS SERMs that specifically target the pathophysiology underlying VVA may provide an alternative to vaginal or systemic estrogen therapy.
Collapse
Affiliation(s)
- Joann V Pinkerton
- From the 1Department of Obstetrics and Gynecology, UVA Midlife Health Center, Charlottesville, VA; and 2Departments of Obstetrics and Gynecology, and Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA
| | | |
Collapse
|
73
|
Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 2014; 36:1194-208. [PMID: 25432430 DOI: 10.1016/j.neurobiolaging.2014.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease have not yet been clarified, and it is not known whether there is a critical period. Estrogen induced significant protection against 6-hydroxydopamine-induced dopaminergic degeneration when administered immediately or 6 weeks, but not 20 weeks after ovariectomy. In the substantia nigra, ovariectomy induced a decrease in levels of estrogen receptor-α and increased angiotensin activity, NADPH-oxidase activity, and expression of neuroinflammatory markers, which were regulated by estrogen administered immediately or 6 weeks but not 20 weeks after ovariectomy. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced a significant level of neuroprotection. In cultures, treatment with 1-methyl-4-phenylpyridinium induced an increase in astrocyte-derived angiotensinogen and dopaminergic neuron death, which were inhibited by estrogen receptor α agonists. In microglial cells, estrogen receptor β agonists inhibited the angiotensin-induced increase in inflammatory markers. The results suggest that there is a critical period for the neuroprotective effect of estrogen against dopaminergic cell death, and local estrogen receptor α and renin-angiotensin system play a major role.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
74
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
75
|
Kireev RA, Vara E, Viña J, Tresguerres JAF. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9707. [PMID: 25135305 PMCID: PMC4453938 DOI: 10.1007/s11357-014-9707-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to determine the outcomes of oestrogen and melatonin treatments following long-term ovarian hormone depletion on neuroinflammation and apoptotic processes in dentate gyrus of hippocampi. Forty-six female Wistar rats of 22 months of age were used. Twelve of them remained intact, and the other 34 were ovariectomized at 12 months of age. Ovariectomized animals were divided into three groups and treated for 10 weeks with oestrogens, melatonin or saline. All rats were killed by decapitation at 24 months of age, and dentate gyri were collected. A group of 2 month-old intact female rats was used as young control. The levels of pro-inflammatory cytokines and heat shock protein 70 (HSP 70) were analysed by ELISA. The expressions of TNFα, IL1β, GFAP, nNOS, iNOS, HO-1, NFκB, Bax, Bad, AIF, Bcl2 and SIRT1 genes were detected by real-time (RT)-PCR. Western blots were used to measure the protein expression of NFκB p65, NFκB p50/105, IκBα, IκBβ, p38 MAPK, MAP-2 and synapsin I. We have assessed the ability of 17β-oestradiol and melatonin administration to downregulate markers of neuroinflammation in the dentate gyrus of ovariectomized female rats. Results indicated that 17β-oestradiol and melatonin treatments were able to significantly decrease expression of pro-inflammatory cytokines, iNOS and HO-1 in the hippocampus when compared to non-treated animals. A similar age- and long-term ovarian hormone depletion- related increase in GFAP was also attenuated after both melatonin and oestradiol treatments. In a similar way to oestradiol, melatonin decreased the activation of p38 MAPK and NFκB pathways. The treatments enhanced the levels of synaptic molecules synapsin I and MAP-2 and have been shown to modulate the pro-antiapoptotic ratio favouring the second and to increase SIRT1 expression. These findings support the potential therapeutic role of melatonin and oestradiol as protective anti-inflammatory agents for the central nervous system during menopause.
Collapse
Affiliation(s)
- Roman A Kireev
- Instituto de Investigación Biomédica de Vigo (IBIV), Xerencia de Xestión Integrada de Vigo, SERGAS, Biomedical Research Unit, Hospital Rebullón (CHUVI), Puxeiros s/n, 36415, MOS Pontevedra, Spain,
| | | | | | | |
Collapse
|
76
|
Rubio N, Arevalo MA, Cerciat M, Sanz-Rodriguez F, Unkila M, Garcia-Segura LM. Theiler's virus infection provokes the overexpression of genes coding for the chemokine Ip10 (CXCL10) in SJL/J murine astrocytes, which can be inhibited by modulators of estrogen receptors. J Neurovirol 2014; 20:485-95. [PMID: 25052192 DOI: 10.1007/s13365-014-0273-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice (SJL/J) through an immunopathological process that is mediated by CD4(+) Th1 T cell. These T cells are chemoattracted to the central nervous system by chemokines. Hence, in this study, we focused on the production of the chemokine "interferon-gamma-inducible protein 10 kDa," or IP-10/CXCL10, by cultured SJL/J mouse astrocytes infected with the BeAn strain of TMEV and its capacity to attract activated T cells. The analysis of the whole murine genome by DNA hybridization with cRNAs from mock- and TMEV-infected cultures revealed the upregulation of six sequences that potentially encode for CXCL10. This increased CXCL10 expression was validated by PCR and qPCR. The presence of this chemokine was further demonstrated by enzyme-linked immunoassay (ELISA). Significantly, astrocytes from BALB/c mice, a strain resistant to demyelination, did not produce CXCL10. The secreted CXCL10 was biologically active, inducing chemoattraction of activated lymphocytes. The inflammatory cytokines, IL-1α, IFN-γ, and TNF-α, were strong inducers of CXCL10 in astrocytes. Serum from TMEV-infected SJL/J but not BALB/c mice contains CXCL10, the levels of which peak at the onset of the clinical disease. Finally, this in vitro inflammation model was fully inhibited by 17β-estradiol and four selective estrogen receptor modulators, as demonstrated by ELISA and qPCR.
Collapse
Affiliation(s)
- Nazario Rubio
- Instituto Cajal, C.S.I.C, Doctor Arce Avenue 37, 28002, Madrid, Spain,
| | | | | | | | | | | |
Collapse
|
77
|
Castelló-Ruiz M, Torregrosa G, Burguete MC, Miranda FJ, Centeno JM, López-Morales MA, Gasull T, Alborch E. The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat. Neurosci Lett 2014; 575:53-7. [DOI: 10.1016/j.neulet.2014.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
|
78
|
Di Lorenzo A, Yang Y, Macaluso M, Bedford MT. A gain-of-function mouse model identifies PRMT6 as a NF-κB coactivator. Nucleic Acids Res 2014; 42:8297-309. [PMID: 24939901 PMCID: PMC4117762 DOI: 10.1093/nar/gku530] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a nuclear enzyme that modifies histone tails. To help elucidate the biological function of PRMT6 in vivo, we generated transgenic mice that ubiquitously express PRMT6 fused to the hormone-binding portion of the estrogen receptor (ER*). The ER*-PRMT6 fusion is unstable and cytoplasmic, but upon systemic treatment with tamoxifen, it becomes stabilized and translocates into the nucleus. As a result, a dramatic increase in the H3R2me2a histone mark is observed. We found that one consequence of induced ER*-PRMT6 activation is increased IL-6 levels. IL-6 expression is regulated by the nuclear factor-kappa B (NF-κB) transcription factor, and PRMT6 functions as a coactivator of this pathway. We show that PRMT6 directly interacts with RelA, and that its overexpression enhances the transcriptional activity of an ectopic NF-κB reporter and endogenously regulates NF-κB target genes. PRMT6 is recruited, by RelA, to selective NF-κB target promoters upon TNF-α stimulation. Moreover, ER*-PRMT6 activation causes RelA accumulation in the nucleus. In summary, we observe that PRMT6 is recruited to chromatin at selective NF-κB target promoters, where it likely impacts the histone code and/or methylates other chromatin-associated proteins to facilitate transcription.
Collapse
Affiliation(s)
- Alessandra Di Lorenzo
- The University of Texas MD Anderson Cancer Center, Science Park, P.O. Box 389, Smithville, TX 78957, USA
| | - Yanzhong Yang
- The University of Texas MD Anderson Cancer Center, Science Park, P.O. Box 389, Smithville, TX 78957, USA
| | - Marc Macaluso
- The University of Texas MD Anderson Cancer Center, Science Park, P.O. Box 389, Smithville, TX 78957, USA
| | - Mark T Bedford
- The University of Texas MD Anderson Cancer Center, Science Park, P.O. Box 389, Smithville, TX 78957, USA
| |
Collapse
|
79
|
Caruso D, Melis M, Fenu G, Giatti S, Romano S, Grimoldi M, Crippa D, Marrosu MG, Cavaletti G, Melcangi RC. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem 2014; 130:591-7. [PMID: 24766130 DOI: 10.1111/jnc.12745] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Neuroactive steroid family includes molecules synthesized in peripheral glands (i.e., hormonal steroids) and directly in the nervous system (i.e., neurosteroids) which are key regulators of the nervous function. As already reported in clinical and experimental studies, neurodegenerative diseases affect the levels of neuroactive steroids. However, a careful analysis comparing the levels of these molecules in cerebrospinal fluid (CSF) and in plasma of multiple sclerosis (MS) patients is still missing. To this aim, the levels of neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in CSF and plasma of male adults affected by Relapsing-Remitting MS and compared with those collected in control patients. An increase in pregnenolone and isopregnanolone levels associated with a decrease in progesterone metabolites, dihydroprogesterone, and tetrahydroprogesterone was observed in CSF of MS patients. Moreover, an increase of 5α-androstane-3α,17β-diol and of 17β-estradiol levels associated with a decrease of dihydrotestosterone also occurred. In plasma, an increase in pregnenolone, progesterone, and dihydrotestosterone and a decrease in dihydroprogesterone and tetrahydroprogesterone levels were reported. This study shows for the first time that the levels of several neuroactive steroids, and particularly those of progesterone and testosterone metabolites, are deeply affected in CSF of relapsing-remitting MS male patients. We here demonstrated that, the cerebrospinal fluid and plasma levels of several neuroactive steroids are modified in relapsing remitting multiple sclerosis male patients. Interestingly, we reported for the first time that, the levels of progesterone and testosterone metabolites are deeply affected in cerebrospinal fluid. These findings may have an important relevance in therapeutic and/or diagnostic field of multiple sclerosis.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences - Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
81
|
Ma YL, Qin P, Feng DY, Li Y, Zhang LX, Liu ZY, Yin AQ, Tang WH, Dong HL, Meng LZ, Hou WG, Xiong LZ. Estrogen regulates the expression of Ndrg2 in astrocytes. Brain Res 2014; 1569:1-8. [PMID: 24796879 DOI: 10.1016/j.brainres.2014.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/17/2014] [Accepted: 04/26/2014] [Indexed: 01/29/2023]
Abstract
N-myc downstream-regulated gene 2 (Ndrg2) is a newly identified molecule that is mainly expressed in astrocytes within the central nervous system (CNS) and is involved in the proliferation and activation of astrocytes. 17β-estradiol (E2) is one of the most important circulating hormones, and in the CNS, astrocytes are a target and potential mediator of the action of E2. Our most recent study found that DPN, an estrogen receptor (ER) β-specific agonist, activated the Ndrg2 promoter and elevated endogenous NDRG2 protein expression in MCF7, HSG and T-47D cells. However, whether E2 regulates Ndrg2 expression in astrocytes remains unknown. Here, we conducted both in vivo and in vitro experiments and found that ERβ co-localized with NDRG2 in astrocytes. Furthermore, in primary cultured astrocytes, we demonstrated that E2 up-regulated Ndrg2 mRNA and protein expression in a dose- and time-dependent manner and that the ERβ agonist DPN but not the ERα agonist PPT up-regulated Ndrg2 expression. In vivo, we found that in the hippocampus of adult ovariectomized (OVX) female mice, Ndrg2 mRNA and protein expression were significantly decreased compared with those in normal adult female mice. After the OVX mice received continuous subcutaneous injections of 50μg/kg E2, 100μg/kg E2 or the ERβ agonist DPN for 10 days, the Ndrg2 expression significantly increased compared with that of the OVX mice. Our results indicate that E2 may affect astrocytes by regulating Ndrg2 expression.
Collapse
Affiliation(s)
- Yu-Long Ma
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Pei Qin
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Yan Li
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China; Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi׳an 710032, China
| | - Li-Xia Zhang
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Zhao-Yu Liu
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - An-Qi Yin
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Wen-Hong Tang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Hai-Long Dong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China
| | - Ling-Zhong Meng
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco 94143-0648, United States
| | - Wu-Gang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China.
| | - Li-Ze Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi׳an 710032, China.
| |
Collapse
|
82
|
Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E. Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 2014; 62:1270-83. [PMID: 24782323 DOI: 10.1002/glia.22679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
Raloxifene (RX), a selective estrogen receptor modulator (SERM), exerts neuroprotection in multiple clinical and experimental settings. Astrocytic glutamate transporters GLT-1 (EAAT2) and GLAST (EAAT1) are the main glutamate transporters in the central nervous system, taking up most of excess glutamate from the synaptic cleft to prevent excitotoxic neuronal death. Since drugs targeting astrocytic glutamate transporters to enhance their expression and function represent potential therapeutics for neurodegenerative disorders associated with excitotoxicity, we tested if RX modulates the expression and function of GLT-1 and GLAST in rat primary astrocytes. The results showed that RX significantly increased glutamate uptake and expression of GLT-1 mRNA and protein levels. RX enhanced GLT-1 expression by the activation of multiple signaling pathways including ERK, EGFR, and CREB mediated by estrogen receptors (ERs) ER-α, ER-β, and GPR30. At the transcriptional level, NF-κB played a critical role in RX-induced GLT-1 expression as RX increased NF-κB reporter activity and induced binding of NF-κB p65 and p50 to the GLT-1 promoter. RX attenuated the reduction of GLT-1 expression and glutamate uptake induced by manganese (Mn) whose chronic high levels of exposure cause manganism. RX also upregulated GLAST by increasing its promoter activity and protein levels via the NF-κB pathway and ERs. Our findings provide new insight into the mechanism of RX-induced enhancement of GLT-1 and GLAST expression, as well as the attenuation of Mn-reduced expression of these transporters. These findings will be highly valuable for developing therapeutics of neurodegenerative diseases associated with impaired astrocytic glutamate transporters.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
83
|
Zhao Q, Peng C, Wu X, Chen Y, Wang C, You Z. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis 2014; 68:57-65. [PMID: 24769004 DOI: 10.1016/j.nbd.2014.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
Although sleep complaints are very common among pregnant women, the potential adverse effects of sleep disturbance on the offspring are not well studied. Growing evidence suggests that maternal stress can induce an inflammatory environment on the fetal development. But people are not sure about the consequences of prenatal stress such as the inflammatory responses induced by maternal sleep deprivation (MSD). In the present study, we investigated the effects of MSD on long-term behavioral and cognitive consequences in offspring and its underlying inflammatory response pathway. The pregnant Wistar rats received prolonged sleep deprivation (72h) on gestational day (GD) 4, 9, and 18, respectively. The post-natal day (PND) 21 offspring showed impaired hippocampus-dependent spatial learning and memory in the Morris Water Maze task and anhedonia in sucrose preference experiment. Quantification of BrdU(+) and DCX(+) cells revealed a significant decrease in hippocampus neurogenesis in prepuberty offspring, especially for the late MSD (GD 18) group. Real-time RT-PCR showed that after MSD, the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) increased in the hippocampus of offspring on PND 1, 7, 14 and 21, whereas anti-inflammatory cytokine IL-10 reduced at the same time. Immunofluorescence found that the cells of activated microglia were higher in the brains of MSD offspring. Taken together, these results suggested that the MSD-induced inflammatory response is an important factor for neurogenesis impairment and neurobehavioral outcomes in prepuberty offspring.
Collapse
Affiliation(s)
- Qiuying Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaohui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yubo Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zili You
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
84
|
Li R, Xu W, Chen Y, Qiu W, Shu Y, Wu A, Dai Y, Bao J, Lu Z, Hu X. Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-κB-dependent CCL20 expression in reactive astrocytes. PLoS One 2014; 9:e94320. [PMID: 24722370 PMCID: PMC3983123 DOI: 10.1371/journal.pone.0094320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/14/2014] [Indexed: 12/19/2022] Open
Abstract
Recent clinical data have led to the consideration of sexual steroids as new potential therapeutic tools for multiple sclerosis. Selective estrogen receptor modulators can exhibit neuroprotective effects like estrogen, with fewer systemic estrogen side effects than estrogen, offering a more promising therapeutic modality for multiple sclerosis. The important role of astrocytes in a proinflammatory effect mediated by CCL20 signaling on inflammatory cells has been documented. Their potential contribution to selective estrogen receptor modulator-mediated protection is still unknown. Using a mouse model of chronic neuroinflammation, we report that raloxifene, a selective estrogen receptor modulator, alleviated experimental autoimmune encephalomyelitis–an animal model of multiple sclerosis–and decreased astrocytic production of CCL20. Enzyme-linked immunosorbent assay, immunohistochemistry imaging and transwell migration assays revealed that reactive astrocytes express CCL20, which promotes Th17 cell migration. In cultured rodent astrocytes, raloxifene inhibited IL-1β-induced CCL20 expression and chemotaxis ability for Th17 migration, whereas the estrogen receptor antagonist ICI 182,780 blocked this effect. Western blotting further indicated that raloxifene suppresses IL-1β-induced NF-κB activation (phosphorylation of p65) and translocation but does not affect phosphorylation of IκB. In conclusion, these data demonstrate that raloxifene provides robust neuroprotection against experimental autoimmune encephalomyelitis, partially via an inhibitory action on CCL20 expression and NF-κB pathways in reactive astrocytes. Our results contribute to a better understanding of the critical roles of raloxifene in treating experimental autoimmune encephalomyelitis and uncover reactive astrocytes as a new target for the inhibitory action of estrogen receptors on chemokine CCL20 expression.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Astrocytes/pathology
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL20/antagonists & inhibitors
- Chemokine CCL20/genetics
- Chemokine CCL20/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Female
- Fulvestrant
- Gene Expression Regulation
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Raloxifene Hydrochloride/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/immunology
- Selective Estrogen Receptor Modulators/pharmacology
- Signal Transduction
- Th17 Cells/drug effects
- Th17 Cells/pathology
Collapse
Affiliation(s)
- Rui Li
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wen Xu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Ying Chen
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yaqing Shu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Aimin Wu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yongqiang Dai
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jian Bao
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhengqi Lu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xueqiang Hu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
85
|
Tamoxifen as an effective neuroprotectant against early brain injury and learning deficits induced by subarachnoid hemorrhage: possible involvement of inflammatory signaling. J Neuroinflammation 2013; 10:157. [PMID: 24373431 PMCID: PMC3881500 DOI: 10.1186/1742-2094-10-157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022] Open
Abstract
Background Tamoxifen, a selective estrogen receptor modulator, has successfully been used to treat several animal models of brain injury, but the underlying mechanisms remain unclear. This study was undertaken to evaluate the effect of tamoxifen on the toll-like receptor 4 (TLR4)- and nuclear factor-κB (NF-κB)-related inflammatory signaling pathway and secondary brain injury in rats after subarachnoid hemorrhage (SAH). Methods Adult male Sprague-Dawley rats were divided into four groups: (1) control group (n = 28); (2) SAH group (n = 28); (3) SAH + vehicle group (n = 28); and (4) SAH + tamoxifen group (n = 28). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. In SAH + tamoxifen group, tamoxifen was administered intraperitoneally at a dose of 5 mg/kg at 2 h, 12 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated at 48 h after SAH. In the second set of experiments, the Morris water maze was used to investigate cognitive and memory changes. Results We found that treatment with tamoxifen markedly inhibited the protein expressions of TLR4, NF-κB and the downstream inflammatory agents, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1). Administration of tamoxifen following SAH significantly ameliorated the early brain injury (EBI), such as brain edema, blood-brain barrier (BBB) impairment, and clinical behavior scale. Learning deficits induced by SAH were markedly alleviated after tamoxifen treatment. Conclusions Post-SAH tamoxifen administration may attenuate TLR4/NF-kappaB-mediated inflammatory response in the rat brain and result in abatement of the development of EBI and cognitive dysfunction after SAH.
Collapse
|
86
|
Guptarak J, Wiktorowicz JE, Sadygov RG, Zivadinovic D, Paulucci-Holthauzen AA, Vergara L, Nesic O. The cancer drug tamoxifen: a potential therapeutic treatment for spinal cord injury. J Neurotrauma 2013; 31:268-83. [PMID: 24004276 DOI: 10.1089/neu.2013.3108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen (TMX) is a selective estrogen receptor modulator that can mimic the neuroprotective effects of estrogen but lacks its systemic adverse effects. We found that TMX (1 mg/day) significantly improved the motor recovery of partially paralyzed hind limbs of male adult rats with thoracic spinal cord injury (SCI), thus indicating a translational potential for this cancer medication given its clinical safety and applicability and the lack of currently available treatments for SCI. To shed light on the mechanisms underlying the beneficial effects of TMX for SCI, we used proteomic analyses, Western blots and histological assays, which showed that TMX treatment spared mature oligodendrocytes/increased myelin levels and altered reactive astrocytes, including the upregulation of the water channels aquaporin 4 (AQP4), a novel finding. AQP4 increases in TMX-treated SCI rats were associated with smaller fluid-filled cavities with borders consisting of densely packed AQP4-expressing astrocytes that closely resemble the organization of normal glia limitans externa (in contrast to large cavities in control SCI rats that lacked glia limitans-like borders and contained reactive glial cells). Based on our findings, we propose that TMX is a promising candidate for the therapeutic treatment of SCI and a possible intervention for other neuropathological conditions associated with demyelination and AQP4 dysfunction.
Collapse
Affiliation(s)
- Jutatip Guptarak
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
87
|
Fuente-Martin E, Garcia-Caceres C, Morselli E, Clegg DJ, Chowen JA, Finan B, Brinton RD, Tschöp MH. Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev Endocr Metab Disord 2013; 14:331-8. [PMID: 24009071 PMCID: PMC3825572 DOI: 10.1007/s11154-013-9263-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Obesity, and its associated comorbidities such as type 2 diabetes, cardiovascular diseases, and certain cancers, represent major health challenges. Importantly, there is a sexual dimorphism with respect to the prevalence of obesity and its associated metabolic diseases, implicating a role for gonadal hormones. Specifically, estrogens have been demonstrated to regulate metabolism perhaps by acting as a leptin mimetic in the central nervous system (CNS). CNS estrogen receptors (ERs) include ER alpha (ERα) and ER beta (ERβ), which are found in nuclear, cytoplasmic and membrane sites throughout the brain. Additionally, estrogens can bind to and activate a G protein-coupled estrogen receptor (GPER), which is a membrane-associated ER. ERs are expressed on neurons as well as glia, which are known to play a major role in providing nutrient supply for neurons and have recently received increasing attention for their potentially important involvement in the CNS regulation of systemic metabolism and energy balance. This brief overview summarizes data focusing on the potential role of astrocytic estrogen action as a key component of estrogenic modulation responsible for mediating the sexual dimorphism in body weight regulation and obesity.
Collapse
Affiliation(s)
- E. Fuente-Martin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Department of Medicine, Technische Universität München, Munich, Germany
| | - C. Garcia-Caceres
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Department of Medicine, Technische Universität München, Munich, Germany
| | - E. Morselli
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - D. J. Clegg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - J. A. Chowen
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de la Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - B. Finan
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Department of Medicine, Technische Universität München, Munich, Germany
| | - R. D. Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA USA
| | - M. H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Department of Medicine, Technische Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, HelmholtzZentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg/Munich, Germany
| |
Collapse
|
88
|
Dietrich AK, Humphreys GI, Nardulli AM. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia. J Steroid Biochem Mol Biol 2013; 138:410-20. [PMID: 23907014 PMCID: PMC3825811 DOI: 10.1016/j.jsbmb.2013.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | | |
Collapse
|
89
|
Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. J Neurosci 2013; 33:10924-33. [PMID: 23804112 DOI: 10.1523/jneurosci.0886-13.2013] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens can signal through either estrogen receptor α (ERα) or β (ERβ) to ameliorate experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of multiple sclerosis (MS). Cellular targets of estrogen-mediated neuroprotection are still being elucidated. Previously, we demonstrated that ERα on astrocytes, but not neurons, was critical for ERα ligand-mediated neuroprotection in EAE, including decreased T-cell and macrophage inflammation and decreased axonal loss. Here, we determined whether ERβ on astrocytes or neurons could mediate neuroprotection in EAE, by selectively removing ERβ from either of these cell types using Cre-loxP gene deletion. Our results demonstrated that, even though ERβ ligand treatment was neuroprotective in EAE, this neuroprotection was not mediated through ERβ on either astrocytes or neurons and did not involve a reduction in levels of CNS inflammation. Given the differential neuroprotective and anti-inflammatory effects mediated via ERα versus ERβ on astrocytes, we looked for molecules within astrocytes that were affected by signaling through ERα, but not ERβ. We found that ERα ligand treatment, but not ERβ ligand treatment, decreased expression of the chemokines CCL2 and CCL7 by astrocytes in EAE. Together, our data show that neuroprotection in EAE mediated via ERβ signaling does not require ERβ on either astrocytes or neurons, whereas neuroprotection in EAE mediated via ERα signaling requires ERα on astrocytes and reduces astrocyte expression of proinflammatory chemokines. These findings reveal important cellular differences in the neuroprotective mechanisms of estrogen signaling through ERα and ERβ in EAE.
Collapse
|
90
|
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 2013. [PMID: 23196064 DOI: 10.1016/j.jsbmb.2012.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
91
|
Franco Rodríguez N, Dueñas Jiménez J, De la Torre Valdovinos B, López Ruiz J, Hernández Hernández L, Dueñas Jiménez S. Tamoxifen favoured the rat sensorial cortex regeneration after a penetrating brain injury. Brain Res Bull 2013; 98:64-75. [DOI: 10.1016/j.brainresbull.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
|
92
|
Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex Differences and Effects of Estrogenic Compounds on the Expression of Inflammatory Molecules by Astrocytes Exposed to the Insecticide Dimethoate. Neurotox Res 2013; 25:271-85. [DOI: 10.1007/s12640-013-9417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
|
93
|
Nadkarni S, McArthur S. Oestrogen and immunomodulation: new mechanisms that impact on peripheral and central immunity. Curr Opin Pharmacol 2013; 13:576-81. [DOI: 10.1016/j.coph.2013.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/02/2013] [Indexed: 12/17/2022]
|
94
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM. 17β-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor β-mediated neuroglobin up-regulation. J Neuroendocrinol 2013. [PMID: 23190172 DOI: 10.1111/jne.12007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroglobin (Ngb), so named after its initial discovery in brain neurones, has received great attention as a result of its neuroprotective effects both in vitro and in vivo. Recently, we demonstrated that, in neurones, Ngb is a 17β-oestradiol (E(2) ) inducible protein that is pivotal for hormone-induced anti-apoptotic effects against H(2) O(2) toxicity. The involvement of Ngb in other brain cell populations, as well as in other neuroprotective effects of E(2) , is completely unknown at present. We demonstrate Ngb immunoreactivity in reactive astrocytes located in the proximity of a penetrating cortical injury in vivo and the involvement of Ngb in the E(2) -mediated anti-inflammatory effect in primary cortical astrocytes. Upon binding to oestrogen receptor (ER)β, E(2) enhances Ngb levels in a dose-dependent manner. Although with a lesser degree than E(2) , the pro-inflammatory stimulation with lipopolysaccharide (LPS) also induces the increase of Ngb protein levels via nuclear factor-(NF)κB signal(s). Moreover, a negative cross-talk between ER subtypes and NFκB signal(s) has been demonstrated. In particular, ERα-activated signals prevent the NFκB-mediated Ngb increase, whereas LPS impairs the ERβ-induced up-regulation of Ngb. Therefore, the co-expression of both ERα and ERβ is pivotal for mediating E(2) -induced Ngb expression in the presence of NFκB-activated signals. Interestingly, Ngb silencing prevents the effect of E(2) on the expression of inflammatory markers (i.e. interleukin 6 and interferon γ-inducible protein 10). Ngb can be regarded as a key mediator of the different protective effects of E(2) in the brain, including protection against oxidative stress and the control of inflammation, both of which are at the root of several neurodegenerative diseases.
Collapse
Affiliation(s)
- E De Marinis
- Department of Biology, University Roma Tre, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
96
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
97
|
Duncan KA, Walters BJ, Saldanha CJ. Traumatized and inflamed--but resilient: glial aromatization and the avian brain. Horm Behav 2013; 63:208-15. [PMID: 22414444 PMCID: PMC9366899 DOI: 10.1016/j.yhbeh.2012.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 01/08/2023]
Abstract
Steroids like estrogens have potent effects on the vertebrate brain, and are provided to neural targets from peripheral and central sources. Estradiol synthesized within the vertebrate CNS modulates neural structure and function, including the pathways involved in neuroprotection, and perhaps, neural repair. Specifically, aromatase; the enzyme responsible for the conversion of testosterone to estradiol, is upregulated in the avian and mammalian brain following disruption of the neuropil by multiple forms of perturbation including mechanical injury, ischemia and excitotoxicity. This injury induced aromatase expression is somewhat unique in that it occurs in astroglia rather than neurons, and is stimulated in response to factors associated with brain damage. In this review, we focus on the induction, expression and consequences of glial aromatization in the songbird brain. We begin with a review of the anatomical consequences of glial estrogen provision followed by a discussion of the cellular mechanisms whereby glial aromatization may affect injury-induced neuroplasticity. We then present the current status of our understanding regarding the inductive role of inflammatory processes in the transcription and translation of astrocytic aromatase. We consider the functional aspects of glial aromatization before concluding with unanswered questions and suggestions for future studies. Birds have long informed us about fundamental questions in endocrinology, immunology, and neuroplasticity; and their unique anatomical and physiological characteristics continue to provide an excellent system in which to learn about brain trauma, inflammation, and neuroprotection.
Collapse
Affiliation(s)
- Kelli A. Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Bradley J. Walters
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colin J. Saldanha
- Department of Biology, American University, Washington DC, 20016, USA
- Department of Psychology, American University, Washington DC, 20016, USA
| |
Collapse
|
98
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
99
|
Loram LC, Sholar PW, Taylor FR, Wiesler JL, Babb JA, Strand KA, Berkelhammer D, Day HEW, Maier SF, Watkins LR. Sex and estradiol influence glial pro-inflammatory responses to lipopolysaccharide in rats. Psychoneuroendocrinology 2012; 37:1688-99. [PMID: 22497984 PMCID: PMC3417083 DOI: 10.1016/j.psyneuen.2012.02.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/11/2022]
Abstract
There is a greater prevalence of neuroinflammatory diseases in females than males. Microglia, the major immunocompetent cells of the central nervous system, play a key role in neuroinflammation. We aimed to determine if inherent differences in toll-like receptor 4 mediated pro-inflammatory response in glia could possibly contribute to the skewed female prevalence of neuroinflammatory disorders. In addition, in order to identify if estradiol (E2), the major female sex steroid contributes to a heightened pro-inflammatory response, estradiol was added both in vivo and in vitro. Microglia and astrocytes were isolated from neonatal pups and stimulated with lipopolysaccharide (LPS) in the presence and absence of E2. Hippocampal microglia were isolated from adult male and female rats and stimulated ex vivo with LPS. Male neonatal microglia and astrocytes produced greater IL-1β mRNA than females. However, when co-incubated with varying doses of estradiol (E2), the E2 produced anti-inflammatory effects in the male microglia but a pro-inflammatory effect in female microglia. LPS-induced IL-1β mRNA was attenuated by E2 in female but not male adult hippocampal microglia. However, females supplemented with E2 in vivo produced a potentiated IL-1β mRNA response. TLR4 mRNA was decreased by LPS in both microglia and astrocytes but was not affected by sex or E2. CD14 mRNA was increased by LPS and may be elevated more in females than males in microglia but not astrocytes. Therefore, sexual dimorphic differences do occur in both neonatal and adult microglia though maturity of the microglia at the time of isolation influences the pro-inflammatory response.
Collapse
Affiliation(s)
- Lisa C Loram
- Department of Psychology and Neuroscience, and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Multimodal Analysis in Acute and Chronic Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2012; 8:238-50. [DOI: 10.1007/s11481-012-9385-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/19/2012] [Indexed: 01/01/2023]
|