51
|
Smith OV, Penhale SH, Ott LR, Rice DL, Coutant AT, Glesinger R, Wilson TW, Taylor BK. Everyday home radon exposure is associated with altered structural brain morphology in youths. Neurotoxicology 2024; 102:114-120. [PMID: 38703899 PMCID: PMC11139553 DOI: 10.1016/j.neuro.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The refinement of brain morphology extends across childhood, and exposure to environmental toxins during this period may alter typical trends. Radon is a highly common radiologic toxin with a well-established role in cancer among adults. However, effects on developmental populations are understudied in comparison. This study investigated whether home radon exposure is associated with altered brain morphology in youths. Fifty-four participants (6-14 yrs, M=10.52 yrs, 48.15% male, 89% White) completed a T1-weighted MRI and home measures of radon. We observed a significant multivariate effect of home radon concentrations, which was driven by effects on GMV. Specifically, higher home radon was associated with smaller GMV (F=6.800, p=.012, ηp2=.13). Conversely, there was a trending radon-by-age interaction on WMV, which reached significance when accounting for the chronicity of radon exposure (F=4.12, p=.049, ηp2=.09). We found that youths with above-average radon exposure showed no change in WMV with age, whereas low radon was linked with normative, age-related WMV increases. These results suggest that everyday home radon exposure may alter sensitive structural brain development, impacting developmental trajectories in both gray and white matter.
Collapse
Affiliation(s)
- OgheneTejiri V Smith
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Samantha H Penhale
- Clinical and Health Psychology Department, University of Florida, Gainesville, FL, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
52
|
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O’Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, Nestrašil I. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591421. [PMID: 38746371 PMCID: PMC11092490 DOI: 10.1101/2024.04.29.591421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Monica T. Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Amy L. Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicole T Atcheson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Laura R. Barlow
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Markus Barth
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veteran’s Affairs Medical Center, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna Combes
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam V. Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jürgen Finsterbusch
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - GianCarlo Germani
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Haleh Karbasforoushan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Joo-won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Nawal Kinany
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Petr Kudlička
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, China
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Allan R. Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Geneva, Genève, Switzerland
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, University College London, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele (MI), Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano (MI), Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alex K. Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Yuichi Suzuki
- The University of Tokyo Hospital, Radiology Center, Tokyo, Japan
| | - George W Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Kenneth A. Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Patrik O. Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
53
|
Zhu Y, Maikusa N, Radua J, Sämann PG, Fusar-Poli P, Agartz I, Andreassen OA, Bachman P, Baeza I, Chen X, Choi S, Corcoran CM, Ebdrup BH, Fortea A, Garani RR, Glenthøj BY, Glenthøj LB, Haas SS, Hamilton HK, Hayes RA, He Y, Heekeren K, Kasai K, Katagiri N, Kim M, Kristensen TD, Kwon JS, Lawrie SM, Lebedeva I, Lee J, Loewy RL, Mathalon DH, McGuire P, Mizrahi R, Mizuno M, Møller P, Nemoto T, Nordholm D, Omelchenko MA, Raghava JM, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Smigielski L, Sugranyes G, Takahashi T, Tamnes CK, Tang J, Theodoridou A, Tomyshev AS, Uhlhaas PJ, Værnes TG, van Amelsvoort TAMJ, Waltz JA, Westlye LT, Zhou JH, Thompson PM, Hernaus D, Jalbrzikowski M, Koike S. Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk. Mol Psychiatry 2024; 29:1465-1477. [PMID: 38332374 PMCID: PMC11189817 DOI: 10.1038/s41380-024-02426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain
| | | | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bachman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J Peters VA Medical Center, New York City, NY, USA
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Ranjini Rg Garani
- Douglas Research Center; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Karsten Heekeren
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Tina D Kristensen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Romina Mizrahi
- Douglas Research Center; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Maria A Omelchenko
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russian Federation
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Jan I Røssberg
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tor G Værnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore County, Baltimore, MD, USA
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
54
|
Barrett AMY, Cheng TW, Flannery JE, Mills KL, Fisher PA, McCann CF, Pfeifer JH. Comparing the multivariate relationships of conceptual adversity models and structural brain development in adolescent girls: A registered report. Dev Psychol 2024; 60:858-877. [PMID: 38358662 PMCID: PMC11332272 DOI: 10.1037/dev0001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adverse experiences throughout development confer risk for a multitude of negative long-term outcomes, but the processes via which these experiences are neurobiologically embedded are still unclear. Adolescence provides an opportunity to understand how these experiences impact the brain's rapidly changing structure. Two models are central to current adversity conceptualizations: a cumulative risk model, where all types of experiences are combined to represent accumulating stress, and a dimensional model, where certain features of experience (e.g., threat or deprivation) exert unique neurophysiological influence. In this registered report, we extended upon previous research by using a form of representational similarity analysis to examine whether the dimensional and cumulative risk models of adversity predict cortical thinning in frontoparietal and frontotemporal networks and volumetric changes in subcortical regions throughout adolescence. Drawing from a longitudinal sample of 179 adolescent girls (ages 10-13 years at the first wave) from Lane County, Oregon, United States, and up to four waves of follow-up data, we found that operationalizing adversity by similarity in threat and deprivation provided better prediction of brain development than similarity in overall adversity. However, these dimensions do not exhibit unique associations with developmental changes in the hypothesized brain changes. These results underscore the significance of carefully defining adversity and considering its impact on the entire brain. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Kathryn L. Mills
- Department of Psychology, University of Oregon
- PROMENTA Research Center, Department of Psychology, University of Oslo
| | - Philip A. Fisher
- Stanford Center on Early Childhood and Graduate School of Education, Stanford University
| | - Clare F. McCann
- Department of Psychology, University of California, Los Angeles
| | | |
Collapse
|
55
|
Kirschen RM, Leaver AM. Hearing function moderates age-related changes in brain morphometry in the HCP Aging cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590589. [PMID: 38712119 PMCID: PMC11071358 DOI: 10.1101/2024.04.22.590589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction There are well-established relationships between aging and neurodegenerative changes, and between aging and hearing loss. The goal of this study was to determine how structural brain aging is influenced by hearing loss. Methods Human Connectome Project Aging (HCP-A) data were analyzed, including T1-weighted MRI and Words in Noise (WIN) thresholds (n=623). Freesurfer extracted gray and white matter volume, and cortical thickness, area, and curvature. Linear regression models targeted (1) interactions between age and WIN threshold and (2) correlations with WIN threshold adjusted for age, both corrected for false discovery rate (pFDR<0.05). Results WIN threshold moderated age-related increase in volume in bilateral inferior lateral ventricles, with higher threshold associated with increased age-related ventricle expansion. Age-related deterioration in occipital cortex was also increased with higher WIN thresholds. When controlling for age, high WIN threshold was correlated with reduced cortical thickness in Heschl's gyrus, calcarine sulcus, and other sensory regions, and reduced temporal lobe white matter. Older volunteers with poorer hearing and cognitive scores had the lowest volume in left parahippocampal white matter. Conclusions Preserved hearing abilities in aging associated with a reduction of age-related changes to medial temporal lobe, and preserved hearing at any age associated with preserved cortical tissue in auditory and other sensory regions. Future longitudinal studies are needed to assess the causal nature of these relationships, but these results indicate interventions which preserve hearing function may combat some neurodegenerative changes in aging.
Collapse
Affiliation(s)
- Robert M Kirschen
- Department of Radiology, Northwestern University, Chicago, IL, 60611
| | - Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, IL, 60611
| |
Collapse
|
56
|
Rozovsky R, Bertocci M, Iyengar S, Stiffler RS, Bebko G, Skeba AS, Brady T, Aslam H, Phillips ML. Identifying tripartite relationship among cortical thickness, neuroticism, and mood and anxiety disorders. Sci Rep 2024; 14:8449. [PMID: 38600283 PMCID: PMC11006921 DOI: 10.1038/s41598-024-59108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The number of young adults seeking help for emotional distress, subsyndromal-syndromal mood/anxiety symptoms, including those associated with neuroticism, is rising and can be an early manifestation of mood/anxiety disorders. Identification of gray matter (GM) thickness alterations and their relationship with neuroticism and mood/anxiety symptoms can aid in earlier diagnosis and prevention of risk for future mood and anxiety disorders. In a transdiagnostic sample of young adults (n = 252;177 females; age 21.7 ± 2), Hypothesis (H) 1:regularized regression followed by multiple regression examined relationships among GM cortical thickness and clinician-rated depression, anxiety, and mania/hypomania; H2:the neuroticism factor and its subfactors as measured by NEO Personality Inventory (NEO-PI-R) were tested as mediators. Analyses revealed positive relationships between left parsopercularis thickness and depression (B = 4.87, p = 0.002), anxiety (B = 4.68, p = 0.002), mania/hypomania (B = 6.08, p ≤ 0.001); negative relationships between left inferior temporal gyrus (ITG) thickness and depression (B = - 5.64, p ≤ 0.001), anxiety (B = - 6.77, p ≤ 0.001), mania/hypomania (B = - 6.47, p ≤ 0.001); and positive relationships between left isthmus cingulate thickness (B = 2.84, p = 0.011), and anxiety. NEO anger/hostility mediated the relationship between left ITG thickness and mania/hypomania; NEO vulnerability mediated the relationship between left ITG thickness and depression. Examining the interrelationships among cortical thickness, neuroticism and mood and anxiety symptoms enriches the potential for identifying markers conferring risk for mood and anxiety disorders and can provide targets for personalized intervention strategies for these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| |
Collapse
|
57
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
58
|
Miller AP, Baranger DAA, Paul SE, Garavan H, Mackey S, Tapert SF, LeBlanc KH, Agrawal A, Bogdan R. Neuroanatomical variability associated with early substance use initiation: Results from the ABCD Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.06.24303876. [PMID: 38496425 PMCID: PMC10942495 DOI: 10.1101/2024.03.06.24303876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The extent to which neuroanatomical variability associated with substance involvement reflects pre-existing risk and/or consequences of substance exposure remains poorly understood. In the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study, we identify associations between global and regional differences in brain structure and early substance use initiation (i.e., occurring <15 years of age; nsanalytic=6,556-9,804), with evidence that associations precede initiation. Neurodevelopmental variability in brain structure may confer risk for substance involvement.
Collapse
Affiliation(s)
- Alex P. Miller
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - David A. A. Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Sarah E. Paul
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Lamer College of Medicine, Burlington, VT, United States
| | - Scott Mackey
- Department of Psychiatry, University of Vermont Lamer College of Medicine, Burlington, VT, United States
| | - Susan F. Tapert
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Kimberly H. LeBlanc
- Division of Extramural Research, National Institute on Drug Abuse, Bethesda, MA, United States
| | - Arpana Agrawal
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
59
|
Young T, Kumar VJ, Saranathan M. Normative modeling of thalamic nuclear volumes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.06.24303871. [PMID: 38496426 PMCID: PMC10942522 DOI: 10.1101/2024.03.06.24303871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Thalamic nuclei have been implicated in neurodegenerative and neuropsychiatric disorders. Normative models for thalamic nuclear volumes have not been proposed thus far. The aim of this work was to establish normative models of thalamic nuclear volumes and subsequently investigate changes in thalamic nuclei in cognitive and psychiatric disorders. Volumes of the bilateral thalami and 12 nuclear regions were generated from T1 MRI data using a novel segmentation method (HIPS-THOMAS) in healthy control subjects (n=2374) and non-control subjects (n=695) with early and late mild cognitive impairment (EMCI, LMCI), Alzheimer's disease (AD), Early psychosis and Schizophrenia, Bipolar disorder, and Attention deficit hyperactivity disorder. Three different normative modelling methods were evaluated while controlling for sex, intracranial volume, and site. Z-scores and extreme z-score deviations were calculated and compared across phenotypes. GAMLSS models performed the best. Statistically significant shifts in z-score distributions consistent with atrophy were observed for most phenotypes. Shifts of progressively increasing magnitude were observed bilaterally from EMCI to AD with larger shifts in the left thalamic regions. Heterogeneous shifts were observed in psychiatric diagnoses with a predilection for the right thalamic regions. Here we present the first normative models of thalamic nuclear volumes and highlight their utility in evaluating heterogenous disorders such as Schizophrenia.
Collapse
Affiliation(s)
- Taylor Young
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Manojkumar Saranathan
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
60
|
Chen J, Ngo A, Rodríguez-Cruces R, Royer J, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Alvim MKM, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp B, Domin M, von Podewils F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, Bender B, O’Brien TJ, Sinclair B, Vivash L, Kwan P, Desmond PM, Lui E, Duma GM, Bonanni P, Ballerini A, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Rüber T, Bauer T, Weber B, Caldairou B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Pardoe H, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Arienzo D, Vos SB, Ryten M, Taylor PN, Duncan JS, Whelan CD, Galovic M, Winston GP, Thomopoulos SI, Thompson PM, Sisodiya SM, Labate A, McDonald CR, Caciagli L, Bernasconi N, Bernasconi A, Larivière S, Schrader D, Bernhardt BC. A WORLDWIDE ENIGMA STUDY ON EPILEPSY-RELATED GRAY AND WHITE MATTER COMPROMISE ACROSS THE ADULT LIFESPAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583073. [PMID: 38496668 PMCID: PMC10942350 DOI: 10.1101/2024.03.02.583073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objectives Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.
Collapse
Affiliation(s)
- Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Fernando Cendes
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Marina K. M. Alvim
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K. Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Barbara Kreilkamp
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Epilepsy Center, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Germany
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Kwan
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia M. Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Alice Ballerini
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Colin P. Doherty
- Department of Neurology, St James’ Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Rhys H. Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | | | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J. A. Carr
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Eugenio Abela
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Heath Pardoe
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sean N. Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Donatello Arienzo
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Peter N. Taylor
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- CNNP Lab, ICOS group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D. Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zürich, Zürich, Switzerland
| | - Gavin P. Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON, Canada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Angelo Labate
- Neurophysiopathology and Movement Disorders Clinic, Regional Epilepsy Center, University of Messina, Italy
| | - Carrie R. McDonald
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA, USA
| | - Dewi Schrader
- BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
61
|
Zhu AH, Nir TM, Javid S, Villalon-Reina JE, Rodrigue AL, Strike LT, de Zubicaray GI, McMahon KL, Wright MJ, Medland SE, Blangero J, Glahn DC, Kochunov P, Håberg AK, Thompson PM, Jahanshad N. Lifespan reference curves for harmonizing multi-site regional brain white matter metrics from diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581646. [PMID: 38463962 PMCID: PMC10925090 DOI: 10.1101/2024.02.22.581646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).
Collapse
Affiliation(s)
- Alyssa H Zhu
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, CA, USA
| | - Talia M Nir
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Shayan Javid
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, CA, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Amanda L Rodrigue
- Department of Psychiatry and Behavioral Science, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lachlan T Strike
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Katie L McMahon
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
- School of Psychology, `, Brisbane, QLD, Australia
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry and Behavioral Science, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of MiDtT National Research Center, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, CA, USA
| |
Collapse
|
62
|
Shao J, Qin J, Wang H, Sun Y, Zhang W, Wang X, Wang T, Xue L, Yao Z, Lu Q. Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment. Biol Psychiatry 2024; 95:403-413. [PMID: 37579934 DOI: 10.1016/j.biopsych.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of gray matter volume. METHODS We enrolled 1092 participants, including 187 patients with depression and 905 healthy control participants. Structural magnetic resonance imaging data of healthy control participants from the Human Connectome Project (n = 510) and REST-meta-MDD Project (n = 229) were used to establish a normative model across the life span in adults 18 to 65 years old for each brain region. Deviations from the normative range for 187 patients and 166 healthy control participants recruited from two local hospitals were captured as normative probability maps, which were used to identify the disease risk and treatment-related latent factors. RESULTS In contrast to case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual normative probability maps (area under the receiver operating characteristic curve range, 0.7146-0.7836) showed better performance than models trained with original gray matter volume values (area under the receiver operating characteristic curve range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on normative probability maps, suggesting distinct treatment response and inclination. CONCLUSIONS Capturing personalized deviations from a normative range could help in understanding the heterogeneous neurobiology of depression and thus guide clinical diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Jiaolong Qin
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
63
|
Ge R, Yu Y, Qi YX, Fan YN, Chen S, Gao C, Haas SS, New F, Boomsma DI, Brodaty H, Brouwer RM, Buckner R, Caseras X, Crivello F, Crone EA, Erk S, Fisher SE, Franke B, Glahn DC, Dannlowski U, Grotegerd D, Gruber O, Hulshoff Pol HE, Schumann G, Tamnes CK, Walter H, Wierenga LM, Jahanshad N, Thompson PM, Frangou S, ENIGMA Lifespan Working Group. Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation. Lancet Digit Health 2024; 6:e211-e221. [PMID: 38395541 PMCID: PMC10929064 DOI: 10.1016/s2589-7500(23)00250-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/04/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024]
Abstract
The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.
Collapse
Affiliation(s)
- Ruiyang Ge
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yuetong Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yi Xuan Qi
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Nan Fan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shiyu Chen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chuntong Gao
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Faye New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Randy Buckner
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xavier Caseras
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle-Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Eveline A Crone
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Barbara Franke
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Hilleke E Hulshoff Pol
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China; PONS Centre, Department of Psychiatry and Clinical Neuroscience, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lara M Wierenga
- Brain and Development Research Center, Leiden University, Leiden, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | |
Collapse
Collaborators
Ingrid Agartz, Philip Asherson, Rosa Ayesa-Arriola, Nerisa Banaj, Tobias Banaschewski, Sarah Baumeister, Alessandro Bertolino, Stefan Borgwardt, Josiane Bourque, Daniel Brandeis, Alan Breier, Jan K Buitelaar, Dara M Cannon, Simon Cervenka, Patricia J Conrod, Benedicto Crespo-Facorro, Christopher G Davey, Lieuwe de Haan, Greig I de Zubicaray, Annabella Di Giorgio, Thomas Frodl, Patricia Gruner, Raquel E Gur, Ruben C Gur, Ben J Harrison, Sean N Hatton, Ian Hickie, Fleur M Howells, Chaim Huyser, Terry L Jernigan, Jiyang Jiang, John A Joska, René S Kahn, Andrew J Kalnin, Nicole A Kochan, Sanne Koops, Jonna Kuntsi, Jim Lagopoulos, Luisa Lazaro, Irina S Lebedeva, Christine Lochner, Nicholas G Martin, Bernard Mazoyer, Brenna C McDonald, Colm McDonald, Katie L McMahon, Sarah Medland, Amirhossein Modabbernia, Benson Mwangi, Tomohiro Nakao, Lars Nyberg, Fabrizio Piras, Maria J Portella, Jiang Qiu, Joshua L Roffman, Perminder S Sachdev, Nicole Sanford, Theodore D Satterthwaite, Andrew J Saykin, Carl M Sellgren, Kang Sim, Jordan W Smoller, Jair C Soares, Iris E Sommer, Gianfranco Spalletta, Dan J Stein, Sophia I Thomopoulos, Alexander S Tomyshev, Diana Tordesillas-Gutiérrez, Julian N Trollor, Dennis van 't Ent, Odile A van den Heuvel, Theo Gm van Erp, Neeltje Em van Haren, Daniela Vecchio, Dick J Veltman, Yang Wang, Bernd Weber, Dongtao Wei, Wei Wen, Lars T Westlye, Steven Cr Williams, Margaret J Wright, Mon-Ju Wu, Kevin Yu,
Collapse
|
64
|
Jiménez de la Peña M, Rincón-Pérez I, López-Martín S, Albert J, Martín Fernández-Mayoralas D, Fernández-Perrone AL, Jiménez de Domingo A, Tirado P, Calleja-Pérez B, Porta J, Álvarez S, Fernández-Jaén A. Tatton-Brown-Rahman syndrome: Novel pathogenic variants and new neuroimaging findings. Am J Med Genet A 2024; 194:211-217. [PMID: 37795572 DOI: 10.1002/ajmg.a.63434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) or DNMT3A-overgrowth syndrome is characterized by overgrowth and intellectual disability associated with minor dysmorphic features, obesity, and behavioral problems. It is caused by variants of the DNMT3A gene. We report four patients with this syndrome due to de novo DNMT3A pathogenic variants, contributing to a deeper understanding of the genetic basis and pathophysiology of this autosomal dominant syndrome. Clinical and magnetic resonance imaging assessments were also performed. All patients showed corpus callosum anomalies, small posterior fossa, and a deep left Sylvian fissure; as well as asymmetry of the uncinate and arcuate fascicles and marked increased cortical thickness. These results suggest that structural neuroimaging anomalies have been previously overlooked, where corpus callosum and brain tract alterations might be unrecognized neuroimaging traits of TBRS syndrome caused by DNMT3A variants.
Collapse
Affiliation(s)
| | - Irene Rincón-Pérez
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Javier Porta
- Department of Genomics, Genologica, Málaga, Spain
| | - Sara Álvarez
- Department of Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain
- School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
65
|
Parekh P, Fan CC, Frei O, Palmer CE, Smith DM, Makowski C, Iversen JR, Pecheva D, Holland D, Loughnan R, Nedelec P, Thompson WK, Hagler DJ, Andreassen OA, Jernigan TL, Nichols TE, Dale AM. FEMA: Fast and efficient mixed-effects algorithm for large sample whole-brain imaging data. Hum Brain Mapp 2024; 45:e26579. [PMID: 38339910 PMCID: PMC10823765 DOI: 10.1002/hbm.26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024] Open
Abstract
The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME; however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive DevelopmentSM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/.
Collapse
Affiliation(s)
- Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Chun Chieh Fan
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Bioinformatics, Department of InformaticsUniversity of OsloOsloNorway
| | - Clare E. Palmer
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana M. Smith
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Neurosciences Graduate ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
- Medical Scientist Training ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Carolina Makowski
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - John R. Iversen
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Neural ComputationUniversity of California San DiegoLa JollaCaliforniaUSA
- The Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Psychology Neuroscience & BehaviourMcMaster UniversityHamiltonOntarioCanada
| | - Diliana Pecheva
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dominic Holland
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Robert Loughnan
- Population Neuroscience and Genetics LabUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Pierre Nedelec
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wesley K. Thompson
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
| | - Donald J. Hagler
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Terry L. Jernigan
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Thomas E. Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Anders M. Dale
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
66
|
Gaiser C, Berthet P, Kia SM, Frens MA, Beckmann CF, Muetzel RL, Marquand AF. Estimating cortical thickness trajectories in children across different scanners using transfer learning from normative models. Hum Brain Mapp 2024; 45:e26565. [PMID: 38339954 PMCID: PMC10839740 DOI: 10.1002/hbm.26565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024] Open
Abstract
This work illustrates the use of normative models in a longitudinal neuroimaging study of children aged 6-17 years and demonstrates how such models can be used to make meaningful comparisons in longitudinal studies, even when individuals are scanned with different scanners across successive study waves. More specifically, we first estimated a large-scale reference normative model using Hierarchical Bayesian Regression from N = 42,993 individuals across the lifespan and from dozens of sites. We then transfer these models to a longitudinal developmental cohort (N = 6285) with three measurement waves acquired on two different scanners that were unseen during estimation of the reference models. We show that the use of normative models provides individual deviation scores that are independent of scanner effects and efficiently accommodate inter-site variations. Moreover, we provide empirical evidence to guide the optimization of sample size for the transfer of prior knowledge about the distribution of regional cortical thicknesses. We show that a transfer set containing as few as 25 samples per site can lead to good performance metrics on the test set. Finally, we demonstrate the clinical utility of this approach by showing that deviation scores obtained from the transferred normative models are able to detect and chart morphological heterogeneity in individuals born preterm.
Collapse
Affiliation(s)
- C. Gaiser
- Department of Neuroscience, Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
- The Generation R Study Group, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - P. Berthet
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Center for Mental Disorders Research (NORMENT)University of Oslo, and Oslo University HospitalOsloNorway
| | - S. M. Kia
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryUtrecht University Medical CenterUtrechtThe Netherlands
- Department of Cognitive Science and Artificial IntelligenceTilburg UniversityTilburgThe Netherlands
| | - M. A. Frens
- Department of Neuroscience, Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - C. F. Beckmann
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Functional MRI of the BrainUniversity of OxfordOxfordUK
| | - R. L. Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC—Sophia Children's HospitalUniversity Medical Centre RotterdamRotterdamThe Netherlands
| | - Andre F. Marquand
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
67
|
Dahl A, Eilertsen EM, Rodriguez-Cabello SF, Norbom LB, Tandberg AD, Leonardsen E, Lee SH, Ystrom E, Tamnes CK, Alnæs D, Westlye LT. Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions. Dev Cogn Neurosci 2024; 65:101339. [PMID: 38184855 PMCID: PMC10818201 DOI: 10.1016/j.dcn.2023.101339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024] Open
Abstract
Linking the developing brain with individual differences in clinical and demographic traits is challenging due to the substantial interindividual heterogeneity of brain anatomy and organization. Here we employ an integrative approach that parses individual differences in both cortical thickness and common genetic variants, and assess their effects on a wide set of childhood traits. The approach uses a linear mixed model framework to obtain the unique effects of each type of similarity, as well as their covariance. We employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline sample (mean age 9.9, 46.8% female). In general, associations between cortical thickness similarity and traits were limited to anthropometrics such as height, weight, and birth weight, as well as a marker of neighborhood socioeconomic conditions. Common genetic variants explained significant proportions of variance across nearly all included outcomes, although estimates were somewhat lower than previous reports. No significant covariance of the effects of genetic and cortical thickness similarity was found. The present findings highlight the connection between anthropometrics as well as neighborhood socioeconomic conditions and the developing brain, which appear to be independent from individual differences in common genetic variants in this population-based sample.
Collapse
Affiliation(s)
- Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Espen M Eilertsen
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Sara F Rodriguez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Anneli D Tandberg
- Department of Psychology, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sang Hong Lee
- Australian Centre for Precision Health, UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, Australia
| | - Eivind Ystrom
- Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health (PROMENTA), Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| |
Collapse
|
68
|
Chen B, Olson L, Rios A, Salmina M, Linke A, Fishman I. Reduced covariation between brain morphometry and local spontaneous activity in young children with ASD. Cereb Cortex 2024; 34:bhae005. [PMID: 38282456 PMCID: PMC10839841 DOI: 10.1093/cercor/bhae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
While disruptions in brain maturation in the first years of life in ASD are well documented, little is known about how the brain structure and function are related in young children with ASD compared to typically developing peers. We applied a multivariate pattern analysis to examine the covariation patterns between brain morphometry and local brain spontaneous activity in 38 toddlers and preschoolers with ASD and 31 typically developing children using T1-weighted structural MRI and resting-state fMRI data acquired during natural sleep. The results revealed significantly reduced brain structure-function correlations in ASD. The resultant brain structure and function composite indices were associated with age among typically developing children, but not among those with ASD, suggesting mistiming of typical brain maturational trajectories early in life in autism. Additionally, the brain function composite indices were associated with the overall developmental and adaptive behavior skills in the ASD group, highlighting the neurodevelopmental significance of early local brain activity in autism.
Collapse
Affiliation(s)
- Bosi Chen
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10016, United States
| | - Lindsay Olson
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94107, United States
| | - Adriana Rios
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
| | - Madison Salmina
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
| | - Annika Linke
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
- SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA 92120, United States
| | - Inna Fishman
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
- SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA 92120, United States
| |
Collapse
|
69
|
Liang X, Sun L, Liao X, Lei T, Xia M, Duan D, Zeng Z, Li Q, Xu Z, Men W, Wang Y, Tan S, Gao JH, Qin S, Tao S, Dong Q, Zhao T, He Y. Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence. Nat Commun 2024; 15:784. [PMID: 38278807 PMCID: PMC10817914 DOI: 10.1038/s41467-024-44863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.
Collapse
Affiliation(s)
- Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Tianyuan Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
70
|
Wall J, Xie H, Wang X. Temporal Interactions between Maintenance of Cerebral Cortex Thickness and Physical Activity from an Individual Person Micro-Longitudinal Perspective and Implications for Precision Medicine. J Pers Med 2024; 14:127. [PMID: 38392561 PMCID: PMC10890462 DOI: 10.3390/jpm14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Maintenance of brain structure is essential for neurocognitive health. Precision medicine has interests in understanding how maintenance of an individual person's brain, including cerebral cortical structure, interacts with lifestyle factors like physical activity. Cortical structure, including cortical thickness, has recognized relationships with physical activity, but concepts of these relationships come from group, not individual, focused findings. Whether or how group-focused concepts apply to an individual person is fundamental to precision medicine interests but remains unclear. This issue was studied in a healthy man using concurrent micro-longitudinal tracking of magnetic resonance imaging-defined cortical thickness and accelerometer-defined steps/day over six months. These data permitted detailed examination of temporal relationships between thickness maintenance and physical activity at an individual level. Regression analyses revealed graded significant and trend-level temporal interactions between preceding activity vs. subsequent thickness maintenance and between preceding thickness maintenance vs. subsequent activity. Interactions were bidirectional, delayed/prolonged over days/weeks, positive, bilateral, directionally asymmetric, and limited in strength. These novel individual-focused findings in some ways are predicted, but in other ways remain unaddressed or undetected, by group-focused work. We suggest that individual-focused concepts of temporal interactions between maintenance of cortical structure and activity can provide needed new insight for personalized tailoring of physical activity, cortical, and neurocognitive health.
Collapse
Affiliation(s)
- John Wall
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
| | - Hong Xie
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
| | - Xin Wang
- Department of Neurosciences, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA; (H.X.); (X.W.)
- Department of Psychiatry, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
- Department of Radiology, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
71
|
Calderón-Garcidueñas L, Stommel EW, Torres-Jardón R, Hernández-Luna J, Aiello-Mora M, González-Maciel A, Reynoso-Robles R, Pérez-Guillé B, Silva-Pereyra HG, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Lachmann I, Galaz-Montoya C, Doty RL, Roy A, Mukherjee PS. Alzheimer and Parkinson diseases, frontotemporal lobar degeneration and amyotrophic lateral sclerosis overlapping neuropathology start in the first two decades of life in pollution exposed urbanites and brain ultrafine particulate matter and industrial nanoparticles, including Fe, Ti, Al, V, Ni, Hg, Co, Cu, Zn, Ag, Pt, Ce, La, Pr and W are key players. Metropolitan Mexico City health crisis is in progress. Front Hum Neurosci 2024; 17:1297467. [PMID: 38283093 PMCID: PMC10811680 DOI: 10.3389/fnhum.2023.1297467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?
Collapse
Affiliation(s)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | - Richard L. Doty
- Perelman School of Medicine, Smell and Taste Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Anik Roy
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
72
|
Dartora C, Marseglia A, Mårtensson G, Rukh G, Dang J, Muehlboeck JS, Wahlund LO, Moreno R, Barroso J, Ferreira D, Schiöth HB, Westman E, for the Alzheimer’s Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing, the Japanese Alzheimer’s Disease Neuroimaging Initiative, the AddNeuroMed Consortium. A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Front Aging Neurosci 2024; 15:1303036. [PMID: 38259636 PMCID: PMC10800627 DOI: 10.3389/fnagi.2023.1303036] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction In the last few years, several models trying to calculate the biological brain age have been proposed based on structural magnetic resonance imaging scans (T1-weighted MRIs, T1w) using multivariate methods and machine learning. We developed and validated a convolutional neural network (CNN)-based biological brain age prediction model that uses one T1w MRI preprocessing step when applying the model to external datasets to simplify implementation and increase accessibility in research settings. Our model only requires rigid image registration to the MNI space, which is an advantage compared to previous methods that require more preprocessing steps, such as feature extraction. Methods We used a multicohort dataset of cognitively healthy individuals (age range = 32.0-95.7 years) comprising 17,296 MRIs for training and evaluation. We compared our model using hold-out (CNN1) and cross-validation (CNN2-4) approaches. To verify generalisability, we used two external datasets with different populations and MRI scan characteristics to evaluate the model. To demonstrate its usability, we included the external dataset's images in the cross-validation training (CNN3). To ensure that our model used only the brain signal on the image, we also predicted brain age using skull-stripped images (CNN4). Results The trained models achieved a mean absolute error of 2.99, 2.67, 2.67, and 3.08 years for CNN1-4, respectively. The model's performance in the external dataset was in the typical range of mean absolute error (MAE) found in the literature for testing sets. Adding the external dataset to the training set (CNN3), overall, MAE is unaffected, but individual cohort MAE improves (5.63-2.25 years). Salience maps of predictions reveal that periventricular, temporal, and insular regions are the most important for age prediction. Discussion We provide indicators for using biological (predicted) brain age as a metric for age correction in neuroimaging studies as an alternative to the traditional chronological age. In conclusion, using different approaches, our CNN-based model showed good performance using one T1w brain MRI preprocessing step. The proposed CNN model is made publicly available for the research community to be easily implemented and used to study ageing and age-related disorders.
Collapse
Affiliation(s)
- Caroline Dartora
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gustav Mårtensson
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José Barroso
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
73
|
Rothmann LM, Tondo LP, Borelli WV, Esper NB, Portolan ET, Franco AR, Portuguez MW, Ferreira PE, Bittencourt AML, Soder RB, Viola TW, da Costa JC, Grassi-Oliveira R. The cortical thickness of tricenarian cocaine users assembles features of an octogenarian brain. J Neurosci Res 2024; 102:e25287. [PMID: 38284862 DOI: 10.1002/jnr.25287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
It has been suggested that substance use disorders could lead to accelerated biological aging, but only a few neuroimaging studies have investigated this hypothesis so far. In this cross-sectional study, structural neuroimaging was performed to measure cortical thickness (CT) in tricenarian adults with cocaine use disorder (CUD, n1 = 30) and their age-paired controls (YC, n1 = 30), and compare it with octogenarian elder controls (EC, n1 = 20). We found that CT in the right fusiform gyrus was similar between CUD and EC, thinner than the expected values of YC. We also found that regarding CT of the right inferior temporal gyrus, right inferior parietal cortex, and left superior parietal cortex, the CUD group exhibited parameters that fell in between EC and YC groups. Finally, CT of the right pars triangularis bordering with orbitofrontal gyrus, right superior temporal gyrus, and right precentral gyrus were reduced in CUD when contrasted with YC, but those areas were unrelated to CT of EC. Despite the 50-year age gap between our age groups, CT of tricenarian cocaine users assembles features of an octogenarian brain, reinforcing the accelerated aging hypothesis in CUD.
Collapse
Affiliation(s)
- Leonardo Melo Rothmann
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Graduate School of Health, Aarhus University, Aarhus, Denmark
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucca Pizzato Tondo
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Eduardo Tavares Portolan
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Rosa Franco
- Center for the Developing Brain, Child Mind Institute, New York, New York, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatric, Grossman School of Medicine, New York University, New York, New York, USA
| | - Mirna Wetters Portuguez
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Eugênio Ferreira
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ricardo Bernardi Soder
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Graduate School of Health, Aarhus University, Aarhus, Denmark
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
74
|
Vosberg DE. Sex and Gender in Population Neuroscience. Curr Top Behav Neurosci 2024; 68:87-105. [PMID: 38509404 DOI: 10.1007/7854_2024_468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To understand psychiatric and neurological disorders and the structural and functional properties of the human brain, it is essential to consider the roles of sex and gender. In this chapter, I first define sex and gender and describe studies of sex differences in non-human animals. In humans, I describe the sex differences in behavioral and clinical phenotypes and neuroimaging-derived phenotypes, including whole-brain measures, regional subcortical and cortical measures, and structural and functional connectivity. Although structural whole-brain sex differences are large, regional effects (adjusting for whole-brain volumes) are typically much smaller and often fail to replicate. Nevertheless, while an individual neuroimaging feature may have a small effect size, aggregating them in a "maleness/femaleness" score or machine learning multivariate paradigm may prove to be predictive and informative of sex- and gender-related traits. Finally, I conclude by summarizing emerging investigations of gender norms and gender identity and provide methodological recommendations to incorporate sex and gender in population neuroscience research.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada.
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
75
|
Ching CRK, Kang MJY, Thompson PM. Large-Scale Neuroimaging of Mental Illness. Curr Top Behav Neurosci 2024; 68:371-397. [PMID: 38554248 DOI: 10.1007/7854_2024_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.
Collapse
Affiliation(s)
- Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Melody J Y Kang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
76
|
Wu GR, Baeken C. Sex Determines Anterior Cingulate Cortex Cortical Thickness in the Course of Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:346-353. [PMID: 39677834 PMCID: PMC11639738 DOI: 10.1016/j.bpsgos.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe psychiatric disorder affecting women more than men. Changes in anterior cingulate cortex cortical thickness (ACC CT) may be crucial to understanding sex influences in MDD onset and recurrency. METHODS Taken from the large open-source REST-meta-MDD database, we contrasted 499 patients with MDD (381 first-episode MDD, 118 recurrent MDD) and 524 healthy control participants using linear mixed-effects models and normative modeling and investigated whether sex differences affected ACC CT and its subregions differently during the course of depressive illness. RESULTS Overall, females showed thinner ACC CT compared with males. Female patients with a first depressive episode showed significantly thinner ACC CT compared with male patients with first-episode MDD (Cohen's d = -0.65), including in the perigenual ACC and the subgenual ACC, but not in the dorsal ACC. Moreover, male patients with first-episode depression showed thicker ACC CT (including subgenual ACC and pregenual ACC) compared to the male patients with recurrent MDD (Cohen's d = 1.24), but they also showed significantly thicker cortices in the same subregions in comparison to never-depressed males (Cohen's d = 0.85). No lateralization differences were observed in ACC CT or its subdivisions. CONCLUSIONS Sex determined ACC CT changes over the course of depressive illness. Because the ACC subdivisions in question are associated with dysregulation of emotions, our observations substantiate the need for early and prolonged sex-specific clinical interventions.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
- Ghent Experimental Psychiatry Lab, Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry Lab, Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (Universitair Ziekenhuis Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
77
|
Elliott ML, Nielsen JA, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Hyman BT, Mair RW, Eldaief MC, Buckner RL. Precision Brain Morphometry Using Cluster Scanning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.23.23300492. [PMID: 38234845 PMCID: PMC10793507 DOI: 10.1101/2023.12.23.23300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jared A Nielsen
- Department of Psychology, Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Mark C Eldaief
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
78
|
Kim HW, Kim HJ, Lee H, Yang H, Rieu Z, Lee JH. Magnetic resonance image-based brain age as a discriminator of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Sci Rep 2023; 13:22467. [PMID: 38105274 PMCID: PMC10725862 DOI: 10.1038/s41598-023-49465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
Patients with amyloid-negative amnestic mild cognitive impairment (MCI) have a conversion rate of approximately 10% to dementia within 2 years. We aimed to investigate whether brain age is an important factor in predicting conversion to dementia in patients with amyloid-negative amnestic MCI. We conducted a retrospective cohort study of patients with amyloid-negative amnestic MCI. All participants underwent detailed neuropsychological evaluation, brain magnetic resonance imaging (MRI), and [18F]-florbetaben positron emission tomography. Brain age was determined by the volumetric assessment of 12 distinct brain regions using an automatic segmentation software. During the follow-up period, 38% of the patients converted from amnestic MCI to dementia. Further, 73% of patients had a brain age greater than their actual chronological age. When defining 'survival' as the non-conversion of MCI to dementia, these groups differed significantly in survival probability (p = 0.036). The low-educated female group with a brain age greater than their actual age had the lowest survival rate among all groups. Our findings suggest that the MRI-based brain age used in this study can contribute to predicting conversion to dementia in patients with amyloid-negative amnestic MCI.
Collapse
Affiliation(s)
- Hye Weon Kim
- Research Institute, Neurophet Inc., Seoul, 06234, Korea
| | - Hyung-Ji Kim
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Hyunji Lee
- Research Institute, Neurophet Inc., Seoul, 06234, Korea
| | - Hyeonsik Yang
- Research Institute, Neurophet Inc., Seoul, 06234, Korea
| | - ZunHyan Rieu
- Research Institute, Neurophet Inc., Seoul, 06234, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
79
|
Ge R, Yu Y, Qi YX, Fan YV, Chen S, Gao C, Haas SS, Modabbernia A, New F, Agartz I, Asherson P, Ayesa-Arriola R, Banaj N, Banaschewski T, Baumeister S, Bertolino A, Boomsma DI, Borgwardt S, Bourque J, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buckner R, Buitelaar JK, Cannon DM, Caseras X, Cervenka S, Conrod PJ, Crespo-Facorro B, Crivello F, Crone EA, de Haan L, de Zubicaray GI, Di Giorgio A, Erk S, Fisher SE, Franke B, Frodl T, Glahn DC, Grotegerd D, Gruber O, Gruner P, Gur RE, Gur RC, Harrison BJ, Hatton SN, Hickie I, Howells FM, Hulshoff Pol HE, Huyser C, Jernigan TL, Jiang J, Joska JA, Kahn RS, Kalnin AJ, Kochan NA, Koops S, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lochner C, Martin NG, Mazoyer B, McDonald BC, McDonald C, McMahon KL, Nakao T, Nyberg L, Piras F, Portella MJ, Qiu J, Roffman JL, Sachdev PS, Sanford N, Satterthwaite TD, Saykin AJ, Schumann G, Sellgren CM, Sim K, Smoller JW, Soares J, Sommer IE, Spalletta G, Stein DJ, Tamnes CK, Thomopolous SI, Tomyshev AS, Tordesillas-Gutiérrez D, Trollor JN, van ’t Ent D, van den Heuvel OA, van Erp TGM, van Haren NEM, Vecchio D, Veltman DJ, Walter H, Wang Y, Weber B, et alGe R, Yu Y, Qi YX, Fan YV, Chen S, Gao C, Haas SS, Modabbernia A, New F, Agartz I, Asherson P, Ayesa-Arriola R, Banaj N, Banaschewski T, Baumeister S, Bertolino A, Boomsma DI, Borgwardt S, Bourque J, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buckner R, Buitelaar JK, Cannon DM, Caseras X, Cervenka S, Conrod PJ, Crespo-Facorro B, Crivello F, Crone EA, de Haan L, de Zubicaray GI, Di Giorgio A, Erk S, Fisher SE, Franke B, Frodl T, Glahn DC, Grotegerd D, Gruber O, Gruner P, Gur RE, Gur RC, Harrison BJ, Hatton SN, Hickie I, Howells FM, Hulshoff Pol HE, Huyser C, Jernigan TL, Jiang J, Joska JA, Kahn RS, Kalnin AJ, Kochan NA, Koops S, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lochner C, Martin NG, Mazoyer B, McDonald BC, McDonald C, McMahon KL, Nakao T, Nyberg L, Piras F, Portella MJ, Qiu J, Roffman JL, Sachdev PS, Sanford N, Satterthwaite TD, Saykin AJ, Schumann G, Sellgren CM, Sim K, Smoller JW, Soares J, Sommer IE, Spalletta G, Stein DJ, Tamnes CK, Thomopolous SI, Tomyshev AS, Tordesillas-Gutiérrez D, Trollor JN, van ’t Ent D, van den Heuvel OA, van Erp TGM, van Haren NEM, Vecchio D, Veltman DJ, Walter H, Wang Y, Weber B, Wei D, Wen W, Westlye LT, Wierenga LM, Williams SCR, Wright MJ, Medland S, Wu MJ, Yu K, Jahanshad N, Thompson PM, Frangou S. Normative Modeling of Brain Morphometry Across the Lifespan Using CentileBrain: Algorithm Benchmarking and Model Optimization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.523509. [PMID: 38076938 PMCID: PMC10705253 DOI: 10.1101/2023.01.30.523509] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).
Collapse
Affiliation(s)
- Ruiyang Ge
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Yuetong Yu
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Yi Xuan Qi
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Yunan Vera Fan
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Shiyu Chen
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Chuntong Gao
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | | | - Faye New
- Department of Psychiatry, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT),
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital,
Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm,
Stockholm, Sweden
| | - Philip Asherson
- Institute of Psychiatry, Psychology and Neuroscience, Social,
Genetic and Developmental Psychiatry Center, King's College London, London, UK
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Marqués de Valdecilla
University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), Santander,
Spain
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation,
Rome, Italy
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy,
Central Institute of Mental Health, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy,
Central Institute of Mental Health, Mannheim, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense
Organs, University of Bari Aldo Moro, Bari, Italy
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit
Amsterdam, Amsterdam, The Netherlands
| | - Stefan Borgwardt
- Translational Psychiatry Unit, Department of Psychiatry and
Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Josiane Bourque
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, Pennsylvania, USA
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy,
Central Institute of Mental Health, Mannheim, Germany
- Department of Child and Adolescent Psychiatry, University of
Zürich, Zurich, Switzerland
| | - Alan Breier
- Department of Psychiatry, Indiana University School of
Medicine, Indianapolis, Indiana, USA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical
Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive
Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Randy Buckner
- Department of Psychology, Center for Brain Science, Harvard
University, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for
Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, National University of
Ireland Galway, Galway, Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics,
Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff,
UK
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm,
Stockholm, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala
University, Uppsala, Sweden
| | - Patricia J Conrod
- Department of Psychiatry and Addiction, Université de
Montréal, CHU Ste Justine, Montréal, Canada
| | - Benedicto Crespo-Facorro
- University Hospital Virgen del Rocio, Seville, Spain;
Department of Psychiatry, University of Seville, Institute of Biomedicine of Seville (IBIS),
Seville, Spain
- Mental Health Research Networking Center (CIBERSAM), Madrid,
Spain
| | - Fabrice Crivello
- Institut des Maladies Neurodégénératives,
Université de Bordeaux, Bordeaux, France
| | - Eveline A Crone
- Department of Psychology, Education and Child Studies, Erasmus
University Rotterdam, Rotterdam, The Netherlands
- Institute of Psychology, Leiden University, Leiden, The
Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, The
Netherlands
| | - Liewe de Haan
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The
Netherlands
| | - Greig I de Zubicaray
- School of Psychology & Counselling, Faculty of Health,
Queensland University of Technology, Brisbane, Australia
| | - Annabella Di Giorgio
- Laboratory of Biological Psychiatry, Fondazione IRCCS Casa
Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry
and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for
Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud
University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical
Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain,
Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Frodl
- University Clinics and Clinics for Psychiatry, Psychotherapy
and Psychosomatic Medicine, RWTH Aachen University, Aachen, Germany
| | - David C Glahn
- Department of Psychiatry, Tommy Fuss Center for
Neuropsychiatric Disease Research Boston Children's Hospital, Harvard Medical School,
Boston, Massachusetts, USA
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, University of
Muenster, Muenster, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging,
Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Patricia Gruner
- Department of Psychiatry, Yale University, New Haven,
Connecticut, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, Pennsylvania, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, Pennsylvania, USA
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry,
The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Sean N Hatton
- Center for Multimodal Imaging and Genetics, University of
California San Diego, La jolla, California, USA
| | - Ian Hickie
- Brain and Mind Centre, University of Sydney, Sydney,
Australia
| | - Fleur M Howells
- Neuroscience Institute, University of Cape Town, Cape Town,
South Africa
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical
Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychology, Utrecht University, Utrecht, The
Netherlands
| | - Chaim Huyser
- Department of Child and Adolescent Psychiatry, Academic
Medical Centre/De Bascule, Amsterdam, The Netherlands
| | - Terry L Jernigan
- Center for Human Development, Departments of Cognitive
Science, Psychiatry, and Radiology, University of California, San Diego, USA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
| | - John A Joska
- Department of Neuropsychiatry, University of Cape Town, Cape
Town, South Africa
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Andrew J Kalnin
- Department of Radiology, The Ohio State University College of
Medicine, Columbus, Ohio, USA
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
| | - Sanne Koops
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jonna Kuntsi
- Institute of Psychiatry, Psychology and Neuroscience, Social,
Genetic and Developmental Psychiatry Center, King's College London, London, UK
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience - Thompson Institute,
University of the Sunshine Coast, Queensland, Australia
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology,
Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders,
Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Berghofer Medical
Research Institute, Brisbane, Australia
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives,
Université de Bordeaux, Bordeaux, France
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG),
NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway,
Ireland
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical
Technologies, Queensland University of Technology, Brisbane, Australia
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Kyushu University, Fukuoka,
Japan
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå Center for
Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of
Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation,
Rome, Italy
| | - Maria J Portella
- Mental Health Research Networking Center (CIBERSAM), Madrid,
Spain
- Department of Psychiatry, Hospital de la Santa Creu iSant Pau,
Institutd' Investigació Biomèdica SantPau, Universitat
Autònomade Barcelona (UAB), Barcelona, Spain
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Southwest
University, Ministry of Education, Chongqing, PR China
- Faculty of Psychology, Southwest University, Chongqing, PR
China
- Southwest University Branch, Collaborative Innovation Center
of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing, PR
China
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital,
Harvard Medical School, Boston, Massachusetts, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
| | - Nicole Sanford
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine
(PONS), Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic &
Developmental Psychiatry Centre, King's College London, London, UK; Institute for
Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, PR China;
Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health,
Department of Psychiatry and Psychotherapy, CCM, Charite Universitätsmedizin Berlin,
Berlin, Germany
| | - Carl M Sellgren
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm,
Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska
Institute, Stockholm, Sweden
| | - Kang Sim
- Institute of Mental Health, Singapore
| | - Jordan W Smoller
- Center for Genomic Medicine, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Jair Soares
- University of Texas Health Harris County Psychiatric Center,
Houston, Texas, USA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems,
Rijksuniversiteit Groningen, University Medical Center Groningen, Groningen, The
Netherlands
| | | | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders,
Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town,
South Africa
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT),
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital,
Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University
of Oslo, Oslo, Norway
| | - Sophia I Thomopolous
- Genetics Center, Stevens Institute for Neuroimaging and
Informatics, Keck USC School of Medicine, Marina del Rey, California, USA
| | | | - Diana Tordesillas-Gutiérrez
- Department of Radiology, Marqués de Valdecilla
University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain;
Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC),
Santander, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School
of Psychiatry, University of New South Wales, Sydney, Australia
| | - Dennis van ’t Ent
- Department of Biological Psychology, Vrije Universiteit
Amsterdam, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit
Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Anatomy & Neurosciences, Amsterdam UMC,
Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Theo GM van Erp
- Department of Psychiatry and Human Behavior, University of
California, Irvine, California, USA
| | - Neeltje EM van Haren
- Department of Child and Adolescent Psychiatry/Psychology,
Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation,
Rome, Italy
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit
Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry
and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin,
Milwaukee, Wisconsin, USA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition
Research, University of Bonn Germany, Bonn, Germany; University Hospital Bonn, Bonn,
Germany
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality, Southwest
University, Ministry of Education, Chongqing, PR China
- Faculty of Psychology, Southwest University, Chongqing, PR
China
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry,
University of New South Wales, Sydney, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo,
Norway
| | - Lara M Wierenga
- Institute of Psychology, Leiden University, Leiden, The
Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, The
Netherlands
| | - Steven CR Williams
- Department of Neuroimaging, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, UK
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland,
Brisbane, Queensland, Australia
| | - Sarah Medland
- Queensland Brain Institute, University of Queensland,
Brisbane, Queensland, Australia
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Science, University of
Texas Health Science Center, Houston, Texas, USA
| | - Kevin Yu
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
| | - Neda Jahanshad
- Genetics Center, Stevens Institute for Neuroimaging and
Informatics, Keck USC School of Medicine, Marina del Rey, California, USA
| | - Paul M Thompson
- Genetics Center, Stevens Institute for Neuroimaging and
Informatics, Keck USC School of Medicine, Marina del Rey, California, USA
| | - Sophia Frangou
- Djavad Mowafagian Centre for Brain Health, University of British
Columbia, Vancouver, BC, Canada
- Department of Psychiatry, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| |
Collapse
|
80
|
González-García N, Buimer EEL, Moreno-López L, Sallie SN, Váša F, Lim S, Romero-Garcia R, Scheuplein M, Whitaker KJ, Jones PB, Dolan RJ, Fonagy P, Goodyer I, Bullmore ET, van Harmelen AL. Resilient functioning is associated with altered structural brain network topology in adolescents exposed to childhood adversity. Dev Psychopathol 2023; 35:2253-2263. [PMID: 37493043 DOI: 10.1017/s0954579423000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14-24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning.
Collapse
Affiliation(s)
- Nadia González-García
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, México City, Mexico
| | - Elizabeth E L Buimer
- Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | | | | | - František Váša
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sol Lim
- Public health and Primary Care, Cardiovascular Epidemiology Unit (CEU), University of Cambridge, Cambridge, UK
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Dpto. de Fisiología Médica y Biofísica. Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maximilian Scheuplein
- Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | | | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Raymond J Dolan
- Wellcome Trust Center for Neuroimaging, University College London, London, UK
| | - Peter Fonagy
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Ian Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| |
Collapse
|
81
|
Korom M, Tabachnick AR, Sellers T, Valadez EA, Tottenham N, Dozier M. Associations between cortical thickness and parasympathetic nervous system functioning during middle childhood. Psychophysiology 2023; 60:e14391. [PMID: 37455342 PMCID: PMC10789912 DOI: 10.1111/psyp.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Positive associations have been found between cortical thickness and measures of parasympathetic cardiac control (e.g., respiratory sinus arrhythmia, RSA) in adults, which may indicate mechanistic integration between neural and physiological indicators of stress regulation. However, it is unknown when in development this brain-body association arises and whether the direction of association and neuroanatomical localization vary across development. To investigate this, we collected structural magnetic resonance imaging and resting-state respiratory sinus arrhythmia data from children in middle childhood (N = 62, Mage = 10.09, range: 8.28-12.14 years). Whole-brain and exploratory ROI analyses revealed positive associations between RSA and cortical thickness in four frontal and parietal clusters in the left hemisphere and one cluster in the right. Exploratory ROI analyses revealed a similar positive association between cortical thickness and RSA, with two regions surviving multiple comparison correction, including the inferior frontal orbital gyrus and the Sylvian fissure. Prior work has identified these cortical areas as part of the central autonomic network that supports integrative regulation of stress response (e.g., autonomic, endocrine, and behavioral) and emotional expression. Our results suggest that the association between cortical thickness and resting RSA is present in middle childhood and is similar to the associations seen during adulthood. Future studies should investigate associations between RSA and cortical thickness among young children and adolescents.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Tabitha Sellers
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Mary Dozier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
82
|
Pulli EP, Nolvi S, Eskola E, Nordenswan E, Holmberg E, Copeland A, Kumpulainen V, Silver E, Merisaari H, Saunavaara J, Parkkola R, Lähdesmäki T, Saukko E, Kataja E, Korja R, Karlsson L, Karlsson H, Tuulari JJ. Structural brain correlates of non-verbal cognitive ability in 5-year-old children: Findings from the FinnBrain birth cohort study. Hum Brain Mapp 2023; 44:5582-5601. [PMID: 37606608 PMCID: PMC10619410 DOI: 10.1002/hbm.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Non-verbal cognitive ability predicts multiple important life outcomes, for example, school and job performance. It has been associated with parieto-frontal cortical anatomy in prior studies in adult and adolescent populations, while young children have received relatively little attention. We explored the associations between cortical anatomy and non-verbal cognitive ability in 165 5-year-old participants (mean scan age 5.40 years, SD 0.13; 90 males) from the FinnBrain Birth Cohort study. T1-weighted brain magnetic resonance images were processed using FreeSurfer. Non-verbal cognitive ability was measured using the Performance Intelligence Quotient (PIQ) estimated from the Block Design and Matrix Reasoning subtests from the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). In vertex-wise general linear models, PIQ scores associated positively with volumes in the left caudal middle frontal and right pericalcarine regions, as well as surface area in left the caudal middle frontal, left inferior temporal, and right lingual regions. There were no associations between PIQ and cortical thickness. To the best of our knowledge, this is the first study to examine structural correlates of non-verbal cognitive ability in a large sample of typically developing 5-year-olds. The findings are generally in line with prior findings from older age groups, with the important addition of the positive association between volume / surface area in the right medial occipital region and non-verbal cognitive ability. This finding adds to the literature by discovering a new brain region that should be considered in future studies exploring the role of cortical structure for cognitive development in young children.
Collapse
Affiliation(s)
- Elmo P. Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Turku Institute for Advanced Studies, Department of Psychology and Speech‐Language PathologyUniversity of TurkuTurkuFinland
| | - Eeva Eskola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | - Elisabeth Nordenswan
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Eeva Holmberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of RadiologyUniversity of TurkuTurkuFinland
| | - Jani Saunavaara
- Department of Medical PhysicsTurku University Hospital and University of TurkuTurkuFinland
| | - Riitta Parkkola
- Department of RadiologyUniversity of TurkuTurkuFinland
- Department of RadiologyTurku University HospitalTurkuFinland
| | - Tuire Lähdesmäki
- Pediatric Neurology, Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | | | - Eeva‐Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Turku Collegium for Science, Medicine and TechnologyUniversity of TurkuTurkuFinland
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
83
|
Debiasi G, Mazzonetto I, Bertoldo A. The effect of processing pipelines, input images and age on automatic cortical morphology estimates. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107825. [PMID: 37806120 DOI: 10.1016/j.cmpb.2023.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic resonance imaging of the brain allows to enrich the study of the relationship between cortical morphology, healthy ageing, diseases and cognition. Since manual segmentation of the cerebral cortex is time consuming and subjective, many software packages have been developed. FreeSurfer (FS) and Advanced Normalization Tools (ANTs) are the most used and allow as inputs a T1-weighted (T1w) image or its combination with a T2-weighted (T2w) image. In this study we evaluated the impact of different software and input images on cortical estimates. Additionally, we investigated whether the variation of the results depending on software and inputs is also influenced by age. METHODS For 240 healthy subjects, cortical thickness was computed with ANTs and FreeSurfer. Estimates were derived using both the T1w image and adding the T2w image. Significant effects due to software, input images and age range were investigated with ANOVA statistical analysis. Moreover, the accuracy of the cortical thickness estimates was assessed based on their age-prediction precision. RESULTS Using FreeSurfer and ANTs with T1w or T1w-T2w images resulted in significant differences in the cortical thickness estimates. These differences change with the age range of the subjects. Regardless of the images used, the more recent FS version tested exhibited the best performances in terms of age prediction. CONCLUSIONS Our study points out the importance of i) consistently processing data using the same tool; ii) considering the software, input images and the age range of the subjects when comparing multiple studies.
Collapse
Affiliation(s)
- Giulia Debiasi
- Department of Information Engineering, University of Padova, via Gradenigo 6/b, Padova 35131, Italy
| | - Ilaria Mazzonetto
- Department of Information Engineering, University of Padova, via Gradenigo 6/b, Padova 35131, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, via Gradenigo 6/b, Padova 35131, Italy; Padova Neuroscience Center (PNC), University of Padova, via Orus 2/b, Padova 35131, Italy.
| |
Collapse
|
84
|
Choi US, Park JY, Lee JJ, Choi KY, Won S, Lee KH. Predicting mild cognitive impairments from cognitively normal brains using a novel brain age estimation model based on structural magnetic resonance imaging. Cereb Cortex 2023; 33:10858-10866. [PMID: 37718166 DOI: 10.1093/cercor/bhad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Brain age prediction is a practical method used to quantify brain aging and detect neurodegenerative diseases such as Alzheimer's disease (AD). However, very few studies have considered brain age prediction as a biomarker for the conversion of cognitively normal (CN) to mild cognitive impairment (MCI). In this study, we developed a novel brain age prediction model using brain volume and cortical thickness features. We calculated an acceleration of brain age (ABA) derived from the suggested model to estimate different diagnostic groups (CN, MCI, and AD) and to classify CN to MCI and MCI to AD conversion groups. We observed a strong association between ABA and the 3 diagnostic groups. Additionally, the classification models for CN to MCI conversion and MCI to AD conversion exhibited acceptable and robust performances, with area under the curve values of 0.66 and 0.76, respectively. We believe that our proposed model provides a reliable estimate of brain age for elderly individuals and can identify those at risk of progressing from CN to MCI. This model has great potential to reveal a diagnosis associated with a change in cognitive decline.
Collapse
Affiliation(s)
- Uk-Su Choi
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jun Young Park
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Neurozen Inc., Seoul 06168, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea
- Korea Brain Research Institute, Daegu 41061, Republic of Korea
| |
Collapse
|
85
|
Weissman DG, Baum GL, Sanders A, Rosen ML, Barch DM, McLaughlin KA, Somerville LH. Family income is not significantly associated with T1w/T2w ratio in the Human Connectome Project in Development. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00021. [PMID: 39006919 PMCID: PMC11242614 DOI: 10.1162/imag_a_00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Growing evidence indicates that brain development varies as a function of family socioeconomic status (SES). Numerous studies have demonstrated that children from low-SES backgrounds have thinner cortex than children from higher-SES backgrounds. A recent study in a large developmental sample found widespread associations between lower SES and greater cortical T1w/T2w ratio-thought to be an indirect proxy for cortical myelin. We evaluated the association of family income with cortical T1w/T2w ratio as a function of age in the Human Connectome Project in Development sample of 989 youth aged 8-21 years. We observed no associations between family income and T1w/T2w ratio that were significant after corrections for multiple comparisons at the region, network, or whole-brain level. Region of practical equivalence (ROPE) analyses were also consistent with the absence of an association between family income and T1w/T2w ratio. We discuss potential methodological sources of inconsistency between this and the previous study examining the same question. While the question of whether family income may influence cortical myelin development remains, these null results may indicate that the association between SES and cortical myelin development may not be as strong as with other aspects of brain structure.
Collapse
Affiliation(s)
- David G. Weissman
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Graham L. Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Ashley Sanders
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Maya L. Rosen
- Program in Neuroscience, Smith College, Northampton, MA, United States
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Leah H. Somerville
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
86
|
Schilling KG, Chad JA, Chamberland M, Nozais V, Rheault F, Archer D, Li M, Gao Y, Cai L, Del'Acqua F, Newton A, Moyer D, Gore JC, Lebel C, Landman BA. White matter tract microstructure, macrostructure, and associated cortical gray matter morphology across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559330. [PMID: 37808645 PMCID: PMC10557619 DOI: 10.1101/2023.09.25.559330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Characterizing how, when and where the human brain changes across the lifespan is fundamental to our understanding of developmental processes of childhood and adolescence, degenerative processes of aging, and divergence from normal patterns in disease and disorders. We aimed to provide detailed descriptions of white matter pathways across the lifespan by thoroughly characterizing white matter microstructure, white matter macrostructure, and morphology of the cortex associated with white matter pathways. We analyzed 4 large, high-quality, publicly-available datasets comprising 2789 total imaging sessions, and participants ranging from 0 to 100 years old, using advanced tractography and diffusion modeling. We first find that all microstructural, macrostructural, and cortical features of white matter bundles show unique lifespan trajectories, with rates and timing of development and degradation that vary across pathways - describing differences between types of pathways and locations in the brain, and developmental milestones of maturation of each feature. Second, we show cross-sectional relationships between different features that may help elucidate biological changes occurring during different stages of the lifespan. Third, we show unique trajectories of age-associations across features. Finally, we find that age associations during development are strongly related to those during aging. Overall, this study reports normative data for several features of white matter pathways of the human brain that will be useful for studying normal and abnormal white matter development and degeneration.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan A Chad
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Maxime Chamberland
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Derek Archer
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Muwei Li
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Flavio Del'Acqua
- NatbrainLab, Department of Forensics and Neurodevelopmental Sciences, King's College London, London UK
| | - Allen Newton
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel Moyer
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Bennett A Landman
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
87
|
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. Neuroimage 2023; 278:120275. [PMID: 37451375 PMCID: PMC10443236 DOI: 10.1016/j.neuroimage.2023.120275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.
Collapse
Affiliation(s)
- Christina Stier
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Christoph Braun
- MEG-Center, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Niels K Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
88
|
Ray B, Chen J, Fu Z, Suresh P, Thapaliya B, Farahdel B, Calhoun VD, Liu J. Replication and Refinement of Brain Age Model for adolescent development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553472. [PMID: 37645839 PMCID: PMC10462059 DOI: 10.1101/2023.08.16.553472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.
Collapse
Affiliation(s)
- Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
89
|
Bachmann D, Buchmann A, Studer S, Saake A, Rauen K, Zuber I, Gruber E, Nitsch RM, Hock C, Gietl A, Treyer V. Age-, sex-, and pathology-related variability in brain structure and cognition. Transl Psychiatry 2023; 13:278. [PMID: 37574523 PMCID: PMC10423720 DOI: 10.1038/s41398-023-02572-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
This work aimed to investigate potential pathways linking age and imaging measures to early age- and pathology-related changes in cognition. We used [18F]-Flutemetamol (amyloid) and [18F]-Flortaucipir (tau) positron emission tomography (PET), structural MRI, and neuropsychological assessment from 232 elderly individuals aged 50-89 years (46.1% women, 23% APOE-ε4 carrier, 23.3% MCI). Tau-PET was available for a subsample of 93 individuals. Structural equation models were used to evaluate cross-sectional pathways between age, amyloid and tau burden, grey matter thickness and volumes, white matter hyperintensity volume, lateral ventricle volume, and cognition. Our results show that age is associated with worse outcomes in most of the measures examined and had similar negative effects on episodic memory and executive functions. While increased lateral ventricle volume was consistently associated with executive function dysfunction, participants with mild cognitive impairment drove associations between structural measures and episodic memory. Both age and amyloid-PET could be associated with medial temporal lobe tau, depending on whether we used a continuous or a dichotomous amyloid variable. Tau burden in entorhinal cortex was related to worse episodic memory in individuals with increased amyloid burden (Centiloid >12) independently of medial temporal lobe atrophy. Testing models for sex differences revealed that amyloid burden was more strongly associated with regional atrophy in women compared with men. These associations were likely mediated by higher tau burden in women. These results indicate that influences of pathological pathways on cognition and sex-specific vulnerabilities are dissociable already in early stages of neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Yamoah EN, Pavlinkova G, Fritzsch B. The Development of Speaking and Singing in Infants May Play a Role in Genomics and Dementia in Humans. Brain Sci 2023; 13:1190. [PMID: 37626546 PMCID: PMC10452560 DOI: 10.3390/brainsci13081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of the central auditory system, including the auditory cortex and other areas involved in processing sound, is shaped by genetic and environmental factors, enabling infants to learn how to speak. Before explaining hearing in humans, a short overview of auditory dysfunction is provided. Environmental factors such as exposure to sound and language can impact the development and function of the auditory system sound processing, including discerning in speech perception, singing, and language processing. Infants can hear before birth, and sound exposure sculpts their developing auditory system structure and functions. Exposing infants to singing and speaking can support their auditory and language development. In aging humans, the hippocampus and auditory nuclear centers are affected by neurodegenerative diseases such as Alzheimer's, resulting in memory and auditory processing difficulties. As the disease progresses, overt auditory nuclear center damage occurs, leading to problems in processing auditory information. In conclusion, combined memory and auditory processing difficulties significantly impact people's ability to communicate and engage with their societal essence.
Collapse
Affiliation(s)
- Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | | | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
91
|
Wang C, Hayes R, Roeder K, Jalbrzikowski M. Neurobiological Clusters Are Associated With Trajectories of Overall Psychopathology in Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:852-863. [PMID: 37121399 PMCID: PMC10792597 DOI: 10.1016/j.bpsc.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Integrating multiple neuroimaging modalities to identify clusters of individuals and then associating these clusters with psychopathology is a promising approach for understanding neurobiological mechanisms that underlie psychopathology and the extent to which these features are associated with clinical symptoms. METHODS We leveraged neuroimaging data from T1-weighted, diffusion-weighted, and resting-state functional magnetic resonance images from the Adolescent Brain Cognitive Development (ABCD) Study (N = 8035) and used similarity network fusion and spectral clustering to identify subgroups of participants. We examined neuroimaging measures as a function of clustering profiles using 1, 2, or 3 imaging modalities (i.e., data combinations), calculated the stability of the clustering assignment in each respective data combination, and compared the consistency of clusters across different data combinations. We then compared the extent to which clusters were associated with overall psychopathology at the baseline assessment and at 2 yearly follow-up visits. RESULTS Each data combination resulted in optimal clusters ranging from 2 to 4 subgroups for each data combination. Clusters were stable across subsampling of the ABCD Study cohort. Widespread structural measures (surface area, fractional anisotropy, and mean diffusivity) were important features contributing to clustering across different data combinations. Five of the seven data combinations were associated with overall psychopathology, both at baseline and over time (d = 0.08-0.41). Generally, lower global cortical volume and surface area, widespread reduced fractional anisotropy, and increased radial diffusivity were associated with increased overall psychopathology. CONCLUSIONS Profiles constructed from neuroimaging data combinations are associated with concurrent and future psychopathology trajectories.
Collapse
Affiliation(s)
- Catherine Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rebecca Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
92
|
Chakrabarty T, Frangou S, Torres IJ, Ge R, Yatham LN. Brain age and cognitive functioning in first-episode bipolar disorder. Psychol Med 2023; 53:5127-5135. [PMID: 35875930 PMCID: PMC10476063 DOI: 10.1017/s0033291722002136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is significant heterogeneity in cognitive function in patients with bipolar I disorder (BDI); however, there is a dearth of research into biological mechanisms that might underlie cognitive heterogeneity, especially at disease onset. To this end, this study investigated the association between accelerated or delayed age-related brain structural changes and cognition in early-stage BDI. METHODS First episode patients with BDI (n = 80) underwent cognitive assessment to yield demographically normed composite global and domain-specific scores in verbal memory, non-verbal memory, working memory, processing speed, attention, and executive functioning. Structural magnetic resonance imaging data were also collected from all participants and subjected to machine learning to compute the brain-predicted age difference (brainPAD), calculated by subtracting chronological age from age predicted by neuroimaging data (positive brainPAD values indicating age-related acceleration in brain structural changes and negative values indicating delay). Patients were divided into tertiles based on brainPAD values, and cognitive performance compared amongst tertiles with ANCOVA. RESULTS Patients in the lowest (delayed) tertile of brainPAD values (brainPAD range -17.9 to -6.5 years) had significantly lower global cognitive scores (p = 0.025) compared to patients in the age-congruent tertile (brainPAD range -5.3 to 2.4 yrs), and significantly lower verbal memory scores (p = 0.001) compared to the age-congruent and accelerated (brainPAD range 2.8 to 16.1 yrs) tertiles. CONCLUSION These results provide evidence linking cognitive dysfunction in the early stage of BDI to apparent delay in typical age-related brain changes. Further studies are required to assess how age-related brain changes and cognitive functioning evolve over time.
Collapse
Affiliation(s)
- Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| | - Sophia Frangou
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
- Department of Psychiatry Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Ivan J. Torres
- British Columbia Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Ruiyang Ge
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| | - Lakshmi N. Yatham
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| |
Collapse
|
93
|
Lebedeva IS, Tomyshev AS, Pechenkova EV. On the Correlations of Gray Matter with Schizotypy in Mentally Healthy Subjects. Bull Exp Biol Med 2023:10.1007/s10517-023-05852-9. [PMID: 37464196 DOI: 10.1007/s10517-023-05852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 07/20/2023]
Abstract
We analyzed the relationships between morphometric characteristics of brain gray matter and schizotypy. Mentally healthy subjects (n=164, age 18-35 years) completed Russian version of SPQ-74 test and underwent high-field 3T MRI. Cortical thickness in the right frontal pole (determined with FreeSurfer 6.0.0) positively correlated with negative schizotypy factor. The revealed features can reflect the protective mechanisms (resilience) against the development of mental disorders and also can be a result of individual ontogenesis trajectories manifested in deceleration of the decrease of the cortex thickness during first 3 decades of life.
Collapse
Affiliation(s)
- I S Lebedeva
- Scientific Center of Mental Health, Moscow, Russia.
| | - A S Tomyshev
- Scientific Center of Mental Health, Moscow, Russia
| | - E V Pechenkova
- National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
94
|
Riva F, Pronizius E, Lenger M, Kronbichler M, Silani G, Lamm C. Age-related differences in interference control in the context of a finger-lifting task: an fMRI study. Soc Cogn Affect Neurosci 2023; 18:nsad034. [PMID: 37279968 PMCID: PMC10329405 DOI: 10.1093/scan/nsad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Humans tend to automatically imitate others and their actions while also being able to control such imitative tendencies. Interference control, necessary to suppress own imitative tendencies, develops rapidly in childhood and adolescence, plateaus in adulthood and slowly declines with advancing age. It remains to be shown though which neural processes underpin these differences across the lifespan. In a cross-sectional functional magnetic resonance imaging study with three age groups (adolescents (ADs) 14-17 years, young adults (YAs) 21-31, older adults (OAs) 56-76, N = 91 healthy female participants), we investigated the behavioral and neural correlates of interference control in the context of automatic imitation using the finger-lifting task. ADs showed the most efficient interference control, while no significant differences emerged between YAs and OAs, despite OAs showing longer reaction times. On the neural level, all age groups showed engagement of the right temporoparietal junction, right supramarginal gyrus and bilateral insula, aligning well with studies previously using this task. However, our analyses did not reveal any age-related differences in brain activation, neither in these nor in other areas. This suggests that ADs might have a more efficient use of the engaged brain networks and, on the other hand, OAs' capacity for interference control and the associated brain functions might be largely preserved.
Collapse
Affiliation(s)
- Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| | - Ekaterina Pronizius
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| | - Melanie Lenger
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg 5020, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg 5020, Austria
- Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Salzburg 5020, Austria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| |
Collapse
|
95
|
Sun J, Zhao W, Xie Y, Zhou F, Wu L, Li Y, Li H, Li Y, Zeng C, Han X, Liu Y, Zhang N. Personalized estimates of morphometric similarity in multiple sclerosis and neuromyelitis optica spectrum disorders. Neuroimage Clin 2023; 39:103454. [PMID: 37343344 PMCID: PMC10509529 DOI: 10.1016/j.nicl.2023.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Brain morphometric alterations involve multiple brain regions on progression of the disease in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and exhibit age-related degenerative changes during the pathological aging. Recent advance in brain morphometry as measured using MRI have leveraged Person-Based Similarity Index (PBSI) approach to assess the extent of within-diagnosis similarity or heterogeneity of brain neuroanatomical profiles between individuals of healthy populations and validate in neuropsychiatric disorders. Brain morphometric changes throughout the lifespan would be invaluable for understanding regional variability of age-related structural degeneration and the substrate of inflammatory demyelinating disease. Here, we aimed to quantify the neuroanatomical profiles with PBSI measures of cortical thickness (CT) and subcortical volumes (SV) in 263 MS, 207 NMOSD, and 338 healthy controls (HC) from six separate central datasets (aged 11-80). We explored the between-group comparisons of PBSI measures, as well as the advancing age and sex effects on PBSI measures. Compared to NMOSD, MS showed a lower extent of within-diagnosis similarity. Significant differences in regional contributions to PBSI score were observed in 29 brain regions between MS and NMOSD (P < 0.05/164, Bonferroni corrected), of which bilateral cerebellum in MS and bilateral parahippocampal gyrus in NMOSD represented the highest divergence between the two patient groups, with a high similarity effect within each group. The PBSI scores were generally lower with advancing age, but their associations showed different patterns depending on the age range. For MS, CT profiles were significantly negatively correlated with age until the early 30 s (ρ = -0.265, P = 0.030), while for NMOSD, SV profiles were significantly negatively correlated with age with 51 year-old and older (ρ = -0.365, P = 0.008). The current study suggests that PBSI approach could be used to quantify the variation in brain morphometric changes in CNS inflammatory demyelinating disease, and exhibited a greater neuroanatomical heterogeneity pattern in MS compared with NMOSD. Our results reveal that, as an MR marker, PBSI may be sensitive to distribute the disease-associated grey matter diversity and complexity. Disease-driven production of regionally selective and age stage-dependency changes in the neuroanatomical profile of MS and NMOSD should be considered to facilitate the prediction of clinical outcomes and assessment of treatment responses.
Collapse
Affiliation(s)
- Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjin Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fuqing Zhou
- Department of Radiology, The First Afliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi Province, China
| | - Lin Wu
- Department of Radiology, The First Afliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi Province, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongmei Li
- Department of Radiology, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chun Zeng
- Department of Radiology, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing 100070, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
96
|
Schilling KG, Archer D, Rheault F, Lyu I, Huo Y, Cai LY, Bunge SA, Weiner KS, Gore JC, Anderson AW, Landman BA. Superficial white matter across development, young adulthood, and aging: volume, thickness, and relationship with cortical features. Brain Struct Funct 2023; 228:1019-1031. [PMID: 37074446 PMCID: PMC10320929 DOI: 10.1007/s00429-023-02642-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/08/2023] [Indexed: 04/20/2023]
Abstract
Superficial white matter (SWM) represents a significantly understudied part of the human brain, despite comprising a large portion of brain volume and making up a majority of cortico-cortical white matter connections. Using multiple, high-quality datasets with large sample sizes (N = 2421, age range 5-100) in combination with methodological advances in tractography, we quantified features of SWM volume and thickness across the brain and across development, young adulthood, and aging. We had four primary aims: (1) characterize SWM thickness across brain regions (2) describe associations between SWM volume and age (3) describe associations between SWM thickness and age, and (4) quantify relationships between SWM thickness and cortical features. Our main findings are that (1) SWM thickness varies across the brain, with patterns robust across individuals and across the population at the region-level and vertex-level; (2) SWM volume shows unique volumetric trajectories with age that are distinct from gray matter and other white matter trajectories; (3) SWM thickness shows nonlinear cross-sectional changes across the lifespan that vary across regions; and (4) SWM thickness is associated with features of cortical thickness and curvature. For the first time, we show that SWM volume follows a similar trend as overall white matter volume, peaking at a similar time in adolescence, leveling off throughout adulthood, and decreasing with age thereafter. Notably, the relative fraction of total brain volume of SWM continuously increases with age, and consequently takes up a larger proportion of total white matter volume, unlike the other tissue types that decrease with respect to total brain volume. This study represents the first characterization of SWM features across the large portion of the lifespan and provides the background for characterizing normal aging and insight into the mechanisms associated with SWM development and decline.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ilwoo Lyu
- Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, Berkeley, USA
| | - Kevin S Weiner
- Department of Psychology, University of California at Berkeley, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, USA
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
97
|
Springer SD, Erker TD, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Rempe MP, Wilson TW. Disturbances in primary visual processing as a function of healthy aging. Neuroimage 2023; 271:120020. [PMID: 36914104 PMCID: PMC10123380 DOI: 10.1016/j.neuroimage.2023.120020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.
Collapse
Affiliation(s)
- Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
98
|
Ahmed S, Cano MÁ, Sánchez M, Hu N, Ibañez G. Effect of exposure to maternal diabetes during pregnancy on offspring's brain cortical thickness and neurocognitive functioning. Child Neuropsychol 2023; 29:588-606. [PMID: 35867480 PMCID: PMC9867783 DOI: 10.1080/09297049.2022.2103105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023]
Abstract
Little is known about the long-term effects of maternal diabetes during pregnancy (DP), either gestational diabetes or preexisting diabetes (type 1 or type 2), on offspring's brain morphometry and neurocognitive functioning (NCF). This study examined the effect of prenatal exposure to maternal DP on the brain structure and NCF in children between 9 and 10 years of age. This study used cross-sectional neuroimaging and NCF data from the baseline wave of the Adolescent Brain and Cognitive Development® study. Exposure to maternal DP was assigned from the developmental history questionnaire. Differences in the brain cortical thickness (CTh) and five cognitive abilities (executive function, working and episodic memory, processing speed, and language abilities) were examined in diabetes-exposed and diabetes-unexposed children. Linear mixed effect models and generalized linear models were used to adjust for the effect of confounding variables. A total of 9,967 children (718 diabetes-exposed and 9249 unexposed) were included in the analysis. Diabetes-exposed children had lower whole-brain CTh [mean: exposed vs unexposed = 2.725 mm vs 2.732 mm; difference (95%CI): -0.007 mm (-0.013, -0.001)] compared to unexposed children after adjusting for confounding variables. Diabetes-exposed children had lower CTh in most part of the occipital lobe of both hemispheres, right postcentral gyrus, and left superior parietal cortex. Diabetes-exposed children also had lower scores in processing speed task [mean difference (95%CI): -1.7 (-2.8, -0.6)] and total cognition [mean difference (95%CI): -0.6 (-1.2, -0.02)]. Diabetes-exposed children have reduced CTh and NCF during preadolescence, which might have implications for psychomotor development during later life. Prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
| | | | | | - Nan Hu
- Florida International University, Miami, Florida, USA
| | - Gladys Ibañez
- Florida International University, Miami, Florida, USA
| |
Collapse
|
99
|
Van Hoornweder S, Geraerts M, Verstraelen S, Nuyts M, Caulfield KA, Meesen R. From scalp to cortex, the whole isn't greater than the sum of its parts: introducing GetTissueThickness (GTT) to assess age and sex differences in tissue thicknesses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537177. [PMID: 37131842 PMCID: PMC10153183 DOI: 10.1101/2023.04.18.537177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Noninvasive techniques to record and stimulate the brain rely on passing through the tissues in between the scalp and cortex. Currently, there is no method to obtain detailed information about these scalp-to-cortex distance (SCD) tissues. We introduce GetTissueThickness (GTT), an open-source, automated approach to quantify SCD, and unveil how tissue thicknesses differ across age groups, sexes and brain regions (n = 250). We show that men have larger SCD in lower scalp regions and women have similar-to-larger SCD in regions closer to the vertex, with aging resulting in increased SCD in fronto-central regions. Soft tissue thickness varies by sex and age, with thicker layers and greater age-related decreases in men. Compact and spongy bone thickness also differ across sexes and age groups, with thicker compact bone in women in both age groups and an age-related thickening. Older men generally have the thickest cerebrospinal fluid layer and younger women and men having similar cerebrospinal fluid layers. Aging mostly results in grey matter thinning. Concerning SCD, the whole isn't greater than the sum of its parts. GTT enables rapid quantification of the SCD tissues. The distinctive sensitivity of noninvasive recording and stimulation modalities to different tissues underscores the relevance of GTT.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marc Geraerts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A. Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
100
|
Strike LT, Hansell NK, Chuang KH, Miller JL, de Zubicaray GI, Thompson PM, McMahon KL, Wright MJ. The Queensland Twin Adolescent Brain Project, a longitudinal study of adolescent brain development. Sci Data 2023; 10:195. [PMID: 37031232 PMCID: PMC10082846 DOI: 10.1038/s41597-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.
Collapse
Affiliation(s)
- Lachlan T Strike
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, QLD, 4006, Brisbane, Australia.
| | - Narelle K Hansell
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Kai-Hsiang Chuang
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD 4072, Australia
| | - Jessica L Miller
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Margaret J Wright
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD 4072, Australia
| |
Collapse
|