51
|
Li C, Wu J, Hu KD, Wei SW, Sun HY, Hu LY, Han Z, Yao GF, Zhang H. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. HORTICULTURE RESEARCH 2020; 7:37. [PMID: 32194973 PMCID: PMC7072072 DOI: 10.1038/s41438-020-0254-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 05/19/2023]
Abstract
Red pear is favored because of its bright appearance and abundant anthocyanins. Anthocyanin biosynthesis is controlled by transcription factors (TFs) forming regulatory complexes. In red-skinned pears, the WRKY TFs have a significant relationship with anthocyanin biosynthesis, but the molecular mechanism of the WRKY TFs involved in regulating color formation in red-skinned pear is unclear. In this study, the TFs PyWRKY31 and PyWRKY26 were screened as candidate genes for controlling anthocyanin biosynthesis by transcriptome data and bioinformatics analysis. The effect of anthocyanin accumulations after cotransformation of PyWRKY31 or PyWRKY26 with its partners PyMYB10, PyMYB114, and PybHLH3 was verified in tobacco leaves and strawberry receptacles by a transient expression system. RT-qPCR analysis and a dual-luciferase reporter system further confirmed that this cotransformation activated the expression of PyDFR, PyANS, and PyUFGT in anthocyanin biosynthesis and PyGST in anthocyanin transport instead of the PyABC transporter and PyAVP. Furthermore, the cotransformed PyWRKY26 and PybHLH3 could bind to the PyMYB114 promoter, and PyWRKY26 directly activated the transcription of PyMYB114. In addition, the TF PyWRKY26 could interact with PybHLH3, as confirmed by firefly luciferase complementation and yeast two-hybrid (Y2H) assays. These results showed that the interaction of PyWRKY26 and PybHLH3 could cotarget the PyMYB114 promoter, which resulted in anthocyanin accumulation in red-skinned pear. This study further strengthened the understanding of the regulatory mechanism of anthocyanin accumulation and contributed to improving the appearance of red-skinned pears.
Collapse
Affiliation(s)
- Chuang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Shu-Wei Wei
- Shandong Institute of Pomology, 271000 Taian, China
| | - Hong-Ye Sun
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., 236500 Jieshou, China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| |
Collapse
|
52
|
Koutsos A, Riccadonna S, Ulaszewska MM, Franceschi P, Trošt K, Galvin A, Braune T, Fava F, Perenzoni D, Mattivi F, Tuohy KM, Lovegrove JA. Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial. Am J Clin Nutr 2020; 111:307-318. [PMID: 31840162 PMCID: PMC6997084 DOI: 10.1093/ajcn/nqz282] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Apples are rich in bioactive polyphenols and fiber. Evidence suggests that consumption of apples or their bioactive components is associated with beneficial effects on lipid metabolism and other markers of cardiovascular disease (CVD). However, adequately powered randomized controlled trials are necessary to confirm these data and explore the mechanisms. OBJECTIVE We aimed to determine the effects of apple consumption on circulating lipids, vascular function, and other CVD risk markers. METHODS The trial was a randomized, controlled, crossover, intervention study. Healthy mildly hypercholesterolemic volunteers (23 women, 17 men), with a mean ± SD BMI 25.3 ± 3.7 kg/m2 and age 51 ± 11 y, consumed 2 apples/d [Renetta Canada, rich in proanthocyanidins (PAs)] or a sugar- and energy-matched apple control beverage (CB) for 8 wk each, separated by a 4-wk washout period. Fasted blood was collected before and after each treatment. Serum lipids, glucose, insulin, bile acids, and endothelial and inflammation biomarkers were measured, in addition to microvascular reactivity, using laser Doppler imaging with iontophoresis, and arterial stiffness, using pulse wave analysis. RESULTS Whole apple (WA) consumption decreased serum total (WA: 5.89 mmol/L; CB: 6.11 mmol/L; P = 0.006) and LDL cholesterol (WA: 3.72 mmol/L; CB: 3.86 mmol/L; P = 0.031), triacylglycerol (WA: 1.17 mmol/L; CB: 1.30 mmol/L; P = 0.021), and intercellular cell adhesion molecule-1 (WA: 153.9 ng/mL; CB: 159.4 ng/mL; P = 0.028), and increased serum uric acid (WA: 341.4 μmol/L; CB: 330 μmol/L; P = 0.020) compared with the CB. The response to endothelium-dependent microvascular vasodilation was greater after the apples [WA: 853 perfusion units (PU), CB: 760 PU; P = 0.037] than after the CB. Apples had no effect on blood pressure or other CVD markers. CONCLUSIONS These data support beneficial hypocholesterolemic and vascular effects of the daily consumption of PA-rich apples by mildly hypercholesterolemic individuals.This trial was registered at clinicaltrials.gov as NCT01988389.
Collapse
Affiliation(s)
- Athanasios Koutsos
- Hugh Sinclair Unit of Human Nutrition and the Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Samantha Riccadonna
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Maria M Ulaszewska
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kajetan Trošt
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| | - Amanda Galvin
- Hugh Sinclair Unit of Human Nutrition and the Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Tanya Braune
- Hugh Sinclair Unit of Human Nutrition and the Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department of Physics, University of Trento, Povo, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and the Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
53
|
Proanthocyanidins Promote Osteogenic Differentiation of Human Periodontal Ligament Fibroblasts in Inflammatory Environment Via Suppressing NF-κB Signal Pathway. Inflammation 2020; 43:892-902. [DOI: 10.1007/s10753-019-01175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
54
|
Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
55
|
Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 2019; 177:1278-1293. [PMID: 31465555 PMCID: PMC7056468 DOI: 10.1111/bph.14850] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long‐term consumption of polyphenol‐rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms and the potential of polyphenols as dietary supplements for regulating gut microbiota and circadian rhythms, and discuss future research directions. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
56
|
Kobayashi S. The Effect of Polyphenols on Hypercholesterolemia through Inhibiting the Transport and Expression of Niemann-Pick C1-Like 1. Int J Mol Sci 2019; 20:ijms20194939. [PMID: 31590417 PMCID: PMC6801711 DOI: 10.3390/ijms20194939] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 01/30/2023] Open
Abstract
The Niemann-Pick C1-like 1 (NPC1L1) protein is a cholesterol transporter that is expressed in the small intestine. This report describes the discovery of NPC1L1, its transport properties, and the inhibitory effects of polyphenols on NPC1L1. NPC1L1 was identified in 2004 while searching for ezetimibe molecular targets. Excessive synthesis of cholesterol results in hyperlipidemia, which increases the amount of bile cholesterol excreted into the duodenum. The inhibition of NPC1L1 decreases blood cholesterol because food and bile cholesterol are also absorbed from NPC1L1 in the intestine. Some polyphenols, particularly luteolin, have been reported as NPC1L1-mediated anti-dyslipidemia constituents. Luteolin affects NPC1L1 through two mechanisms. Luteolin directly inhibits NPC1L1 by binding to it, which occurs in a short timeframe similar to that for ezetimibe. The other mechanism is the inhibition of NPC1L1 expression. Luteolin reduced the binding of Sterol-regulatory element-binding protein 2 (SREBP2) in the promoter region of the NPC1L1 gene and decreased mRNA levels of SREBP2 and hepatocyte nuclear factor 4α. These data suggest that luteolin decreases the expression of NPC1L1 through regulation of transcription factors. This review also explores the effect of other polyphenols on NPC1L1 and hypercholesterolemia.
Collapse
Affiliation(s)
- Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
57
|
Compositional characterization study on high -molecular -mass polymeric polyphenols in red wines by chemical degradation. Food Res Int 2019; 123:440-449. [DOI: 10.1016/j.foodres.2019.04.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
|
58
|
Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC. Bioactive potential of fruit and vegetable wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:157-225. [PMID: 32035596 DOI: 10.1016/bs.afnr.2019.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
59
|
Glavnik V, Vovk I. High performance thin-layer chromatography–mass spectrometry methods on diol stationary phase for the analyses of flavan-3-ols and proanthocyanidins in invasive Japanese knotweed. J Chromatogr A 2019; 1598:196-208. [DOI: 10.1016/j.chroma.2019.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
60
|
Zheng T, Lin Y, Wang L, Lin Q, Lin X, Chen Z, Lin Z. De novo Assembly and Characterization of the Floral Transcriptomes of Two Varieties of Melastoma malabathricum. Front Genet 2019; 10:521. [PMID: 31275350 PMCID: PMC6594232 DOI: 10.3389/fgene.2019.00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022] Open
Abstract
Melastoma malabathricum is an important medicinal and landscape plant that is globally distributed in temperate and subtropical regions. However, available genomic information for the entire Melastomataceae family is notably limited. In view of the application potential of floral parts in secondary metabolite extraction, we characterized for the first time the floral transcriptomes of two key M. malabathricum varieties, purple variety and white variety. Our transcriptome assembly generated 52,498 and 49,380 unigenes with an N50 of 1,906 and 1,929 bases for the purple and white varieties, respectively. Comparative analysis of two transcriptomes demonstrated that they are highly similar but also highlighted genes that are presumably lineage specific, which explains the phenotypes of each variety. Additionally, a shared transcriptional signature across the floral developmental stages was identified in both M. malabathricum varieties; this signature included pathways related to secondary metabolite synthesis, plant hormone signaling and production, energy homeostasis and nutrient assimilation pathways, and cellular proliferation. The expression levels of flavonoid accumulation and candidate flavonoid biosynthesis-related genes in M. malabathricum flower development stages validated the transcriptome findings. The transcriptome data presented in this study will serve as a valuable resource for future work on the exploitation of M. malabathricum and other related species. The gene expression dynamics during flower development will facilitate the discovery of lineage-specific genes associated with phenotypic characteristics and will elucidate the mechanism of the ontogeny of individual flower types.
Collapse
Affiliation(s)
- Tao Zheng
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Yihua Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Longping Wang
- Fujian Institute of Tropical Crops, Zhangzhou, China.,Xiamen Forest Quarantine and Prevention Station, Xiamen Greening Administration Center, Xiamen, China
| | - Qiujin Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Xiuxiang Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Zhendong Chen
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
61
|
Griffin LE, Fausnacht DW, Tuzo JL, Addington AK, Racine KC, Zhang H, Hughes MD, England KM, Bruno RS, O'Keefe SF, Neilson AP, Stewart AC. Flavanol supplementation protects against obesity-associated increases in systemic interleukin-6 levels without inhibiting body mass gain in mice fed a high-fat diet. Nutr Res 2019; 66:32-47. [DOI: 10.1016/j.nutres.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
|
62
|
Wangensteen H, Duong GM, Alamgir M, Sarder M, Samuelsen AB, Malterud KE. Biological Activities of Limonoids, Catechins, Procyanidins and Extracts from Xylocarpus granatum. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600101113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Procyanidins and catechins were found in high amounts in the methanol extract of the bark of the mangrove tree Xylocarpus granatum. The procyanidins showed a consistent structural pattern with catechin as the starter and epicatechin as the extender units. Four limonoids with a tetranortriterpenoid structure, previously identified in X. granatum, were isolated as well. Catechins, procyanidins, limonoids and plant extracts were evaluated for DPPH radical scavenging and 15-lipoxygenase (15-LO) inhibiting effects. Catechins and procyanidins demonstrated high activity, and the procyanidin of the pentamer type was found to be most potent (IC50; DPPH: 3.3 ± 0.3 μM, 15-LO: 9 ± 1 μM). Extracts were also found to have antibacterial activity.
Collapse
Affiliation(s)
- Helle Wangensteen
- Department of Pharmaceutical Chemistry – Pharmacognosy, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, N-0316 Oslo, Norway
| | - Gia M. Duong
- Department of Pharmaceutical Chemistry – Pharmacognosy, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, N-0316 Oslo, Norway
| | | | - Mokadez Sarder
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Anne B. Samuelsen
- Department of Pharmaceutical Chemistry – Pharmacognosy, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, N-0316 Oslo, Norway
| | - Karl E. Malterud
- Department of Pharmaceutical Chemistry – Pharmacognosy, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, N-0316 Oslo, Norway
| |
Collapse
|
63
|
Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019; 24:E370. [PMID: 30669635 PMCID: PMC6359708 DOI: 10.3390/molecules24020370] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphenols are categorized as plant secondary metabolites, and they have attracted much attention in relation to human health and the prevention of chronic diseases. In recent years, a considerable number of studies have been published concerning their physiological function in the digestive tract, such as their prebiotic properties and their modification of intestinal microbiota. It has also been suggested that several hydrolyzed and/or fission products, derived from the catabolism of polyphenols by intestinal bacteria, exert their physiological functions in target sites after transportation into the body. Thus, this review article focuses on the role of intestinal microbiota in the bioavailability and physiological function of dietary polyphenols. Monomeric polyphenols, such as flavonoids and oligomeric polyphenols, such as proanthocyanidins, are usually catabolized to chain fission products by intestinal bacteria in the colon. Gallic acid and ellagic acid derived from the hydrolysis of gallotannin, and ellagitannin are also subjected to intestinal catabolism. These catabolites may play a large role in the physiological functions of dietary polyphenols. They may also affect the microbiome, resulting in health promotion by the activation of short chain fatty acids (SCFA) excretion and intestinal immune function. The intestinal microbiota is a key factor in mediating the physiological functions of dietary polyphenols.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| | - Yasukiyo Yoshioka
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| |
Collapse
|
64
|
Annunziata G, Maisto M, Schisano C, Ciampaglia R, Daliu P, Narciso V, Tenore GC, Novellino E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018; 10:nu10111711. [PMID: 30413043 PMCID: PMC6266738 DOI: 10.3390/nu10111711] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
The beneficial effects of the tea beverage are well-known and mainly attributed to polyphenols which, however, have poor bioaccessibility and bioavailability. The purpose of the present study was the evaluation of colon bioaccessibility and antioxidant activity of tea polyphenolic extract. An 80% methanolic extract (v/v) of tea polyphenols was obtained from green (GT), white (WT) and black tea (BT). Simulated gastrointestinal (GI) digestion was performed on acid-resistant capsules containing tea polyphenolic extract. The main tea polyphenols were monitored by HPLC-diode-array detector (DAD) method; in addition, Total Phenol Content (TPC) and antioxidant activity were evaluated. After GI digestion, the bioaccessibility in the colon stage was significantly increased compared to the duodenal stage for both tea polyphenols and TPC. Similarly, the antioxidant activity in the colon stage was significantly higher than that in the duodenal stage. Reasonably, these results could be attributable in vivo to the activity of gut microbiota, which is able to metabolize these compounds, generating metabolites with a greater antioxidant activity. Our results may guide the comprehension of the colon digestion of polyphenols, suggesting that, although poorly absorbed in the duodenum, they can exert their antioxidant and anti-inflammatory activities in the lower gut, resulting in a novel strategy for the management of gut-related inflammatory diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Maisto
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Connie Schisano
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Patricia Daliu
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Viviana Narciso
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
65
|
Biochemical and Functional Characterization of Anthocyanidin Reductase (ANR) from Mangifera indica L. Molecules 2018; 23:molecules23112876. [PMID: 30400564 PMCID: PMC6278290 DOI: 10.3390/molecules23112876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.
Collapse
|
66
|
Yang J, Li B, Shi W, Gong Z, Chen L, Hou Z. Transcriptional Activation of Anthocyanin Biosynthesis in Developing Fruit of Blueberries ( Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10931-10942. [PMID: 30269498 DOI: 10.1021/acs.jafc.8b03081] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect and mechanism of preharvest and postharvest ultraviolet (UV) irradiation on anthocyanin biosynthesis during blueberry development were investigated. The results showed that preharvest UV-B,C and postharvest UV-A,B,C irradiation significantly promoted anthocyanin biosynthesis and the transcripts of late biosynthetic genes (LBG) VcDFR, VcANS, VcUFGT, and VcMYB transcription factor as well as DFR and UFGT activities in anthocyanin pathway in a UV wavelength- and developmental stage-dependent manner. VcMYB expression was positively correlated with that of VcANS and VcUFGT and coincided with anthocyanin biosynthesis responding to the UV radiation. Sugar decreased during postharvest but increased during preharvest UV radiation in mature fruit. Our results indicate that UV-responsive production of anthocyanins is mainly caused by the activation of anthocyanin downstream pathway genes, which could be upregulated by VcMYB. Furthermore, different potential response mechanisms may exist between preharvest and postharvest UV radiation in blueberries, involving a systemic response in living plants and a nonsystemic response in postharvest fruit.
Collapse
Affiliation(s)
- Junfeng Yang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
- The Key Laboratory of Plant Resources/Beijing Botanical Garden , Institute of Botany, The Chinese Academy of Sciences , Beijing 100093 , China
- The Chinese Academy of Sciences , Beijing 100049 , China
| | - Binbin Li
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Wenjun Shi
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Zhongzhi Gong
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Lu Chen
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| |
Collapse
|
67
|
Achacha ( Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome. Nutrients 2018; 10:nu10101425. [PMID: 30287733 PMCID: PMC6213199 DOI: 10.3390/nu10101425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Garcinia humilis is a fruit known as achachairú. It is native to South American countries such as Bolivia, Peru, and Brazil, but it is also cultivated as achacha in northern Australia. The aim of this study was to determine the phytochemicals in achacha rind and pulp and to investigate these components as potential treatments for the symptoms of metabolic syndrome. Both rind and pulp contain procyanidins and citric acid rather than hydroxycitric acid. Male Wistar rats (8⁻9 weeks old) were fed with either high-carbohydrate, high-fat, or corn starch diets for 16 weeks. Intervention groups were fed with either diet supplemented with 1.5% G. humilis rind powder or 2.0% G. humilis pulp for the last 8 weeks of the protocol. Rats fed a high-carbohydrate, high-fat diet exhibited hypertension, dyslipidemia, central obesity, impaired glucose tolerance, and non-alcoholic fatty liver disease. G. humilis rind decreased systolic blood pressure, diastolic stiffness, left ventricular inflammatory cell infiltration, and collagen deposition in high-carbohydrate, high-fat diet-fed rats. However, there was no change in glucose tolerance, body weight, or body composition. Therefore, G. humilis rind, usually a food by-product, but not the edible pulp, showed potential cardioprotection with minimal metabolic changes in a rat model of diet-induced metabolic syndrome.
Collapse
|
68
|
Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018; 120:775-782. [PMID: 30170057 DOI: 10.1016/j.ijbiomac.2018.08.152] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a highly prevalent metabolic and chronic disease affecting millions of people in the world. The most common route of insulin therapy is the subcutaneous injection due to its low bioavailability and enzymatic degradation. The search for effective and high patient compliance insulin delivery systems has been a major challenge over many decades. The polysaccharide-based nanoparticles as delivery vehicles for insulin oral administration have recently attracted substantial interests. The present review highlights the recent advances on the development of nanoparticles prepared from polysaccharides, including chitosan, alginate, dextran and glucan, for oral delivery of insulin, overcoming multiple barriers in gastrointestinal tract. The aims of this review are first to summarize the strategies that have been applied in the past 5 years to fabricate polysaccharide-based nanoparticles for insulin oral delivery, and then to provide in-depth understanding on the mechanisms by which such nanoparticles protect insulin against degradation in the digestive tract and provide sustained release to enhance mucus permeation and transepithelial transport of insulin administered via oral route.
Collapse
Affiliation(s)
- Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
69
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
70
|
Rashid M, Verhoeven AJM, Mulder MT, Timman R, van Beek-Nieuwland Y, Athumani AA, Zandbergen AAM, van der Wiel HE, Sijbrands EJG, Berk KA. Use of monomeric and oligomeric flavanols in the dietary management of patients with type 2 diabetes mellitus and microalbuminuria (FLAVA trial): study protocol for a randomized controlled trial. Trials 2018; 19:379. [PMID: 30012185 PMCID: PMC6048822 DOI: 10.1186/s13063-018-2762-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2D) are prone to micro- and macro-vascular complications. Monomeric and oligomeric flavanols (MOF) isolated from grape seeds (Vitis vinifera) have been linked to improved endothelial function and vascular health. The aim of this study is to determine the effect of a daily supplementation of 200 mg MOF on renal endothelial function of patients with T2D and microalbuminuria. Methods/design For this double-blind, placebo-controlled, randomized, multicenter trial 96 individuals (ages 40–85 years) with T2D and microalbuminuria will be recruited. Participants will be randomly assigned to the intervention group, receiving 200 mg of MOF daily for 3 months, or to the control group, receiving a placebo. The primary endpoint is the evolution over time in albumin excretion rate (AER) until 3 months of intervention as compared with placebo. Secondary endpoints are the evolution over time in established plasma markers of renal endothelial function—asymmetric dimethylarginine (ADMA), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular cell adhesion molecule-1 (sICAM-1), interleukin-6 (IL-6), and von Willebrand Factor (vWF)—until 3 months of intervention as compared with placebo. Mixed modeling will be applied for the statistical analysis of the data. Discussion We hypothesize that T2D patients with microalbuminuria have a medically determined requirement for MOF and that fulfilling this requirement will result in a decrease in AER and related endothelial biomarkers. If confirmed, this may lead to new insights in the dietary management of patients with T2D. Trial registration Nederlands Trial Register, NTR4669, registered on 7 July 2014. Electronic supplementary material The online version of this article (10.1186/s13063-018-2762-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mardin Rashid
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Adrie J M Verhoeven
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Reinier Timman
- Department of Psychiatry, Section of Medical Psychology and Psychotherapy, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yvonne van Beek-Nieuwland
- Department of Internal Medicine, Havenziekenhuis, Haringvliet 2, Rotterdam, 3011 TD, The Netherlands
| | - Athumani A Athumani
- General Practitioners Group, Stichting Zorg op Zuid, Maashaven Oostzijde 155, Rotterdam, 3072 HS, The Netherlands
| | - Adrienne A M Zandbergen
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Internal Medicine, Ikazia Ziekenhuis, Montessoriweg 1, Rotterdam, 3083 HN, The Netherlands
| | - Hans E van der Wiel
- Department of Internal Medicine, IJsselland Ziekenhuis, Prins Constantijnweg 2, Capelle aan de Ijssel, 2906 ZC, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Kirsten A Berk
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Dietetics, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
71
|
Lescano CH, Freitas de Lima F, Mendes-Silvério CB, Justo AFO, da Silva Baldivia D, Vieira CP, Sanjinez-Argandoña EJ, Cardoso CAL, Mónica FZ, Pires de Oliveira I. Effect of Polyphenols From Campomanesia adamantium on Platelet Aggregation and Inhibition of Cyclooxygenases: Molecular Docking and in Vitro Analysis. Front Pharmacol 2018; 9:617. [PMID: 29946259 PMCID: PMC6005896 DOI: 10.3389/fphar.2018.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Campomanesia adamantium is a medicinal plant of the Brazilian Cerrado. Different parts of its fruits are used in popular medicine to treat gastrointestinal disorders, rheumatism, urinary tract infections and inflammations. Despite its widespread use by the local population, the mechanisms involving platelet aggregation and the inhibition of cyclooxygenase by C. adamantium are unknown. This study evaluated the chemical composition, antioxidant activities and potential benefits of the C. adamantium peel extract (CAPE) and its components in the platelet aggregation induced by arachidonic acid in platelet-rich plasma. Aspects of the pharmacological mechanism were investigated as follows: platelet viability, calcium mobilization, levels of the cyclic nucleotides cAMP and cGMP, thromboxane B2 levels, and the inhibitory effects on COX-1 and COX-2 were studied in vitro and using molecular docking in the catalytic domain of these proteins. The major CAPE constituents standing out from the chemical analysis are the flavonoids, namely those of the flavones and chalcones class. The results showed that CAPE, quercetin and myricetin significantly decreased arachidonic acid-induced platelet aggregation; the assays showed that CAPE and quercetin decreased the mobilization of calcium and thromboxane B2 levels in platelets and increased cAMP and cGMP levels. Moreover, CAPE inhibited the activity of COX-1 and COX-2, highlighting that quercetin could potentially prevent the access of arachidonic acid more to the catalytic site of COX-1 than COX-2. These results highlight CAPE’s potential as a promising therapeutic candidate for the prevention and treatment of diseases associated with platelet aggregation.
Collapse
Affiliation(s)
| | | | | | - Alberto F O Justo
- Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - Débora da Silva Baldivia
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | | | | | - Claudia A L Cardoso
- Center for Natural Resource Studies, University of Mato Grosso do Sul, Dourados, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - Ivan Pires de Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
72
|
Lin Y, Wang Y, Li B, Tan H, Li D, Li L, Liu X, Han J, Meng X. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:561-572. [PMID: 29727860 DOI: 10.1016/j.plaphy.2018.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 05/09/2023]
Abstract
Blueberry (Vaccinium, family Ericaceae) is well known for its strong antioxidant properties and abundant active ingredients including anthocyanins, flavonols, and proanthocyanidins. In this study, variations in anthocyanin and phenolic compounds content in Bluecrop and Northblue blueberry cultivar fruits were studied, and comparative transcriptome analysis was performed to analyze differences in the molecular mechanisms of anthocyanin biosynthesis. A total of 13 799 unique genes were identified by differential expression analysis, and further subjected to GO classification and pathway enrichment. Nine differentially expressed genes (DEGs), including CHI, DFR, F3'H, FLS, CHS, OMT, UGT, ANS and F3H, were selected to validate the differential expression data using quantitative real-time PCR. The obtained qRT-PCR expression results were consistent with the RNA-Seq results. The expression levels of 9 candidate genes involved in flavonoid biosynthesis and metabolism were concurrent with the anthocyanin content. The developmental stage appeared to affect the expression of genes related to flavonoid biosynthesis to a greater extent than the tissue or cultivar type. This study provides an abundant data resource that will further our understanding of the molecular mechanisms of anthocyanin biosynthesis in blueberries.
Collapse
Affiliation(s)
- Yang Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Tan
- Faculty of Health Sciences, Hokkaido Universty, Sapporo, Japan
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuan Liu
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Jichen Han
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
73
|
Ravindranathan P, Pasham D, Balaji U, Cardenas J, Gu J, Toden S, Goel A. Mechanistic insights into anticancer properties of oligomeric proanthocyanidins from grape seeds in colorectal cancer. Carcinogenesis 2018; 39:767-777. [PMID: 29684110 PMCID: PMC5972632 DOI: 10.1093/carcin/bgy034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023] Open
Abstract
Although the anticancer properties of oligomeric proanthocyanidins (OPCs) from grape seeds have been well recognized, the molecular mechanisms by which they exert anticancer effects are poorly understood. In this study, through comprehensive RNA-sequencing-based gene expression profiling in multiple colorectal cancer cell lines, we for the first time illuminate the genome-wide effects of OPCs from grape seeds in colorectal cancer. Our data revealed that OPCs affect several key cancer-associated genes. In particular, genes involved in cell cycle and DNA replication were most significantly and consistently altered by OPCs across multiple cell lines. Intriguingly, our in vivo experiments showed that OPCs were significantly more potent at decreasing xenograft tumor growth compared with the unfractionated grape seed extract (GSE) that includes the larger polymers of proanthocyanidins. These findings were further confirmed in colorectal cancer patient-derived organoids, wherein OPCs more potently inhibited the formation of organoids compared with GSE. Furthermore, we validated alteration of cell cycle and DNA replication-associated genes in cancer cell lines, mice xenografts as well as patient-derived organoids. Overall, this study provides an unbiased and comprehensive look at the mechanisms by which OPCs exert anticancer properties in colorectal cancer.
Collapse
Affiliation(s)
- Preethi Ravindranathan
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A Sammons Cancer Center, Dallas, TX, USA
| | - Divya Pasham
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A Sammons Cancer Center, Dallas, TX, USA
| | - Uthra Balaji
- Baylor Scott and White Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Jacob Cardenas
- Baylor Scott and White Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Jinghua Gu
- Baylor Scott and White Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A Sammons Cancer Center, Dallas, TX, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A Sammons Cancer Center, Dallas, TX, USA
| |
Collapse
|
74
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Extract Enriched in Flavan-3-ols and Mainly Procyanidin Dimers Improves Metabolic Alterations in a Mouse Model of Obesity-Related Disorders Partially via Estrogen Receptor Alpha. Front Pharmacol 2018; 9:406. [PMID: 29740325 PMCID: PMC5928481 DOI: 10.3389/fphar.2018.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Red wine polyphenol extracts improve cardiovascular and metabolic disorders linked to obesity. Their vascular protection is mediated by the activation of the alpha isoform of the estrogen receptor (ERα). In the present study, we explored the effects of a grape seed extract (GSE) enriched in the flavan-3-ols procyanidin dimers on obesity-related cardiovascular and metabolic disorders; with a particular interest in the role/contribution of ERα. Ovariectomized wild type or ERα knockout (KO) mice were fed with standard or western diet, supplemented or not with GSE, for 12 weeks. Their body weight was monitored throughout the study, and an echocardiography was performed at the end of the treatment. Blood and tissues were collected for biochemical and functional analysis, including nitric oxide and oxidative stress measurement. Vascular reactivity and liver mitochondrial complexes activity were also analyzed. In western diet-fed mice, GSE reduced adiposity, plasma triglycerides, and oxidative stress in the heart, liver, adipose and skeletal tissues; but did not improve the vascular dysfunction. In western diet-fed mice, ERα deletion prevented or reduced the beneficial effects of GSE on plasma triglycerides and visceral adiposity. ERα deletion also prevented/reduced the anti-oxidant effect of GSE in the liver, but did not affect its capacity to reduce oxidative stress in the heart and adipose tissue. In conclusion, dietary supplementation of GSE attenuated features of metabolic syndrome partially through ERα-dependent mechanisms. This report highlights the therapeutic potential of polyphenols, and especially extract enriched in procyanidin dimers, against the metabolic disorders associated with excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Raffaella Soleti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Nicolas Clere
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Luisa Vergori
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Caroline Jacques
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Lucie Duluc
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Catherine Dourguia
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maria C Martínez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
75
|
Masumoto S, Aoki S, Miura T, Shoji T. Flavan-3-ol/Procyanidin Metabolomics in Rat Urine Using HPLC-Quadrupole TOF/MS. Mol Nutr Food Res 2018; 62:e1700867. [DOI: 10.1002/mnfr.201700867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/25/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Saeko Masumoto
- Institute of Fruit Tree and Tea Science; National Agriculture and Food Research Organization; 2-1 Fujimoto Tsukuba Ibaraki 305-8605 Japan
| | - Shiori Aoki
- Institute of Fruit Tree and Tea Science; National Agriculture and Food Research Organization; 2-1 Fujimoto Tsukuba Ibaraki 305-8605 Japan
| | - Tomisato Miura
- Graduate School of Health Sciences; Hirosaki University,; 66-1, Hon-cho Hirosaki-shi Aomori 036-8564 Japan
| | - Toshihiko Shoji
- Institute of Fruit Tree and Tea Science; National Agriculture and Food Research Organization; 2-1 Fujimoto Tsukuba Ibaraki 305-8605 Japan
| |
Collapse
|
76
|
Abstract
Apples are known as a major source of polyphenols, dietary fiber, carotenoids, and other nutrients. There are many documents and studies that show fruit polyphenols likely promote anti-obesity effects and exert their beneficial effects via scavenging free radicals, regulating gene expression, and altering signal transduction in target cells and tissues, especially fat tissues.The goal of this review is to presenti the major components of apple and the evidence that indicates its potential to diminution weight gain risk from in vitro, animal, and epidemiological and clinical studies. This review summarizes data about the apple and apple products that been have reported to reduce weight gain by various mechanisms, including antioxidant, antiproliferative, and cell signaling pathways. An extensive search was performed in PubMed, Science Direct, Scopus, and Google Scholar to identify human, animal, and cell culture studies on the association between weight loss and apple consumption, published from inception up to journey 15, 2017. The feeding of apples rats (7-10 mg/kg/d) in different forms in 8 experiments have shown that this caused weight loss during 3 to 28 weeks. In agreement with this, the obtained results from 5 experiments on humans have revealed that consumption of the whole apple or apple juice (240-720 mg/d) in 4-12 weeks by fat people can cause weight loss. Experiments on animals and humans have shown that the consumption of apples in different forms can cause weight loss in overweight ones. However, the main questions are which kind of apple, which part of it, how much, and how long overweight persons should consume them to reduce their body fat and body mass index (BMI). Then, it is necessary to do a meta-analysis to show how these factors affect the body fat percentage and whether this weight-lowering effect is statistically significant or not.
Collapse
Affiliation(s)
- Sedigheh Asgary
- a Isfahan Cardiovascular Research Center , Cardiovascular Research Institute, Isfahan University of medical Sciences , Isfahan , Iran
| | - Ali Rastqar
- b Department de Psychiatry et Neuroscience , Université Laval , Québec , QC , Canada.,c Centre Hospitalier de l'Université Laval (CHUL) , Québec , QC , Canada
| | - Mahtab Keshvari
- a Isfahan Cardiovascular Research Center , Cardiovascular Research Institute, Isfahan University of medical Sciences , Isfahan , Iran
| |
Collapse
|
77
|
Ferguson A, Carvalho E, Gourlay G, Walker V, Martens S, Salminen JP, Constabel CP. Phytochemical analysis of salal berry (Gaultheria shallon Pursh.), a traditionally-consumed fruit from western North America with exceptionally high proanthocyanidin content. PHYTOCHEMISTRY 2018; 147:203-210. [PMID: 29353157 DOI: 10.1016/j.phytochem.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/04/2018] [Indexed: 05/11/2023]
Abstract
Salal (Gaultheria shallon Pursh.) is a wild perennial shrub of the Ericaceae and common in coastal forests of western North America, and its berries were an important traditional food for First Nations in British Columbia. Salal berries were investigated for phytochemical content and antioxidant capacity over the course of fruit development. The proanthocyanidin content was extremely high in young berries (280.7 mg/g dry wt) but dropped during development to 52.8 mg/g dry wt. By contrast, anthocyanins accumulated only at the late berry stages. Total antioxidant capacity, as measured by the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method, reflected both proanthocyanidin and anthocyanin content, and in mature berries reached 36 mmol Trolox equivalents/100 g dry wt. More detailed phytochemical analysis determined that delphinidin 3-O-galactoside is the dominant anthocyanin, and that the berries are also rich in procyanidins, including procyanidin A2 which has been implicated in anti-adhesion activity for uropathogenic E. coli. Proanthocyanidins were 60% prodelphinidin, and overall concentrations were higher than reported for many Vaccinium species including blueberry, lingonberry, and cranberry. Overall, the phenolic profile of salal berries indicates that these fruit contain a diversity of health-promoting phenolics.
Collapse
Affiliation(s)
- Andrew Ferguson
- Centre for Forest Biology, Department of Biology, University of Victoria, Box 3020 Stn CSC, Victoria, BC, V8W 3N5, Canada
| | - Elisabete Carvalho
- Fondazione Edmund Mach, Istituto Agrario di San Michele all'Adige (IASMA), San Michele all'Adige, Italy
| | - Geraldine Gourlay
- Centre for Forest Biology, Department of Biology, University of Victoria, Box 3020 Stn CSC, Victoria, BC, V8W 3N5, Canada
| | - Vincent Walker
- Centre for Forest Biology, Department of Biology, University of Victoria, Box 3020 Stn CSC, Victoria, BC, V8W 3N5, Canada
| | - Stefan Martens
- Fondazione Edmund Mach, Istituto Agrario di San Michele all'Adige (IASMA), San Michele all'Adige, Italy
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500, Turku, Finland
| | - C Peter Constabel
- Centre for Forest Biology, Department of Biology, University of Victoria, Box 3020 Stn CSC, Victoria, BC, V8W 3N5, Canada.
| |
Collapse
|
78
|
Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int 2018; 104:86-99. [DOI: 10.1016/j.foodres.2017.09.031] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022]
|
79
|
Nordkvist S, Sonestedt E, Acosta S. Adherence to diet recommendations and risk of abdominal aortic aneurysm in the Malmö Diet and Cancer Study. Sci Rep 2018; 8:2017. [PMID: 29386636 PMCID: PMC5792541 DOI: 10.1038/s41598-018-20415-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
The research examining the association between quality of diet and abdominal aortic aneurysm (AAA) is scarce. The aim of the present study was to explore the association between diet quality and development of AAA for middle-aged individuals in the Malmö Diet and Cancer Study (MDCS), a prospective cohort study with baseline data collection carried out between 1991 and 1996. At baseline, the study participants who were eligible for this study (n = 26133) documented their dietary habits in a food diary and questionnaire. Incident AAA cases during an average of 20.7 years of follow-up were identified by using registers. A diet quality index consisting of six components, saturated fat, polyunsaturated fat, fibre, sucrose, fruits and vegetables and fish and shellfish, was used to assess the diet quality. After adjusting for potential confounders, the diet quality index was not associated with incident AAA. However, a tendency of decreased risk was observed among individuals adhering to recommendations for fruit and vegetables compared with non-adherence. When comparing the risk of more extreme intake groups, high intakes of both fruits and vegetables were associated with decreased risk.
Collapse
Affiliation(s)
- Sara Nordkvist
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Emily Sonestedt
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
80
|
Alfaro-Viquez E, Roling BF, Krueger CG, Rainey CJ, Reed JD, Ricketts ML. An extract from date palm fruit (Phoenix dactylifera) acts as a co-agonist ligand for the nuclear receptor FXR and differentially modulates FXR target-gene expression in vitro. PLoS One 2018; 13:e0190210. [PMID: 29293579 PMCID: PMC5749773 DOI: 10.1371/journal.pone.0190210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera) consumption reduces serum triglyceride levels in human subjects. The objective of this study was to prepare an extract from dates and determine whether it acts as a ligand for the farnesoid x receptor (FXR), a nuclear receptor important for maintaining triglyceride and cholesterol homeostasis. Freeze-dried extracts were isolated from California-grown dates (Deglet Noor and Medjool) from the 2014 and 2015 harvests, by means of liquid extraction and solid phase separation. Each date palm extract (DPE) was characterized via HPLC and MALDI-TOF mass spectrometry, and the procyanidin content was qualitatively determined. Extracts were tested to determine their ability to modulate nuclear receptor-mediated transactivation using transient transfection. The effect of DPE on FXR-target genes regulating bile acid absorption and transport was then assessed in vitro, in Caco-2 cells. Characterization reveals that DPE is a rich source of polyphenols including hydroxycinnamic acids, proanthocyanidins, and lipohilic polyphenols, and comprises 13% proanthocyanidins. Transactivation results show that DPE acts as a co-agonist ligand for both mouse and human FXR, wherein it activates bile acid-bound FXR greater than that seen with bile acid alone. Additionally, DPE alone activated a peroxisome proliferator activated receptor alpha (PPARα) chimera in a dose-dependent manner. Consistent with DPE as a co-agonist ligand for FXR, studies in Caco-2 cells reveal that co-incubation with bile acid, dose-dependently enhances the expression of fibroblast growth factor 19 (FGF19), compared to treatment with bile acid alone. In contrast, DPE inhibited bile acid-induced expression of ileal bile acid binding protein (IBABP). Our results demonstrate that DPE acts as a potent co-agonist ligand for FXR, and that it differentially regulates FXR-target gene expression in vitro in human intestinal cells. This study provides novel insight into a potential mechanism by which dates may exert a hypotriglyceridemic effect via FXR and modulation of bile acid homeostasis.
Collapse
Affiliation(s)
- Emilia Alfaro-Viquez
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Brent F. Roling
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
| | - Christian G. Krueger
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Charlene J. Rainey
- Date Research Institute, San Juan Capistrano, CA, United States of America
| | - Jess D. Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
81
|
Mahmoudi M, Charradi K, Limam F, Aouani E. Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipotoxicity and oxidative stress in high fat diet fed rats. Obes Res Clin Pract 2018; 12:115-126. [DOI: 10.1016/j.orcp.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
|
82
|
Luo J, Song S, Wei Z, Huang Y, Zhang Y, Lu J. The comparative study among different fractions of muscadine grape 'Noble' pomace extracts regarding anti-oxidative activities, cell cycle arrest and apoptosis in breast cancer. Food Nutr Res 2017; 61:1412795. [PMID: 29249924 PMCID: PMC5727431 DOI: 10.1080/16546628.2017.1412795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022] Open
Abstract
As a by-product of wine making, pomace contains rich amounts of phenolic compounds that can be potentially utilized as raw materials to make beneficial products especially for the anti-cancer agents including the breast cancer. Muscadinia rotundifolia ‘Noble’ is a wine-making grape cultivar, and to better use ‘Noble’ pomace, the most effective phenolic fractions in cancer inhibition must be identified. In this study, anti-oxidative activities of three separated fractions of ‘Noble’ pomace (F1, F2 and F3) were compared in 2,2-diphenyl-1-picrylhydrazyl and 2,2ʹ-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging (DPPH and ABTS) assays as well as the ferric-reducing antioxidant power (FRAP) assay. The ability of different fractions to induce cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells was also evaluated by flow cytometry and Western blot analysis. Fraction F3, which contained a mixture of anthocyanidins and ellagic acids, exhibited the strongest anti-oxidative activity, as determined at both low and high concentrations in the DPPH and FRAP assays. F3 also demonstrated the greatest ability to induce apoptosis via caspase activation and cell cycle arrest by downregulating cyclin A and upregulating p21. F3 was thus the most effective bioactive fraction among those prepared from muscadine grape ‘Noble’ pomace.
Collapse
Affiliation(s)
- Jianming Luo
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wei
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Science, Guangxi, China
| | - Yu Huang
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Science, Guangxi, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Science, Guangxi, China
| |
Collapse
|
83
|
Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Abstract
Phenolic compounds are important constituents of red wine, contributing to its sensory properties and antioxidant activity. Owing to the diversity and structural complexity, study of these compounds was mainly limited, during the last three decades, on their low-molecular-mass compounds or simple phenolic compounds. Only in recent years, much attention has been paid to highly polymerized polyphenols in grape and red wines. The reason for this is largely due to the development of analytical techniques, especially those of HPLC-ESI-MS, permitting the structural characterization of highly polymerized polyphenols. Furthermore, the knowledge on the biological properties of polymeric polyphenols of red wine is very limited. Grape polyphenols mainly consist of proanthocyanidins (oligomers and polymers) and anthocyanins, and low amount of other phenolics. Red wine polyphenols include both grape polyphenols and new phenolic products formed from them during winemaking process. This leads to a great diversity of new polyphenols and makes wine polyphenol composition more complex. The present paper summarizes the advances in the research of polymeric polyphenols in grape and red wine and their important role in Enology. Scientific results indicate that polymeric polyphenols, as the major polyphenols in grape and red wine, play a major role in red wine sensory properties, color stability and antioxidant activities.
Collapse
Affiliation(s)
- Lingxi Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P. R. China.,b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Baoshan Sun
- b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China.,c Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. , Quinta da Almoinha , Dois Portos , Portugal
| |
Collapse
|
85
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8866-8874. [PMID: 28925252 DOI: 10.1021/acs.jafc.7b03465] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present study was performed to investigate binary and tertiary nanocomposites between short-chain glucan (SCG) and proanthocyanidins (PAC) for the oral delivery of insulin. There was a large decrease in fluorescence intensity of insulin in the presence of SCG or the combination of SCG with PAC. Fourier transform infrared spectroscopy revealed that the binary and tertiary nanocomposites were synthesized due to the hydrogen bonding and hydrophobic interactions. The insulin entrapped in the nanocomposites was in an amorphous state confirmed by X-ray diffraction. The cell culture demonstrated that both the nanocomposites showed no detectable cytotoxicity with relative cell viability all above 85%. The pharmacological bioavailability after oral administration of insulin-SCG-PAC at a dose of 100 IU/kg was found to be 6.98 ± 1.20% in diabetic rats without any sharp fluctuations in 8 h.
Collapse
Affiliation(s)
- Na Ji
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| |
Collapse
|
86
|
Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food Chem Toxicol 2017; 109:302-314. [PMID: 28893620 DOI: 10.1016/j.fct.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Prevention of diabetes through the diet has recently received an increasing interest, and polyphenolic compounds, such as flavanols, have become important potential chemopreventive natural agents due to their proved benefits on health, with low toxicity and cost. Tea, red wine and cocoa are good sources of flavanols and these highly consumed foods might contribute to prevent diabetes. In this regard, there is increasing evidence for a protective effect of tea, red wine and cocoa consumption against this disorder. This review summarizes the available epidemiological and interventional human studies providing evidence for and against this effect. Overall observational data suggest a benefit, but results are still equivocal and likely confounded by lifestyle and background dietary factors. The weight of data indicate favourable effects on diabetes risk factors for tea, red wine and cocoa intake, and a number of plausible mechanisms have been elucidated in human studies. However, despite the growing evidence it remains uncertain whether tea, red wine and cocoa consumption should be recommended to the general population or to patients as a strategy to reduce the risk of diabetes.
Collapse
|
87
|
Baranowska-Bosiacka I, Bosiacka B, Rast J, Gutowska I, Wolska J, Rębacz-Maron E, Dębia K, Janda K, Korbecki J, Chlubek D. Macro- and Microelement Content and Other Properties of Chaenomeles japonica L. Fruit and Protective Effects of Its Aqueous Extract on Hepatocyte Metabolism. Biol Trace Elem Res 2017; 178:327-337. [PMID: 28101713 PMCID: PMC5506220 DOI: 10.1007/s12011-017-0931-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
This growing interest in the cultivation of Japanese quince Chaenomeles japonica L. results from the potentially beneficial properties of its fruit. Fresh fruits are very firm and too acidic to eat raw, but their bioactive components, distinctive aroma, and high amount of dietary fiber make the fruits well suited for industrial processing. However, not all the properties of the fruit have been investigated. For example, there are no comprehensive reports about the mineral content or potentially harmful effects on liver metabolism. Hence, the purpose of our study was to examine fresh Japanese quince fruit in terms of (1) ascorbic acid, oxalate, fiber, macro- and micronutrients, dry matter, extract, total acidity, antioxidant activity, and phenolic compound levels; and (2) the effect of its extract on in vitro hepatocyte metabolism, measured by the concentration of lipid peroxides (LPO) and reactive oxygen species (ROS) and the severity of apoptosis and necrosis. The fruit of C. japonica had high levels of macro- and microelements, ascorbic acid, phenolic compounds, fiber, and low oxalate levels. Our analysis of macro- and microelements showed that the average content of Fe was 0.516 mg/g, Cu 0.146 mg/g, Zn 0.546 mg/g, Mg 16.729 mg/g, and Ca 22.920 mg/g of fresh fruit. A characteristic feature of the fresh fruit of C. japonica is a high level of polyphenols, which-combined with a high content of vitamin C-affect their high antioxidant potential. In the tested hepatocyte cultures incubated with extract of the Japanese quince, we observed a significant decrease in the concentration of lipid peroxides compared to the control. There were also no signs of increased formation of ROS in the mitochondria of hepatocytes incubated with the extract of quince. Malondialdehyde was strongly negatively correlated with the concentration of Japanese quince extract, which indicates the hepatoprotective properties of Japanese quince. In addition, our analysis of confocal microscopy images showed that the hepatocytes incubated with the extract of Japanese quince at any concentration did not show any signs of apoptosis or necrosis. The aqueous extract of quince fruit has antioxidative and antiapoptotic hepatocytes, thus exerting a hepatoprotective effect.
Collapse
Affiliation(s)
- Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str, 70-111, Szczecin, Poland
| | - Beata Bosiacka
- Department of Plant Taxonomy and Phytogeography, University of Szczecin, Wąska 13 Str, 71-415, Szczecin, Poland
| | - Julita Rast
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str, 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str, 71-460, Szczecin, Poland.
| | - Jolanta Wolska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str, 71-460, Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Vertebrate Zoology and Anthropology, University of Szczecin, Wąska 13 Str, 71-415, Szczecin, Poland
| | - Kamila Dębia
- Department of Plant Taxonomy and Phytogeography, University of Szczecin, Wąska 13 Str, 71-415, Szczecin, Poland
| | - Katarzyna Janda
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str, 71-460, Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str, 70-111, Szczecin, Poland
| |
Collapse
|
88
|
Nie Y, Littleton B, Kavanagh T, Abbate V, Bansal SS, Richards D, Hylands P, Stürzenbaum SR. Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in
Caenorhabditis elegans. FASEB J 2017; 31:4891-4902. [DOI: 10.1096/fj.201700438r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Nie
- Analytical and Environmental Sciences DivisionFaculty of Life Sciences and Medicine
| | - Brad Littleton
- Department of PhysicsFaculty of Natural and Mathematical SciencesKing’s College LondonLondonUnited Kingdom
| | - Thomas Kavanagh
- Department of PhysicsFaculty of Natural and Mathematical SciencesKing’s College LondonLondonUnited Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and Medicine
| | | | - David Richards
- Department of PhysicsFaculty of Natural and Mathematical SciencesKing’s College LondonLondonUnited Kingdom
| | - Peter Hylands
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and Medicine
| | | |
Collapse
|
89
|
Kadiri O. A review on the status of the phenolic compounds and antioxidant capacity of the flour: Effects of cereal processing. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1315130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Oseni Kadiri
- Department of Food Science and Technology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
90
|
Casanova-Martí À, Serrano J, Blay MT, Terra X, Ardévol A, Pinent M. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food Nutr Res 2017; 61:1321347. [PMID: 28659730 PMCID: PMC5475339 DOI: 10.1080/16546628.2017.1321347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
91
|
Nzufo FT, Pieme CA, Njimou JR, Nya PCB, Moukette BM, Marco B, Angelo C, Yonkeu NJ. Organo-protective and antioxidant properties of leaf extracts of Syzygium guineense var macrocarpum against ferric nitriloacetate-induced stress of Wistar rats. ACTA ACUST UNITED AC 2017; 14:/j/jcim.ahead-of-print/jcim-2015-0086/jcim-2015-0086.xml. [DOI: 10.1515/jcim-2015-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
Abstract
Abstract
Background
The present study focused on the antioxidant, phenolic profile and free radical scavenging-mediated protective effect of leaves extracts of Syzygium guineense var. macrocarpum against ferric nitriloacetate-induced stress in the liver, heart, kidney and brain tissues of Wistar rats homogenates.
Methods
Spectrophotometric standardized methods were used to determine the free radical scavenging potential, antioxidant and protective properties of plant extracts on rat homogenates.
Results
All the extracts showed a concentration-dependent free radical quenching potential, and the ability to protect all the tested organs by inhibiting the lipid peroxidation and potentiating or restoring the activity of enzymatic and non enzymatic markers. The polyphenolic profile revealed the presence of at least one simple phenolic acid (gallic, caffeic, para-coumaric acid) although the majority (6 out of 14) of the compounds used as standard are present in the aqueous and aqueous–ethanol extracts.
Conclusions
Ethanolic extract of leaves of S. guineense var macrocarpum (SGETOH) exhibited the highest phenol content and appeared as the best extract taking into consideration the antioxidant and organo-protective activities tested.
Collapse
Affiliation(s)
- Francine Tankeu Nzufo
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences , University of Yaoundé I , Yaounde , Cameroon
| | - Constant Anatole Pieme
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences , University of Yaoundé I , Yaounde , Cameroon
| | - Jacques Romain Njimou
- Department of Chemical Materials Environmental Engineering , Sapienza University of Rome , Rome , Italy
| | - Prosper Cabral Biapa Nya
- Laboratory of Medicinal Plant Biochemistry, Food Science and Nutrition, Department of Biochemistry, Faculty of Science , University of Dschang , Dschang , Cameroon
| | - Bruno Moukette Moukette
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences , University of Yaoundé I , Yaounde , Cameroon
| | - Bravi Marco
- Department of Chemical Materials Environmental Engineering , Sapienza University of Rome , Rome , Italy
| | - Chianese Angelo
- Department of Chemical Materials Environmental Engineering , Sapienza University of Rome , Rome , Italy
| | - Ngogang Jeanne Yonkeu
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences, Faculty of Medicine and Biomedical Sciences , University of Yaoundé I , Yaounde , Cameroon
| |
Collapse
|
92
|
Effects of latitude and weather conditions on proanthocyanidins in berries of Finnish wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides). Food Chem 2017; 216:87-96. [DOI: 10.1016/j.foodchem.2016.08.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
|
93
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
94
|
Cires MJ, Wong X, Carrasco-Pozo C, Gotteland M. The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Front Nutr 2017; 3:57. [PMID: 28097121 PMCID: PMC5206694 DOI: 10.3389/fnut.2016.00057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
Abstract
Proanthocyanidins (PACs) are polymers of flavan-3-ols abundant in many vegetable foods and beverages widely consumed in the human diet. There is increasing evidence supporting the beneficial impact of dietary PACs in the prevention and nutritional management of non-communicable chronic diseases. It is considered that PACs with a degree of polymerization >3 remain unabsorbed in the gastrointestinal (GI) tract and accumulate in the colonic lumen. Accordingly, the GI tract may be considered as a key organ for the healthy-promoting effects of dietary PACs. PACs form non-specific complexes with salivary proteins in mouth, originating the sensation of astringency, and with dietary proteins, pancreatic enzymes, and nutrient transporters in the intestinal lumen, decreasing the digestion and absorption of carbohydrates, proteins, and lipids. They also exert antimicrobial activities, interfering with cariogenic or ulcerogenic pathogens in the mouth (Streptococcus mutans) and stomach (Helicobacter pylori), respectively. Through their antioxidant and antiinflammatory properties, PACs decrease inflammatory processes in animal model of gastric and colonic inflammation. Interestingly, they exert prebiotic activities, stimulating the growth of Lactobacillus spp. and Bifidobacterium spp. as well as some butyrate-producing bacteria in the colon. Finally, PACs are also metabolized by the gut microbiota, producing metabolites, mainly aromatic acids and valerolactones, which accumulate in the colon and/or are absorbed into the bloodstream. Accordingly, these compounds could display biological activities on the colonic epithelium or in extra-intestinal tissues and, therefore, contribute to part of the beneficial effects of dietary PACs.
Collapse
Affiliation(s)
- María José Cires
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | - Ximena Wong
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | | | - Martin Gotteland
- Faculty of Medicine, Department of Nutrition, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
95
|
Chai WM, Lin MZ, Feng HL, Zou ZR, Wang YX. Proanthocyanidins purified from fruit pericarp of Clausena lansium (Lour.) Skeels as efficient tyrosinase inhibitors: structure evaluation, inhibitory activity and molecular mechanism. Food Funct 2017; 8:1043-1051. [DOI: 10.1039/c6fo01320a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characterization, anti-tyrosinase activity and cytotoxicity against B16 mouse melanoma cells of proanthocyanidins purified from the fruit pericarp of C. lansium are reported.
Collapse
Affiliation(s)
- Wei-Ming Chai
- College of Life Science and Key Laboratory of Poyang Lake Wetland and Watershed Research
- Ministry of Education
- Jiangxi Normal University
- Nanchang
- China
| | - Mei-Zhen Lin
- College of Life Science and Key Laboratory of Poyang Lake Wetland and Watershed Research
- Ministry of Education
- Jiangxi Normal University
- Nanchang
- China
| | - Hui-Ling Feng
- Zigong Innovation Center of Zhejiang University
- Zigong
- China
| | - Zheng-Rong Zou
- College of Life Science and Key Laboratory of Poyang Lake Wetland and Watershed Research
- Ministry of Education
- Jiangxi Normal University
- Nanchang
- China
| | - Ying-Xia Wang
- College of Life Science and Key Laboratory of Poyang Lake Wetland and Watershed Research
- Ministry of Education
- Jiangxi Normal University
- Nanchang
- China
| |
Collapse
|
96
|
Griffin LE, Witrick KA, Klotz C, Dorenkott MR, Goodrich KM, Fundaro G, McMillan RP, Hulver MW, Ponder MA, Neilson AP. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice. Food Funct 2017; 8:3510-3522. [DOI: 10.1039/c7fo01236e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed extract changes small intestinal gut microbiota composition.
Collapse
Affiliation(s)
- Laura E. Griffin
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Katherine A. Witrick
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Courtney Klotz
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Melanie R. Dorenkott
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Katheryn M. Goodrich
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Gabrielle Fundaro
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Ryan P. McMillan
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Matthew W. Hulver
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Monica A. Ponder
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Andrew P. Neilson
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
97
|
Glavnik V, Vovk I, Albreht A. High performance thin-layer chromatography-mass spectrometry of Japanese knotweed flavan-3-ols and proanthocyanidins on silica gel plates. J Chromatogr A 2016; 1482:97-108. [PMID: 28034505 DOI: 10.1016/j.chroma.2016.12.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
On-line elution based TLC-MS is now a well-established technique, but the quality of the data obtained can sometimes be hampered by a severe spectral background or by strong ion suppression, especially when silica gel plates are used in combination with an acidic modifier in the developing solvent. We solved this issue simply and efficiently using two pre-developments of the plates, firstly with methanol-formic acid (10:1, v/v) and secondly with acetonitrile-methanol (2:1, v/v). This solution resulted in significant improvement in the sensitivity of HPTLC-MS methods. The applicability of this approach was proven on analysis of flavan-3-ols and proanthocyanidins in crude extracts of Japanese knotweed (Fallopia japonica Houtt.) rhizomes. Separations on HPTLC silica gel and HPTLC silica gel MS grade plates using developing solvents toluene-acetone-formic acid (3:3:1, 6:6:1, 3:6:1, v/v) and dichloromethane-acetone-formic acid (1:1:0.1, v/v) were followed by post-chromatographic derivatization with 4-dimethylaminocinnamaldehyde (DMACA) detection reagent. Examination of the stability of the analytes on the start confirmed that the plates should be developed immediately after the application of standards and sample test solutions. In a five hours stability testing after development we discovered an unexpected phenomenon of enhanced absorption at 280nm. However, based on an experiment with post-chromatographic derivatization with DMACA detection reagent, the analytes were proven to be sufficiently stable in the time frame of an HPTLC-MS analysis. This was important for development of the first HPTLC-MS and HPTLC-MSn methods for identification of flavan-3-ols and B-type proanthocyanidins from monomers up to decamers. For the first time, based on this research methodology, trimers, trimer gallates, tetramer gallates, pentamers, pentamer gallates, hexamers, hexamer gallates, heptamers, octamers, nonamers and decamers were tentatively identified in Japanese knotweed rhizomes. Additionally, all developed HPTLC-MS methods have enabled simultaneous identification of stilbenes (resveratrol, piceatannol hexoside, piceid) and anthraquinones (emodin, emodin-O-hexoside, emodin-O-(acetyl)-hexoside and emodin-O-(6'-O-malonyl)-hexoside).
Collapse
Affiliation(s)
- Vesna Glavnik
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Irena Vovk
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Alen Albreht
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
98
|
Zhang L, Wang Y, Li D, Ho CT, Li J, Wan X. The absorption, distribution, metabolism and excretion of procyanidins. Food Funct 2016; 7:1273-81. [PMID: 26814915 DOI: 10.1039/c5fo01244a] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Procyanidins (PAs) are polyphenols in plant food that have many health benefits, including cancer prevention, cardiovascular protection and diabetes prevention. PAs have been known to have low oral bioavailability. In this review, we summarize the published results on the ADME (absorption, distribution, metabolism and excretion) of PAs in vivo and in vitro. After oral administration, in the stomach the decomposition of PAs is highly dependent on the pH value of gastric juice, which is also affected by food intake. In the small intestine, PA polymers and oligomers with DP > 4 are not directly absorbed in vivo, but minor PA monomers and dimers could be detected in the plasma. Methylated and glucuronidated PA dimers and monomers are the main metabolites of PAs in plasma. In the colon, PAs are catabolized by colonic microflora into a series of low molecular weight phenolic acids, such as phenyl valerolactone, phenylacetic acids and phenylpropionic acids. We reviewed the degradation of PAs in gastric digestion, the absorption of PAs in the small intestine and the metabolic pathway of PAs by colonic microflora. To clearly explain the in vivo pharmacokinetics of PAs, a systematic comparative analysis on previously published data on PAs was conducted.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901, USA
| | - Junsong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
99
|
Margalef M, Pons Z, Iglesias-Carres L, Quiñones M, Bravo FI, Arola-Arnal A, Muguerza B. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/26/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Maria Margalef
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS); TECNIO, CEICS; Reus Spain
| | - Zara Pons
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Lisard Iglesias-Carres
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Mar Quiñones
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Department of Physiology; CIMUS; University of Santiago de Compostela - Instituto de Investigación Sanitaria; Santiago de Compostela Spain
| | - Francisca Isabel Bravo
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Arola-Arnal
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Begoña Muguerza
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS); TECNIO, CEICS; Reus Spain
| |
Collapse
|
100
|
Song F, Su H, Yang N, Zhu L, Cheng J, Wang L, Cheng X. Myo-Inositol content determined by myo-inositol biosynthesis and oxidation in blueberry fruit. Food Chem 2016; 210:381-7. [DOI: 10.1016/j.foodchem.2016.04.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
|