51
|
Tangestani H, Emamat H, Ghalandari H, Shab-Bidar S. Whole Grains, Dietary Fibers and the Human Gut Microbiota: A Systematic Review of Existing Literature. Recent Pat Food Nutr Agric 2020; 11:235-248. [PMID: 32178621 DOI: 10.2174/2212798411666200316152252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The health benefits of dietary fibers have been proved for a long time. The importance of microbiota has been identified in human health and there is a growing interest to study the factors affecting it. OBJECTIVE This systematic review aimed to investigate the impact of fiber and whole grains (WGs) on human gut microbiota in a patent-based review. METHODS All related clinical trials were systematically searched on PubMed and Scopus search engines from inception up to Feb 2020. Interventional human studies reporting changes in microbiota by using any type of grains/fibers were included. The following information was extracted: date of the publication, location and design of the study, sample size, study population, demographic characteristics, the amount of dietary WGs/fiber, the duration of intervention, the types of grains or fibers, and changes in the composition of the microbiota. RESULTS Of 138 studies which were verified, 35 studies with an overall population of 1080 participants, met the inclusion criteria and entered the systematic review. The results of interventional trials included in this review suggest some beneficial effects of consuming different amounts and types of WGs and fibers on the composition of intestinal microbiota. Most included studies showed that the intake of WGs and fibers increases bifidobacteria and lactobacilli and reduces the pathogenic bacteria, such as Escherichia coli and clostridia in the human gut. CONCLUSION The consumption of WGs/fibers may modify the intestinal microbiota and promote the growth of bifidobacteria and lactobacilli. Nevertheless, further research is warranted in different populations and pathological conditions.
Collapse
Affiliation(s)
- Hadith Tangestani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadi Emamat
- Student Research Committee, Department and Faculty of Nutrition Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghalandari
- Nutritionist, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
52
|
Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019; 19:1233. [PMID: 31852462 PMCID: PMC6921460 DOI: 10.1186/s12885-019-6400-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Gladys Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Wesley Siu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M Basen-Engquist
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA.
| |
Collapse
|
53
|
Abdo Z, LeCureux J, LaVoy A, Eklund B, Ryan EP, Dean GA. Impact of oral probiotic Lactobacillus acidophilus vaccine strains on the immune response and gut microbiome of mice. PLoS One 2019; 14:e0225842. [PMID: 31830087 PMCID: PMC6907787 DOI: 10.1371/journal.pone.0225842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The potential role of probiotic bacteria as adjuvants in vaccine trials led to their use as nonparenteral live mucosal vaccine vectors. Yet, interactions between these vectors, the host and the microbiome are poorly understood. This study evaluates impact of three probiotic, Lactobacillus acidophilus, vector strains, and their interactions with the host's immune response, on the gut microbiome. One strain expressed the membrane proximal external region from HIV-1 (MPER). The other two expressed MPER and either secreted interleukin-1ß (IL-1ß) or expressed the surface flagellin subunit C (FliC) as adjuvants. We also used MPER with rice bran as prebiotic supplement. We observed a strain dependent, differential effect suggesting that MPER and IL-1β induced a shift of the microbiome while FliC had minimal impact. Joint probiotic and prebiotic use resulted in a compound effect, highlighting a potential synbiotic approach to impact efficacy of vaccination. Careful consideration of constitutive adjuvants and use of prebiotics is needed depending on whether or not to target microbiome modulation to improve vaccine efficacy. No clear associations were observed between total or MPER-specific IgA and the microbiome suggesting a role for other immune mechanisms or a need to focus on IgA-bound, resident microbiota, most affected by an immune response.
Collapse
Affiliation(s)
- Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jonathan LeCureux
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alora LaVoy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Bridget Eklund
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregg A. Dean
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
54
|
The Effect of Hops ( Humulus lupulus L.) Extract Supplementation on Weight Gain, Adiposity and Intestinal Function in Ovariectomized Mice. Nutrients 2019; 11:nu11123004. [PMID: 31817899 PMCID: PMC6950254 DOI: 10.3390/nu11123004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen decline during menopause is associated with altered metabolism, weight gain and increased risk of cardiometabolic diseases. The gut microbiota also plays a role in the development of cardiometabolic dysfunction and is also subject to changes associated with age-related hormone changes. Phytoestrogens are plant-based estrogen mimics that have gained popularity as dietary supplements for the treatment or prevention of menopause-related symptoms. These compounds have the potential to both modulate and be metabolized by the gut microbiota. Hops (Humulus lupulus L.) contain potent phytoestrogen precursors, which rely on microbial biotransformation in the gut to estrogenic forms. We supplemented ovariectomized (OVX) or sham-operated (SHAM) C57BL/6 mice, with oral estradiol (E2), a flavonoid-rich extract from hops, or a placebo carrier oil, to observe effects on adiposity, inflammation, and gut bacteria composition. Hops extract (HE) and E2 protected against increased visceral adiposity and liver triglyceride accumulation in OVX animals. Surprisingly, we found no evidence of OVX having a significant impact on the overall gut bacterial community structure. We did find differences in the abundance of Akkermansia muciniphila, which was lower with HE treatment in the SHAM group relative to OVX E2 treatment and to placebo in the SHAM group.
Collapse
|
55
|
Nealon NJ, Parker KD, Lahaie P, Ibrahim H, Maurya AK, Raina K, Ryan EP. Bifidobacterium longum-fermented rice bran and rice bran supplementation affects the gut microbiome and metabolome. Benef Microbes 2019; 10:823-839. [PMID: 31965839 DOI: 10.3920/bm2019.0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated gut microbiota composition along with food, host, and microbial derived metabolites in the colon and systemic circulation of healthy mice following dietary rice bran and fermented rice bran intake. Adult male BALB/c mice were fed a control diet or one of two experimental diets containing 10% w/w rice bran fermented by Bifidobacterium longum or 10% w/w non-fermented rice bran for 15 weeks. Metabolomics was performed on the study diets (food), the murine colon and whole blood. These were analysed in concert with 16S rRNA amplicon sequencing of faeces, caecum, and colon microbiomes. Principal components analysis of murine microbiota composition displayed marked separation between control and experimental diets, and between faecal and tissue (caecum and colon) microbiomes. Colon and caecal microbiomes in both experimental diet groups showed enrichment of Roseburia, Lachnospiraceae, and Clostridiales related amplicon sequence variants compared to control. Bacterial composition was largely similar between experimental diets. Metabolite profiling revealed 530 small molecules comprising of 39% amino acids and 21% lipids that had differential abundances across food, colon, and blood matrices, and statistically significant between the control, rice bran, and fermented rice bran groups. The amino acid metabolite, N-delta-acetylornithine, was notably increased by B. longum rice bran fermentation when compared to non-fermented rice bran in food, colon, and blood. These findings support that dietary intake of rice bran fermented with B. longum modulates multiple metabolic pathways important to the gut and overall health.
Collapse
Affiliation(s)
- N J Nealon
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA.,Program in Cellular and Molecular Biology, Colorado State University, Fort Collins, 80521 CO, USA
| | - K D Parker
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - P Lahaie
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - H Ibrahim
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA.,Zagazig University, Department of Medical Biochemistry, Faculty of Medicine, 44511 Zagazig, Egypt
| | - A K Maurya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Raina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - E P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA.,Program in Cellular and Molecular Biology, Colorado State University, Fort Collins, 80521 CO, USA.,University of Colorado Cancer Center, Division of Cancer Control and Prevention, Aurora, CO 80045, USA
| |
Collapse
|
56
|
Feng Y, Huang Y, Wang Y, Wang P, Wang F. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice. BURNS & TRAUMA 2019; 7:20. [PMID: 31312663 PMCID: PMC6610819 DOI: 10.1186/s41038-019-0156-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Background The intestinal barrier integrity is crucial for maintaining intestinal homeostasis, and the mechanisms of intestinal barrier disruption induced by burn injury remain obscure. This study was aimed to investigate the changes of intestinal microbiota and barrier function in burned mice to further comprehend the mechanisms of burn-induced intestinal barrier dysfunction. Methods Samples were from mice inflicted with 30% total body surface area (TBSA) full-thickness burns. The intestinal permeability, tight junction proteins expressions, zonula occludens-1 (ZO-1) localization, inflammatory cytokines expressions, and short-chain fatty acids (SCFAs) contents were determined. The microbial community was assessed via 16S rDNA Illumina sequencing. Results The intestinal permeability was increased after severe burn injury, peaking at 6 h post-burn, with approximately 20-folds of the control (p < 0.001). The expression of tight junction proteins (ZO-1, occludin, claudin-1, and claudin-2) was significantly altered (p < 0.05). The ZO-1 morphology was dramatically changed following burn injury. The fecal SCFAs’ contents (acetate, propionate, butyrate, isobutyrate, and isovalerate) were noticeably declined after burn injury (p < 0.05). The expressions of pro-inflammatory cytokines (interleukin (IL)-1β and IL-6) in ileal mucosa were increased, whereas the expressions of anti-inflammatory cytokines (IL-4 and IL-13) were decreased following burn injury (p < 0.05). In addition, burned mice showed an alteration of intestinal microbial community, such as decreased diversity, reduced Bacteroidetes abundance, and increased Firmicutes abundance. Conclusions The severe burn-induced intestinal barrier dysfunction is along with the alterations of microbial community. Electronic supplementary material The online version of this article (10.1186/s41038-019-0156-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhai Feng
- 1State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038 China
| | - Yalan Huang
- 2Department of Military Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- 3Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- 1State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038 China
| | - Fengjun Wang
- 1State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038 China
| |
Collapse
|
57
|
Chen K, Xie K, Liu Z, Nakasone Y, Sakao K, Hossain A, Hou DX. Preventive Effects and Mechanisms of Garlic on Dyslipidemia and Gut Microbiome Dysbiosis. Nutrients 2019; 11:nu11061225. [PMID: 31146458 PMCID: PMC6627858 DOI: 10.3390/nu11061225] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023] Open
Abstract
Garlic (Allium sativum L.) contains prebiotic components, fructans, antibacterial compounds, and organosulfur compounds. The complex ingredients of garlic seem to impart a paradoxical result on the gut microbiome. In this study, we used a mouse model to clarify the effects of whole garlic on the gut microbiome. C57BL/6N male mice were fed with or without whole garlic in normal diet (ND) or in high-fat diet (HFD) for 12 weeks. Supplementation with whole garlic attenuated HFD-enhanced ratio of serum GPT/GOT (glutamic-pyruvic transaminase/glutamic-oxaloacetic transaminase), levels of T-Cho (total cholesterol) and LDLs (low-density lipoproteins), and index of homeostatic model assessment for insulin resistance (HOMA-IR), but had no significant effect in the levels of serum HDL-c (high density lipoprotein cholesterol), TG (total triacylglycerol), and glucose. Moreover, garlic supplementation meliorated the HFD-reduced ratio of villus height/crypt depth, cecum weight, and the concentration of cecal organic acids. Finally, gut microbiota characterization by high throughput 16S rRNA gene sequencing revealed that whole garlic supplementation increased the α-diversity of the gut microbiome, especially increasing the relative abundance of f_Lachnospiraceae and reducing the relative abundance of g_Prevotella. Taken together, our data demonstrated that whole garlic supplementation could meliorate the HFD-induced dyslipidemia and disturbance of gut microbiome.
Collapse
Affiliation(s)
- Keyu Chen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Kun Xie
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Zhuying Liu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | | | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Kenkoukazoku Co., Kagoshima 892-0848, Japan.
| | - Amzad Hossain
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
58
|
Zarei I, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Modulation of plasma and urine metabolome in colorectal cancer survivors consuming rice bran. ACTA ACUST UNITED AC 2019; 6. [PMID: 31396400 DOI: 10.15761/ifnm.1000252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rice bran has bioactive phytochemicals with cancer protective actions that involve metabolism by the host and the gut microbiome. Globally, colorectal cancer (CRC) is the third leading cause of cancer-related death and the increased incidence is largely attributed to poor dietary patterns, including low daily fiber intake. A dietary intervention trial was performed to investigate the impact of rice bran consumption on the plasma and urine metabolome of CRC survivors. Nineteen CRC survivors participated in a randomized-controlled trial that included consumption of heat-stabilized rice bran (30 g/day) or a control diet without rice bran for 4 weeks. A fasting plasma and first void of the morning urine sample were analyzed by non-targeted metabolomics using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After 4 weeks of either rice bran or control diets, 12 plasma and 16 urine metabolites were significantly different between the groups (p≤0.05). Rice bran intake increased relative abundance of plasma mannose (1.373-fold) and beta-citrylglutamate (BCG) (1.593-fold), as well as increased urine N-formylphenylalanine (2.191-fold) and dehydroisoandrosterone sulfate (DHEA-S) (4.488-fold). Diet affected metabolites, such as benzoate, mannose, eicosapentaenoate (20:5n3) (EPA), and N-formylphenylalanine have been previously reported for cancer protection and were identified from the rice bran food metabolome. Nutritional metabolome changes following increased consumption of whole grains such as rice bran warrants continued investigation for colon cancer control and prevention attributes as dietary biomarkers for positive effects are needed to reduce high risk for colorectal cancer recurrence.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Renee C Oppel
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Regina J Brown
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
59
|
Febvre HP, Rao S, Gindin M, Goodwin NDM, Finer E, Vivanco JS, Lu S, Manter DK, Wallace TC, Weir TL. PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients 2019; 11:nu11030666. [PMID: 30897686 PMCID: PMC6471193 DOI: 10.3390/nu11030666] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is increasingly recognized as an important modulator of human health. As such, there is a growing need to identify effective means of selectively modifying gut microbial communities. Bacteriophages, which were briefly utilized as clinical antimicrobials in the early 20th century, present an opportunity to selectively reduce populations of undesirable microorganisms. However, whether intentional consumption of specific bacteriophages affects overall gut ecology is not yet known. Using a commercial cocktail of Escherichia coli-targeting bacteriophages, we examined their effects on gut microbiota and markers of intestinal and systemic inflammation in a healthy human population. In a double-blinded, placebo-controlled crossover trial, normal to overweight adults consumed bacteriophages for 28 days. Stool and blood samples were collected and used to examine inflammatory markers, lipid metabolism, and gut microbiota. Reductions in fecal E. coli loads were observed with phage consumption. However, there were no significant changes to alpha and beta diversity parameters, suggesting that consumed phages did not globally disrupt the microbiota. However, specific populations were altered in response to treatment, including increases in members of the butyrate-producing genera Eubacterium and a decreased proportion of taxa most closely related to Clostridium perfringens. Short-chain fatty acid production, inflammatory markers, and lipid metabolism were largely unaltered, but there was a small but significant decrease in circulating interleukin-4 (Il-4). Together, these data demonstrate the potential of bacteriophages to selectively reduce target organisms without global disruption of the gut community.
Collapse
Affiliation(s)
- Hallie P Febvre
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Melinda Gindin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Natalie D M Goodwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Elijah Finer
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jorge S Vivanco
- Polaris Expeditionary Learning School, Fort Collins, CO 80525, USA.
| | - Shen Lu
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Daniel K Manter
- Soil Management and Sugarbeet Research, ARS, USDA, Fort Collins, CO 80523, USA.
| | - Taylor C Wallace
- Think Healthy Group, Inc., Washington, DC 20001, USA.
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 220030, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
60
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20:e77-e91. [PMID: 30712808 DOI: 10.1016/s1470-2045(18)30952-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Although novel therapies, including immunotherapy, have dramatically improved outcomes for many patients with cancer, overall outcomes are heterogeneous and existing biomarkers do not reliably predict response. To date, predictors of response to cancer therapy have largely focused on tumour-intrinsic features; however, there is growing evidence that other host factors (eg, host genomics and the microbiome) can substantially affect therapeutic response. The microbiome, which refers to microbiota within a host and their collective genomes, is becoming increasingly recognised for its influence on host immunity, as well as therapeutic responses to cancer treatment. Importantly, microbiota can be modified via several different strategies, affording new angles in cancer treatment to improve outcomes. In this Review, we examine the evidence on the role of the microbiome in cancer and therapeutic response, factors that influence and shape host microbiota, strategies to modulate the microbiome, and present key unanswered questions to be addressed in ongoing and future research.
Collapse
Affiliation(s)
- Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
62
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|
63
|
Insights Into the Relationship Between Gut Microbiota and Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0419-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene⁻Bran Metabolite Relationships. Metabolites 2018; 8:metabo8040063. [PMID: 30304872 PMCID: PMC6315861 DOI: 10.3390/metabo8040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
Rice (Oryza sativa L.) processing yields ~60 million metric tons of bran annually. Rice genes producing bran metabolites of nutritional and human health importance were assessed across 17 diverse cultivars from seven countries using non-targeted metabolomics, and resulted in 378–430 metabolites. Gambiaka cultivar had the highest number and Njavara had the lowest number of metabolites. The 71 rice bran compounds of significant variation by cultivar included 21 amino acids, seven carbohydrates, two metabolites from cofactors and vitamins, 33 lipids, six nucleotides, and two secondary metabolites. Tryptophan, α-ketoglutarate, γ-tocopherol/β-tocopherol, and γ-tocotrienol are examples of bran metabolites with extensive cultivar variation and genetic information. Thirty-four rice bran components that varied between cultivars linked to 535 putative biosynthetic genes using to the OryzaCyc 4.0, Plant Metabolic Network database. Rice genes responsible for bran composition with animal and human health importance is available for rice breeding programs to utilize in crop improvement.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Emily Luna
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León 21000, Nicaragua.
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805 Bamako, Mali.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
65
|
Wang Y, Zhang J, Wang Y, Wang K, Wei H, Shen L. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon 2018; 155:9-20. [PMID: 30267721 DOI: 10.1016/j.toxicon.2018.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023]
Abstract
Zearalenone (ZEN) causes serious diseases in both animals and humans and thereby leads to substantial economic losses. The elimination of ZEN contamination from food and feed is an important concern worldwide. This study aimed to screen a bacterium that can efficiently detoxify ZEN both in vitro and in vivo. A bacterium (designated BC7) with high ZEN-removing capability was isolated from mouldy contaminated feeds and characterized as Bacillus cereus based on biochemical and 16S rRNA sequencing analyses. BC7 could remove 100% and 89.31% of 10 mg/L ZEN in Luria-Bertani (LB) medium and simulated gastric fluid (GSF), respectively, within 24 h at 37 °C. The effects of BC7 on ZEN detoxification and on the intestinal flora were further evaluated using four groups of mice that were intragastrically administered normal saline, BC7 culture (CFU = 3.45 × 108/mL), ZEN (10 mg/kg BW) or BC7 culture (CFU = 3.45 × 108/mL) + ZEN (10 mg/kg BW) for 2 weeks. ZEN showed distinct reproductive and hepatic toxicity, as characterized by increased weights of the uterus and liver, altered levels of oestradiol (E2) and luteinizing hormone (LH), increased secretion of the liver injury biomarkers alanine transaminase (ALT) and aspartate transaminase (AST), and abnormal histological phenotypes for the uterus, ovary and liver. However, BC7 could significantly reduce all the above-mentioned adverse effects caused by ZEN with no harmful effect on the reproductive system and liver in mice. Moreover, the addition of BC7 could efficiently renormalize the ZEN-induced perturbation of the gut microbiota and significantly increase the abundance of Lactobacillus to maintain the health of the intestinal flora in mice. In conclusion, Bacillus cereus BC7 could be used as a potential feed additive to efficiently remove ZEN in vitro or in vivo and to normalize the disordered gut microbiota in mice.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Jian Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yulu Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Kerong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Hong Wei
- The Engineering Technology Research Center for Germ-free and Genome-editing animal, Huazhong Agricultural University,Wuhan, 430070, PR China; Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
66
|
Tindall AM, Petersen KS, Kris-Etherton PM. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases. J Nutr 2018; 148:1402-1407. [PMID: 30184227 PMCID: PMC7263841 DOI: 10.1093/jn/nxy141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Clusters of bacterial species within the gut microenvironment, or gut enterotype, have been correlated with cardiometabolic disease risk. The metabolic products and metabolites that bacteria produce, such as short-chain fatty acids, secondary bile acids, and trimethylamine, may also affect the microbial community and disease risk. Diet has a direct impact on the gut microenvironment by providing substrates to and promoting the colonization of resident bacteria. To date, few dietary patterns have been evaluated for their effect on the gut microbiome, but the Mediterranean diet and Vegetarian diets have shown favorable effects for both the gut microbiome and cardiometabolic disease risk. This review examines the gut microbiome as a mediator between these dietary patterns and cardiometabolic disease risk.
Collapse
Affiliation(s)
- Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
67
|
Gindin M, Febvre HP, Rao S, Wallace TC, Weir TL. Bacteriophage for Gastrointestinal Health (PHAGE) Study: Evaluating the Safety and Tolerability of Supplemental Bacteriophage Consumption. J Am Coll Nutr 2018; 38:68-75. [DOI: 10.1080/07315724.2018.1483783] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Melinda Gindin
- Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hallie P. Febvre
- Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taylor C. Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
- Think Healthy Group, Inc., Washington, DC, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
68
|
Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Sci Rep 2018; 8:10762. [PMID: 30018370 PMCID: PMC6050247 DOI: 10.1038/s41598-018-29032-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Edible insects are often considered a nutritious, protein-rich, environmentally sustainable alternative to traditional livestock with growing popularity among North American consumers. While the nutrient composition of several insects is characterized, all potential health impacts have not been evaluated. In addition to high protein levels, crickets contain chitin and other fibers that may influence gut health. In this study, we evaluated the effects of consuming 25 grams/day whole cricket powder on gut microbiota composition, while assessing safety and tolerability. Twenty healthy adults participated in this six-week, double-blind, crossover dietary intervention. Participants were randomized into two study arms and consumed either cricket-containing or control breakfast foods for 14 days, followed by a washout period and assignment to the opposite treatment. Blood and stool samples were collected at baseline and after each treatment period to assess liver function and microbiota changes. Results demonstrate cricket consumption is tolerable and non-toxic at the studied dose. Cricket powder supported growth of the probiotic bacterium, Bifidobacterium animalis, which increased 5.7-fold. Cricket consumption was also associated with reduced plasma TNF-α. These data suggest that eating crickets may improve gut health and reduce systemic inflammation; however, more research is needed to understand these effects and underlying mechanisms.
Collapse
|
69
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
70
|
Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules 2018; 23:molecules23020367. [PMID: 29425148 PMCID: PMC6017827 DOI: 10.3390/molecules23020367] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Although artificial sweeteners are widely used in food industry, their effects on human health remain a controversy. It is known that the gut microbiota plays a key role in human metabolism and recent studies indicated that some artificial sweeteners such as saccharin could perturb gut microbiome and further affect host health, such as inducing glucose intolerance. Neotame is a relatively new low-caloric and high-intensity artificial sweetener, approved by FDA in 2002. However, the specific effects of neotame on gut bacteria are still unknown. In this study, we combined high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics to investigate the effects of neotame on the gut microbiome and fecal metabolite profiles of CD-1 mice. We found that a four-week neotame consumption reduced the alpha-diversity and altered the beta-diversity of the gut microbiome. Firmicutes was largely decreased while Bacteroidetes was significantly increased. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis also indicated that the control mice and neotame-treated mice have different metabolic patterns and some key genes such as butyrate synthetic genes were decreased. Moreover, neotame consumption also changed the fecal metabolite profiles. Dramatically, the concentrations of multiple fatty acids, lipids as well as cholesterol in the feces of neotame-treated mice were consistently higher than controls. Other metabolites, such as malic acid and glyceric acid, however, were largely decreased. In conclusion, our study first explored the specific effects of neotame on mouse gut microbiota and the results may improve our understanding of the interaction between gut microbiome and neotame and how this interaction could influence the normal metabolism of host bodies.
Collapse
|
71
|
Si X, Shang W, Zhou Z, Shui G, Lam SM, Blanchard C, Strappe P. Gamma-aminobutyric Acid Enriched Rice Bran Diet Attenuates Insulin Resistance and Balances Energy Expenditure via Modification of Gut Microbiota and Short-Chain Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:881-890. [PMID: 29327584 DOI: 10.1021/acs.jafc.7b04994] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, gamma-aminobutyric acid (GABA) enriched rice bran (ERB) was supplemented to obese rats to investigate the attenuation of metabolic syndromes induced by high-fat diet. ERB-containing diet stimulated butyrate and propionate production by promoting Anaerostipes, Anaerostipes sp., and associated synthesizing enzymes. This altered short-chain fatty acid (SCFA) distribution further enhanced circulatory levels of leptin and glucagon-like peptide-1, controlling food intake by downregulating orexigenic factors. Together with the enhanced fatty acid β-oxidation highlighted by Prkaa2, Ppara, and Scd1 expression via AMPK signaling pathway and nonalcoholic fatty liver disease pathway, energy expenditure was positively modulated. Serum lipid compositions showed ERB supplement exhibited a more efficient effect on lowering serum sphingolipids, which was closely associated with the status of insulin resistance. Consistently, genes of Ppp2r3b and Prkcg, involved in the function of ceramides in blocking insulin action, were also downregulated following ERB intervention. Enriched GABA and phenolic acids were supposed to be responsible for the health-beneficial effects.
Collapse
Affiliation(s)
- Xu Si
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin 300457, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University , Wagga Wagga, New South Wales 2678, Australia
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University , Wagga Wagga, New South Wales 2678, Australia
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University , Rockhampton, Queensland 4700, Australia
| |
Collapse
|
72
|
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2017; 56:1-15. [PMID: 29427903 DOI: 10.1016/j.jnutbio.2017.12.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Dustin M Lee
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Tiffany L Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Christopher L Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523.
| |
Collapse
|
73
|
Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties. RICE (NEW YORK, N.Y.) 2017; 10:24. [PMID: 28547736 PMCID: PMC5453916 DOI: 10.1186/s12284-017-0157-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. RESULTS This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. CONCLUSION Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Los Baños, 4031 Laguna Philippines
| | - Dustin G. Brown
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Nora Jean Nealon
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Elizabeth P. Ryan
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| |
Collapse
|
74
|
Monk JM, Lepp D, Wu W, Pauls KP, Robinson LE, Power KA. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. J Nutr Biochem 2017; 49:89-100. [PMID: 28915390 DOI: 10.1016/j.jnutbio.2017.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases.
Collapse
Affiliation(s)
- Jennifer M Monk
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada, N1G 5C9
| | - Wenqing Wu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada, N1G 5C9
| | - K Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Krista A Power
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
75
|
Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial. Br J Nutr 2017. [PMID: 28643618 PMCID: PMC5654571 DOI: 10.1017/s0007114517001106] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.
Collapse
|
76
|
Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One 2017; 12:e0178426. [PMID: 28594855 PMCID: PMC5464538 DOI: 10.1371/journal.pone.0178426] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K), a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.
Collapse
Affiliation(s)
- Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
77
|
Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes 2016; 8:113-129. [PMID: 27960648 PMCID: PMC5390824 DOI: 10.1080/19490976.2016.1270809] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Emerging insights have implicated the gut microbiota as an important factor in the maintenance of human health. Although nutrition research has focused on how direct interactions between dietary components and host systems influence human health, it is becoming increasingly important to consider nutrient effects on the gut microbiome for a more complete picture. Understanding nutrient-host-microbiome interactions promises to reveal novel mechanisms of disease etiology and progression, offers new disease prevention strategies and therapeutic possibilities, and may mandate alternative criteria to evaluate the safety of food ingredients. Here we review the current literature on diet effects on the microbiome and the generation of microbial metabolites of dietary constituents that may influence human health. We conclude with a discussion of the relevance of these studies to nutrition and public health and summarize further research needs required to realize the potential of exploiting diet-microbiota interactions for improved health.
Collapse
Affiliation(s)
- Amy M. Sheflin
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Christopher L. Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA,CONTACT Tiffany L. Weir 210 Gifford Building, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80521-1571, USA
| |
Collapse
|
78
|
Current Hypothesis for the Relationship between Dietary Rice Bran Intake, the Intestinal Microbiota and Colorectal Cancer Prevention. Nutrients 2016; 8:nu8090569. [PMID: 27649240 PMCID: PMC5037554 DOI: 10.3390/nu8090569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common form of cancer. The development of effective chemopreventive strategies to reduce CRC incidence is therefore of paramount importance. Over the past decade, research has indicated the potential of rice bran, a byproduct of rice milling, in CRC chemoprevention. This was recently suggested to be partly attributable to modification in the composition of intestinal microbiota when rice bran was ingested. Indeed, previous studies have reported changes in the population size of certain bacterial species, or microbial dysbiosis, in the intestines of CRC patients and animal models. Rice bran intake was shown to reverse such changes through the manipulation of the population of health-promoting bacteria in the intestine. The present review first provides an overview of evidence on the link between microbial dysbiosis and CRC carcinogenesis and describes the molecular events associated with that link. Thereafter, there is a summary of current data on the effect of rice bran intake on the composition of intestinal microbiota in human and animal models. The article also highlights the need for further studies on the inter-relationship between rice bran intake, the composition of intestinal microbiota and CRC prevention.
Collapse
|