51
|
Gordeev A, Vaal A, Puchkova M, Smirnova I, Doronin A, Znobishcheva A, Zhmudanova D, Aleksandrov A, Sukchev M, Imyanitov E, Solovyev V, Iakovlev P. Preclinical comparison of prolgolimab, pembrolizumab and nivolumab. Sci Rep 2024; 14:23136. [PMID: 39367001 PMCID: PMC11452378 DOI: 10.1038/s41598-024-72118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Prolgolimab is a recombinant IgG1-based anti-PD-1 antibody, whose properties were improved by the introduction of the LALA mutation, and which has demonstrated high efficacy in patients with metastatic melanoma. This paper presents the results of comparative preclinical studies of antigen-binding and effector functions involving prolgolimab and conventional IgG4 antibodies, nivolumab and pembrolizumab. None of the studied antibodies had undesirable antibody-dependent cellular cytotoxicity activity. Prolgolimab has shown higher PD-1 receptor occupancy and T-cell activation, but lower propensity to activate antibody-dependent cellular phagocytosis as compared to nivolumab and pembrolizumab. An in vivo study in mice inoculated with CT26.wt cancer cells showed that tumor growth inhibition was 16% for pembrolizumab and 56% for prolgolimab. This study warrants clinical comparison of IgG1- and IgG4-based anti-PD-1 antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | | | | |
Collapse
|
52
|
Bug DS, Moiseev IS, Porozov YB, Petukhova NV. Shedding light on the DICER1 mutational spectrum of uncertain significance in malignant neoplasms. Front Mol Biosci 2024; 11:1441180. [PMID: 39421690 PMCID: PMC11484276 DOI: 10.3389/fmolb.2024.1441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The Dicer protein is an indispensable player in such fundamental cell pathways as miRNA biogenesis and regulation of protein expression in a cell. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancers, which suggests Dicer mutations can lead to cancer progression. In addition to well-known hotspot mutations in RNAase III domains, DICER1 is characterized by a wide spectrum of variants in all the functional domains; most are of uncertain significance and unstated clinical effects. Moreover, various new somatic DICER1 mutations continuously appear in cancer genome sequencing. The latest contemporary methods of variant effect prediction utilize machine learning algorithms on bulk data, yielding suboptimal correlation with biological data. Consequently, such analysis should be conducted based on the functional and structural characteristics of each protein, using a well-grounded targeted dataset rather than relying on large amounts of unsupervised data. Domains are the functional and evolutionary units of a protein; the analysis of the whole protein should be based on separate and independent examinations of each domain by their evolutionary reconstruction. Dicer represents a hallmark example of a multidomain protein, and we confirmed the phylogenetic multidomain approach being beneficial for the clinical effect prediction of Dicer variants. Because Dicer was suggested to have a putative role in hematological malignancies, we examined variants of DICER1 occurring outside the well-known hotspots of the RNase III domain in this type of cancer using phylogenetic reconstruction of individual domain history. Examined substitutions might disrupt the Dicer function, which was demonstrated by molecular dynamic simulation, where distinct structural alterations were observed for each mutation. Our approach can be utilized to study other multidomain proteins and to improve clinical effect evaluation.
Collapse
Affiliation(s)
- D. S. Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| | - I. S. Moiseev
- R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Yu. B. Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
- Advitam Laboratory, Belgrade, Serbia
| | - N. V. Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| |
Collapse
|
53
|
Feinstein A, Cole JL, May ER. Dimerization Promotes PKR Activation by Modulating Energetics of αC Helix Conversion between Active and Inactive Conformations. J Phys Chem B 2024; 128:9305-9314. [PMID: 39359136 PMCID: PMC11457141 DOI: 10.1021/acs.jpcb.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Protein kinase R (PKR) functions in the eukaryotic innate immune system as a first-line defense against viral infections. PKR binds viral dsRNA, leading to autophosphorylation and activation. In its active state, PKR can phosphorylate its primary substrate, eIF2α, which blocks the initiation of translation in the infected cell. It has been established that PKR activation occurs when the kinase domain dimerizes in a back-to-back configuration. However, the mechanism by which dimerization leads to enzymatic activation is not fully understood. Here, we investigate the structural mechanistic basis and energy landscape for PKR activation, with a focus on the αC helix─a kinase activation and signal integration hub─using all-atom equilibrium and enhanced sampling molecular dynamics simulations. By employing window-exchange umbrella sampling, we compute free-energy profiles of activation, which show that back-to-back dimerization stabilizes a catalytically competent conformation of PKR. Key hydrophobic residues in the homodimer interface contribute to stabilization of the αC helix in an active conformation and the position of its critical glutamate residue. Using linear mutual information analysis, we analyze allosteric communication connecting the protomers' N-lobes and the αC helix dimer interface with the αC helix.
Collapse
Affiliation(s)
- Aaron
G. Feinstein
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
| | - James L. Cole
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Eric R. May
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
54
|
Silva GM, Gomes SQ, Lopes CD, de Albuquerque S, de Paula da Silva CHT. Structural analysis and shape-based identification of novel inhibitors targeting the Trypanosoma cruzi proteasome. Int J Biol Macromol 2024; 277:134290. [PMID: 39084432 DOI: 10.1016/j.ijbiomac.2024.134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
There is an urgent need to develop new, safer, and more effective drugs against Chagas disease (CD) as well as related kinetoplastid diseases. Targeting and inhibiting the Trypanosoma cruzi proteasome has emerged as a promising therapeutic approach in this context. To expand the chemical space for this class of inhibitors, we performed virtual screening campaigns with emphasis on shape-based similarity and ADMET prioritization. We describe the ideation and application of robustly validated shape queries for these campaigns, which furnished 44 compounds for biological evaluation. Five hit compounds demonstrated in vitro antitrypanosomal activity by potential inhibition of T. cruzi proteasome and notable chemical diversities, particularly, LCQFTC11. Structural insights were achieved by homology modeling, sequence/structure alignment, proteasome-species comparison, docking, molecular dynamics, and MMGBSA binding affinity estimations. These methods confirmed key interactions as well as the stability of LCQFTC11 at the β4/β5 subunits' binding site of the T. cruzi proteasome, consistent with known inhibitors. Our results warrant future assay confirmation of our hit as a T. cruzi proteasome inhibitor. Importantly, we also shed light into dynamic details for a proteasome inhibition mechanism that shall be further investigated. We expect to contribute to the development of viable CD drug candidates through such a relevant approach.
Collapse
Affiliation(s)
- Guilherme Martins Silva
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Suzane Quintana Gomes
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Carla Duque Lopes
- Laboratório de Parasitologia, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Sérgio de Albuquerque
- Laboratório de Parasitologia, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
55
|
McDonald-Ramos JS, Hicklin IK, Yang Z, Brown AM. Identification of small molecule inhibitors of the Chloracidobacterium thermophilum type IV pilus protein PilB by ensemble virtual screening. Arch Biochem Biophys 2024; 760:110127. [PMID: 39154818 DOI: 10.1016/j.abb.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits. We evaluated Chloracidobacterium thermophilum PilB (CtPilB) as a model for structure-based virtual screening by molecular docking and molecular dynamics (MD) simulations. A hexameric structure of CtPilB was generated through homology modeling based on an existing crystal structure of a PilB from Geobacter metallireducens. Four representative structures were obtained from molecular dynamics simulations to examine the conformational plasticity of PilB and improve docking analyses by ensemble docking. Structural analyses after 1 μs of simulation revealed conformational changes in individual PilB subunits are dependent on ligand presence. Further, ensemble virtual screening of a library of 4234 compounds retrieved from the ZINC15 database identified five promising PilB inhibitors. Molecular docking and binding analyses using the four representative structures from MD simulations revealed that top-ranked compounds interact with multiple Walker A residues, one Asp-box residue, and one arginine finger, indicating these are key residues in inhibitor binding within the ATP binding pocket. The use of multiple conformations in molecular screening can provide greater insight into compound flexibility within receptor sites and better inform future drug development for therapeutics targeting the type IV pilus assembly ATPase.
Collapse
Affiliation(s)
| | | | - Zhaomin Yang
- Department of Biological Sciences, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA.
| | - Anne M Brown
- Department of Biochemistry, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA; University Libraries, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
56
|
Banjan B, Koshy AJ, Kalath H, John L, Soman S, Raju R, Revikumar A. Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions. Mol Divers 2024; 28:3377-3391. [PMID: 38509417 DOI: 10.1007/s11030-023-10768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 03/22/2024]
Abstract
Telomeric regions contain Guanine-rich sequences arranged in a planar manner and connected by Hoogsteen hydrogen bonds that can fold into G-quadruplex (G4) DNA structures, and can be stabilized by monovalent metal cations. The presence of G4 DNA holds significance in cancer-related processes, especially due to their regulatory potential at transcriptional and translational levels of oncogene and tumor suppressor genes. The objective of this current research is to explore the evolving realm of FDA-approved protein kinase inhibitors, with a specific emphasis on their capacity to stabilize the G4 DNA structures formed at the human telomeric regions. This involves investigating the possibility of repurposing FDA-approved protein kinase inhibitors as a novel approach for targeting multiple cancer types. In this context, we have selected 16 telomeric G4 DNA structures as targets and 71 FDA-approved small-molecule protein kinase inhibitors as ligands. To investigate their binding affinities, molecular docking of human telomeric G4 DNA with nuclear protein kinase inhibitors and their corresponding co-crystalized ligands were performed. We found that Ponatinib and Lapatinib interact with all the selected G4 targets, the binding free energy calculations, and molecular dynamic simulations confirm their binding efficacy and stability. Thus, it is hypothesized that Ponatinib and Lapatinib may stabilize human telomeric G4 DNA in addition to their ability to inhibit BCR-ABL and the other members of the EGFR family. As a result, we also hypothesize that the stabilization of G4 DNA might represent an additional underlying mechanism contributing to their efficacy in exerting anti-cancer effects.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
57
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
58
|
Asmare MM, Yun SI. E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum. Comput Biol Chem 2024; 112:108172. [PMID: 39191165 DOI: 10.1016/j.compbiolchem.2024.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Cryptosporidiosis, a prevalent gastrointestinal illness worldwide, is caused by the protozoan parasite Cryptosporidium parvum. Calcium-dependent protein kinase 1 (CpCDPK1), crucial for the parasite's life cycle, serves as a promising drug target due to its role in regulating invasion and egress from host cells. While potent Pyrazolopyrimidine analogs have been identified as candidate hit molecules, they exhibit limitations in inhibiting Cryptosporidium growth in cell culture, prompting exploration of alternative scaffolds. Leveraging the most potent compound, RM-1-95, co-crystallized with CpCDPK1, an E-pharmacophore model was generated and validated alongside a deep learning model trained on known CpCDPK1 compounds. These models facilitated screening Enamine's 2 million HTS compound library for novel CpCDPK1 inhibitors. Subsequent hierarchical docking prioritized hits, with final selections subjected to Quantum polarized docking for accurate ranking. Results from docking studies and MD simulations highlighted similarities in interactions between the cocrystallized ligand RM-1-95 and identified hit molecules, indicating comparable inhibitory potential against CpCDPK1. Furthermore, assessing metabolic stability through Cytochrome 450 site of metabolism prediction offered crucial insights for drug design, optimization, and regulatory approval processes.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Soon-Il Yun
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
59
|
Uyanır E, Šoral M, Seyhan G, Akkaya D, Barut B, Sari S, Duman H, Renda G, Şöhretoğlu D. Alpha-Glucosidase Inhibitory Effects of Flavonoids, Phenolic Acids and Iridoids Isolated From Vinca Soneri: In Vitro and In Silico Perspectives. Chem Biodivers 2024; 21:e202401386. [PMID: 39031506 DOI: 10.1002/cbdv.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Various Vinca species have been traditionally used for their antihypertensive, sedative, and hemostatic properties, as well as for treating diabetes. In this study, some flavonoids, phenolic acids and iridoids were isolated from an endemic Vinca species, Vinca soneri for the first time. α-Glucosidase inhibitory effects of the isolates were tested and kaempferol-3-O-α-rhamnopyranosyl (1→6) β-galactopyranoside (1) was found to be the most active one with an IC50 value of 285.73 ±7.35 μM. Enzyme kinetic assay revealed that it inhibited α-glucosidase in competitive manner. Molecular geometry of 1 was predicted and Frontier molecular orbital analysis was performed using Density Functional Theory (DFT) calculations. Molecular docking and MM-GBSA calculations predicted good fit for 1 in the enzyme active site and key interactions with the catalytic residues. As a result, current study identifies 1 as a promising competitive α-glucosidase inhibitor to be developed as a potential antidiabetic drug candidate.
Collapse
Affiliation(s)
- Eliz Uyanır
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Michal Šoral
- Institute of Chemistry, Analytical Department, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovak Republic
| | - Gökçe Seyhan
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Hayri Duman
- Faculty of Science, Department of Biology, Gazi University, TR-06500, Ankara, Türkiye
| | - Gülin Renda
- Faculty of Pharmacy, Department of Pharmacognosy, Karadeniz Technical University, 61080, Trabzon, Türkiye
| | - Didem Şöhretoğlu
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| |
Collapse
|
60
|
Zondagh LS, Malan SF, Joubert J. Edaravone N-benzyl pyridinium derivatives: BACE-1 inhibition, kinetics and in silico binding pose determination. Eur J Pharm Sci 2024; 201:106869. [PMID: 39102997 DOI: 10.1016/j.ejps.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACE-1 plays a pivotal role in the production of β-amyloid (Aβ) peptides, implicated in Alzheimer's Disease (AD) pathology. We previously described edaravone N-benzyl pyridinium derivatives (EBPDs) that exhibited multifunctional activity against multiple AD targets. In this study we explored the EBPDs BACE-1 inhibitory activity to potentially enhance the compounds therapeutic profile. The EBPDs exhibited moderate BACE-1 inhibitory activity (IC50 = 44.10 µM - 123.70 µM) and obtained IC50 values between 2.0 and 5.8-fold greater than resveratrol, a known BACE-1 inhibitor (IC50 = 253.20 µM), in this assay. Compound 3 was the most potent inhibitor with an IC50 of 44.10 µM and a Ki of 19.96 µM and a mixed-type mode of inhibition that favored binding in a competitive manner. Molecular docking identified crucial interactions with BACE-1 active site residues, supported by 100 ns MD simulations. The study highlighted the EBPDs therapeutic potential as BACE-1 inhibitors and multifunctional anti-AD therapeutic agents.
Collapse
Affiliation(s)
- L S Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - S F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - J Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa.
| |
Collapse
|
61
|
Mohamed MA, Elsaman T, Mohamed MS, Eltayib EM. Computational investigations of flavonoids as ALDH isoform inhibitors for treatment of cancer. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:837-875. [PMID: 39503629 DOI: 10.1080/1062936x.2024.2415593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024]
Abstract
Human aldehyde dehydrogenases (ALDHs) are a group of 19 isoforms often overexpressed in cancer stem cells (CSCs). These enzymes play critical roles in CSC protection, maintenance, cancer progression, therapeutic resistance, and poor prognosis. Thus, targeting ALDH isoforms offers potential for innovative cancer treatments. Flavonoids, known for their ability to affect multiple cancer-related pathways, have shown anticancer activity by downregulating specific ALDH isoforms. This study aimed to evaluate 830 flavonoids from the PubChem database against five ALDH isoforms (ALDH1A1, ALDH1A2, ALDH1A3, ALDH2, ALDH3A1) using computational methods to identify potent inhibitors. Extra precision (XP) Glide docking and MM-GBSA free binding energy calculations identified several flavonoids with high binding affinities. MD simulation highlighted flavonoids 1, 2, 18, 27, and 42 as potential specific inhibitors for each isoform, respectively. Flavonoid 10 showed high binding affinities for ALDH1A2, ALDH1A3, and ALDH3A1, emerging as a potential multi-ALDH inhibitor. ADMET property evaluation indicated that the promising hits have acceptable drug-like profiles, but further optimization is needed to enhance their therapeutic efficacy and reduce toxicity, making them more effective ALDH inhibitors for future cancer treatment.
Collapse
Affiliation(s)
- M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - M S Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - E M Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
62
|
Alghamdi S, Baeissa HM, Azhar Kamal M, Rafeeq MM, Al Zahrani A, Maslum AA, Hakeem IJ, Alazragi RS, Alam Q. Unveiling the multitargeted potency of Sodium Danshensu against cervical cancer: a multitargeted docking-based, structural fingerprinting and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:8268-8280. [PMID: 37599470 DOI: 10.1080/07391102.2023.2248260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Cervical Cancer (CC) is one of the most common types of cancer in women worldwide, with a significant number of deaths reported yearly. Despite the various treatment options available, the high mortality rate associated with CC highlights the need to develop new and effective therapeutic agents. In this study, we have screened the complete prepared FDA library against the Mitotic kinesin-like protein 1, Cyclin B1, DNA polymerase, and MCM10-ID using three glide-based molecular docking algorithms: HTVS, SP and XP to produce a robust calculation. All four proteins are crucial proteins that actively participate in CC development, and inhibiting them together can be a game-changer step for multitargeted drug designing. Our multitargeted screening identified Sodium (Na) Danshensu, a natural FDA-approved phenolic compound of caffeic acid derivatives isolated from Salvia miltiorrhiza. The docking score ranges from -5.892 to -13.103 Kcal/mol, and the screening study was evaluated with the pharmacokinetics and interaction fingerprinting to identify the pattern of interactions that revealed that the compound has bound to the best site it can be fitted to where maximum bonds were created to make the complex stable. The molecular dynamics simulations for 100 ns were then extended to validate the stability of the protein-ligand complexes. The results provide insight into the repurposing, and Na-danshensu exhibited strong binding affinity and stable complex formation with the target proteins, indicating its potential as a multitargeted drug against CC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hanadi M Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Al Zahrani
- Central Military Laboratory and Blood Bank Department - Microbiology Division, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ali Ahmed Maslum
- Central Military Laboratory and Blood Bank Department - Microbiology Division, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Israa J Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Qamre Alam
- Department of Molecular Genomics and Precision Medicine, ExpressMed Laboratories, Zinj, Kingdom of Bahrain
| |
Collapse
|
63
|
Fayaz A, Yousuf M, Segda A, Atia-Tul-Wahab, Zafar H, Kamran M, Meda RNT, Wang Y, Choudhary MI. Phytochemical investigation of Chrysanthellum americanum Vatke and its constituents- a targeted approach for the treatment of leishmaniasis. Fitoterapia 2024; 178:106192. [PMID: 39187029 DOI: 10.1016/j.fitote.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The present study is focused on the isolation and identification of new therapeutic candidates from Chrysanthellum americanum Vatke., and their efficacy against pteridine reductase-1 (PTR1), a valid chemotherapeutic target in the Leishmania parasite. Henceforth, a new compound, chrysanamerine (1), along with 7 known compounds, polyacetylene 2, and flavonoids 3-8, were isolated from C. americanum. Their structures were determined by chemical and spectroscopic analyses and compared with the reported spectroscopic data. All compounds were evaluated for their anti-leishmanial activity against PTR1 via biochemical mechanism-based assay. The in vitro results showed five potential hits including a new compound, chrysanamerine (1), and four known compounds against the PTR1 enzyme. Among them, compound 1 showed a potent enzyme inhibition with an IC50 of 31.02 ± 2.36 μM, whereas a moderate inhibition was observed in cases of compounds 5 and 6 (IC50 = 59.86 ± 3.32, and 45.32 ± 3.5 μM, respectively). Whereas, compounds 3 and 8 showed mild inhibition (IC50 = 72.12 ± 1.12, and 97.18 ± 1.23 μM, respectively) against PTR1, compared with trimethoprim (positive control) (IC50 = 21.07 ± 1.6 μM). Moreover, the results were further validated via molecular docking and molecular dynamics (MD) simulations. Compound 1 showed a strong affinity to the binding site with a docking score of -11.83, along with the formation of a stable protein-ligand complex over the trajectory of 100 ns. Besides, compounds 1-8 were found to be non-cytotoxic on BJ (human fibroblast) cells.
Collapse
Affiliation(s)
- Aneela Fayaz
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Yousuf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abdoulaye Segda
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Natural Sciences and Agronomy Postgraduate Division, Nazi Boni University, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Kamran
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Roland Nâg-Tiéro Meda
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Natural Sciences and Agronomy Postgraduate Division, Nazi Boni University, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
64
|
Thomas SD, Jayaprakash P, Marwan NZHJ, Aziz EABA, Kuder K, Łażewska D, Kieć-Kononowicz K, Sadek B. Alleviation of Autophagic Deficits and Neuroinflammation by Histamine H3 Receptor Antagonist E159 Ameliorates Autism-Related Behaviors in BTBR Mice. Pharmaceuticals (Basel) 2024; 17:1293. [PMID: 39458934 PMCID: PMC11510413 DOI: 10.3390/ph17101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer's disease. METHODS This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. RESULTS E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. CONCLUSIONS These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nurfirzana Z. H. J. Marwan
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ezzatul A. B. A. Aziz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
65
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
66
|
Nemetova U, Si̇yah P, Boran T, Bi̇lgi̇ Ç, Özyürek M, Şahi̇nler Ayla S. Synthesis and In Silico Evaluation of Piperazine-Substituted 2,3-Dichloro-5,8-dihydroxy-1,4-naphthoquinone Derivatives as Potential PARP-1 Inhibitors. ACS OMEGA 2024; 9:39733-39742. [PMID: 39346823 PMCID: PMC11425603 DOI: 10.1021/acsomega.4c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1) inhibitors are vital in synthetic lethality, primarily due to their specificity for PARP-1 over PARP-2 (PARP-1 > PARP-2). This specificity is crucial as it allows precise inhibition of PARP-1 in tumor cells with Breast Cancer 1 protein (BRCA1) or BRCA2 deficiencies. The development of highly specific PARP-1 inhibitors not only meets the therapeutic needs of tumor treatment but also has the potential to minimize the adverse effects associated with nonselective PARP-2 inhibition. In this study, a series of novel 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDNO) derivatives were synthesized, characterized, and evaluated regarding their PARP-1 inhibitory and cytotoxic activity. Compound 3 exhibited the highest cytotoxic potential against all cell lines, except for MDA-MB-231 cells. The inhibitory potential of these molecules against PARP-1 was evaluated through in silico molecular docking and molecular dynamics studies. Notably, compounds 5, 9, and 13 exhibited significant inhibitory activity in silico results, interacting with critical amino acids known to be important for PARP-1 inhibition during simulations. These compounds exhibited target-specific and strong binding profiles, with docking scores of -7.17, -7.41, and -7.37 kcal/mol, respectively, and MM/GBSA scores of -52.51, -43.77, and -62.87 kcal/mol, respectively. These novel compounds (DDNO derivatives) hold promise as potential PARP-1 inhibitors for the development of targeted therapeutics against cancer.
Collapse
Affiliation(s)
- Ulviyye Nemetova
- Engineering
Faculty, Department of Chemistry, Organic Chemistry, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - Pınar Si̇yah
- Department
of Biochemistry, Faculty of Pharmacy, Bahcesehir
University, 34353 Istanbul, Turkey
| | - Tuğçe Boran
- Faculty
of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University-Cerrahpaşa, 34500 Istanbul, Turkey
| | - Çiğdem Bi̇lgi̇
- Faculty
of Pharmacy, Department of Pharmacognosy, Istanbul University-Cerrahpaşa, 34500 Istanbul, Turkey
| | - Mustafa Özyürek
- Engineering
Faculty, Department of Chemistry, Analytical Chemistry, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - Sibel Şahi̇nler Ayla
- Engineering
Faculty, Department of Chemistry, Organic Chemistry, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| |
Collapse
|
67
|
Jha V, Eriksson LA. Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L. Sci Rep 2024; 14:21073. [PMID: 39256448 PMCID: PMC11387627 DOI: 10.1038/s41598-024-71879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.
Collapse
Affiliation(s)
- Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, BD71DP, UK
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
68
|
Maurya P, Kumar M, Jain R, Thaer Abdulhameed Almuqdadi H, Singh H, Gupta A, Arenz C, Gaur NA, Singh S. Expression of Plasmodium major facilitator superfamily protein in transporters - Δ Candida identifies a drug transporter. Future Microbiol 2024; 19:1293-1307. [PMID: 39235058 PMCID: PMC11485967 DOI: 10.1080/17460913.2024.2389750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.
Collapse
Affiliation(s)
- Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal Chemistry Laboratory, Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Harshita Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, 12489, Germany
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Christoph Arenz
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, 12489, Germany
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
69
|
Soni U, Singh A, Soni R, Samanta SK, Varadwaj PK, Misra K. Identification of candidate target genes of oral squamous cell carcinoma using high-throughput RNA-Seq data and in silico studies of their interaction with naturally occurring bioactive compounds. J Biomol Struct Dyn 2024; 42:8024-8044. [PMID: 37526306 DOI: 10.1080/07391102.2023.2242515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Oral Squamous Cell Carcinoma (OSCC) accounts for more than 90% of all kinds of oral neoplasms that develop in the oral cavity. It is a type of malignancy that shows high morbidity and recurrence rate, but data on the disease's target genes and biomarkers is still insufficient. In this study, in silico studies have been performed to find out the novel target genes and their potential therapeutic inhibitors for the effective and efficient treatment of OSCC. The DESeq2 package of RStudio was used in the current investigation to screen and identify differentially expressed genes for OSCC. As a result of gene expression analysis, the top 10 novel genes were identified using the Cytohubba plugin of Cytoscape, and among them, the ubiquitin-conjugating enzyme (UBE2D1) was found to be upregulated and playing a significant role in the progression of human oral cancers. Following this, naturally occurring compounds were virtually evaluated and simulated against the discovered novel target as prospective drugs utilizing the Maestro, Schrodinger, and Gromacs software. In a simulated screening of naturally occurring potential inhibitors against the novel target UBE2D1, Epigallocatechin 3-gallate, Quercetin, Luteoline, Curcumin, and Baicalein were identified as potent inhibitors. Novel identified gene UBE2D1 has a significant role in the proliferation of human cancers through suppression of 'guardian of genome' p53 via ubiquitination dependent pathway. Therefore, the treatment of OSCC may benefit significantly from targeting this gene and its discovered naturally occurring inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Unnati Soni
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Ramendra Soni
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| |
Collapse
|
70
|
Guedes IA, Pereira da Silva MM, Galheigo M, Krempser E, de Magalhães CS, Correa Barbosa HJ, Dardenne LE. DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening. J Mol Biol 2024; 436:168548. [PMID: 39237203 DOI: 10.1016/j.jmb.2024.168548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 09/07/2024]
Abstract
The DockThor-VS platform (https://dockthor.lncc.br/v2/) is a free protein-ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein-ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.
Collapse
Affiliation(s)
- Isabella Alvim Guedes
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas, 333, Petrópolis CEP 25651-075, Brazil
| | | | - Marcelo Galheigo
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas, 333, Petrópolis CEP 25651-075, Brazil
| | - Eduardo Krempser
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas, 333, Petrópolis CEP 25651-075, Brazil
| | - Camila Silva de Magalhães
- Universidade Federal do Rio de Janeiro - Polo Xerém (UFRJ), Rod. Washington Luiz, 19.593, Duque de Caxias CEP 25240-005, Brazil
| | - Helio José Correa Barbosa
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas, 333, Petrópolis CEP 25651-075, Brazil
| | - Laurent Emmanuel Dardenne
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas, 333, Petrópolis CEP 25651-075, Brazil.
| |
Collapse
|
71
|
Pedersen CN, Yang F, Ita S, Xu Y, Akunuri R, Trampari S, Neumann CMT, Desdorf LM, Schiøtt B, Salvino JM, Mortensen OV, Nissen P, Shahsavar A. Cryo-EM structure of the dopamine transporter with a novel atypical non-competitive inhibitor bound to the orthosteric site. J Neurochem 2024; 168:2043-2055. [PMID: 39010681 PMCID: PMC11449642 DOI: 10.1111/jnc.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The regulation of dopamine (DA) removal from the synaptic cleft is a crucial process in neurotransmission and is facilitated by the sodium- and chloride-coupled dopamine transporter DAT. Psychostimulant drugs, cocaine, and amphetamine, both block the uptake of DA, while amphetamine also triggers the release of DA. As a result, they prolong or even amplify neurotransmitter signaling. Atypical inhibitors of DAT lack cocaine-like rewarding effects and offer a promising strategy for the treatment of drug use disorders. Here, we present the 3.2 Å resolution cryo-electron microscopy structure of the Drosophila melanogaster dopamine transporter (dDAT) in complex with the atypical non-competitive inhibitor AC-4-248. The inhibitor partially binds at the central binding site, extending into the extracellular vestibule, and locks the transporter in an outward open conformation. Our findings propose mechanisms for the non-competitive inhibition of DAT and attenuation of cocaine potency by AC-4-248 and provide a basis for the rational design of more efficacious atypical inhibitors.
Collapse
Affiliation(s)
- Clara Nautrup Pedersen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fuyu Yang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Samantha Ita
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yibin Xu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Sofia Trampari
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline Marie Teresa Neumann
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Azadeh Shahsavar
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
72
|
Niranjan V, Setlur AS, K C, Kumkum S, Dasgupta S, Singh V, Desai V, Kumar J. Exploring the Synergistic Mechanism of AP2A2 Transcription Factor Inhibition via Molecular Modeling and Simulations as a Novel Computational Approach for Combating Breast Cancer: In Silico Interpretations. Mol Biotechnol 2024; 66:2497-2521. [PMID: 37747672 DOI: 10.1007/s12033-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Studies have shown that transcription factor AP2A2 (activator protein-2 alpha-2) is involved in the expression of DLEC1, a tumor suppressor gene, which, when mutated, will cause breast cancer and is thus an excellent target for breast cancer studies. Therefore, in the present research, a synergistic approach toward combating breast cancer is proposed by blocking AP2A2 factor, and allowing the cancer cells to be sensitive to anti-cancer drugs. The effect of AP2A2 on breast cancer was first understood via gene analysis from cBioPortal. AP2A2 was then modeled using RaptorX and its structure was validated from Ramachandran plots. Using all ligands from MolPort database, molecular docking was performed against AP2A2, from which the top three best docked ligands were studied for toxicity in humans using Protox-II. Once the ligands passed these tests, the best complexes were simulated at 200ns in Desmond Maestro, to comprehend their stabilities, followed by the computations of free energies of binding via Molecular mechanics- Generalized Born Solvent Accessibility method (MM-GBSA). The results showed that molecules MolPort-005-945-556 (sachharolipids), MolPort-001-741-124 (flavonoids), and MolPort-005-944-667 (lignan glycosides) with AP2A2 passed toxicity evaluation and belonged to toxicity classes 6, 5, and 5, respectively, with good docking energies. 200 ns simulations revealed stable complexes with slight conformational changes. Stability of ligands was confirmed via snapshots at every 20 ns of the trajectory. Radial distribution of these molecules against the protein revealed very slight deviation from binding pocket. Additionally, the free binding energies for these complexes were found to be - 54.93 ± 12.982 kcal/mol, - 44.39 ± 14.393 kcal/mol, and - 66.51 ± 13.522 kcal/mol, respectively. A preliminary computational validation of the inability of AP2A2 to bind to DLEC1 in the presence of ligands offers beneficial insights into the potential of these ligands. Therefore, this study sheds light on the potential natural molecules that could stably block AP2A2 with least deviation and act in synergy to aid anti-cancer drugs work on breast cancer cells.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India.
| | - Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sneha Kumkum
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sanjana Dasgupta
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Varsha Singh
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Vrushali Desai
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), CGO complex Lodhi Road, New Delhi, India.
| |
Collapse
|
73
|
Masudur Rahman Munna M, Touki Tahamid Tusar M, Sajnin Shanta S, Hossain Ahmed M, Sarafat Ali M. Unveiling promising phytocompounds from Moringa oleifera as dual inhibitors of EGFR (T790M/C797S) and VEGFR-2 in non-small cell lung cancer through in silico screening, ADMET, dynamics simulation, and DFT analysis. J Genet Eng Biotechnol 2024; 22:100406. [PMID: 39179328 PMCID: PMC11372720 DOI: 10.1016/j.jgeb.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Non-small cell lung cancer (NSCLC) is among the main causes of mortality from cancer around the globe, affecting all genders. Current treatments mainly focus on tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR). However, resistance mechanisms, such as the emergence of T790M and C797S EGFR mutations and upregulation of VEGFR-2, often hinder the effectiveness of TKIs. Thereby, EGFR and VEGFR-2 present an intriguing opportunity for the treatment of NSCLC by developing dual-acting drugs. This research aims to evaluate prospective Moringa oleifera L. (MO)-originated compounds to efficiently block both of these receptors. In our research, we screened a library of 200 compounds sourced from MO, a plant known for its remarkable therapeutic potential. We identified five intriguing phytocompounds: hesperetin, gossypetin, quercetin, gallocatechin, and epigallocatechin, as potential anti-cancer agents. The compounds have demonstrated notable binding affinity in virtual screening and multi-stage molecular docking analysis, surpassing the controls, Erlotinib and Bevacizumab + Rituximab. In addition, these compounds demonstrate top-notch drug-likeness and ADMET properties. The five promising drug candidates also had a strong ability to bind to receptors and stayed stable with them during the 200 ns molecular dynamics (MD) simulation and MM-GBSA calculation. Furthermore, DFT analysis indicates that hesperetin, gossypetin, and quercetagetin stand out as the most promising drug candidates among all others. The findings of our study suggest that these three therapeutic candidates can precisely target both EGFR and VEGFR-2 and can potentially act on both of these pathways as a single agent.
Collapse
Affiliation(s)
- Md Masudur Rahman Munna
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Dawn of Bioinformatics Limited, Dhaka 1361, Bangladesh
| | - Md Touki Tahamid Tusar
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saima Sajnin Shanta
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
74
|
Mohan SP, Nagarajan H, Vetrivel U, Ramasubramanyan S. Human Antigen R -mediated modulation of Transforming Growth Factor Beta 1 expression in retinal pathological milieu. Biochem Biophys Rep 2024; 39:101807. [PMID: 39234594 PMCID: PMC11372609 DOI: 10.1016/j.bbrep.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The fate and stability of messenger RNA (mRNA), from transcription to degradation is regulated by a dynamic shuttle of epigenetic modifications and RNA binding proteins in maintaining healthy cellular homeostasis and disease development. While Transforming Growth Factor Beta 1 (TGFβ1) has been implicated as a key regulator for diabetic retinopathy, a microvascular complication of diabetes, the RNA binding proteins post-transcriptionally regulating its expression remain unreported in the ocular context. Further, dysfunction of TGFβ1 signalling is also strongly associated with angiogenesis, inflammatory responses and tissue fibrosis in many eye conditions leading to vision loss. In this study, computational and molecular simulations were initially carried out to identify Human Antigen R (HuR) binding sites in TGFβ1 mRNA and predict the structural stability of these RNA-protein interactions. These findings were further validated through in vitro experiments utilizing Cobalt Chloride (CoCl2) as a hypoxia mimetic agent in human retinal microvascular endothelial cells (HRMVEC). In silico analysis revealed that HuR preferentially binds to the 5'-UTR of TGFβ1 and displayed more stable interaction than the 3'UTR. Consistent with in silico analysis, RNA immunoprecipitation demonstrated a robust association between HuR and TGFβ1 mRNA specifically under hypoxic conditions. Further, silencing of HuR significantly reduced TGFβ1 protein expression upon CoCl2 treatment. Thus, for the first time in ocular pathological milieu, direct evidence of HuR- TGFβ1 mRNA interaction under conditions of hypoxia has been reported in this study providing valuable insights into RNA binding proteins as therapeutic targets for ocular diseases associated with TGFβ1 dysregulation.
Collapse
Affiliation(s)
- Sruthi Priya Mohan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hemavathy Nagarajan
- Centre for Bioinformatics, KBIRVO, Vision Research Foundation, Chennai, India
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Sharada Ramasubramanyan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India
| |
Collapse
|
75
|
Biggs MA, Das A, Goncalves BG, Murray ME, Frantzeskos SA, Hunt HL, Phan CAN, Banerjee IA. Developing New Peptides and Peptide-Drug Conjugates for Targeting the FGFR2 Receptor-Expressing Tumor Cells and 3D Spheroids. Biomimetics (Basel) 2024; 9:515. [PMID: 39329537 PMCID: PMC11429203 DOI: 10.3390/biomimetics9090515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics.
Collapse
Affiliation(s)
- Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Molly E Murray
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Sophia A Frantzeskos
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Chau Ahn N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| |
Collapse
|
76
|
Nayak S, Regati DR, Sowdhamini R. Computational analysis of human gut microbial prolyl oligopeptidases (POPs) reveal candidate genes as therapeutics for celiac disease. Sci Rep 2024; 14:19641. [PMID: 39179709 PMCID: PMC11343888 DOI: 10.1038/s41598-024-70079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Celiac disease (CD) is a common autoimmune disorder in which the patients are unable to digest gluten, which is present in foods made up of wheat, barley and rye. Whilst diagnosis happens late in 80% of the cases, avoidance of such foods appears to be the common solution. Alternative management strategies are required for the patients and their families since CD is also genetically carried over. Probiotic therapeutics and the consumption of appropriate enzymes, such as prolyloligopeptidases (POPs), from gut-friendly bacteria could reduce the disease burden and provide a better lifestyle for CD patients. We have examined around 5000 gut bacterial genomes and identified nearly 4000 non-redundant putative POPs. A select set of 10 gut bacterial POP sequences were subject to three-dimensional modelling, ligand docking and molecular dynamics simulations where stable interactions were observed between the POPs and gluten peptides. Our study provides sequence and structural analysis of potential POP enzymes in gut bacterial genomes, which form a strong basis to offer probiotic solutions to CD patients. In particular, these enzymes could be lead future therapeutics for this disease.
Collapse
Affiliation(s)
- Soumya Nayak
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India
| | - Dheemanth Reddy Regati
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.
- Molecular Biophysics Unit, Indian Institute of Science, C V Raman Avenue, Bangalore, Karnataka, 560012, India.
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, GN Ramachandran Rd, Electronics City Phase 1, Electronic City, Bangalore, Karnataka, 560100, India.
| |
Collapse
|
77
|
Raheja Y, Singh V, Kumar N, Agrawal D, Sharma G, Di Falco M, Tsang A, Chadha BS. Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide mono-oxygenases. Appl Microbiol Biotechnol 2024; 108:444. [PMID: 39167166 PMCID: PMC11339117 DOI: 10.1007/s00253-024-13240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports. The LPMO1 (30 kDa) and LPMO2 (47 kDa), cloned and expressed in Pichia pastoris, were catalytically active with (kcat/Km) of 6.6×10-2 mg-1 ml min-1 and 1.8×10-2 mg-1 ml min-1 against Avicel, respectively. The mass spectrometry of hydrolysis products of Avicel/carboxy methyl cellulose (CMC) showed presence of C1/C4 oxidized oligosaccharides indicating them to be Type 3 LPMOs. The 3D structural analysis of LPMO1 and LPMO2 revealed distinct arrangements of conserved catalytic residues at their active site. The developed enzyme cocktails consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant LPMO1/LPMO2 resulted in significantly enhanced saccharification of steam/acid pretreated unwashed rice straw slurry from PRAJ industries (Pune, India). The current work indicates that LPMO1 and LPMO2 are catalytically efficient and have a high degree of thermostability, emphasizing their usefulness in improving benchmark enzyme cocktail performance. KEY POINTS: • Mass spectrometry depicts subtle interactions between LPMOs and auxiliary enzymes. • Cello-oligosaccharides strongly downregulated the LPMO1 expression. • Developed LPMO cocktails showed superior hydrolysis in comparison to CellicCTec3.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | | |
Collapse
|
78
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death. Commun Biol 2024; 7:982. [PMID: 39134806 PMCID: PMC11319651 DOI: 10.1038/s42003-024-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA.
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA.
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
79
|
Dyagala S, Mukherjee N, Halder S, Charaya H, Muzaffar-Ur-Rehman M, Murugesan S, Chakraborty S, Chatterjee T, Saha SK. Presenting a new fluorescent probe, methyl(10-phenylphenanthren-9-yl)sulfane sensitive to the polarity and rigidity of the microenvironment: applications toward microheterogeneous systems. RSC Adv 2024; 14:25865-25888. [PMID: 39156745 PMCID: PMC11328280 DOI: 10.1039/d4ra05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
A molecule, methyl(10-phenylphenanthren-9-yl)sulfane (MPPS), with a straightforward structure, has been synthesized, characterized, and explored as a new fluorescent probe for microheterogeneous systems. The photophysical properties of MPPS have been studied through experimental and theoretical calculations using the range-separated hybrid functional CAM-B3LYP in conjunction with a 6-311++g(d,p) basis set. Theoretical calculations show that the freely rotating phenyl ring forms a 94° dihedral angle with the phenanthrene ring in the ground state. Experimentally found two absorption bands correspond to the n → π* and π → π* transitions supported by the frontier molecular orbital calculations. Two excited singlet states, E-1 and E-2 (the former being more stable than the latter in the gas phase), exist with dihedral angles between the phenyl and phenanthrene rings as 142° and 133°, respectively, in the gas phase. Two emitting states in a condensed medium of varying polarities are supported by the steady-state fluorescence and fluorescence intensity decay data. Emission energies, fluorescence intensities, and excited singlet state lifetimes change with the polarity of the solvents. To support that the free rotation in the molecule is responsible for these changes, the fluorescence properties of another molecule, methyl(10-(o-tolyl)phenanthren-9-yl)sulfane (MTPS), with restricted rotation of the substituted benzene, i.e., o-tolyl ring have been studied. The fast-intensity decay component of MPPS is ascribed to the conformer in the E-1 state. The molecule has proved to be an excellent polarity probe explored to determine the critical micelle concentrations (cmc) values of different surfactants, which agree well with the literature reports. Different regions of binding isotherm (specific, non-cooperative, cooperative, and massive binding) of a gemini surfactant, 12-6-12,2Br- with bovine serum albumin (BSA) have been successfully demonstrated by the steady-state and time-resolved fluorescence and fluorescence anisotropic properties of MPPS. Docking results show that MPPS resides in the hydrophobic pocket of BSA. The fluorescence quenching of BSA by MPPS reveals the location of Trp residues of BSA. Thus, a polarity and molecular rigidity-sensitive fluorescent molecule, MPPS has been presented here that can potentially be used to monitor the changes in the microenvironment of biomolecules in different processes.
Collapse
Affiliation(s)
- Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643 +91-40-66303-680
| | - Nilanjana Mukherjee
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643 +91-40-66303-680
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643 +91-40-66303-680
| | - Heena Charaya
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Pilani Campus Rajasthan 333031 India +91 1596 515716
| | - Mohammed Muzaffar-Ur-Rehman
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Pilani Campus Rajasthan 333031 India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Pilani Campus Rajasthan 333031 India
| | - Shamik Chakraborty
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Pilani Campus Rajasthan 333031 India +91 1596 515716
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643 +91-40-66303-680
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643 +91-40-66303-680
| |
Collapse
|
80
|
Hadfield CM, Walker JK, Arnatt C, McCommis KS. Computational structural prediction and chemical inhibition of the human mitochondrial pyruvate carrier protein heterodimer complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594520. [PMID: 39071381 PMCID: PMC11275797 DOI: 10.1101/2024.05.16.594520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) plays a role in numerous diseases including neurodegeneration, metabolically dependent cancers, and the development of insulin resistance. Several previous studies in genetic mouse models or with existing inhibitors suggest that inhibition of the MPC could be used as a viable therapeutic strategy in these diseases. However, the MPC's structure is unknown, making it difficult to screen for and develop therapeutically viable inhibitors. Currently known MPC inhibitors would make for poor drugs due to their poor pharmacokinetic properties, or in the case of the thiazolidinediones (TZDs), off-target specificity for peroxisome-proliferator activated receptor gamma (PPARγ) leads to unwanted side effects. In this study, we develop several structural models for the MPC heterodimer complex and investigate the chemical interactions required for the binding of these known inhibitors to MPC and PPARγ. Based on these models, the MPC most likely takes on outward-facing (OF) and inward-facing (IF) conformations during pyruvate transport, and inhibitors likely plug the carrier to inhibit pyruvate transport. Although some chemical interactions are similar between MPC and PPARγ binding, there is likely enough difference to reduce PPARγ specificity for future development of novel, more specific MPC inhibitors.
Collapse
Affiliation(s)
- Christy M. Hadfield
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | - John K. Walker
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Chris Arnatt
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Kyle S. McCommis
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
81
|
Helmi N, Hamadi A, Al-Amer OM, Madkhali HA, Oyouni AAA, Alqosaibi AI, Almulhim J, Alghamdi RM, Hakeem IJ, Rafeeq MM. Unveiling the potency of FDA-approved oxidopamine HBr for cervical cancer regulation and replication proteins. Med Oncol 2024; 41:223. [PMID: 39120789 DOI: 10.1007/s12032-024-02462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cervical Cancer remains a women's health concern worldwide and ranks among the most prevalent cancers, particularly in developing countries. Many women are diagnosed with cervical cancer, with a substantial number succumbing to the disease even after the availability of vaccines and drugs. The tumour microenvironment often exhibits immune evasion, including suppression of T-cell activity and altered cytokine, impacting the efficacy of therapeutic interventions and highlighting the need for treatments to modulate the immune response. Despite efforts to promote HPV vaccination and regular screenings, it causes many deaths, underscoring the urgent need for continued research, healthcare access, and rapid drug development or repurposing. In this study, we identified various proteins involved in cervical cancer cell cycle regulation and DNA replication proteins, performed the multitargeted docking with an FDA-approved library, and identified Oxidopamine HBr as a multitargeted drug. Studies extended with pharmacokinetics and compared with the standard values followed by DFT, which supported the compound as a multitargeted inhibitor. Further, the docked complexes were taken for the interaction fingerprints, and it was identified that there are many 9 polar, 5 hydrophobic, 2 aromatic, and 2 basic residues. We extended our studies for 100ns MD Simulation in water, and the computations explored the deviation and fluctuations under 2Å and many intermolecular interactions; the same trajectory files were used for the MM\GBSA studies. All the studies have supported the Oxidopamine HBr as a cervical cancer multitargeted inhibitor-however, experimental studies are needed before human use.
Collapse
Affiliation(s)
- Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hassan A Madkhali
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Amany I Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, 31982, Alahsa, Saudi Arabia
| | - Rashed Mohammed Alghamdi
- Department of Laboratory Medicine, Faculty of Applied College, Al-Baha University, Al-Baha, Saudi Arabia
| | - Israa J Hakeem
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Rabigh, Jeddah, Saudi Arabia.
| |
Collapse
|
82
|
Ramaiah KB, Suresh I, Srinandan CS, Sai Subramanian N, Rayappan JBB. A dual-sensing strategy for the early diagnosis of urinary tract infections via detecting biofilm cellulose using aromatic amino acid-capped Au and Ag nanoparticles. J Mater Chem B 2024; 12:7564-7576. [PMID: 38982956 DOI: 10.1039/d4tb00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Currently, urinary tract infection (UTI) diagnosis focuses on planktonic cell detection rather than biofilm detection, but the facile identification of UPEC bacterial biofilms is crucial in UTI diagnosis as the biofilm formed by bacteria is the causative agent of recurrent and chronic UTIs. Therefore, in this work, we developed a simple, cost-effective, colorimetric, and electrochemical-based strategy for the detection of cellulose in urine. Cellulose, a biofilm matrix component, was detected using tyrosine-capped gold and silver nanoparticles through a visible colorimetric change with a decrease in the absorbance intensity and a decrease in current response in the case of cyclic voltammetry. The sensor displayed a linear detection range of 10-70 mg mL-1 for colorimetry and 10-300 μg mL-1 for cyclic voltammetry with a good selectivity of <2.8% and a recovery rate of 95-100% in real-time sample analysis. Moreover, the binding affinity of cellulose with tyrosine was investigated using molecular docking studies to validate the sensing mechanism. We anticipate that our work will aid clinicians in the implementation of rapid, cost-effective, and definitive diagnosis of UTIs.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - C S Srinandan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
83
|
Saha PP, Gogonea V, Sweet W, Mohan ML, Singh KD, Anderson JT, Mallela D, Witherow C, Kar N, Stenson K, Harford T, Fischbach MA, Brown JM, Karnik SS, Moravec CS, DiDonato JA, Naga Prasad SV, Hazen SL. Gut microbe-generated phenylacetylglutamine is an endogenous allosteric modulator of β2-adrenergic receptors. Nat Commun 2024; 15:6696. [PMID: 39107277 PMCID: PMC11303761 DOI: 10.1038/s41467-024-50855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/16/2024] [Indexed: 08/09/2024] Open
Abstract
Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing β1- versus β2-adrenergic receptors (β1AR and β2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of β2AR, but not β1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on β2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical β2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Allosteric Regulation
- Gastrointestinal Microbiome
- Glutamine/metabolism
- Heart Failure/metabolism
- Heart Failure/microbiology
- HEK293 Cells
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Chemistry Department, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, USA
| | - Wendy Sweet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Maradumane L Mohan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Khuraijam Dhanachandra Singh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - James T Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Deepthi Mallela
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Conner Witherow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Niladri Kar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Kate Stenson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Terri Harford
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Christine S Moravec
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sathyamangla Venkata Naga Prasad
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
84
|
Rosales-López A, López-Castillo GN, Sandoval-Ramírez J, Terán JL, Carrasco-Carballo A. Correlation between Molecular Docking and the Stabilizing Interaction of HOMO-LUMO: Spirostans in CHK1 and CHK2, an In Silico Cancer Approach. Int J Mol Sci 2024; 25:8588. [PMID: 39201276 PMCID: PMC11354435 DOI: 10.3390/ijms25168588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Checkpoint kinases 1 and 2 (CHK1 and CHK2) are enzymes that are involved in the control of DNA damage. At the present time, these enzymes are some of the most important targets in the fight against cancer since their inhibition produces cytotoxic effects in carcinogenic cells. This paper proposes the use of spirostans (Sp), natural compounds, as possible inhibitors of the enzymes CHK1 and CHK2 from an in silico analysis of a database of 155 molecules (S5). Bioinformatics studies of molecular docking were able to discriminate between 13 possible CHK1 inhibitors, 13 CHK2 inhibitors and 1 dual inhibitor for both enzymes. The administration, distribution, metabolism, excretion and toxicity (ADMETx) studies allowed a prediction of the distribution and metabolism of the potential inhibitors in the body, as well as determining the excretion routes and the appropriate administration route. The best inhibition candidates were discriminated by comparing the enzyme-substrate interactions from 2D diagrams and molecular docking. Specific inhibition candidates were obtained, in addition to studying the dual inhibitor candidate and observing their stability in dynamic molecular studies. In addition, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) interactions were analyzed to study the stability of interactions between the selected enzymes and spirostans resulting in the predominant gaps from HOMOCHKs to LUMOSp (Highest Occupied Molecular Orbital of CHKs-Lowest Unoccupied Molecular Orbital of spirostan). In brief, this study presents the selection inhibitors of CHK1 and CHK2 as a potential treatment for cancer using a combination of molecular docking and dynamics, ADMETx predictons, and HOMO-LUMO calculation for selection.
Collapse
Affiliation(s)
- Antonio Rosales-López
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
| | - Guiee N. López-Castillo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Laboratorio de Modificación y Síntesis en Productos Naturales, FCQ, BUAP, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Laboratorio de Modificación y Síntesis en Productos Naturales, FCQ, BUAP, Puebla 72570, Mexico
| | - Joel L. Terán
- Centro de Química, Instituto de Ciencias, BUAP, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Centro de Química, Instituto de Ciencias, BUAP, Puebla 72570, Mexico
- CONAHCYT, LESQO, ICUAP, BUAP, Puebla 72570, Mexico
| |
Collapse
|
85
|
Sajid M, Siddiqui H, Zafar H, Yousuf S, Threadgill MD, Choudhary MI. Thiourea-functionalized aminoglutethimide derivatives as anti-leishmanial agents. Future Med Chem 2024; 16:1485-1497. [PMID: 38953461 PMCID: PMC11370960 DOI: 10.1080/17568919.2024.2359362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: We aim to develop new anti-leishmanial agents against Leishmania major and Leishmania tropica.Materials & methods: A total of 23 thiourea derivatives of (±)-aminoglutethimide were synthesized and evaluated for in vitro activity against promastigotes of L. major and L. tropica.Results & conclusion: The N-benzoyl analogue 7p was found potent (IC50 = 12.7 μM) against L. major and non toxic to normal cells. The docking studies, indicates that these inhibitors may target folate and glycolytic pathways of the parasite. The N-hexyl compound 7v was found strongly active against both species, and lacked cytotoxicity against normal cells, whereas compound 7r, with a 3,5-bis-(tri-fluoro-methyl)phenyl unit, was active against Leishmania, but was cytotoxic in nature. Compound 7v was thus identified as a hit for further studies.
Collapse
Affiliation(s)
- Muhammad Sajid
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Michael D Threadgill
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3FL, UK
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah, 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science & Technology, Universitas Airlangga, Komplek Campus C, Surabaya, 60115, Indonesia
| |
Collapse
|
86
|
Srivastava DK, Navratna V, Tosh DK, Chinn A, Sk MF, Tajkhorshid E, Jacobson KA, Gouaux E. Structure of the human dopamine transporter and mechanisms of inhibition. Nature 2024; 632:672-677. [PMID: 39112705 PMCID: PMC11324517 DOI: 10.1038/s41586-024-07739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/19/2024] [Indexed: 08/16/2024]
Abstract
The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane2 (β-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how β-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.
Collapse
Affiliation(s)
| | - Vikas Navratna
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Chinn
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Md Fulbabu Sk
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
87
|
Baber H, Aghajani A, Gallimore BH, Bethel C, Hyatt JG, King EFB, Price HP, Maciej-Hulme ML, Sari S, Winter A. Galactokinase-like protein from Leishmania donovani: Biochemical and structural characterization of a recombinant protein. Biochimie 2024; 223:31-40. [PMID: 38579894 DOI: 10.1016/j.biochi.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 μM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.
Collapse
Affiliation(s)
- Hasana Baber
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Arega Aghajani
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - B Harold Gallimore
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Cassandra Bethel
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - James G Hyatt
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Elizabeth F B King
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Helen P Price
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Marissa L Maciej-Hulme
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Anja Winter
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
88
|
Reghunandanan K, T P A, Krishnan N, K M D, Prasad R, Nelson-Sathi S, Chandramohanadas R. Search for novel Plasmodium falciparum PfATP4 inhibitors from the MMV Pandemic Response Box through a virtual screening approach. J Biomol Struct Dyn 2024; 42:6200-6211. [PMID: 37424150 DOI: 10.1080/07391102.2023.2232459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Owing to its life cycle involving multiple hosts and species-specific biological complexities, a vaccine against Plasmodium, the causative agent of Malaria remains elusive. This makes chemotherapy the only viable means to address the clinical manifestations and spread of this deadly disease. However, rapid surge in antimalarial resistance poses significant challenges to our efforts to eliminate Malaria since the best drug available to-date; Artemisinin and its combinations are also rapidly losing efficacy. Sodium ATPase (PfATP4) of Plasmodium has been recently explored as a suitable target for new antimalarials such as Cipargamin. Prior studies showed that multiple compounds from the Medicines for Malaria Venture (MMV) chemical libraries were efficient PfATP4 inhibitors. In this context, we undertook a structure- based virtual screening approach combined to Molecular Dynamic (MD) simulations to evaluate whether new molecules with binding affinity towards PfATP4 could be identified from the Pandemic Response Box (PRB), a 400-compound library of small molecules launched in 2019 by MMV. Our analysis identified new molecules from the PRB library that showed affinity for distinct binding sites including the previously known G358 site, several of which are clinically used anti-bacterial (MMV1634383, MMV1634402), antiviral (MMV010036, MMV394033) or antifungal (MMV1634494) agents. Therefore, this study highlights the possibility of exploiting PRB molecules against Malaria through abrogation of PfATP4 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Keerthy Reghunandanan
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Akhila T P
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nandini Krishnan
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Darsana K M
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Roshny Prasad
- DBT-Rajiv Gandhi Centre for Biotechnology, Bioinformatics Laboratory, Thiruvananthapuram, India
| | - Shijulal Nelson-Sathi
- DBT-Rajiv Gandhi Centre for Biotechnology, Bioinformatics Laboratory, Thiruvananthapuram, India
| | - Rajesh Chandramohanadas
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| |
Collapse
|
89
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
90
|
Bachmann V, Schädel P, Westhoff J, Perić M, Schömberg F, Skaltsounis AL, Höppener S, Pantsar T, Fischer D, Vilotijević I, Werz O. Bromo-substituted indirubins for inhibition of protein kinase-mediated signalling involved in inflammatory mediator release in human monocytes. Bioorg Chem 2024; 149:107470. [PMID: 38838619 DOI: 10.1016/j.bioorg.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3β (GSK-3β). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3β inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3β, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3β and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.
Collapse
Affiliation(s)
- Vivien Bachmann
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jan Westhoff
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Milica Perić
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Product Chemistry, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Stephanie Höppener
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, FI-70210 Kuopio, Finland
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
91
|
Kumar GS, Dubey A, Panda SP, Alawi MM, Sindi AA, Azhar EI, Dwivedi VD, Agrawal S. Repurposing of antibacterial compounds for suppression of Mycobacterium tuberculosis dormancy reactivation by targeting resuscitation-promoting factors B. J Biomol Struct Dyn 2024; 42:6850-6862. [PMID: 37551014 DOI: 10.1080/07391102.2023.2245059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/08/2023] [Indexed: 08/09/2023]
Abstract
Tuberculosis infection has always been a global concern for public health, and the mortality rate has increased tremendously every year. The ability of the resuscitation Mycobacterium tuberculosis (Mtb) from the dormant state is one of the major reasons for the epidemic spread of tuberculosis infection, especially latent tuberculosis infection (LTBI). The element that encourages resuscitation, RpfB (resuscitation-promoting factors B), is mostly in charge of bringing Mtb out of slumber. This reason makes RpfB a promising target for developing tuberculosis drugs because of the effects of latent tuberculosis. Therefore, this work was executed using a computational three-level screening of the Selleckhem antibiotics database consisting of 462 antibiotics against the ligand binding region of the RpfB protein, followed by an estimation of binding free energy for ideal identification and confirmation of potential RpfB inhibitor. Subsequently, three antibiotic drug molecules, i.e., Amikacin hydrate (-66.87 kcal/mol), Isepamicin sulphate (-60.8 kcal/mol), and Bekanamycin (-46.89 kcal/mol), were selected on the basis of their binding free energy value for further computational studies in comparison to reference ligand, 4-benzoyl-2-nitrophenyl thiocyanate (NPT7). Based on the intermolecular interaction profiling, 200 ns molecular dynamic simulation (MD), post-simulation analysis and principal component analysis (PCA), the selected antibiotics showed substantial stability with the RpfB protein compared to the NPT7 inhibitor. Conclusively based on the computational results, the preferred drugs can be potent inhibitors of the RpfB protein, which can be further validated using in vivo research and in vitro enzyme inhibition to understand their therapeutic activity against tuberculosis infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Maha M Alawi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anees A Sindi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pulmonary and Critical Care Department, International Medical Center Hospital, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sharad Agrawal
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| |
Collapse
|
92
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
93
|
Goldberg AR, Langwig KE, Brown KL, Marano JM, Rai P, King KM, Sharp AK, Ceci A, Kailing CD, Kailing MJ, Briggs R, Urbano MG, Roby C, Brown AM, Weger-Lucarelli J, Finkielstein CV, Hoyt JR. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun 2024; 15:6210. [PMID: 39075057 PMCID: PMC11286844 DOI: 10.1038/s41467-024-49891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.
Collapse
Affiliation(s)
- Amanda R Goldberg
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Katherine L Brown
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Jeffrey M Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Kelsie M King
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amanda K Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | | | - Macy J Kailing
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Russell Briggs
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Matthew G Urbano
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Clinton Roby
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Data Services, University Libraries, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA.
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA.
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
94
|
Chouhan M, Tiwari PK, Mishra R, Gupta S, Kumar M, Almuqri EA, Ibrahim NA, Basher NS, Chaudhary AA, Dwivedi VD, Verma D, Kumar S. Unearthing phytochemicals as natural inhibitors for pantothenate synthetase in Mycobacterium tuberculosis: A computational approach. Front Pharmacol 2024; 15:1403900. [PMID: 39135797 PMCID: PMC11317409 DOI: 10.3389/fphar.2024.1403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of Mycobacterium tuberculosis (Mtb). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment. Among 239 compounds, the top three (rutin, sesamin, and catechin gallate) were selected, with binding energy values ranging from -11 to -10.3 kcal/mol, and the selected complexes showed RMSD (<3 Å) for 100 ns MD simulation time. Furthermore, molecular mechanics generalized Born surface area (MM/GBSA) binding free energy calculations affirmed the stability of these three selected phytochemicals with binding energy ranges from -82.24 ± 9.35 to -66.83 ± 4.5 kcal/mol. Hence, these identified natural plant-derived compounds as potential inhibitors of pantothenate synthetase could be used to inhibit TB infection in humans.
Collapse
Affiliation(s)
- Mandeep Chouhan
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Prashant Kumar Tiwari
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nasir A. Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
95
|
Tomar S, Subba A, Chatterjee Y, Singhal NK, Pareek A, Singla-Pareek SL. A cystathionine beta-synthase domain containing protein, OsCBSCBS4, interacts with OsSnRK1A and OsPKG and functions in abiotic stress tolerance in rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39073079 DOI: 10.1111/pce.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yajnaseni Chatterjee
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
96
|
Stasiak A, Honkisz-Orzechowska E, Gajda Z, Wagner W, Popiołek-Barczyk K, Kuder KJ, Latacz G, Juszczak M, Woźniak K, Karcz T, Szczepańska K, Jóźwiak-Bębenista M, Kieć-Kononowicz K, Łażewska D. AR71, Histamine H 3 Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int J Mol Sci 2024; 25:8035. [PMID: 39125607 PMCID: PMC11311998 DOI: 10.3390/ijms25158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.
Collapse
Affiliation(s)
- Anna Stasiak
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Zbigniew Gajda
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Waldemar Wagner
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology of Polish Academy of Sciences, 106 Lodowa Str., 93-232 Łódź, Poland
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| |
Collapse
|
97
|
Lombardo L, Mirabile S, Gitto R, Cosentino G, Alcaro S, Dichiara M, Marrazzo A, Amata E, Ortuso F, De Luca L. Exploring Structural Requirements for Sigma-1 Receptor Linear Ligands: Experimental and Computational Approaches. J Chem Inf Model 2024; 64:5701-5711. [PMID: 38940754 DOI: 10.1021/acs.jcim.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sigma-1 receptor (S1R) is involved in a large array of biological functions due to its ability to interact with various proteins and ion channels. Crystal structures of human S1R revealed the trimeric organization for which each protomer comprises the ligand binding pocket. This study applied a multistep computational procedure to develop a pharmacophore model obtained from molecular dynamics simulations of available cocrystal structures of well-known S1R ligands. Apart from the well-established positive ionizable and hydrophobic features, the obtained model included an additional specific hydrophobic feature and different excluded volumes, thus increasing the selectivity of the model as well as a more detailed determination of the distance between two essential features. The obtained pharmacophore model passed the validation test by receiver operating characteristic (ROC) curve analysis of active and inactive S1R ligands. Finally, the pharmacophoric performance was experimentally investigated through the synthesis and binding assay of new 4-phenylpiperazine-based compounds. The most active new ligand 2-(3-methyl-1-piperidyl)-1-(4-phenylpiperazin-1-yl)ethanone (3) showed an S1R affinity close to the reference compound haloperidol (Ki values of 4.8 and 2.6 nM, respectively). The proposed pharmacophore model can represent a useful tool to design and discover new potent S1R ligands.
Collapse
Affiliation(s)
- Lisa Lombardo
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Salvatore Mirabile
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Rosaria Gitto
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| | - Giuseppe Cosentino
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Germaneto, I-88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", I-88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. Condoleo, I-88055 Belcastro, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Francesco Ortuso
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Germaneto, I-88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", I-88100 Catanzaro, Italy
| | - Laura De Luca
- CHIBIOFARAM Department University of Messina, Viale F. d'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
98
|
Tripathi V, Khare A, Shukla D, Bharadwaj S, Kirtipal N, Ranjan V. Genomic and computational-aided integrative drug repositioning strategy for EGFR and ROS1 mutated NSCLC. Int Immunopharmacol 2024; 139:112682. [PMID: 39029228 DOI: 10.1016/j.intimp.2024.112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Non-small cell lung cancer (NSCLC) has been marked as the major cause of death in lung cancer patients. Due to tumor heterogeneity, mutation burden, and emerging resistance against the available therapies in NSCLC, it has been posing potential challenges in the therapy development. Hence, identification of cancer-driving mutations and their effective inhibition have been advocated as a potential approach in NSCLC treatment. Thereof, this study aims to employ the genomic and computational-aided integrative drug repositioning strategy to identify the potential mutations in the selected molecular targets and repurpose FDA-approved drugs against them. Accordingly, molecular targets and their mutations, i.e., EGFR (V843L, L858R, L861Q, and P1019L) and ROS1 (G1969E, F2046Y, Y2092C, and V2144I), were identified based on TCGA dataset analysis. Following, virtual screening and redocking analysis, Elbasvir, Ledipasvir, and Lomitapide drugs for EGFR mutants (>-10.8 kcal/mol) while Indinavir, Ledipasvir, Lomitapide, Monteleukast, and Isavuconazonium for ROS1 mutants (>-8.8 kcal/mol) were found as putative inhibitors. Furthermore, classical molecular dynamics simulation and endpoint binding energy calculation support the considerable stability of the selected docked complexes aided by substantial hydrogen bonding and hydrophobic interactions in comparison to the respective control complexes. Conclusively, the repositioned FDA-approved drugs might be beneficial alone or in synergy to overcome acquired resistance to EGFR and ROS1-positive lung cancers.
Collapse
Affiliation(s)
- Varsha Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Ayodhya, Uttar Pradesh, India
| | - Aishwarya Khare
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Ayodhya, Uttar Pradesh, India
| | - Divyanshi Shukla
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India.
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Vandana Ranjan
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Ayodhya, Uttar Pradesh, India.
| |
Collapse
|
99
|
Daude RB, Bhadane R, Shah JS. Alpha-cyperone mitigates renal ischemic injury via modulation of HDAC-2 expression in diabetes: Insights from molecular dynamics simulations and experimental evaluation. Eur J Pharmacol 2024; 975:176643. [PMID: 38754539 DOI: 10.1016/j.ejphar.2024.176643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Chronic diabetes mellitus is reported to be associated with acute kidney injury. The enzyme histone deacetylase-2 (HDAC-2) was found to be upregulated in diabetes-related kidney damage. Alpha-cyperone (α-CYP) is one of the active ingredients of Cyperus rotundus that possesses antioxidant and anti-inflammatory effects. We evaluated the effect of α-CYP on improving oxidative stress and tissue inflammation following renal ischemia/reperfusion (I/R) injury in diabetic rats. The effect of α-CYP on HDAC-2 expression in renal homogenates and in the NRK-52 E cell line was evaluated following renal I/R injury and high glucose conditions, respectively. Molecular docking was used to investigate the binding of α-CYP with the HDAC-2 active site. Both renal function and oxidative stress were shown to be impaired in diabetic rats due to renal I/R injury. Significant improvements in kidney/body weight ratio, creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and uric acid were observed in diabetic rats treated with α-CYP (50 mg/kg) two weeks prior to renal I/R injury. α-CYP treatment also improved histological alterations in renal tissue and lowered levels of malondialdehyde, myeloperoxidase, and hydroxyproline. Treatment with α-CYP suppressed the increased HDAC-2 expression in the renal tissue of diabetic rats and in the NRK-52 E cell line. The molecular docking reveals that α-CYP binds to HDAC-2 with good affinity, ascertained by molecular dynamics simulations and binding free energy analysis. Overall, our data suggest that α-CYP can effectively prevent renal injury in diabetic rats by regulating oxidative stress, tissue inflammation, fibrosis and inhibiting HDAC-2 activity.
Collapse
Affiliation(s)
- Rakesh B Daude
- Department of Pharmacy, Government Polytechnic, 425001, Jalgaon, Maharashtra, India
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520, Turku, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520, Turku, Finland; Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, FI-20520, Turku, Finland
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481, Ahmedabad, Gujrat, India.
| |
Collapse
|
100
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathway for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600393. [PMID: 38979151 PMCID: PMC11230278 DOI: 10.1101/2024.06.24.600393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
|