51
|
Bizeau ME, Thresher JS, Pagliassotti MJ. A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. Am J Physiol Endocrinol Metab 2001; 280:E695-702. [PMID: 11287351 DOI: 10.1152/ajpendo.2001.280.5.e695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-sucrose (SU) diet increases gluconeogenesis (GNG) in the liver. The present study was conducted to determine the contribution of periportal (PP) and perivenous (PV) cell populations to this SU-induced increase in GNG. Male Sprague-Dawley rats were fed an SU (68% sucrose) or starch (ST, 68% starch) diet for 1 wk, and hepatocytes were isolated from the PP or PV region of the liver acinus. Hepatocytes were incubated for 1 h in the presence of various gluconeogenic substrates, and glucose release into the medium was used to estimate GNG. When incubated in the presence of 5 mM lactate, which enters GNG at the level of pyruvate, glucose release (nmol x h(-1) x mg(-1)) was significantly increased by the SU diet in both PP (84.8 +/- 3.4 vs. 70.4 +/- 2.6) and PV (64.3 +/- 2.5 vs. 38.2 +/- 2.1) cells. Addition of palmitate (0.5 mM) increased glucose release from lactate in PP cells by 11.6 +/- 0.5 and 20.6 +/- 1.5% and in PV cells by 11.0 +/- 4.4 and 51.1 +/- 9.1% in SU and ST, respectively. When cells were incubated with 5 mM dihydroxyacetone (DHA), which enters GNG at the triosephosphate level, glucose release was significantly increased by the SU diet in both cell types. In contrast, glucose release from fructose (0.5 mM) was significantly increased by the SU diet in PV cells only. These changes in glucose release were accompanied by significant increases in the maximal specific activities of glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in both PP and PV cells. These data suggest that the SU diet influences GNG in both PP and PV cell populations. It appears that SU feeding produces changes in GNG via alterations in at least two critical enzymes, G-6-Pase and PEPCK.
Collapse
Affiliation(s)
- M E Bizeau
- Exercise Science Research Institute, Arizona State University, Tempe, Arizona, USA.
| | | | | |
Collapse
|
52
|
An J, Li Y, van De Werve G, Newgard CB. Overexpression of the P46 (T1) translocase component of the glucose-6-phosphatase complex in hepatocytes impairs glycogen accumulation via hydrolysis of glucose 1-phosphate. J Biol Chem 2001; 276:10722-9. [PMID: 11148207 DOI: 10.1074/jbc.m009525200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final step of gluconeogenesis and glycogenolysis is catalyzed by the glucose-6-phosphatase (Glc-6-Pase) enzyme complex, located in the endoplasmic reticulum. The complex consists of a 36-kDa catalytic subunit (P36), a 46-kDa glucose 6-phosphate translocase (P46), and putative glucose and inorganic phosphate transporters. Mutations in the genes encoding P36 or P46 have been linked to glycogen storage diseases type Ia and type Ib, respectively. However, the relative roles of these two proteins in control of the rate of glucose 6-phosphate hydrolysis have not been defined. To gain insight into this area, we have constructed a recombinant adenovirus containing the cDNA encoding human P46 (AdCMV-P46) and treated rat hepatocytes with this virus, or a virus encoding P36 (AdCMV-P36), or the combination of both viruses, resulting in large and equivalent increases in expression of the transgenes within 8-24 h of viral treatment. The overexpressed P46 protein was appropriately targeted to hepatocyte microsomes and caused a 58% increase in glucose 6-phosphate hydrolysis in nondetergent-treated (intact) microsomal preparations relative to controls, whereas overexpression of P36 caused a 3.6-fold increase. Overexpression of P46 caused a 50% inhibition of glycogen accumulation in hepatocytes from fasted rats incubated at 25 mm glucose relative to cells treated with a control virus (AdCMV-betaGAL). Furthermore, in hepatocytes from fed rats cultured at 25 mm glucose and then exposed to 15 mm glucose, AdCMV-P46 treatment activated glycogenolysis, as indicated by a 50% reduction in glycogen content relative to AdCMV-betaGAL-treated controls. In contrast, overexpression of P46 had only small effects on glycolysis, whereas overexpression of P36 had large effects on both glycogen metabolism and glycolysis, even in the presence of co-overexpressed glucokinase. Finally, P46 overexpression enhanced glucose 1-phosphate but not fructose 6-phosphate hydrolysis in intact microsomes, providing a mechanism by which P46 overexpression may exert its preferential effects on glycogen metabolism.
Collapse
Affiliation(s)
- J An
- Departments of Biochemistry and Internal Medicine and Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
53
|
Massillon D. Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol. J Biol Chem 2001; 276:4055-62. [PMID: 11087741 DOI: 10.1074/jbc.m007939200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how glucose regulates the expression of the glucose-6-phosphatase gene, the effect of glucose was studied in primary cultures of rat hepatocytes. Glucose-6-phosphatase mRNA levels increased about 10-fold when hepatocytes were incubated with 20 mm glucose. The rate of transcription of the glucose-6-phosphatase gene increased about 3-fold in hepatocytes incubated with glucose. The half-life of glucose-6-phosphatase mRNA was estimated to be 90 min in the absence of glucose and 3 h in its presence. Inhibition of the oxidative and the nonoxidative branches of the pentose phosphate pathway blocked the stimulation of glucose-6-phosphatase expression by glucose but not by xylitol or carbohydrates that enter the glycolytic/gluconeogenic pathways at the level of the triose phosphates. These results indicate that (i) the glucose induction of the mRNA for the catalytic unit of glucose-6-phosphatase occurs by transcriptional and post-transcriptional mechanisms and that (ii) xylitol and glucose increase the expression of this gene through different signaling pathways.
Collapse
Affiliation(s)
- D Massillon
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
54
|
Kishnani PS, Faulkner E, VanCamp S, Jackson M, Brown T, Boney A, Koeberl D, Chen YT. Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet Pathol 2001; 38:83-91. [PMID: 11199168 DOI: 10.1354/vp.38-1-83] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A canine model of glycogen storage disease Ia (GSD Ia), similar clinically, biochemically, and pathologically to the human disease, was established by crossbreeding Maltese and Beagle dogs carrying a mutated, defective glucose-6-phosphatase (G-6-Pase) gene. Ten puppies were born in three litters from these crossbreedings. Six were homozygous for the previously described M121I GSD Ia mutation. Of these six affecteds, two were stillborn, and one died at 2, 32, and 60 days of life, respectively (puppies A, B, C, D, E), while one is alive at age 15 months (puppy F). Affected puppies exhibited tremors, weakness, and neurologic signs when hypoglycemic. They had postnatal growth retardation and progressive hepatomegaly. Biochemical abnormalities included fasting hypoglycemia, hyperlactacidemia, hypercholesterolemia, hypertriglyceridemia, and hyperuricemia. Microscopic examination of tissues from affected puppies showed diffuse, marked hepatocellular vacuolation, with distended clear hepatocytes and central to marginally located rounded nuclei. In the kidneys of puppies D and E, there was segmental glomerular sclerosis and vacuolation of proximal convoluted tubular epithelium. Biochemical analysis revealed increased liver glycogen content and isolated markedly reduced G-6-Pase enzyme activity in liver and kidney. The canine G-6-Pase gene was characterized by screening a canine genomic library. It spans approximately 11.8 kb and consists of five exons with >90% amino acid sequence homology to the derived human sequence. The first 1.5 kb of the 5' region was sequenced and contains several putative response element motifs homologous to the human 5' region. Establishment of this canine colony of GSD Ia that closely resembles human disease and isolation of the canine genomic gene provides an excellent model for studying pathophysiology and long-term complications and an opportunity to develop novel therapeutic approaches such as drug and gene therapy.
Collapse
Affiliation(s)
- P S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Wu C, Okar DA, Newgard CB, Lange AJ. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J Clin Invest 2001; 107:91-8. [PMID: 11134184 PMCID: PMC198549 DOI: 10.1172/jci11103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is an important regulatory enzyme of glucose metabolism. By controlling the level of fructose-2,6-bisphosphate, an allosteric activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase regulates hepatic glucose output. We studied the effects of adenovirus-mediated overexpression of this enzyme on hepatic glucose metabolism in normal or diabetic mice. These animals were treated with virus encoding either wild-type or bisphosphatase activity-deficient 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. Seven days after virus injection, hepatic fructose-2,6-bisphosphate levels increased significantly in both normal and diabetic mice, with larger increases observed in animals with overexpression of the mutant enzyme. Blood glucose levels in normal mice overexpressing either enzyme were lowered, accompanied by increased plasma lactate, triglycerides, and FFAs. Blood glucose levels were markedly reduced in diabetic mice overexpressing the wild-type enzyme, and still more so in mice overexpressing the mutant form of the enzyme. The lower blood glucose levels in diabetic mice were accompanied by partially normalized plasma triglycerides and FFAs, increased plasma lactate, and increased liver glycogen levels, relative to diabetic mice treated with a control adenovirus. Our findings underscore the critical role played by hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in control of fuel homeostasis and suggest that this enzyme may be considered as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- C Wu
- Department of Biochemistry, Molecular Biology and Biophysics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
56
|
Mason TM, Gupta N, Goh T, El-Bahrani B, Zannis J, van de Werve G, Giacca A. Chronic intraperitoneal insulin delivery, as compared with subcutaneous delivery, improves hepatic glucose metabolism in streptozotocin diabetic rats. Metabolism 2000; 49:1411-6. [PMID: 11092503 DOI: 10.1053/meta.2000.17731] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that chronic insulin treatment by the intraperitoneal route normalizes the elevated glucose production (GP) in streptozotocin (STZ) diabetic rats, while insulin delivered by the subcutaneous route only partially normalizes GP. To investigate the biochemical mechanism of the effect of chronic insulin delivery by either route on hepatic glucose metabolism, we measured the hepatic activity of glucose 6-phosphatase (G6Pase) and glucokinase (GK). Four groups of rats were used: (1) nondiabetic rats (N, n = 7), (2) untreated STZ diabetic rats (D, n = 8), (3) diabetic rats treated intraperitoneally (IP, n = 6), or (4) subcutaneously (SC, n = 8) (both 3 U of insulin/d). Glucose levels, higher in D, were normalized by insulin treatment regardless of route. Peripheral insulin levels were lowest in D and highest in SC as expected (N, 162 +/- 18 pmol/L; D, 66 +/- 12; IP, 360 +/- 96; SC, 798 +/- 198). STZ diabetes resulted in a 10-fold decrease in GK (P < .001), and a 2-fold increase in G6Pase activity (P < .01). Both intraperitoneal and subcutaneous treatments normalized G6Pase activity. In contrast, with subcutaneous but not intraperitoneal treatment, GK activity was still 35% less than normal (SC v N, P < .05). Glucose 6-phosphate (G6P) levels did not differ among the groups. In summary: (1) the increase in GP in D reflected increased activity of G6Pase and reduced activity of GK, (2) the partial suppression of GP with subcutaneous insulin treatment reflected correction of increased G6Pase activity, but only partial correction of low GK activity, and (3) the normalization of GP with intraperitoneal insulin treatment reflected correction of both increased G6Pase activity and low GK activity. Our current studies indicate that chronic intraperitoneal insulin treatment is superior to subcutaneous treatment with regard to hepatic glucose metabolism.
Collapse
Affiliation(s)
- T M Mason
- Department of Physiology and Medicine, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
57
|
Nagl S, Mayer WE, Klein J. Isolation and sequencing of cDNA clones coding for the catalytic unit of glucose-6-phosphatase from two haplochromine cichlid fishes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:25-9. [PMID: 10565541 DOI: 10.3109/10425179909033932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complementary DNA clones coding for the catalytic unit of the enzyme glucose-6-phosphatase (G6Pase) were obtained from Haplochromis nubilus and Haplochromis xenognathus, two cichlid fish species from Lake Victoria. The translated sequence of these two cDNAs identifies a polypeptide consisting of 352 amino acid residues and showing a 54.4% similarity to the human form of G6Pase. The amino acid sequences of the two fish species are identical. The comparison of the fish amino acid sequence with the corresponding sequences of rat, mouse, and human G6Pase revealed that the amino acid residues, which are involved in G6Pase catalysis in humans, are also conserved in fish G6Pase. Northern blot analysis showed that G6Pase is expressed at the same level in 6- and 10-day-old fish. A three base pair insertion/deletion polymorphism was found in the 3'-untranslated region of the fish G6Pase gene. The polymorphism will be a useful marker in a phylogenetic study of Lake Victoria cichlids.
Collapse
Affiliation(s)
- S Nagl
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany.
| | | | | |
Collapse
|
58
|
Maitra SR, Wang S, Brathwaite CE, El-Maghrabi MR. Alterations in glucose-6-phosphatase gene expression in sepsis. THE JOURNAL OF TRAUMA 2000; 49:38-42. [PMID: 10912855 DOI: 10.1097/00005373-200007000-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The influence of sepsis on the expression and activity of hepatic glucose-6-phosphatase (Glu-6-Pase) was examined during the early hyperglycemic phase and the later hypoglycemic phase. METHODS Sepsis was induced in anesthetized, fasted rats by cecal ligation and puncture, and liver samples were taken at 0, 0.5, 1, 1.5, and 20 hours after cecal ligation and puncture. RESULTS The mRNA abundance of hepatic Glu-6-Pase increased fourfold at 0.5 hours over healthy control values, two-fold after 1 hour, and returned to normal after 1.5 hours. This finding was followed by a corresponding increase in Glu-6-Pase activity and was coincident with increased plasma glucose levels and decreased liver glucose-6-phosphate (Glu-6-P) at 0.5 and 1 hours. Plasma insulin and glucagon levels remained unchanged during this period, whereas corticosterone levels increased 2.5-fold over control values. At 20 hours cecal ligation and puncture, plasma glucose levels returned to normal, coincident with a 90% reduction in Glu-6-Pase mRNA abundance. Glu-6-Pase activity and Glu-6-P concentration returned to normal levels, while insulin, glucagon, and corticosterone levels increased significantly, i.e., 40-fold, 6.5-fold, and 6-fold, respectively. CONCLUSION The initial rise and subsequent decline in blood glucose correlate very well with a corticosterone-dependent induction of hepatic Glu-6-Pase, mRNA, and protein, followed by an insulin-dependent suppression of its expression.
Collapse
Affiliation(s)
- S R Maitra
- Department of Emergency Medicine, University Hospital and Medical Center, State University of New York, Stony Brook 11794-7400, USA
| | | | | | | |
Collapse
|
59
|
Maitra SR, Wang S, El-Maghrabi MR, Henry MC. Regulation of liver and kidney glucose-6-phosphatase gene expression in hemorrhage and resuscitation. Acad Emerg Med 2000; 7:731-8. [PMID: 10917320 DOI: 10.1111/j.1553-2712.2000.tb02259.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED The authors have recently demonstrated that increased gene expression of glucose-6-phosphatase (Glu-6-Pase) in hemorrhagic hypotension (HH) and following lactated Ringer's resuscitation (LR) is associated with a decrease in insulin and an increase in corticosterone concentrations. OBJECTIVE To evaluate the in-vivo role of hormones the authors used insulin (IN), phentolamine and propranolol (PP) as an adrenergic blocker, and cyclic somatostatin (CS) as a glucagon blocker to prevent the induction of Glu-6-Pase gene expression in liver and kidney following HH and LR. METHODS Hemorrhage was induced in fasted anesthetized rats, and the reduction of blood pressure to 40 mm Hg for a duration of 30 minutes was accomplished by withdrawal or infusion of shed blood. The resuscitated group underwent hemorrhage followed by fluid resuscitation with lactated Ringer's solution. RESULTS Neither PP nor CS treatment could block the induction of Glu-6-Pase messenger ribonucleic acid (mRNA) following either HH or LR. However, the administration of IN significantly prevented the increase of Glu-6-Pase mRNA level and activity in both liver and kidney following HH and LR. This was associated with a normalization of plasma glucose, corticosterone, and glucagon levels and glucose-6-phosphate concentrations in liver and kidney toward prehemorrhage levels. CONCLUSIONS These results indicate that in-vivo treatment with insulin during hemorrhagic hypotension and resuscitation is capable of preventing the increase in Glu-6-Pase gene expression in liver and kidney responsible for the observed hyperglycemia.
Collapse
Affiliation(s)
- S R Maitra
- Department of Emergency Medicine, University Hospital and Medical Center, State University of New York, Stony Brook 11794-7400, USA
| | | | | | | |
Collapse
|
60
|
Li Y, van de Werve G. Distinct hormone stimulation and counteraction by insulin of the expression of the two components of glucose 6-phosphatase in HepG2 cells. Biochem Biophys Res Commun 2000; 272:41-4. [PMID: 10872801 DOI: 10.1006/bbrc.2000.2734] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found recently (J. Biol. Chem. 274, 33866-33869, 1999) that the expression of the catalytic subunit (p36) and putative glucose 6-phosphate translocase (p46) of the liver glucose 6-phosphatase system was stimulated by cyclic AMP and glucose and repressed by insulin. We now further show in HepG2 cells that whereas insulin (0.01-10 nM) suppressed p36 mRNA, it only reduced p46 mRNA by half at 1 microM. Cyclic AMP (0.01-100 microM) caused a 2.7-fold increase in p36 mRNA but barely increased p46 mRNA. In contrast, dexamethasone (0.1-100 nM) increased both p36 and p46 mRNA by more than 3-fold. The effects of cyclic AMP and dexamethasone were counteracted by 1 microM insulin. The endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1-100 nM) increased p36 mRNA by 2-fold but not p46 mRNA. It thus appears that the hormonal changes which affect p36 alone concur with known modifications in glucose production; those that affect both p36 and p46 are rather consistent with glucose storage.
Collapse
Affiliation(s)
- Y Li
- Department of Nutrition and Biochemistry, Centre de Recherche du CHUM, University of Montreal, Quebec, Canada
| | | |
Collapse
|
61
|
Streeper RS, Svitek CA, Goldman JK, O'Brien RM. Differential role of hepatocyte nuclear factor-1 in the regulation of glucose-6-phosphatase catalytic subunit gene transcription by cAMP in liver- and kidney-derived cell lines. J Biol Chem 2000; 275:12108-18. [PMID: 10766845 DOI: 10.1074/jbc.275.16.12108] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In liver and kidney, the terminal step in gluconeogenesis is catalyzed by glucose-6-phosphatase. To examine the effect of the cAMP signal transduction pathway on transcription of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase), G6Pase-chloramphenicol acetyltransferase (CAT) fusion genes were transiently transfected into either the liver-derived HepG2 or kidney-derived LLC-PK cell line. Co-transfection of an expression vector encoding the catalytic subunit of cAMP-dependent protein kinase (PKA) markedly stimulated G6Pase-CAT fusion gene expression, and mutational analysis of the G6Pase promoter revealed that multiple regions are required for this PKA response in both the HepG2 and LLC-PK cell lines. A sequence in the G6Pase promoter that resembles a cAMP response element is required for the full PKA response in both HepG2 and LLC-PK cells. However, in LLC-PK cells, but not in HepG2 cells, a hepatocyte nuclear factor-1 (HNF-1) binding site was critical for the full induction of G6Pase-CAT expression by PKA. Changing this HNF-1 motif to that for the yeast transcription factor GAL4 reduces the PKA response in LLC-PK cells to the same degree as deleting the HNF-1 site. However, co-transfection of this mutated construct with chimeric proteins comprising the GAL4-DNA binding domain ligated to the coding sequence for HNF-1alpha, HNF-1beta, HNF-3, or HNF-4 completely restored the PKA response. Thus, we hypothesize that, in LLC-PK cells, HNF-1 is acting as an accessory factor to enhance PKA signaling through the cAMP response element by altering G6Pase promoter conformation or accessibility rather than specifically affecting some component of the PKA signal transduction pathway.
Collapse
Affiliation(s)
- R S Streeper
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
62
|
van de Werve G, Lange A, Newgard C, Méchin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1533-49. [PMID: 10712583 DOI: 10.1046/j.1432-1327.2000.01160.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.
Collapse
Affiliation(s)
- G van de Werve
- Laboratoire d'Endocrinologie Métabolique, Centre de Recherche du CHUM,Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
63
|
Simon C, Herling AW, Preibisch G, Burger HJ. Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys 2000; 373:418-28. [PMID: 10620367 DOI: 10.1006/abbi.1999.1560] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.
Collapse
Affiliation(s)
- C Simon
- Hoechst Marion Roussel Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | | | | | | |
Collapse
|
64
|
Li Y, Méchin MC, van de Werve G. Diabetes affects similarly the catalytic subunit and putative glucose-6-phosphate translocase of glucose-6-phosphatase. J Biol Chem 1999; 274:33866-8. [PMID: 10567346 DOI: 10.1074/jbc.274.48.33866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.
Collapse
Affiliation(s)
- Y Li
- Laboratoire d'Endocrinologie Métabolique, Department of Nutrition Groupe de Recherche en Transport Membranaire, Centre de Recherche du CHUM, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
65
|
Xie W, Li Y, Méchin MC, Van De Werve G. Up-regulation of liver glucose-6-phosphatase in rats fed with a P(i)-deficient diet. Biochem J 1999; 343 Pt 2:393-6. [PMID: 10510305 PMCID: PMC1220566 DOI: 10.1042/bj3430393] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because P(i) deprivation markedly affects the Na/P(i) co-transporter in kidney and has been related to insulin resistance and glucose intolerance, the effect of a P(i)-deficient diet on the liver microsomal glucose-6-phosphatase (G6Pase) system was investigated. Rats were fed with a control diet (+P(i)) or a diet deficient in phosphate (-P(i)) for 2 days and killed on the morning of the third day, after an overnight fast (fasted) or not (fed). Kinetic parameters of P(i) transport (t((1/2)) and equilibration) into liver microsomes were not changed by the different nutritional conditions. In contrast, it was found that G6Pase activity was significantly increased in the (-P(i)) groups. This was due to an increase in the V(max) of the enzyme, without change in the K(m) for G6P. There was no correlation between liver microsomal glycogen content and G6Pase activity, but both protein abundance and mRNA of liver 36 kDa catalytic subunit of G6Pase (p36) were increased. The mRNA of the putative G6P translocase protein (p46) was changed in parallel with that of the catalytic subunit, but the p46 immunoreactive protein was unchanged. These findings indicate that dietary P(i) deficiency causes increased G6Pase activity by up-regulation of the expression of the 36 kDa-catalytic-subunit gene.
Collapse
Affiliation(s)
- W Xie
- Department of Nutrition, Centre de Recherche du CHUM, University of Montreal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
66
|
Aiston S, Trinh KY, Lange AJ, Newgard CB, Agius L. Glucose-6-phosphatase overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation. Evidence against feedback inhibition of glucokinase. J Biol Chem 1999; 274:24559-66. [PMID: 10455119 DOI: 10.1074/jbc.274.35.24559] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In hepatocytes glucokinase (GK) and glucose-6-phosphatase (Glc-6-Pase)(1) have converse effects on glucose 6-phosphate (and fructose 6-phosphate) levels. To establish whether hexose 6-phosphate regulates GK binding to its regulatory protein, we determined the effects of Glc-6-Pase overexpression on glucose metabolism and GK compartmentation. Glc-6-Pase overexpression (4-fold) decreased glucose 6-phosphate levels by 50% and inhibited glycogen synthesis and glycolysis with a greater negative control coefficient on glycogen synthesis than on glycolysis, but it did not affect the response coefficients of glycogen synthesis or glycolysis to glucose, and it did not increase the control coefficient of GK or cause dissociation of GK from its regulatory protein, indicating that in hepatocytes fructose 6-phosphate does not regulate GK translocation by feedback inhibition. GK overexpression increases glycolysis and glycogen synthesis with a greater control coefficient on glycogen synthesis than on glycolysis. On the basis of the similar relative control coefficients of GK and Glc-6-Pase on glycogen synthesis compared with glycolysis, and the lack of effect of Glc-6-Pase overexpression on GK translocation or the control coefficient of GK, it is concluded that the main regulatory function of Glc-6-Pase is to buffer the glucose 6-phosphate concentration. This is consistent with recent findings that hyperglycemia stimulates Glc-6-Pase gene transcription.
Collapse
Affiliation(s)
- S Aiston
- Department of Diabetes, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|
67
|
Hemrika W, Renirie R, Macedo-Ribeiro S, Messerschmidt A, Wever R. Heterologous expression of the vanadium-containing chloroperoxidase from Curvularia inaequalis in Saccharomyces cerevisiae and site-directed mutagenesis of the active site residues His(496), Lys(353), Arg(360), and Arg(490). J Biol Chem 1999; 274:23820-7. [PMID: 10446144 DOI: 10.1074/jbc.274.34.23820] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis is heterologously expressed to high levels in the yeast Saccharomyces cerevisiae. Characterization of the recombinant enzyme reveals that this behaves very similar to the native chloroperoxidase. Site-directed mutagenesis is performed on four highly conserved active site residues to examine their role in catalysis. When the vanadate-binding residue His(496) is changed into an alanine, the mutant enzyme loses the ability to bind vanadate covalently resulting in an inactive enzyme. The negative charges on the vanadate oxygens are compensated by hydrogen bonds with the residues Arg(360), Arg(490), and Lys(353). When these residues are changed into alanines the mutant enzymes lose the ability to effectively oxidize chloride but can still function as bromoperoxidases. A general mechanism for haloperoxidase catalysis is proposed that also correlates the kinetic properties of the mutants with the charge and the hydrogen-bonding network in the vanadate-binding site.
Collapse
Affiliation(s)
- W Hemrika
- E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
68
|
Abstract
Glucose is an essential nutrient for the human body. It is the major energy source for many cells, which depend on the bloodstream for a steady supply. Blood glucose levels, therefore, are carefully maintained. The liver plays a central role in this process by balancing the uptake and storage of glucose via glycogenesis and the release of glucose via glycogenolysis and gluconeogenesis. The several substrate cycles in the major metabolic pathways of the liver play key roles in the regulation of glucose production. In this review, we focus on the short- and long-term regulation glucose-6-phosphatase and its substrate cycle counter-part, glucokinase. The substrate cycle enzyme glucose-6-phosphatase catalyzes the terminal step in both the gluconeogenic and glycogenolytic pathways and is opposed by the glycolytic enzyme glucokinase. In addition, we include the regulation of GLUT 2, which facilitates the final step in the transport of glucose out of the liver and into the bloodstream.
Collapse
Affiliation(s)
- R C Nordlie
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58202, USA.
| | | | | |
Collapse
|
69
|
Davies GF, Khandelwal RL, Roesler WJ. Troglitazone inhibits expression of the phosphoenolpyruvate carboxykinase gene by an insulin-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:122-31. [PMID: 10446394 DOI: 10.1016/s0167-4889(99)00080-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.
Collapse
Affiliation(s)
- G F Davies
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon Sask., S7N 5E5, Canada
| | | | | |
Collapse
|
70
|
Abstract
Glycogen storage disease type 1 (GSD-1), also known as von Gierke disease, is caused by a deficiency in the activity of the enzyme glucose-6-phosphatase (G6Pase). It is an autosomal recessive disorder characterized by hypoglycemia, hepatomegaly, kidney enlargement, growth retardation, lactic acidemia, hyperlipidemia and hyperuricemia. The disease presents with both clinical and biochemical heterogeneity consistent with the existence of two major subgroups, GSD-1a and GSD-1b, which have been confirmed at the molecular genetic level. GSD-1a, the most prevalent form, is caused by mutations in the G6Pase gene that abolish or greatly reduce enzymatic activity. The gene maps to chromosome 17q21 and encodes a microsomal transmembrane protein. Animal models of GSD-1a exist and are being exploited to delineate the disease more precisely. It has been proposed that GSD-1b is caused by a defect in the microsomal glucose-6-phosphate transporter. The gene responsible for GSD-1b has been mapped to chromosome 11q23 and a cDNA encoding a microsomal transmembrane protein has been identified. The function of this putative GSD-1b protein remains to be determined. These recent developments, along with newly characterized animal models of GSD-1a, are increasing our understanding of the interrelationship between the components of the G6Pase complex and type 1 glycogen storage diseases.
Collapse
|
71
|
Trinh KY, O'Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem 1998; 273:31615-20. [PMID: 9813078 DOI: 10.1074/jbc.273.47.31615] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminal step in hepatic gluconeogenesis is catalyzed by glucose-6-phosphatase, an enzyme activity residing in the endoplasmic reticulum and consisting of a catalytic subunit (glucose-6-phosphatase (G6Pase)) and putative accessory transport proteins. We show that Zucker diabetic fatty rats (fa/fa), which are known to exhibit impaired suppression of hepatic glucose output, have 2.4-fold more glucose-6-phosphatase activity in liver than lean controls. To define the potential contribution of increased hepatic G6Pase to development of diabetes, we infused recombinant adenoviruses containing the G6Pase cDNA (AdCMV-G6Pase) or the beta-galactosidase gene into normal rats. Animals were studied by one of three protocols as follows: protocol 1, fed ad libitum for 7 days; protocol 2, fed ad libitum for 5 days, fasted overnight, and subjected to an oral glucose tolerance test; protocol 3, fed ad libitum for 4 days, fasted for 48 h, subjected to oral glucose tolerance test, and then allowed to refeed overnight. Hepatic glucose-6-phosphatase enzymatic activity was increased by 1.6-3-fold in microsomes isolated from AdCMV-G6Pase-treated animals in all three protocols, and the resultant metabolic profile was similar in each case. AdCMV-G6Pase-treated animals exhibited several of the abnormalities associated with early stage non-insulin-dependent diabetes mellitus, including glucose intolerance, hyperinsulinemia, decreased hepatic glycogen content, and increased peripheral (muscle) triglyceride stores. These animals also exhibited significant decreases in circulating free fatty acids and triglycerides, changes not normally associated with the disease. Our studies show that overexpression of G6Pase in liver is sufficient to perturb whole animal glucose and lipid homeostasis, possibly contributing to the development of metabolic abnormalities associated with diabetes.
Collapse
Affiliation(s)
- K Y Trinh
- Gifford Laboratories for Diabetes Research and Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
72
|
Lin B, Morris DW, Chou JY. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids. DNA Cell Biol 1998; 17:967-74. [PMID: 9839806 DOI: 10.1089/dna.1998.17.967] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type 1a (GSD-1a), also know as von Gierke disease. Expression of the G6Pase gene is regulated by multiple hormones, including glucocorticoids. The synthetic glucocorticoid dexamethasone increased G6Pase mRNA abundance and gene transcription in H4-IIE hepatoma cells. Transient transfection assays demonstrated that the G6Pase promoter was active in H4-IIE cells only in the presence of dexamethasone. The minimal G6Pase promoter was contained within nucleotides -234/+3, which has two putative glucocorticoid response elements (GREs) at nucleotides -178/-164 (site 1) and -154/-140 (site 2). Electromobility shift and transient transfection assays showed that only GRE site 1 was required for glucocorticoid-activated transcription from the G6Pase promoter. Deletion analysis demonstrated that the DNA elements absolutely essential for glucocorticoid-stimulated transcription from the G6Pase promoter were contained within nucleotides -234/-212, encompassing binding motifs for hepatocyte nuclear factors (HNFs) 1 (-226/-212) and 4 (-231/-220). Electromobility shift and cotransfection assays showed that HNF1alpha bound to its cognate site and mediated transcription activation of the G6Pase gene by glucocorticoids.
Collapse
Affiliation(s)
- B Lin
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
73
|
Pan CJ, Lei KJ, Chou JY. Asparagine-linked oligosaccharides are localized to a luminal hydrophilic loop in human glucose-6-phosphatase. J Biol Chem 1998; 273:21658-62. [PMID: 9705299 DOI: 10.1074/jbc.273.34.21658] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of glucose-6-phosphatase (G6Pase), an endoplasmic reticulum transmembrane glycoprotein, causes glycogen storage disease type 1a. We have recently shown that human G6Pase contains an odd number of transmembrane segments, supporting a nine-transmembrane helical model for this enzyme. Sequence analysis predicts the presence of three potential asparagine (N)-linked glycosylation sites, N96TS, N203AS, and N276SS, conserved among mammalian G6Pases. According to this model, Asn96, located in a 37-residue luminal loop, is a potential acceptor for oligosaccharides, whereas Asn203 and Asn276, located in a 12-residue cytoplasmic loop and helix 7, respectively, would not be utilized for this purpose. We therefore characterized mutant G6Pases lacking one, two, or all three potential N-linked glycosylation sites. Western blot and in vitro translation studies showed that G6Pase is glycosylated only at Asn96, further validating the nine-transmembrane topology model. Substituting Asn96 with an Ala (N96A) moderately reduced enzymatic activity and had no effect on G6Pase synthesis or degradation, suggesting that oligosaccharide chains do not play a major role in protecting the enzyme from proteolytic degradation. In contrast, mutation of Asn276 to an Ala (N276A) destabilized the enzyme and markedly reduced enzymatic activity. We present additional evidence suggesting that the integrity of transmembrane helices is essential for G6Pase stability and catalytic activity.
Collapse
Affiliation(s)
- C J Pan
- Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | |
Collapse
|
74
|
Streeper RS, Eaton EM, Ebert DH, Chapman SC, Svitek CA, O'Brien RM. Hepatocyte nuclear factor-1 acts as an accessory factor to enhance the inhibitory action of insulin on mouse glucose-6-phosphatase gene transcription. Proc Natl Acad Sci U S A 1998; 95:9208-13. [PMID: 9689059 PMCID: PMC21317 DOI: 10.1073/pnas.95.16.9208] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glucose-6-phosphatase catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. Transcription of the gene encoding the glucose-6-phosphatase catalytic subunit (G6Pase) is stimulated by cAMP and glucocorticoids whereas insulin strongly inhibits both this induction and basal G6Pase gene transcription. Previously, we have demonstrated that the maximum repression of basal G6Pase gene transcription by insulin requires two distinct promoter regions, designated A (from -271 to -199) and B (from -198 to -159). Region B contains an insulin response sequence because it can confer an inhibitory effect of insulin on the expression of a heterologous fusion gene. By contrast, region A fails to mediate an insulin response in a heterologous context, and the mutation of region B within an otherwise intact promoter almost completely abolishes the effect of insulin on basal G6Pase gene transcription. Therefore, region A is acting as an accessory element to enhance the effect of insulin, mediated through region B, on G6Pase gene transcription. Such an arrangement is a common feature of cAMP and glucocorticoid-regulated genes but has not been previously described for insulin. A combination of fusion gene and protein-binding analyses revealed that the accessory factor binding region A is hepatocyte nuclear factor-1. Thus, despite the usually antagonistic effects of cAMP/glucocorticoids and insulin, all three agents are able to use the same factor to enhance their action on gene transcription. The potential role of G6Pase overexpression in the pathophysiology of MODY3 and 5, rare forms of diabetes caused by hepatocyte nuclear factor-1 mutations, is discussed.
Collapse
Affiliation(s)
- R S Streeper
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
75
|
Clottes E, Burchell A. Three thiol groups are important for the activity of the liver microsomal glucose-6-phosphatase system. Unusual behavior of one thiol located in the glucose-6-phosphate translocase. J Biol Chem 1998; 273:19391-7. [PMID: 9677356 DOI: 10.1074/jbc.273.31.19391] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver microsomal glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system involving both substrate and product carriers and a catalytic subunit. We have investigated the inhibitory effect of N-ethylmaleimide (NEM), a rather specific sulfhydryl reagent, on rat liver Glc-6-Pase activity. Three thiol groups are important for Glc-6-Pase system activity. Two of them are located in the glucose-6-phosphate (Glc-6-P) translocase, and one is located in the catalytic subunit. The other transporters (phosphate and glucose) are not affected by NEM treatment. The NEM alkylation of the catalytic subunit sulfhydryl residue is prevented by preincubating the disrupted microsomes with saturating concentrations of substrate or product. This suggests either that the modified cysteine is located in the protein active site or that substrate binding hides the thiol group via a conformational change in the enzyme structure. Two other thiols important for the Glc-6-Pase system activity are located in the Glc-6-P translocase and are more reactive than the one located in the catalytic subunit. The study of the NEM inhibition of the translocase has provided evidence of the existence of two distinct areas in the protein that can behave independently, with conformational changes occurring during Glc-6-P binding to the transporter. The recent cloning of a human putative Glc-6-P carrier exhibiting homologies with bacterial phosphoester transporters, such as Escherichia coli UhpT (a Glc-6-P translocase), is compatible with the fact that two cysteine residues are important for the bacterial Glc-6-P transport.
Collapse
Affiliation(s)
- E Clottes
- Department of Obstetrics and Gynaecology, Ninewells Hospital and Medical School, Dundee University, Dundee, DD1 9SY, Scotland
| | | |
Collapse
|
76
|
Yoshiuchi I, Shingu R, Nakajima H, Hamaguchi T, Horikawa Y, Yamasaki T, Oue T, Ono A, Miyagawa JI, Namba M, Hanafusa T, Matsuzawa Y. Mutation/polymorphism scanning of glucose-6-phosphatase gene promoter in noninsulin-dependent diabetes mellitus patients. J Clin Endocrinol Metab 1998; 83:1016-9. [PMID: 9506766 DOI: 10.1210/jcem.83.3.4659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucose-6-phosphatase (G6Pase) catalyzes the rate-limiting step of gluconeogenesis, and hepatic G6Pase activity is increased in diabetes. We have cloned and analyzed the human G6Pase gene promoter region and identified putative regulatory sequences for insulin, cAMP, glucocorticoid, and hepatocyte nuclear factors. The promoter region of the G6Pase gene was analyzed in 154 noninsulin-dependent diabetes mellitus patients and 90 control subjects by PCR-single strand conformation polymorphism and direct sequencing methods. Polymorphisms were not found in any subjects. The results suggested that in noninsulin-dependent diabetic patients, the major cause of the hepatic glucose overproduction was not attributed to dysregulation of the G6Pase gene due to mutation/polymorphism of its promoter region.
Collapse
Affiliation(s)
- I Yoshiuchi
- Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Massillon D, Chen W, Barzilai N, Prus-Wertheimer D, Hawkins M, Liu R, Taub R, Rossetti L. Carbon flux via the pentose phosphate pathway regulates the hepatic expression of the glucose-6-phosphatase and phosphoenolpyruvate carboxykinase genes in conscious rats. J Biol Chem 1998; 273:228-34. [PMID: 9417069 DOI: 10.1074/jbc.273.1.228] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatic gene expression of P-enolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (Glc-6-Pase) is regulated in response to changes in the availability of substrates, in particular glucose (Glc; Massillon, D., Barzilai, N., Chen, W., Hu, M., and Rossetti, L. (1996) J. Biol. Chem. 271, 9871-9874). We investigated the mechanism(s) in conscious rats. Hyperglycemia per se caused a rapid and marked increase in Glc-6-Pase mRNA abundance and protein levels. By contrast, hyperglycemia decreased the abundance of PEPCK mRNA. Importantly, inhibition of glucokinase activity by glucosamine infusion blunted both the stimulation of Glc-6-Pase and the inhibition of PEPCK gene expression by Glc, suggesting that an intrahepatic signal (metabolite) generated by the metabolism of glucose at or beyond Glc-6-P was responsible for the regulatory effect of Glc. The effect of Glc on the L-type pyruvate kinase gene is mediated by xylulose-5-P (Doiron, B., Cuif, M., Chen, R., and Kahn, A. (1996) J. Biol. Chem. 271, 5321-5324). Thus, we next investigated whether an isolated increase in the hepatic concentration of this metabolite can also reproduce the effects of Glc on Glc-6-Pase and PEPCK gene expression in vivo. Xylitol, which is directly converted to xylulose-5-P in the liver, was infused to raise the hepatic concentration of xylulose-5-P by approximately 3-fold. Xylitol infusion did not alter the levels of Glc-6-P and of fructose-2,6-biphosphate. However, it replicated the effects of hyperglycemia on Glc-6-Pase and PEPCK gene expression and resulted in a 75% increase in the in vivo flux through Glc-6-Pase (total glucose output).
Collapse
Affiliation(s)
- D Massillon
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, Best R, Brown R, Edwards CR, Seckl JR, Mullins JJ. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci U S A 1997; 94:14924-9. [PMID: 9405715 PMCID: PMC25139 DOI: 10.1073/pnas.94.26.14924] [Citation(s) in RCA: 674] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1997] [Accepted: 10/20/1997] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoid hormones, acting via nuclear receptors, regulate many metabolic processes, including hepatic gluconeogenesis. It recently has been recognized that intracellular glucocorticoid concentrations are determined not only by plasma hormone levels, but also by intracellular 11beta-hydroxysteroid dehydrogenases (11beta-HSDs), which interconvert active corticosterone (cortisol in humans) and inert 11-dehydrocorticosterone (cortisone in humans). 11beta-HSD type 2, a dehydrogenase, thus excludes glucocorticoids from otherwise nonselective mineralocorticoid receptors in the kidney. Recent data suggest the type 1 isozyme (11beta-HSD-1) may function as an 11beta-reductase, regenerating active glucocorticoids from circulating inert 11-keto forms in specific tissues, notably the liver. To examine the importance of this enzyme isoform in vivo, mice were produced with targeted disruption of the 11beta-HSD-1 gene. These mice were unable to convert inert 11-dehydrocorticosterone to corticosterone in vivo. Despite compensatory adrenal hyperplasia and increased adrenal secretion of corticosterone, on starvation homozygous mutants had attenuated activation of the key hepatic gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, presumably, because of relative intrahepatic glucocorticoid deficiency. The 11beta-HSD-1 -/- mice were found to resist hyperglycamia provoked by obesity or stress. Attenuation of hepatic 11beta-HSD-1 may provide a novel approach to the regulation of gluconeogenesis.
Collapse
Affiliation(s)
- Y Kotelevtsev
- Centre for Genome Research, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH 9 3JQ, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lin B, Morris DW, Chou JY. The role of HNF1alpha, HNF3gamma, and cyclic AMP in glucose-6-phosphatase gene activation. Biochemistry 1997; 36:14096-106. [PMID: 9369482 DOI: 10.1021/bi9703249] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene for glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis, is expressed in a tissue-specific manner in the liver and kidney. To understand the molecular mechanisms regulating liver-specific expression of the G6Pase gene, we characterized G6Pase promoter activity by transient expression assays. The G6Pase promoter is active in HepG2 hepatoma cells, but inactive in JEG3 choriocarcinoma or 3T3 cells. DNA elements essential for optimal and liver-specific expression of the G6Pase gene were contained within nucleotides -234 to +3. Deletion analysis revealed that the G6Pase promoter contained three activation elements (AEs) at nucleotides -234 to -212 (AE-I), -146 to -125 (AE-II), and -124 to -71 (AE-III). AE-I contains binding sites for hepatocyte nuclear factors (HNF) 1 and 4. Electromobility shift and cotransfection assays demonstrated that HNF1alpha, but not HNF4, bound to its cognate site and transactivated G6Pase gene expression. The G6Pase promoter contained five HNF3 motifs, 1 (-180/-174), 2 (-139/-133), 3 (-91/-85), 4 (-81/-75), and 5 (-72/-66), and all five sites bound HNF3gamma with high affinity. Transient expression and cotransfection assays showed that HNF3 site 1 is not required for basal promoter activity, but is essential for HNF3gamma-activated transcription from the G6Pase promoter. We further showed that HNF3 sites 3, 4, and 5 were essential for basal G6Pase promoter activity and transactivation by HNF3gamma. AE-II contains, in addition to a HNF3 motif, a cAMP-response element (CRE) and a C/EBP half-site. The G6Pase(-146/-116) DNA containing AE-II formed multiple protein-DNA complexes with HepG2 nuclear extracts, including HNF3gamma, CRE-binding protein (CREB), C/EBPalpha, and C/EBPbeta. We showed that AE-II mediated transcription activation of the G6Pase gene by cAMP.
Collapse
Affiliation(s)
- B Lin
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
80
|
Seoane J, Trinh K, O'Doherty RM, Gómez-Foix AM, Lange AJ, Newgard CB, Guinovart JJ. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J Biol Chem 1997; 272:26972-7. [PMID: 9341134 DOI: 10.1074/jbc.272.43.26972] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glucose-6-phosphatase (G6Pase) catalyzes the hydrolysis of glucose 6-phosphate (Glu-6-P) to free glucose and, as the last step in gluconeogenesis and glycogenolysis in liver, is thought to play an important role in glucose homeostasis. G6Pase activity appears to be conferred by a set of proteins localized to the endoplasmic reticulum, including a glucose-6-phosphate translocase, a G6Pase phosphohydrolase or catalytic subunit, and glucose and inorganic phosphate transporters in the endoplasmic reticulum membrane. In the current study, we used a recombinant adenovirus containing the cDNA encoding the G6Pase catalytic subunit (AdCMV-G6Pase) to evaluate the metabolic impact of overexpression of the enzyme in primary hepatocytes. We found that AdCMV-G6Pase-treated liver cells contain significantly less glycogen and Glu-6-P, but unchanged UDP-glucose levels, relative to control cells. Further, the glycogen synthase activity state was closely correlated with Glu-6-P levels over a wide range of glucose concentrations in both G6Pase-overexpressing and control cells. The reduction in glycogen synthesis in AdCMV-G6Pase-treated hepatocytes is therefore not a function of decreased substrate availability but rather occurs because of the regulatory effects of Glu-6-P on glycogen synthase activity. We also found that AdCMV-G6Pase-treated-cells had significantly lower rates of lactate production and [3-3H]glucose usage, coupled with enhanced rates of gluconeogenesis and Glu-6-P hydrolysis. We conclude that overexpression of the G6Pase catalytic subunit alone is sufficient to activate flux through the G6Pase system in liver cells. Further, hepatocytes treated with AdCMV-G6Pase exhibit a metabolic profile resembling that of liver cells from patients or animals with non-insulin-dependent diabetes mellitus, suggesting that dysregulation of the catalytic subunit of G6Pase could contribute to the etiology of the disease.
Collapse
Affiliation(s)
- J Seoane
- Department de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, E08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
81
|
Trinh K, Minassian C, Lange AJ, O'Doherty RM, Newgard CB. Adenovirus-mediated expression of the catalytic subunit of glucose-6-phosphatase in INS-1 cells. Effects on glucose cycling, glucose usage, and insulin secretion. J Biol Chem 1997; 272:24837-42. [PMID: 9312082 DOI: 10.1074/jbc.272.40.24837] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glucose-6-phosphatase (Glu-6-Pase) catalyzes the terminal step of gluconeogenesis, the conversion of glucose 6-phosphate (Glu-6-P) to free glucose. This enzyme activity is thought to be conferred by a complex of proteins residing in the endoplasmic reticulum (ER), including a Glu-6-P translocase that transports Glu-6-P into the lumen of the ER, a phosphohydrolase catalytic subunit residing in the lumen, and putative glucose and inorganic phosphate transporters that allow exit of the products of the reaction. In this study, we have investigated the effect of adenovirus-mediated overexpression of the Glu-6-Pase catalytic subunit on glucose metabolism and insulin secretion, using a well differentiated insulinoma cell line, INS-1. We found that the overexpressed Glu-6-Pase catalytic subunit was normally glycosylated, correctly sorted to the ER, and caused a 10-fold increase in Glu-6-Pase enzymatic activity in in vitro assays. Consistent with these findings, a 4.2-fold increase in 3H2O incorporation into glucose was observed in INS-1 cells treated with the recombinant adenovirus containing the Glu-6-Pase catalytic subunit cDNA (AdCMV-Glu-6-Pase). 3-[3H]Glucose usage was decreased by 32% in AdCMV-Glu-6-Pase-treated cells relative to controls, resulting in a proportional 30% decrease in glucose-stimulated insulin secretion. Our findings indicate that overexpression of the Glu-6-Pase catalytic subunit significantly impacts glucose metabolism and insulin secretion in islet beta-cells. However, INS-1 cells treated with AdCMV-Glu-6-Pase do not exhibit the severe alterations of beta-cell function and metabolism associated with islets from rodent models of obesity and non-insulin-dependent diabetes mellitus, suggesting the involvement of genes in addition to the catalytic subunit of Glu-6-Pase in the etiology of such beta-cell dysfunction.
Collapse
Affiliation(s)
- K Trinh
- Gifford Laboratories for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
82
|
Kishnani PS, Bao Y, Wu JY, Brix AE, Lin JL, Chen YT. Isolation and nucleotide sequence of canine glucose-6-phosphatase mRNA: identification of mutation in puppies with glycogen storage disease type Ia. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 61:168-77. [PMID: 9259982 DOI: 10.1006/bmme.1997.2600] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two Maltese puppies with massive hepatomegaly and failure to thrive had isolated deficient glucose-6-phosphatase (G-6-Pase) activity in liver and kidney and pathological findings compatible with GSD-Ia. To identify the mutation, we cloned G-6-Pase canine cDNA by RT-PCR with primers from the murine G-6-Pase gene sequence. The canine G-6-Pase cDNA is 2346 bp, with a 5' untranslated region of 87 bp, a coding region of 1071 bp, and a 3' untranslated region of 1185 bp. The difference between the canine and human sequences is in the 3' untranslated region. A greater than 90% amino acid sequence homology was seen with canine, human, murine, and rat G-6-Pase. G-6-Pase cDNA from affected and control puppies revealed complete homology except at nt position 450, which showed a guanine to cytosine (G to C) transversion resulting in substitution of a methionine by isoleucine at codon 121 (M121I) in all five clones studied. The loss of an NcoI restriction site on genomic DNA amplified with primers flanking the mutation allowed us to prove that affected puppies were homozygous for the mutation and parents were heterozygous carriers. The mutant G-6-Pase cDNA had 15 times less enzyme activity than wild-type cDNA following transient transfection. Northern blot analysis of puppies with GSD-Ia revealed increased G-6-Pase mRNA, compared to normal controls. Increased G-6-Pase mRNA was also seen in normal fasted puppies compared to littermates in the fed state, suggesting that the increased G-6-Pase mRNA is a physiologic response to fasting. This is the first report of a molecularly confirmed naturally occurring animal model of GSD-Ia. The establishment of a breeding colony of this dog strain will facilitate studies on the role of G-6-Pase gene in glucose homeostasis, in pathophysiology of disease, and development of novel therapeutic approaches such as gene therapy.
Collapse
Affiliation(s)
- P S Kishnani
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
83
|
Annabi B, van de Werve G. Evidence that the transit of glucose into liver microsomes is not required for functional glucose-6-phosphatase. Biochem Biophys Res Commun 1997; 236:808-813. [PMID: 9245738 DOI: 10.1006/bbrc.1997.6979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that the production of glucose from glucose-6-phosphate hydrolysis outside microsomes is a function of glucose-6-phosphatase independent of its property to form glucose inside microsomes. Indeed, during development (before 1 day of age), mouse liver microsomes had glucose-6-phosphatase producing glucose solely outside microsomes. Furthermore, in vivo treatment of rats with the glucocorticoid analogue triamcinolone resulted in increased glucose-6-phosphatase activity outside but not inside microsomes and without change in the catalytic subunit 40 kDa glucose-6-phosphatase mRNA abundance or protein level, indicating that other factors induced by triamcinolone (e.g., altered membrane lipid environment and/or a regulatory protein) were responsible for the activity change. Triamcinolone treatment also lessened the inhibition of glucose-6-phosphatase by pyridoxal 5'-phosphate (PLP), but this effect was not due to an interaction of PLP with the active site. Accordingly, reversal of the inhibition was observed after permeabilization of the microsomes. The two distinct orientations of liver microsomal glucose-6-phosphate phosphohydrolase suggest different physiological roles played by this enzyme in the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- B Annabi
- Laboratoire d'Endocrinologie Métabolique, Department of Nutrition, Université de Montréal, Québec, Canada
| | | |
Collapse
|
84
|
Hemrika W, Wever R. A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 1997; 409:317-9. [PMID: 9224681 DOI: 10.1016/s0014-5793(97)00530-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Very recently we have proposed [Hemrika et al. (1997) Proc. Natl. Acad. Sci. USA 94, 2145-2149] that the active site of the vanadate-containing chloroperoxidase from the fungus Curvularia inaequalis, of which the tertiary structure is known, is structurally very similar to that of the membrane-bound mammalian glucose-6-phosphatases for which no structural data are available. The proposed active site of glucose-6-phosphatase, however, is incompatible with the six transmembrane-helix topology model that is currently used. Here we present a new topology model for glucose-6-phosphatase which is in agreement with all available data.
Collapse
Affiliation(s)
- W Hemrika
- E.C. Slater Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
85
|
Argaud D, Kirby TL, Newgard CB, Lange AJ. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem 1997; 272:12854-61. [PMID: 9139747 DOI: 10.1074/jbc.272.19.12854] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentration, catalyzes the terminal step in gluconeogenesis and glycogenolysis. Glucose, the product of the glucose-6-phosphatase reaction, dramatically increases the level of glucose-6-phosphatase mRNA transcripts in primary hepatocytes (20-fold), and the maximum response is obtained at a glucose concentration as low as 11 mM. Glucose specifically increases glucose-6-phosphatase mRNA and L-type pyruvate kinase mRNA. In the rat hepatoma-derived cell line, Fao, glucose increases the glucose-6-phosphatase mRNA only modestly (3-fold). In the presence of high glucose concentrations, overexpression of glucokinase in Fao cells via recombinant adenovirus vectors increases lactate production to the level found in primary hepatocytes and increases glucose-6-phosphatase gene expression by 21-fold. Similar overexpression of hexokinase I in Fao cells with high levels of glucose does not increase lactate production nor does it change the response of glucose-6-phosphatase mRNA to glucose. Glucokinase overexpression in Fao cells blunts the previously reported inhibitory effect of insulin on glucose-6-phosphatase gene expression in these cells. Raising the cellular concentration of fructose-2,6-bisphosphate, a potent effector of the direction of carbon flux through the gluconeogenic and glycolytic pathways, also stimulated glucose-6-phosphatase gene expression in Fao cells. Increasing the fructose-2,6-bisphosphate concentration over a 15-fold range (12 +/- 1 to 187 +/- 17 pmol/plate) via an adenoviral vector overexpression system, led to a 6-fold increase (0.32 +/- 0. 03 to 2.2 +/- 0.33 arbitrary units of mRNA) in glucose-6-phosphatase gene expression with a concomitant increase in glycolysis and a decrease in gluconeogenesis. Also, the effects of fructose-2, 6-bisphosphate concentrations on fructose-1,6-bisphosphatase gene expression were stimulatory, leading to a 5-6-fold increase in mRNA level over a 15-fold range in fructose-2,6-bisphosphate level. Liver pyruvate kinase and phosphoenolpyruvate carboxykinase mRNA were unchanged by the manipulation of fructose-2,6-bisphosphate level.
Collapse
Affiliation(s)
- D Argaud
- Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | | | | | |
Collapse
|
86
|
Streeper RS, Svitek CA, Chapman S, Greenbaum LE, Taub R, O'Brien RM. A multicomponent insulin response sequence mediates a strong repression of mouse glucose-6-phosphatase gene transcription by insulin. J Biol Chem 1997; 272:11698-701. [PMID: 9115220 DOI: 10.1074/jbc.272.18.11698] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-6-phosphatase (G6Pase) catalyzes the final step in the gluconeogenic and glycogenolytic pathways. The transcription of the gene encoding the catalytic subunit of G6Pase is stimulated by glucocorticoids, whereas insulin strongly inhibits both basal G6Pase gene transcription and the stimulatory effect of glucocorticoids. To identify the insulin response sequence (IRS) in the G6Pase promoter through which insulin mediates its action, we have analyzed the effect of insulin on the basal expression of mouse G6Pase-chloramphenicol acetyltransferase (CAT) fusion genes transiently expressed in hepatoma cells. Deletion of the G6Pase promoter sequence between -271 and -199 partially reduces the inhibitory effect of insulin, whereas deletion of additional sequence between -198 and -159 completely abolishes the insulin response. The presence of this multicomponent IRS may explain why insulin potently inhibits basal G6Pase-CAT expression. The G6Pase promoter region between -198 and -159 contains an IRS, since it can confer an inhibitory effect of insulin on the expression of a heterologous fusion gene. This region contains three copies of the T(G/A)TTTTG sequence, which is the core motif of the phosphoenolpyruvate carboxykinase (PEPCK) gene IRS. This suggests that a coordinate increase in both G6Pase and PEPCK gene transcription is likely to contribute to the increased hepatic glucose production characteristic of patients with non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- R S Streeper
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
87
|
Hemrika W, Renirie R, Dekker HL, Barnett P, Wever R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A 1997; 94:2145-9. [PMID: 9122162 PMCID: PMC20055 DOI: 10.1073/pnas.94.6.2145] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We show here that the amino acid residues contributing to the active sites of the vanadate containing haloperoxidases are conserved within three families of acid phosphatases; this suggests that the active sites of these enzymes are very similar. This is confirmed by activity measurements showing that apochloroperoxidase exhibits phosphatase activity. These observations not only reveal interesting evolutionary relationships between these groups of enzymes but may also have important implications for the research on acid phosphatases, especially glucose-6-phosphatase-the enzyme affected in von Gierke disease-of which the predicted membrane topology may have to be reconsidered.
Collapse
Affiliation(s)
- W Hemrika
- E. C. Slater Institute, Plantage Muidergracht, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
88
|
Chevalier-Porst F, Bozon D, Bonardot AM, Bruni N, Mithieux G, Mathieu M, Maire I. Mutation analysis in 24 French patients with glycogen storage disease type 1a. J Med Genet 1996; 33:358-60. [PMID: 8733042 PMCID: PMC1050601 DOI: 10.1136/jmg.33.5.358] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both alleles of 24 French glycogen storage disease type 1a patients were sequenced: 14 different mutations allowed the identification of complete genotypes for all the patients. Nine new gene alterations are reported. Five mutations, Q347X, R83C, D38V, G188R, and 158 del C, account for 75% of the mutated alleles. These data show that the molecular pathology of the glucose-6-phosphatase gene is heterogeneous in this population. Complete genotyping of the index case by systematic sequencing is necessary to allow prenatal diagnosis in chorionic villi for at risk couples.
Collapse
Affiliation(s)
- F Chevalier-Porst
- Centre d'Etudes des Maladies, Métaboliques, Hôpital Debrousse, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Massillon D, Barzilai N, Chen W, Hu M, Rossetti L. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem 1996; 271:9871-4. [PMID: 8626617 DOI: 10.1074/jbc.271.17.9871] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Overproduction of glucose by the liver is the major cause of fasting hyperglycemia in both insulin-dependent and non-insulin-dependent diabetes mellitus. The distal enzymatic step in the process of glucose output is catalyzed by the glucose-6-phosphatase complex. We show here that 90% partially pancreatectomized diabetic rats have a >5-fold increase in the messenger RNA and a 3-4-fold increase in the protein level of the catalytic subunit of glucose-6-phosphatase in the liver. Normalization of the plasma glucose concentration in diabetic rats with either insulin or the glycosuric agent phlorizin normalized the hepatic glucose-6-phosphatase messenger RNA and protein within approximately 8 h. Conversely, phlorizin failed to decrease hepatic glucose-6-phosphatase gene expression in diabetic rats when the fall in the plasma glucose concentration was prevented by glucose infusion. These data indicate that in vivo gene expression of glucose-6-phosphatase in the diabetic liver is regulated by glucose independently from insulin, and thus prolonged hyperglycemia may result in overproduction of glucose via increased expression of this protein.
Collapse
Affiliation(s)
- D Massillon
- Diabetes Research and Training Center and Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
90
|
Schmoll D, Allan BB, Burchell A. Cloning and sequencing of the 5' region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett 1996; 383:63-6. [PMID: 8612793 DOI: 10.1016/0014-5793(96)00224-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned and sequenced the first 1.2 kb of the 5' region of the human glucose-6-phosphatase gene. Transfection of H4IIE hepatoma cells with the 1.2 kb fragment fused to a luciferase reporter gene demonstrated both basal and hormone responsive luciferase activity. Dexamethasone increased and insulin decreased luciferase activity. Insulin and dibutyryl cyclic AMP both significantly decreased activity in the presence of dexamethasone.
Collapse
Affiliation(s)
- D Schmoll
- Department of Obstetrics and Gynaecology, Ninewells Hospital and Medical School, University of Dundee, UK
| | | | | |
Collapse
|
91
|
Minassian C, Zitoun C, Mithieux G. Differential time course of liver and kidney glucose-6 phosphatase activity during long-term fasting in rat correlates with differential time course of messenger RNA level. Mol Cell Biochem 1996; 155:37-41. [PMID: 8717437 DOI: 10.1007/bf00714331] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have studied the role of Glc6Pase mRNA abundance in the time course of Glc6Pase activity in liver and kidney during long-term fasting in rat. Refered to the mRNA level in the fed state, Glc6Pase mRNA abundance was increased by 3.5 +/- 0.5 and 3.7 +/- 0.5 times (mean +/- S.E.M., n = 5) in the 24 h and 48 h-fasted liver, respectively. Then, the liver Glc6Pase mRNA was decreased to the level of the fed liver after 72 and 96 h of fasting (1.0 +/- 0.3 and 1.4 +/- 0.3). In the kidney, Glc6Pase mRNA abundance was increased by 2.7 +/- 1.0 and 5 +/- 1.2 times at 24 and 48 h of fasting, respectively. Then, it plateaued at the level of the 48 h fasted kidney after 72 h and 96 h of fasting (4.5 +/- 1.0 and 4.3 +/- 1.0). After 24 and 48 h-refeeding, the abundance of Glc6Pase mRNA in 48 h-fasted rats was decreased to the level found in the liver and kidney of fed rats. The time course of the activity of Glc6Pase catalytic subunit during fasting and refeeding was strikingly parallel to the time course of Glc6Pase mRNA level in respective tissues. These data strongly suggest that the differential expression of Glc6Pase activity in liver and kidney in the course of fasting may be accounted for by the respective time course of mRNA abundance in both organs.
Collapse
Affiliation(s)
- C Minassian
- INSERM U. 197, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | |
Collapse
|
92
|
Geley S, Fiegl M, Hartmann BL, Kofler R. Genes mediating glucocorticoid effects and mechanisms of their regulation. Rev Physiol Biochem Pharmacol 1996; 128:1-97. [PMID: 8791720 DOI: 10.1007/3-540-61343-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Geley
- Institute for General and Experimental Pathology, University of Innsbruck Medical School, Austria
| | | | | | | |
Collapse
|
93
|
Argaud D, Lange AJ, Becker TC, Okar DA, el-Maghrabi MR, Newgard CB, Pilkis SJ. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels. J Biol Chem 1995; 270:24229-36. [PMID: 7592629 DOI: 10.1074/jbc.270.41.24229] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been postulated to be a metabolic signaling enzyme, which acts as a switch between glycolysis and gluconeogenesis in mammalian liver by regulating the level of fructose 2,6-bisphosphate. The effect of overexpressing the bifunctional enzyme was studied in FAO cells transduced with recombinant adenoviral constructs of either the wild-type enzyme or a double mutant that has no bisphosphatase activity or protein kinase phosphorylation site. With both constructs, the mRNA and protein were overexpressed by 150- and 40-fold, respectively. Addition of cAMP to cells overexpressing the wild-type enzyme increased the S0.5 for fructose 6-phosphate of the kinase by 1.5-fold but had no effect on the overexpressed double mutant. When the wild-type enzyme was overexpressed, there was a decrease in fructose 2,6-bisphosphate levels, even though 6-phosphofructo-2-kinase maximal activity increased more than 22-fold and was in excess of fructose-2,6-bisphosphatase maximal activity. The kinase:bisphosphatase maximal activity ratio was decreased, indicating that the overexpressed enzyme was phosphorylated by cAMP-dependent protein kinase. Overexpression of the double mutant resulted in a 28-fold increase in kinase maximal activity and a 3-4-fold increase in fructose 2,6-bisphosphate levels. Overexpression of this form inhibited the rate of glucose production from dihydroxyacetone by 90% and stimulated the rate of lactate plus pyruvate production by 200%. In contrast, overexpression of the wild-type enzyme enhanced glucose production and inhibited lactate plus pyruvate production. These results provide direct support for fructose 2,6-bisphosphate as a regulator of gluconeogenic/glycolytic pathway flux and suggest that regulation of bifunctional enzyme activities by covalent modification is more important than the amount of the protein.
Collapse
Affiliation(s)
- D Argaud
- Department of Physiology and Biophysics, SUNY at Stony Brook 11794, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Lei KJ, Pan CJ, Liu JL, Shelly LL, Chou JY. Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Biol Chem 1995; 270:11882-6. [PMID: 7744838 DOI: 10.1074/jbc.270.20.11882] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucose-6-phosphatase (G6Pase) is the enzyme deficient in glycogen storage disease type 1a, an autosomal recessive disorder. We have previously identified six mutations in the G6Pase gene of glycogen storage disease type 1a patients and demonstrated that these mutations abolished or greatly reduced enzymatic activity of G6Pase, a hydrophobic protein of 357 amino acids. Of these, four mutations (R83C, R295C, G222R, and Q347X) are missense and one (Q347X) generates a truncated G6Pase of 346 residues. To further understand the roles and structural requirements of amino acids 83, 222, 295, and those at the carboxyl terminus in G6Pase catalysis, we characterized mutant G6Pases generated by near-saturation mutagenesis of the aforementioned amino acids. Substitution of Arg-83 with amino acids of diverse structures including Lys, a conservative change, yielded mutant G6Pase with no enzymatic activity. On the other hand, substitution of Arg-295 with Lys (R295K) retained high activity, and R295N, R295S, and R295Q exhibited moderate activity. All other substitutions of Arg-295 had no G6Pase activity, suggesting that the role of Arg-295 is to stabilize the protein either by salt bridge or hydrogen-bond formation. Substitution of Gly-222, however, remained functional unless a basic (Arg or Lys), acidic (Asp), or large polar (Gln) residue was introduced, consistent with the hydrophobic requirement of codon 222, which is predicted to be in the fourth membrane-spanning domain. It is possible that Arg-83 is involved in stabilizing the enzyme (His)-phosphate intermediate formed during G6Pase catalysis. There exist 9 conserved His residues in human G6Pase. His-9, His-119, His-252, and His-353 reside on the same side of the endoplasmic reticulum membrane as Arg-83. Whereas H119A mutant G6Pase had no enzymatic activity, H9A, H252A, and H353A mutant G6Pases retained significant activity. Substitution of His-119 with amino acids of diverse structures also yielded mutant G6Pase with no activity, suggesting that His-119 is the phosphate acceptor in G6Pase catalysis. We also present data demonstrating that the carboxyl-terminal 8 residues in human G6Pase are not essential for G6Pase catalysis.
Collapse
Affiliation(s)
- K J Lei
- Human Genetics Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
95
|
Haber BA, Chin S, Chuang E, Buikhuisen W, Naji A, Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest 1995; 95:832-41. [PMID: 7860767 PMCID: PMC295564 DOI: 10.1172/jci117733] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regenerating liver after partial hepatectomy is one of the few physiologic models of cellular proliferation in the adult animal. During hepatic regeneration, the animal is able to maintain metabolic homeostasis despite the acute loss of two thirds of hepatic tissue. In examining the molecular mechanisms regulating hepatic regeneration, we isolated novel immediate-early genes that are rapidly induced as the remnant liver undergoes the transition from its normal quiescent state into the G1 phase of the cell cycle. One of the most rapidly and highly induced genes which we initially termed RL-1, encodes rat glucose-6-phosphatase (rG6Pase). G6Pase mRNA peaks at 30 min and 36-48 h after hepatectomy correlating with the first and second rounds of cell division. This finding is compatible with studies that showed that G6Pase enzyme activity increases during liver regeneration. However, the increase in G6Pase mRNA is much more dramatic, indicating that it is a more sensitive indicator of this regulation. G6Pase gene expression peaks in the perinatal time period in the liver and remains elevated during the first month of life. The expression of the G6Pase gene is also dramatically elevated in BB diabetic rats, again higher than the enzyme elevation, and its relative induction after partial hepatectomy is blunted in these animals. Insulin treatment of partially hepatectomized diabetic animals downregulates the expression of G6Pase mRNA. Using specific antibodies against G6Pase, we detect a 36-kD G6Pase protein, and its level is elevated in regenerating and diabetic livers. The pattern of G6Pase mRNA expression appears to reflect similar changes in insulin and glucagon levels which accompany diabetes and hepatic proliferation. The elevation of G6Pase expression in these conditions is indicative of its importance as a regulator of glucose homeostasis in normal and abnormal physiologic states.
Collapse
Affiliation(s)
- B A Haber
- Department of Genetics, Children's Hospital of Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|