51
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
52
|
Timaru-Kast R, Gotthardt P, Luh C, Huang C, Hummel R, Schäfer MKE, Thal SC. Angiotensin II Receptor 1 Blockage Limits Brain Damage and Improves Functional Outcome After Brain Injury in Aged Animals Despite Age-Dependent Reduction in AT1 Expression. Front Aging Neurosci 2019; 11:63. [PMID: 31105549 PMCID: PMC6499023 DOI: 10.3389/fnagi.2019.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a frequent pathology associated with poor neurological outcome in the aged population. We recently observed accelerated cerebral inflammation in aged mice in response to TBI. Candesartan is a potent specific inhibitor of angiotensin II receptor type 1 (AT1) which limits cerebral inflammation and brain damage in juvenile animals after experimental TBI. In the present study, we show significantly lower posttraumatic AT1 mRNA levels in aged (21 months) compared to young (2 months) mice. Despite low cerebral At1 expression, pharmacologic blockade by treatment with candesartan [daily, beginning 30 min after experimental TBI by controlled cortical impact (CCI)] was highly effective in both young and aged animals and reduced histological brain damage by -20% after 5 days. In young mice, neurological improvement was enhanced by AT1 inhibition 5 days after CCI. In older animals, candesartan treatment reduced functional impairment already on day 3 after TBI and post-traumatic body weight (BW) loss was attenuated. Candesartan reduced microglia activation (-40%) in young and aged animals, and neutrophil infiltration (-40% to 50%) in aged mice, whereas T-cell infiltration was not changed in either age group. In young animals, markers of anti-inflammatory microglia M2a polarization [arginase 1 (Arg1), chitinase3-like 3 (Ym1)] were increased by candesartan at days 1 and 5 after insult. In older mice 5 days after insult, expression of Arg1 was significantly higher independently of the treatment, whereas Ym1 gene expression was further enhanced by AT1 inhibition. Despite age-dependent posttraumatic differences in At1 expression levels, inhibition of AT1 was highly effective in a posttreatment paradigm. Targeting inflammation with candesartan is, therefore, a promising therapeutic strategy to limit secondary brain damage independent of the age.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Gotthardt
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Center for Molecular Surgical Research, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Center for Molecular Surgical Research, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
53
|
Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens 2019; 36:641-650. [PMID: 28968260 DOI: 10.1097/hjh.0000000000001563] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperactivity of the brain renin-angiotensin (Ang) system has been implicated in the development and maintenance of hypertension. AngIII, one of the main effector peptides of the brain renin-Ang system, exerts a tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme generating brain AngIII, represents a new therapeutic target for the treatment of hypertension. We developed RB150, a prodrug of the specific and selective APA inhibitor, EC33. When given orally in acute treatment in hypertensive rats, RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain, inhibits brain APA activity and decreases BP. We investigate, here, the antihypertensive effects of chronic oral RB150 (50 mg/kg per day) treatment over 24 days in alert hypertensive deoxycorticosterone acetate-salt rats. METHODS We measured variations in Brain APA enzymatic activity, SBP, plasma arginine vasopressin levels and metabolic parameters after RB150 chronic administration. RESULTS This resulted in a significant decrease in SBP over the 24-day treatment period showing that no tolerance to the antihypertensive RB150 effect was observed throughout the treatment period. Chronic RB150 treatment also significantly decreased plasma arginine vasopressin levels and increased diuresis, which participate to BP decrease by reducing the size of fluid compartment. Interestingly, we observed an increased natriuresis without modifying both plasma sodium and potassium levels. CONCLUSION Our results strengthen the interest of developing RB150 as a novel central-acting antihypertensive agent and evaluating its efficacy in salt-sensitive hypertension.
Collapse
|
54
|
McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J Neuroendocrinol 2019; 31:e12689. [PMID: 30672620 DOI: 10.1111/jne.12689] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Derek A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Office of the Dean of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
55
|
Almeida-Pereira G, Vilhena-Franco T, Coletti R, Cognuck SQ, Silva HVP, Elias LLK, Antunes-Rodrigues J. 17β-Estradiol attenuates p38MAPK activity but not PKCα induced by angiotensin II in the brain. J Endocrinol 2019; 240:345-360. [PMID: 30508412 DOI: 10.1530/joe-18-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
17β-Estradiol (E2) has been shown to modulate the renin-angiotensin system in hydromineral and blood pressure homeostasis mainly by attenuating angiotensin II (ANGII) actions. However, the cellular mechanisms of the interaction between E2 and angiotensin II (ANGII) and its physiological role are largely unknown. The present experiments were performed to better understand the interaction between ANGII and E2 in body fluid control in female ovariectomized (OVX) rats. The present results are the first to demonstrate that PKC/p38 MAPK signaling is involved in ANGII-induced water and sodium intake and oxytocin (OT) secretion in OVX rats. In addition, previous data from our group revealed that the ANGII-induced vasopressin (AVP) secretion requires ERK1/2 signaling. Therefore, taken together, the present observations support a novel concept that distinct intracellular ANGII signaling gives rise to distinct neurohypophyseal hormone release. Furthermore, the results show that E2 attenuates p38 MAPK phosphorylation in response to ANGII but not PKC activity in the hypothalamus and the lamina terminalis, suggesting that E2 modulates ANGII effects through the attenuation of the MAPK pathway. In conclusion, this work contributes to the further understanding of the interaction between E2 and ANGII signaling in hydromineral homeostasis, as well as it contributes to further elucidate the physiological relevance of PKC/p38 MAPK signaling on the fluid intake and neurohypophyseal release induced by ANGII.
Collapse
Affiliation(s)
- G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - T Vilhena-Franco
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - R Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - S Q Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - H V P Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
56
|
Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertens Res 2019; 42:439-449. [PMID: 30631157 PMCID: PMC7092339 DOI: 10.1038/s41440-018-0196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 02/01/2023]
Abstract
A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.
Collapse
|
57
|
Abstract
The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.
Collapse
Affiliation(s)
- William J Pearce
- From the Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
58
|
Paes-Leme B, Dos-Santos RC, Mecawi AS, Ferguson AV. Interaction between angiotensin II and glucose sensing at the subfornical organ. J Neuroendocrinol 2018; 30:e12654. [PMID: 30365188 DOI: 10.1111/jne.12654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.
Collapse
Affiliation(s)
- Bruno Paes-Leme
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alastair V Ferguson
- Centre for Neurosciences Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
59
|
Arce ME, Sánchez SI, Correa MM, Ciuffo GM. Age-Related Changes in Ang II Receptor Localization and Expression in the Developing Auditory Pathway. Neurochem Res 2018; 44:412-420. [PMID: 30488363 DOI: 10.1007/s11064-018-2687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III-tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.
Collapse
Affiliation(s)
- M E Arce
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - S I Sánchez
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - M M Correa
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - G M Ciuffo
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
60
|
Sabatino L, Costagli C, Lapi D, Del Seppia C, Federighi G, Balzan S, Colantuoni A, Iervasi G, Scuri R. Renin-Angiotensin System Responds to Prolonged Hypotensive Effect Induced by Mandibular Extension in Spontaneously Hypertensive Rats. Front Physiol 2018; 9:1613. [PMID: 30498455 PMCID: PMC6249415 DOI: 10.3389/fphys.2018.01613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
There is an ongoing interest in the renin-angiotensin system (RAS) contribution either to pathological mechanisms leading to hypertension (mainly regarding the ACE/AngII/AT1R axis), or, to RAS protective and pro-regenerative actions, primarily ascribed to the mediation of the AT2R and the MAS1 receptor. In the present study, we evaluated the modulation of gene expression and protein levels of “deleterious” (ACE/AngII/AT1R) and “protective” [ACE/AngII/AT2R and ACE2/Ang(1-7)/MAS1 arms] RAS components in parietal and frontal areas of cerebral cortex of spontaneously hypertensive rats (SHRs), after two periods of mandibular extensions (MEs). Blood pressure, BP and heart rate, HR were also measured. While no significant changes in BP and HR were present in the sham operated (SO) group, in rats after two MEs (2-ME rats), BP displayed a marked decrease (p < 0.001) at ME2, and remained then stably low for the subsequent observation period. In gene expression analysis, in SHRs undergoing two MEs, either in parietal or frontal cortex, we did not observe any significant variation of AT2R and ACE2 with respect to SO rats. In contrast, we observed a decrease in Mas1 gene expression in parietal area (p < 0.01) and an increase in frontal region (p < 0.01). AT1R and ACE gene expression was significantly higher in 2-ME rats than SO in parietal cortex (p < 0.05) but no difference was observed in the frontal area. Concerning protein levels, in parietal area, AT1R and AT2R did not change whereas MAS1 significantly decreased in 2-ME rats (p < 0.05). In frontal area, both AT1R and AT2R significantly decreased in 2-ME rats (p < 0.05), whereas MAS1 did not significantly change. Gene expression analysis in normotensive (NT) rats revealed the non-detectability of AT1R in both parietal and frontal zone. In parietal area, AT2R (p < 0.0001) and Mas1 (p < 0.01) were significantly decreased in 2-ME NT rats, when compared to SO, and ACE and ACE2 resulted not detectable whereas there was some expression of these genes after 2-ME procedure. In conclusion, our data in rat models indicated that a 2-ME procedure induced a hypotensive response and that a modulation of gene expression and protein levels of RAS components occurred in different cerebral cortex areas.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Chiara Costagli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Dominga Lapi
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | | | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvana Balzan
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Giorgio Iervasi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
61
|
Tashev R, Ivanova M. Involvement of hippocampal angiotensin 1 receptors in anxiety-like behaviour of olfactory bulbectomized rats. Pharmacol Rep 2018; 70:847-852. [DOI: 10.1016/j.pharep.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
62
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
63
|
Mourão AA, de Mello ABS, Dos Santos Moreira MC, Rodrigues KL, Lopes PR, Xavier CH, Gomes RM, Freiria-Oliveira AH, Blanch GT, Colombari E, Pedrino GR. Median preoptic nucleus excitatory neurotransmitters in the maintenance of hypertensive state. Brain Res Bull 2018; 142:207-215. [PMID: 29944948 DOI: 10.1016/j.brainresbull.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
The crucial role of the median preoptic nucleus (MnPO) in the maintenance of hydroelectrolytic balance and autonomic regulation have been highlighted. Recently, the participation of the MnPO in the control of sympathetic nerve activity was demonstrated in essential hypertension model. However, peculiarities on the neurochemical changes underlying the differential role of MnPO during hypertension remain to be clarified. Therefore, this study aimed to investigate the main excitatory pathways that modulate MnPO neurons in hypertensive rats. Spontaneously hypertensive rats (SHR) and rats submitted previously to the Goldblatt protocol (two kidneys; one clip; 2K1C) were used. Rats of both groups (250 to 350 g, n = 6) were anesthetized with urethane (1.2 g/kg,i.v.) and instrumented to record mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA). Nanoinjection (100 nl) of saline (NaCl, 150 mM), losartan (AT1 receptor antagonist; 10 mM) and kynurenic acid (glutamate receptor antagonist; 50 mM) into the MnPO were performed. In 2K1C rats, glutamatergic blockade promoted decreases in MAP and RSNA (-19.1 ± 0.9 mmHg, -21.6 ± 2.8%, p < 0.05) when compared to saline (-0.4 ± 0.6 mmHg, 0.2 ± 0.7%, p < 0.05). Angiotensinergic inhibition also reduced these parameters (-11.5 ± 1.2 mmHg, -10.5 ± 1.0%, p < 0.05) in 2K1C. In SHR, Kynurenic acid nanoinjections produced hypotension and sympathoinhibition (-21.0 ± 2.5 mmHg, -24.7 ± 2.4%, p < 0.05), as well losartan nanoinjections (-9.7 ± 1.2 mmHg; p < 0.05) and RSNA (-12.0 ± 2.4%, p < 0.05). These findings support the conclusion that a tonic excitatory neurotransmission exerted by angiotensin II, and mostly by glutamate in the MnPO could participate in the modulation of blood pressure and RSNA independent on whether hypertension is primarily neurogenic or is secondary to stenosis in renal artery.
Collapse
Affiliation(s)
- Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Aryanne B Soares de Mello
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Marina C Dos Santos Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Karla L Rodrigues
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Carlos H Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Rodrigo M Gomes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - André H Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Graziela T Blanch
- School of Medicine, Pharmacy and Biomedicine, Pontifical Catholic University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
64
|
Flôr AFL, de Brito Alves JL, França-Silva MS, Balarini CM, Elias LLK, Ruginsk SG, Antunes-Rodrigues J, Braga VA, Cruz JC. Glial Cells Are Involved in ANG-II-Induced Vasopressin Release and Sodium Intake in Awake Rats. Front Physiol 2018; 9:430. [PMID: 29765330 PMCID: PMC5938358 DOI: 10.3389/fphys.2018.00430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023] Open
Abstract
It is known that circulating angiotensin II (ANG-II) acts on the circumventricular organs (CVOs), which partially lack a normal blood-brain barrier, to stimulate pressor responses, vasopressin (AVP), and oxytocin (OT) secretion, as well as sodium and water intake. Although ANG-II type 1 receptors (AT1R) are expressed in neurons and astrocytes, the involvement of CVOs glial cells in the neuroendocrine, cardiovascular and behavioral responses induced by central ANG II remains to be further elucidated. To address this question, we performed a set of experiments combining in vitro studies in primary hypothalamic astrocyte cells (HACc) and in vivo intracerebroventricular (icv) microinjections into the lateral ventricle of awake rats. Our results showed that ANG-II decreased glutamate uptake in HACc. In addition, in vivo studies showed that fluorocitrate (FCt), a reversible glial inhibitor, increased OT secretion and mean arterial pressure (MAP) and decreased breathing at rest. Furthermore, previous FCt decreased AVP secretion and sodium intake induced by central ANG-II. Together, our findings support that CVOs glial cells are important in mediating neuroendocrine and cardiorespiratory functions, as well as central ANG-II-induced AVP release and salt-intake behavior in awake rats. In the light of our in vitro studies, we propose that these mechanisms are, at least in part, by ANG-II-induced astrocyte mediate reduction in glutamate extracellular clearance.
Collapse
Affiliation(s)
- Atalia F L Flôr
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José L de Brito Alves
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Maria S França-Silva
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Camille M Balarini
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Lucila L K Elias
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Silvia G Ruginsk
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - José Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Valdir A Braga
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Josiane C Cruz
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
65
|
Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting Renin-Angiotensin System Against Alzheimer's Disease. Front Pharmacol 2018; 9:440. [PMID: 29760662 PMCID: PMC5937164 DOI: 10.3389/fphar.2018.00440] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Renin Angiotensin System (RAS) is a hormonal system that regulates blood pressure and fluid balance through a coordinated action of renal, cardiovascular, and central nervous systems. In addition to its hemodynamic regulatory role, RAS involves in many brain activities, including memory acquisition and consolidation. This review has summarized the involvement of RAS in the pathology of Alzheimer’s disease (AD), and the outcomes of treatment with RAS inhibitors. We have discussed the effect of brain RAS in the amyloid plaque (Aβ) deposition, oxidative stress, neuroinflammation, and vascular pathology which are directly and indirectly associated with AD. Angiotensin II (AngII) via AT1 receptor is reported to increase brain Aβ level via different mechanisms including increasing amyloid precursor protein (APP) mRNA, β-secretase activity, and presenilin expression. Similarly, it was associated with tau phosphorylation, and reactive oxygen species generation. However, these effects are counterbalanced by Ang II mediated AT2 signaling. The protective effect observed with angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) could be as the result of inhibition of Ang II signaling. ARBs also offer additional benefit by shifting the effect of Ang II toward AT2 receptor. To conclude, targeting RAS in the brain may benefit patients with AD though it still requires further in depth understanding.
Collapse
Affiliation(s)
- Abadi Kahsu Gebre
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Birhanetensay Masresha Altaye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
66
|
Yu Y, Wei SG, Weiss RM, Felder RB. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience 2018; 381:46-58. [PMID: 29684507 DOI: 10.1016/j.neuroscience.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Inflammation in the hypothalamic paraventricular nucleus (PVN) contributes to neurohumoral excitation and its adverse consequences in systolic heart failure (HF). The stimuli that trigger inflammation in the PVN in HF are not well understood. Angiotensin II (AngII) has pro-inflammatory effects, and circulating levels of AngII increase in HF. The subfornical organ (SFO), a circumventricular structure that lacks an effective blood-brain barrier and senses circulating AngII, contains PVN-projecting neurons. We hypothesized that activation of AngII type 1a receptors (AT1aR) in the SFO induces neuroinflammation downstream in the PVN. Male rats received SFO microinjections of an adeno-associated virus carrying shRNA for AT1aR, a scrambled shRNA, or vehicle. One week later, some rats were euthanized to confirm the transfection potential and knockdown efficiency of the shRNA. Others underwent coronary artery ligation to induce HF or a sham coronary artery ligation (Sham). Four weeks later, HF rats that received the scrambled shRNA had increased mRNA in SFO and PVN for AT1aR, inflammatory mediators and indicators of neuronal and glial activation, increased plasma levels of AngII, tumor necrosis factor-α, norepinephrine and arginine vasopressin, and impaired cardiac function, compared with Sham rats that received scrambled shRNA. The central abnormalities were ameliorated in HF rats that received AT1aR shRNA, as were plasma norepinephrine and vasopressin. Sham rats that received AT1aR shRNA had reduced SFO AT1aR mRNA but no other changes compared with Sham rats that received scrambled shRNA. The results suggest that activation of AT1aR in the SFO upregulates the neuroinflammation in the PVN that contributes to neurohumoral excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Research Service, Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA, USA.
| |
Collapse
|
67
|
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018; 19:E876. [PMID: 29543776 PMCID: PMC5877737 DOI: 10.3390/ijms19030876] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
For many years, modulators of the renin angiotensin system (RAS) have been trusted by clinicians for the control of essential hypertension. It was recently demonstrated that these modulators have other pleiotropic properties independent of their hypotensive effects, such as enhancement of cognition. Within the brain, different components of the RAS have been extensively studied in the context of neuroprotection and cognition. Interestingly, a crosstalk between the RAS and other systems such as cholinergic, dopaminergic and adrenergic systems have been demonstrated. In this review, the preclinical and clinical evidence for the impact of RAS modulators on cognitive impairment of multiple etiologies will be discussed. In addition, the expression and function of different receptor subtypes within the RAS such as: Angiotensin II type I receptor (AT1R), Angiotensin II type II receptor (AT2R), Angiotensin IV receptor (AT4R), Mas receptor (MasR), and Mas-related-G protein-coupled receptor (MrgD), on different cell types within the brain will be presented. We aim to direct the attention of the scientific community to the plethora of evidence on the importance of the RAS on cognition and to the different disease conditions in which these agents can be beneficial.
Collapse
Affiliation(s)
- LaDonya Jackson
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
68
|
Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons. Neuropharmacology 2018; 133:334-344. [PMID: 29447844 DOI: 10.1016/j.neuropharm.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022]
Abstract
The central nucleus of the amygdala (CeA) is critical in the regulation of sodium appetite. Angiotensin II (Ang II) is important in the generation of sodium appetite and may function as a neurotransmitter or modulator to affect the synaptic transmission and the excitability of neurons. However, the role of Ang II in the CeA remains unclear. In this study, we determined the effects of Ang II on the excitatory and inhibitory synaptic inputs to the CeA neurons in brain slices with whole-cell patch-clamp recordings. Ang II (0.5-5 μM) significantly potentiated the amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in a concentration-dependent manner. Ang II (2 μM) significantly increased the amplitude of miniature GABAergic inhibitory postsynaptic currents (mIPSCs) without affecting the frequency. This effect was blocked by Ang II type 1 (AT1) receptor antagonist, losartan. One mM guanosine 5'-O-(-2-thiodiphosphate) (GDP-β-s) in the pipette internal solution eliminated the facilitatory effect of Ang II on GABAergic synaptic transmission. In contrast, Ang II had no effect on the spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) and did not alter the frequency and amplitude of miniature EPSCs at concentrations that facilitated IPSCs. Furthermore, Ang II decreased the firing activity of CeA neurons, and this effect was abolished by losartan and GDP-β-s. In addition, Ang II failed to inhibit CeA neurons in the presence of bicuculline. These data provide substantial new evidence that Ang II inhibits the CeA neurons by facilitation of GABAergic synaptic input efficacy through activation of postsynaptic AT1 receptors.
Collapse
|
69
|
Brasil TFS, Fassini A, Corrêa FM. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats. Cell Mol Neurobiol 2018; 38:305-316. [PMID: 28695320 DOI: 10.1007/s10571-017-0518-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Dose-Response Relationship, Drug
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Heart Rate/drug effects
- Heart Rate/physiology
- Limbic Lobe/drug effects
- Limbic Lobe/metabolism
- Male
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/physiology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Taíz F S Brasil
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernando M Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
70
|
de Kloet AD, Steckelings UM, Sumners C. Protective Angiotensin Type 2 Receptors in the Brain and Hypertension. Curr Hypertens Rep 2017; 19:46. [PMID: 28488048 DOI: 10.1007/s11906-017-0746-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to assess the evidence that activation of angiotensin type 2 receptors (AT2R) in the brain can lower blood pressure and possibly constitute an endogenous anti-hypertensive mechanism. RECENT FINDINGS Recent studies that detail the location of AT2R in the brain, particularly within or near cardiovascular control centers, mesh well with findings from pharmacological and gene transfer studies which demonstrate that activation of central AT2R can influence cardiovascular regulation. Collectively, these studies indicate that selective activation of brain AT2R causes moderate decreases in blood pressure in normal animals and more profound anti-hypertensive effects, along with restoration of baroreflex function, in rodent models of neurogenic hypertension. These findings have opened the door to studies that can (i) assess the role of specific AT2R neuron populations in depressing blood pressure, (ii) determine the relevance of such mechanisms, and (iii) investigate interactions between AT2R and depressor angiotensin-(1-7)/Mas mechanisms in the brain.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1600 SW Archer Road, Box 100274, Gainesville, FL, 32610-0274, USA
| | - Ulrike M Steckelings
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1600 SW Archer Road, Box 100274, Gainesville, FL, 32610-0274, USA.
| |
Collapse
|
71
|
Genaro K, Fabris D, Fachim HA, Prado WA. Angiotensin AT1 receptors modulate the anxiogenic effects of angiotensin (5-8) injected into the rat ventrolateral periaqueductal gray. Peptides 2017; 96:8-14. [PMID: 28851568 DOI: 10.1016/j.peptides.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/21/2017] [Accepted: 08/20/2017] [Indexed: 11/27/2022]
Abstract
Losartan and PD 123,319 are non-peptide angiotensin (Ang) receptor antagonists for the AT1 and AT2 subtypes of Ang II receptors, respectively. The tetrapeptide Ang (5-8) is the smallest Ang-peptide that elicits anxiogenic effects on unconditioned and conditioned experimental models upon injection into the ventrolateral column of the periaqueductal gray (vlPAG), and Ang (5-8) can be synthesized (from Ang II or Ang III) and inactivated in this mesencephalic structure. The vlPAG is also known to play a central role in mechanisms of fear and anxiety. We therefore utilized male Wistar rats to examine the effects of losartan and PD 123,319 injections, selective antagonists of the AT1 and AT2 receptors, respectively, into the vlPAG in the elevated plus-maze, a classic rat model of anxiety, and against the anxiogenic effect of Ang (5-8) (0.4 nmol/0.25μL) upon injection into the same region. The anxiolytic profile was dependent on the dose of intra-vlPAG losartan, whereas no effects on experimental anxiety were observed in the plus-maze following PD 123,319 injection. The anxiogenic effect of Ang (5-8) injection into the vlPAG remained unchanged in the PD 123,319-pretreated rats, but the effect did not occur in losartan-pretreated rats. The results led us to suggest that the anxiogenic effect of Ang (5-8) injection into the vlPAG may depend on the local activation of AT1, but not AT2 receptors. Activation of AT1 receptors in structures nearby vlPAG may be tonically involved in fear and experimental anxiety.
Collapse
Affiliation(s)
- Karina Genaro
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | - Débora Fabris
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil
| | - Helene A Fachim
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| | - Wiliam A Prado
- Universidade de São Paulo, Departamento de Farmacologia, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| |
Collapse
|
72
|
Monteiro LRN, Marangon PB, Elias LLK, Reis LC, Antunes-Rodrigues J, Mecawi AS. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain. J Neuroendocrinol 2017; 29. [PMID: 28836382 DOI: 10.1111/jne.12530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
Abstract
Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption.
Collapse
Affiliation(s)
- L R N Monteiro
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - P B Marangon
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L L K Elias
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
73
|
Bruce EB, de Kloet AD. The intricacies of the renin-angiotensin-system in metabolic regulation. Physiol Behav 2017; 178:157-165. [PMID: 27887998 PMCID: PMC5600901 DOI: 10.1016/j.physbeh.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Over recent years, the renin-angiotensin-system (RAS), which is best-known as an endocrine system with established roles in hydromineral balance and blood pressure control, has emerged as a fundamental regulator of many additional physiological and pathophysiological processes. In this manuscript, we celebrate and honor Randall Sakai's commitment to his trainees, as well as his contribution to science. Scientifically, Randall made many notable contributions to the recognition of the RAS's roles in brain and behavior. His interests, in this regard, ranged from its traditionally-accepted roles in hydromineral balance, to its less-appreciated functions in stress responses and energy metabolism. Here we review the current understanding of the role of the RAS in the regulation of metabolism. In particular, the opposing actions of the RAS within adipose tissue vs. its actions within the brain are discussed.
Collapse
Affiliation(s)
- Erin B Bruce
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, United States
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, United States.
| |
Collapse
|
74
|
Preeclampsia and the brain: neural control of cardiovascular changes during pregnancy and neurological outcomes of preeclampsia. Clin Sci (Lond) 2017; 130:1417-34. [PMID: 27389588 DOI: 10.1042/cs20160108] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023]
Abstract
Preeclampsia (PE) is a form of gestational hypertension that complicates ∼5% of pregnancies worldwide. Over 70% of the fatal cases of PE are attributed to cerebral oedema, intracranial haemorrhage and eclampsia. The aetiology of PE originates from abnormal remodelling of the maternal spiral arteries, creating an ischaemic placenta that releases factors that drive the pathophysiology. An initial neurological outcome of PE is the absence of the autonomically regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, in comparison with both normotensive pregnant and hypertensive non-pregnant females. Moreover, PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviourally, the increased incidences of maternal depression, anxiety and post-traumatic stress disorder (PTSD) in PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth. This review addresses these neurological consequences of PE that present in the gravid female both during and after the index pregnancy.
Collapse
|
75
|
Légat L, Brouwers S, Smolders IJ, Dupont AG. Hypotensive Response to Angiotensin II Type 2 Receptor Stimulation in the Rostral Ventrolateral Medulla Requires Functional GABA-A Receptors. Front Neurosci 2017; 11:346. [PMID: 28674483 PMCID: PMC5474467 DOI: 10.3389/fnins.2017.00346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Objectives: Angiotensin II, glutamate and gamma-aminobutyric acid (GABA) interact within the rostral ventrolateral medulla (RVLM) and the paraventricular nucleus (PVN) modulating the central regulation of blood pressure and sympathetic tone. Our aim was to assess the effects of local angiotensin II type 2 receptor stimulation within the RVLM and the PVN on neurotransmitter concentrations and mean arterial pressure (MAP). Methods:In vivo microdialysis was used for measurement of extracellular glutamate and GABA levels and for local infusion of the angiotensin II type 2 receptor agonist Compound 21 in the RVLM and the PVN of conscious normotensive Wistar rats. The MAP response to local Compound 21 was monitored with a pressure transducer under anaesthesia. Angiotensin II type 2 receptor selectivity was assessed using the angiotensin II type 2 receptor antagonist PD123319; the GABA-A receptor antagonist bicuculline was used to assess the involvement of GABA-A receptors. Results: Infusion of Compound 21 (0.05 μg/μl/h) in the RVLM significantly increased GABA levels and lowered blood pressure. These effects were abolished by co-infusion with PD123319. No changes in neurotransmitter levels or effects on blood pressure were seen with PD123319 infusion alone. Co-infusion of bicuculline abolished the Compound 21 evoked decrease in MAP. Infusion of Compound 21 within the PVN did not change extracellular neurotransmitter levels nor MAP. Conclusion: Selective stimulation of angiotensin II type 2 receptor within the RVLM by local Compound 21 infusion reduces blood pressure and increases local GABA levels in normotensive rats. This hypotensive response requires functional GABA-A receptors, suggesting that GABAergic neurons are involved in the sympatho-inhibitory action underlying this hypotensive response.
Collapse
Affiliation(s)
- Laura Légat
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Sofie Brouwers
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Ilse J Smolders
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium
| | - Alain G Dupont
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| |
Collapse
|
76
|
Hallberg M, Sumners C, Steckelings UM, Hallberg A. Small-molecule AT2 receptor agonists. Med Res Rev 2017; 38:602-624. [DOI: 10.1002/med.21449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, BMC; Uppsala University; P.O. Box 591 SE751 24 Uppsala Sweden
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida; College of Medicine and McKnight Brain Institute; Gainesville FL 32611
| | - U. Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research; University of Southern Denmark; P.O. Box 5230 Odense Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC; Uppsala University; P.O. Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
77
|
Becker BK, Wang H, Zucker IH. Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats. Auton Neurosci 2017; 205:77-86. [PMID: 28549782 DOI: 10.1016/j.autneu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Increased sympathetic nerve activity and the activation of the central renin-angiotensin system are commonly associated with cardiovascular disease states such as hypertension and heart failure, yet the precise mechanisms contributing to the long-term maintenance of this sympatho-excitation are incompletely understood. Due to the established physiological role of neurotrophins contributing toward neuroplasticity and neuronal excitability along with recent evidence linking the renin-angiotensin system and brain-derived neurotrophic factor (BDNF) along with its receptor (TrkB), it is likely the two systems interact to promote sympatho-excitation during cardiovascular disease. However, this interaction has not yet been fully demonstrated, in vivo. Thus, we hypothesized that central angiotensin II (Ang II) treatment will evoke a sympatho-excitatory state mediated through the actions of BDNF/TrkB. We infused Ang II (20ng/min) into the right lateral ventricle of male Sprague-Dawley rats for twelve days with or without the TrkB receptor antagonist, ANA-12 (50ng/h). We found that ICV infusion of Ang II increased mean arterial pressure (+40.4mmHg), increased renal sympathetic nerve activity (+19.4% max activity), and induced baroreflex dysfunction relative to vehicle. Co-infusion of ANA-12 attenuated the increase in blood pressure (-20.6mmHg) and prevented the increase in renal sympathetic nerve activity (-22.2% max) and baroreflex dysfunction relative to Ang II alone. Ang II increased thirst and decreased food consumption, and Ang II+ANA-12 augmented the thirst response while attenuating the decrease in food consumption. We conclude that TrkB signaling is a mediator of the long-term blood pressure and sympathetic nerve activity responses to central Ang II activity. These findings demonstrate the involvement of neurotrophins such as BDNF in promoting Ang II-induced autonomic dysfunction and further implicate TrkB signaling in modulating presympathetic autonomic neurons during cardiovascular disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irving H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA..
| |
Collapse
|
78
|
|
79
|
Allen AM, Giles ME, Lee J, Oldfield BJ, Mendelsohn FA, McKinley MJ. Review: AT1-receptors in the central nervous system. J Renin Angiotensin Aldosterone Syst 2017; 2:S95-S101. [PMID: 28095220 DOI: 10.1177/14703203010020011701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Andrew M Allen
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia,
| | - Michelle E Giles
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| | - JooHyung Lee
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| | - Brian J Oldfield
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| | - Frederick Ao Mendelsohn
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| | - Michael J McKinley
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
80
|
A Unique "Angiotensin-Sensitive" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. J Neurosci 2017; 37:3478-3490. [PMID: 28219987 DOI: 10.1523/jneurosci.3674-16.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Stress elicits neuroendocrine, autonomic, and behavioral responses that mitigate homeostatic imbalance and ensure survival. However, chronic engagement of such responses promotes psychological, cardiovascular, and metabolic impairments. In recent years, the renin-angiotensin system has emerged as a key mediator of stress responding and its related pathologies, but the neuronal circuits that orchestrate these interactions are not known. These studies combine the use of the Cre-recombinase/loxP system in mice with optogenetics to structurally and functionally characterize angiotensin type-1a receptor-containing neurons of the paraventricular nucleus of the hypothalamus, the goal being to determine the extent of their involvement in the regulation of stress responses. Initial studies use neuroanatomical techniques to reveal that angiotensin type-1a receptors are localized predominantly to the parvocellular neurosecretory neurons of the paraventricular nucleus of the hypothalamus. These neurons are almost exclusively glutamatergic and send dense projections to the exterior portion of the median eminence. Furthermore, these neurons largely express corticotrophin-releasing hormone or thyrotropin-releasing hormone and do not express arginine vasopressin or oxytocin. Functionally, optogenetic stimulation of these neurons promotes the activation of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as well as a rise in systolic blood pressure. When these neurons are optogenetically inhibited, the activity of these neuroendocrine axes are suppressed and anxiety-like behavior in the elevated plus maze is dampened. Collectively, these studies implicate this neuronal population in the integration and coordination of the physiological responses to stress and may therefore serve as a potential target for therapeutic intervention for stress-related pathology.SIGNIFICANCE STATEMENT Chronic stress leads to an array of physiological responses that ultimately rouse psychological, cardiovascular, and metabolic impairments. As a consequence, there is an urgent need for the development of novel therapeutic approaches to prevent or dampen deleterious aspects of "stress." While the renin-angiotensin system has received some attention in this regard, the neural mechanisms by which this endocrine system may impact stress-related pathologies and consequently serve as targets for therapeutic intervention are not clear. The present studies provide substantial insight in this regard. That is, they reveal that a distinct population of angiotensin-sensitive neurons is integral to the coordination of stress responses. The implication is that this neuronal phenotype may serve as a target for stress-related disease.
Collapse
|
81
|
Lind AL, Emami Khoonsari P, Sjödin M, Katila L, Wetterhall M, Gordh T, Kultima K. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis. Neuromodulation 2017; 19:549-62. [PMID: 27513633 DOI: 10.1111/ner.12473] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Electrical neuromodulation by spinal cord stimulation (SCS) is a well-established method for treatment of neuropathic pain. However, the mechanism behind the pain relieving effect in patients remains largely unknown. In this study, we target the human cerebrospinal fluid (CSF) proteome, a little investigated aspect of SCS mechanism of action. METHODS Two different proteomic mass spectrometry protocols were used to analyze the CSF of 14 SCS responsive neuropathic pain patients. Each patient acted as his or her own control and protein content was compared when the stimulator was turned off for 48 hours, and after the stimulator had been used as normal for three weeks. RESULTS Eighty-six proteins were statistically significantly altered in the CSF of neuropathic pain patients using SCS, when comparing the stimulator off condition to the stimulator on condition. The top 12 of the altered proteins are involved in neuroprotection (clusterin, gelsolin, mimecan, angiotensinogen, secretogranin-1, amyloid beta A4 protein), synaptic plasticity/learning/memory (gelsolin, apolipoprotein C1, apolipoprotein E, contactin-1, neural cell adhesion molecule L1-like protein), nociceptive signaling (neurosecretory protein VGF), and immune regulation (dickkopf-related protein 3). CONCLUSION Previously unknown effects of SCS on levels of proteins involved in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity are demonstrated. These findings, in the CSF of neuropathic pain patients, expand the picture of SCS effects on the neurochemical environment of the human spinal cord. An improved understanding of SCS mechanism may lead to new tracks of investigation and improved treatment strategies for neuropathic pain.
Collapse
Affiliation(s)
- Anne-Li Lind
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Marcus Sjödin
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Lenka Katila
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
82
|
The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats. Life Sci 2016; 167:46-56. [DOI: 10.1016/j.lfs.2016.10.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
|
83
|
de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, Sumners C, Stern JE, Krause EG. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology 2016; 157:3167-80. [PMID: 27267713 PMCID: PMC4967126 DOI: 10.1210/en.2016-1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.
Collapse
|
84
|
Verrico CD, Haile CN, De La Garza R, Grasing K, Kosten TR, Newton TF. Subjective and Cardiovascular Effects of Intravenous Methamphetamine during Perindopril Maintenance: A Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2016; 19:pyw029. [PMID: 27207905 PMCID: PMC4966279 DOI: 10.1093/ijnp/pyw029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our pilot study suggested that the angiotensin-converting enzyme inhibitor perindopril might reduce some subjective effects produced by i.v. methamphetamine. We characterized the impact of a wider range of perindopril doses on methamphetamine-induced effects in a larger group of non-treatment-seeking, methamphetamine-using volunteers. METHODS Before treatment, participants received 30mg methamphetamine. After 5 to 7 days of perindopril treatment (0, 4, 8, or 16mg/d), participants received 15 and 30mg of methamphetamine on alternate days. Before and after treatment, participants rated subjective effects and cardiovascular measures were collected. RESULTS Prior to treatment with perindopril, there were no significant differences between treatment groups on maximum or peak subjective ratings or on peak cardiovascular effects. Following perindopril treatment, there were significant main effects of treatment on peak subjective ratings of "anxious" and "stimulated"; compared to placebo treatment, treatment with 8mg perindopril significantly reduced peak ratings of both anxious (P=.0009) and stimulated (P=.0070). There were no significant posttreatment differences between groups on peak cardiovascular effects. CONCLUSIONS Moderate doses of perindopril (8mg) significantly reduced peak subjective ratings of anxious and stimulated as well as attenuated many other subjective effects produced by methamphetamine, likely by inhibiting angiotensin II synthesis. Angiotensin II is known to facilitate the effects of norepinephrine, which contributes to methamphetamine's subjective effects. The lack of a classic dose-response function likely results from either nonspecific effects of perindopril or from between-group differences that were not accounted for in the current study (i.e., genetic variations and/or caffeine use). The current findings suggest that while angiotensin-converting enzyme inhibitors can reduce some effects produced by methamphetamine, more consistent treatment effects might be achieved by targeting components of the renin-angiotensin system that are downstream of angiotensin-converting enzyme.
Collapse
Affiliation(s)
- Christopher D Verrico
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing).
| | - Colin N Haile
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Richard De La Garza
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Kenneth Grasing
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Thomas F Newton
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| |
Collapse
|
85
|
Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol 2016; 594:1591-600. [PMID: 26580484 PMCID: PMC4799983 DOI: 10.1113/jp271584] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (AngII) is a pivotal peptide implicated in the regulation of blood pressure. In addition to its systemic vascular and renal effects, AngII acts centrally to modulate the activities of neuroendocrine and sympathetic neuronal networks, influencing in turn sympatho-humoral outflows to the circulation. Moreover, a large body of evidence supports AngII signalling dysregulation as a key mechanism contributing to exacerbated sympathoexcitation during hypertension. Due to its hydrophilic actions, circulating AngII does not cross the blood-brain barrier (BBB), signalling to the brain via the circumventricular organs which lack a tight BBB. In this review, we present and discuss recent studies from our laboratory showing that elevated circulating levels of AngII during hypertension result in disruption of the BBB integrity, allowing access of circulating AngII to critical sympathoexcitatory brain centres such as the paraventricular nucleus of the hypothalamus and the rostral ventrolateral medulla. We propose the novel hypothesis that AngII-driven BBB breakdown constitutes a complementary mechanism by which circulating AngII, working in tandem with the central renin-angiotensin system, further exacerbates sympatho-humoral activation during hypertension. These results are discussed within the context of a growing body of evidence in the literature supporting AngII as a pro-inflammatory signal, and brain microglia as key cell targets mediating central AngII actions during hypertension.
Collapse
Affiliation(s)
- V C Biancardi
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - J E Stern
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
86
|
Almeida-Pereira G, Coletti R, Mecawi AS, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol and angiotensin II crosstalk in hydromineral balance: Role of the ERK1/2 and JNK signaling pathways. Neuroscience 2016; 322:525-38. [PMID: 26951941 DOI: 10.1016/j.neuroscience.2016.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
The angiotensin II (ANGII) receptor AT1 plays an important role in the control of hydromineral balance, mediating the dipsogenic and natriorexigenic effects and neuroendocrine responses of ANGII. While estradiol (E2) is known to modulate several actions of ANGII in the brain, the molecular and cellular mechanisms of the interaction between E2 and ANGII and its physiological role in the control of body fluids remain unclear. We investigated the influence of E2 (40 μg/kg) pretreatment and extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) cell signaling on the dipsogenic and natriorexigenic effects, as well as the neuroendocrine responses to angiotensinergic central stimulation in ovariectomized rats (OVX). We showed that the inhibitory effect of E2 on ANGII-induced water and sodium intake requires the ERK1/2 and JNK signaling pathways. On the other hand, E2 pretreatment prevents the ANGII-induced phosphorylation of ERK and JNK in the lamina terminalis. E2 therapy decreased oxytocin (OT) and vasopressin (AVP) secretion and decreased ERK1/2 phosphorylation in the supraoptic and paraventricular nuclei (SON and PVN, respectively). We found that the AVP secretion induced by ANGII required ERK1/2 signaling, but OT secretion did not involve ERK1/2 signaling. Taken together, these results demonstrate that E2 modulates ANGII-induced water and sodium intake and AVP secretion by affecting the ERK1/2 and JNK pathways in the lamina terminalis and ERK1/2 signaling in the hypothalamic nuclei (PVN and SON) in OVX rats.
Collapse
Affiliation(s)
- G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| | - R Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
87
|
Abstract
OBJECTIVE The purpose of the study was to determine whether exposure to chronic mild stress (CMS) affects expression of angiotensin II Type 1a receptor (AT1aR) messenger RNA (mRNA) in the brain and kidney. METHODS Male Sprague-Dawley rats were divided into an unchallenged control group, which remained at rest, and an experimental group, exposed to CMS produced by a series of unexpected, disturbing stimuli applied at random over a period of 4 weeks. After sacrificing the animals, samples of the septal/accumbal and hypothalamic/thalamic diencephalon, brain medulla, cerebellum, and the renal medulla were harvested for determination of AT1aR mRNA. RESULTS Expression of AT1a receptor mRNA was significantly greater in the rats in the CMS condition than in the controls (septal/accumbal diencephalon: 1.689 [0.205] versus 0.027 [0.004], hypothalamic/thalamic diencephalon: 1.239 [0.101] versus 0.003 [0.001], brain medulla: 2.694 [0.295] versus 0.028 [0.003], cerebellum: 0.013 [0.002] versus 0.005 [0.001; p < .001 for all comparisons], and renal medulla: 409.92 [46.92] versus 208.06 [30.56; p < .01]). There was a significant positive correlation between AT1a mRNA expression in the septal/accumbal diencephalon and brain medulla (p < .025). CONCLUSIONS The results provide evidence that CMS significantly enhances expression of the AT1aR gene in the brain and kidney and indicate that changes in expression of AT1aR mRNA in different brain regions during CMS may be causally related. It is suggested that the up-regulation of AT1a receptors by chronic stress may potentiate negative effects of angiotensin II in pathologies associated with activation of the renin-angiotensin system.
Collapse
|
88
|
Lipopolysaccharide-Induced Spatial Memory and Synaptic Plasticity Impairment Is Preventable by Captopril. Adv Med 2016; 2016:7676512. [PMID: 27830176 PMCID: PMC5088279 DOI: 10.1155/2016/7676512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/20/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction. Renin-angiotensin system has a role in inflammation and also is involved in many brain functions such as learning, memory, and emotion. Neuroimmune factors have been proposed as the contributors to the pathogenesis of memory impairments. In the present study, the effect of captopril on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide (LPS) was investigated. Methods. The rats were divided and treated into control (saline), LPS (1 mg/kg), LPS-captopril (LPS-Capto; 50 mg/kg captopril before LPS), and captopril groups (50 mg/kg) before saline. Morris water maze was done. Long-term potentiation (LTP) from CA1 area of hippocampus was assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results. In the LPS group, the spent time and traveled path to reach the platform were longer than those in the control, while, in the LPS-Capto group, they were shorter than those in the LPS group. Moreover, the slope and amplitude of field excitatory postsynaptic potential (fEPSP) decreased in the LPS group, as compared to the control group, whereas, in the LPS-Capto group, they increased compared to the LPS group. Conclusion. The results of the present study showed that captopril improved the LPS-induced memory and LTP impairments induced by LPS in rats. Further investigations are required in order to better understand the exact responsible mechanism(s).
Collapse
|
89
|
Cruz JC, Flôr AFL, França-Silva MS, Balarini CM, Braga VA. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome. Front Physiol 2015; 6:384. [PMID: 26779026 PMCID: PMC4688401 DOI: 10.3389/fphys.2015.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.
Collapse
Affiliation(s)
- Josiane C Cruz
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Atalia F L Flôr
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | | | - Camille M Balarini
- Centro de Biotecnologia, Universidade Federal da ParaíbaJoão Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Valdir A Braga
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| |
Collapse
|
90
|
Lazaroni TLDN, Bastos CP, Moraes MFD, Santos RS, Pereira GS. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiol Learn Mem 2015; 127:27-33. [PMID: 26642920 DOI: 10.1016/j.nlm.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023]
Abstract
Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Thiago Luiz do Nascimento Lazaroni
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Cristiane Perácio Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Robson Souza Santos
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
91
|
Ismail B, Hadizad T, Antoun R, Lortie M, deKemp RA, Beanlands RS, DaSilva JN. Evaluation of [11C]methyl-losartan and [11C]methyl-EXP3174 for PET imaging of renal AT1receptor in rats. Nucl Med Biol 2015; 42:850-7. [DOI: 10.1016/j.nucmedbio.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/04/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
92
|
Abstract
Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many chronic diseases, such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme inhibitor treatment improves weight loss. It was found that Ang II infusion in rodents leads to skeletal muscle wasting. Ang II increases cytokines and circulating hormones, such as tumor necrosis factor-α, interleukin-6, serum amyloid-A and glucocorticoids, which regulate muscle protein synthesis and degradation. Ang II-induced muscle wasting is caused by alterations in insulin-like growth factor-1 signaling, enhanced muscle protein breakdown via the ubiquitin-proteasome system and decreased appetite resulting from the downregulation of hypothalamic orexigenic neuropeptides, such as Npy and orexin. Ang II also inhibits 5' adenosine monophosphate-activated protein kinase activity and disrupts normal energy balance via the activation of 5' adenosine monophosphate-activated protein kinase phosphatase PP2Cα. Furthermore, Ang II inhibits skeletal muscle stem (satellite) cell proliferation, leading to lowered muscle regenerative capacity. Distinct satellite cell angiotensin receptor subtypes have different effects on different stages of differentiation and are critical for the regulation of muscle regeneration. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states, and it is a promising target for the treatment of muscle atrophy in patients with diseases such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Medicine, University of Missouri-Columbia, Columbia, MO
| | | |
Collapse
|
93
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
94
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2015; 219:9-17. [PMID: 26234277 DOI: 10.1016/j.resp.2015.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
We have previously shown that cough potentiation induced by intravenous administration of the AT1 receptor antagonist losartan is lower than that induced by the ACE inhibitor lisinopril in anesthetized and awake rabbits. Since losartan and lisinopril cross the blood-brain barrier, their central action on the cough reflex can be hypothesized. Mechanical stimulation of the tracheobronchial tree and citric acid inhalation were used to induce cough reflex responses in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of losartan (5mM), lisinopril (1mM), bradykinin (0.05 mM), HOE-140 (0.2mM, a bradykinin B2 receptor antagonist) and CP-99,994 (1mM, an NK1 receptor antagonist) were performed into the caudal nucleus tractus solitarii, the predominant site of termination of cough-related afferents. Lisinopril, but not losartan increased the cough number. This effect was reverted by HOE-140 or CP-99,994. Cough potentiation was also induced by bradykinin. The results support for the first time a central protussive action of lisinopril mediated by an accumulation of bradykinin and substance P.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| |
Collapse
|
95
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
96
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
97
|
de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015; 309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Meng Liu
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
98
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
99
|
McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf) 2015; 214:8-32. [PMID: 25753944 DOI: 10.1111/apha.12487] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Located in the midline anterior wall of the third cerebral ventricle (i.e. the lamina terminalis), the median preoptic nucleus (MnPO) receives a unique set of afferent neural inputs from fore-, mid- and hindbrain. These afferent connections enable it to receive neural signals related to several important aspects of homeostasis. Included in these afferent projections are (i) neural inputs from two adjacent circumventricular organs, the subfornical organ and organum vasculosum laminae terminalis, that respond to hypertonicity, circulating angiotensin II or other humoural factors, (ii) signals from cutaneous warm and cold receptors that are relayed to MnPO, respectively, via different subnuclei in the lateral parabrachial nucleus and (iii) input from the medulla associated with baroreceptor and vagal afferents. These afferent signals reach appropriate neurones within the MnPO that enable relevant neural outputs, both excitatory and inhibitory, to be activated or inhibited. The efferent neural pathways that proceed from the MnPO terminate on (i) neuroendocrine cells in the hypothalamic supraoptic and paraventricular nuclei to regulate vasopressin release, while polysynaptic pathways from MnPO to cortical sites may drive thirst and water intake, (ii) thermoregulatory pathways to the dorsomedial hypothalamic nucleus and medullary raphé to regulate shivering, brown adipose tissue and skin vasoconstriction, (iii) parvocellular neurones in the hypothalamic paraventricular nucleus that drive autonomic pathways influencing cardiovascular function. As well, (iv) other efferent pathways from the MnPO to sites in the ventrolateral pre-optic nucleus, perifornical region of the lateral hypothalamic area and midbrain influence sleep mechanisms.
Collapse
Affiliation(s)
- M. J. McKinley
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - S. T. Yao
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - A. Uschakov
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - R. M. McAllen
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic. Australia
| | - M. Rundgren
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - D. Martelli
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Biomedical and Neuromotor Science; University of Bologna; Bologna Italy
| |
Collapse
|
100
|
Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 2015; 69:148-65. [PMID: 25559190 PMCID: PMC4355104 DOI: 10.1002/syn.21800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR–EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1–silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1–SIG density in AT1aR–EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor β do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Mary-Katherine Lynch
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Tracey A. Van Kempen
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Teresa A. Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|