51
|
Morgan S, Duguez S, Duddy W. Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis (ALS): Current Knowledge. J Pers Med 2018; 8:E44. [PMID: 30551677 PMCID: PMC6313785 DOI: 10.3390/jpm8040044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple genes and mechanisms of pathophysiology have been implicated in amyotrophic lateral sclerosis (ALS), suggesting it is a complex systemic disease. With this in mind, applying personalized medicine (PM) approaches to tailor treatment pipelines for ALS patients may be necessary. The modelling and analysis of molecular interaction networks could represent valuable resources in defining ALS-associated pathways and discovering novel therapeutic targets. Here we review existing omics datasets and analytical approaches, in order to consider how molecular interaction networks could improve our understanding of the molecular pathophysiology of this fatal neuromuscular disorder.
Collapse
Affiliation(s)
- Stephen Morgan
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|
52
|
Mangas A, Heredia M, Riolobos A, De la Fuente A, Criado JM, Yajeya J, Geffard M, Coveñas R. Overexpression of kynurenic acid and 3-hydroxyanthranilic acid after rat traumatic brain injury. Eur J Histochem 2018; 62:2985. [PMID: 30426733 PMCID: PMC6275464 DOI: 10.4081/ejh.2018.2985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Using an immunohistochemical technique, we have studied the distribution of kynuneric acid (KYNA) and 3-hydroxyanthranilic acid (3-HAA) in a rat brain injury model (trauma). The study was carried out inducing a cerebral ablation of the frontal motor cortex. Two mouse monoclonal specific antibodies previously developed by our group directed against KYNA and 3-HAA were used. In control animals (sham-operated), the expression of both KYNA and 3-HAA was not observed. In animals in which the ablation was performed, the highest number of immunoreactive cells containing KYNA or 3-HAA was observed in the region surrounding the lesion and the number of these cells decreased moving away from the lesion. KYNA and 3-HAA were also observed in the white matter (ipsilateral side) located close to the injured region and in some cells placed in the white matter of the contralateral side. The distribution of KYNA and 3-HAA perfectly matched with the peripheral injured regions. The results found were identical independently of the perfusion date of animals (17, 30 or 54 days after brain injury). For the first time, the presence of KYNA and 3-HAA has been described in a rat trauma model. Moreover, by using a double immunocytochemistry protocol, it has been demonstrated that both metabolites were located in astrocytes. The findings observed suggest that, in cerebral trauma, KYNA and 3-HAA are involved in tissue damage and that these compounds could act, respectively, as a neuroprotector and a neurotoxic. This means that, in trauma, a counterbalance occurs and that a regulation of the indoleamine 2,3 dioxygenase (IDO) pathway could be required after a brain injury in order to decrease the deleterious effects of ending metabolites (the neurotoxic picolinic acid). Moreover, the localization of KYNA and 3-HAA in the contralateral side of the lesion suggests that the IDO pathway is also involved in the sprouting and pathfinding that follows a traumatic brain injury.
Collapse
Affiliation(s)
- Arturo Mangas
- Gemacbio, France; University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Dehhaghi M, Tan V, Heng B, Braidy N, Mohammadipanah F, Guillemin GJ. Neuroprotective Effect of Myxobacterial Extracts on Quinolinic Acid-Induced Toxicity in Primary Human Neurons. Neurotox Res 2018; 35:281-290. [PMID: 30267267 DOI: 10.1007/s12640-018-9945-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
Quinolinic acid (QUIN) is a neurotoxin, gliotoxin, and proinflammatory molecule involved in the pathogenesis of several neurological diseases. Myxobacteria have been known as a rich source of secondary metabolites with diverse structures and mode of actions. In this study, we examined the potential neuroprotective effects of myxobacterial extracts on QUIN-induced excitotoxicity in primary human neurons. For this purpose, primary cultures of human neurons were pre-incubated with myxobacterial extracts and subsequently treated with QUIN at a pathophysiological concentration of 550 nM. The results showed that some myxobacterial extracts can significantly attenuate formation of reactive oxygen species (ROS), nitric oxide (NO) production, and extracellular lactate dehydrogenase (LDH) activity of human neurons. Moreover, myxobacterial extracts were also able to reduce neuronal nitric oxide synthase (nNOS) activity. Some extracts prevented cell death by reducing the activation of poly (ADP-ribose) polymerase (PARP1) by QUIN, therefore by maintaining NAD+ levels. In addition, myxobacterial extracts ameliorated oxidative stress by increasing the intracellular levels of glutathione after treatment with QUIN. The results showed that extracts of Stigmatella sp. UTMC 4072 and Archangium sp. UTMC 4070 and were the most effective in reducing QUIN-induced excitotoxicity in primary human neurons. Due to their antioxidative activity, myxobacterial extracts represent an underexplored source of potential new drugs for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
54
|
Blasco H, Patin F, Descat A, Garçon G, Corcia P, Gelé P, Lenglet T, Bede P, Meininger V, Devos D, Gossens JF, Pradat PF. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS One 2018; 13:e0198116. [PMID: 29870556 PMCID: PMC5988280 DOI: 10.1371/journal.pone.0198116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
There is an urgent and unmet need for accurate biomarkers in Amyotrophic Lateral Sclerosis. A pharmaco-metabolomics study was conducted using plasma samples from the TRO19622 (olesoxime) trial to assess the link between early metabolomic profiles and clinical outcomes. Patients included in this trial were randomized into either Group O receiving olesoxime (n = 38) or Group P receiving placebo (n = 36). The metabolomic profile was assessed at time-point one (V1) and 12 months (V12) after the initiation of the treatment. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites (Biocrates® commercial kit). Multivariate analysis based on machine learning approaches (i.e. Biosigner algorithm) was performed. Metabolomic profiles at V1 and V12 and changes in metabolomic profiles between V1 and V12 accurately discriminated between Groups O and P (p<5×10–6), and identified glycine, kynurenine and citrulline/arginine as the best predictors of group membership. Changes in metabolomic profiles were closely linked to clinical progression, and correlated with glutamine levels in Group P and amino acids, lipids and spermidine levels in Group O. Multivariate models accurately predicted disease progression and highlighted the discriminant role of sphingomyelins (SM C22:3, SM C24:1, SM OH C22:2, SM C16:1). To predict SVC from SM C24:1 in group O and SVC from SM OH C22:2 and SM C16:1 in group P+O, we noted a median sensitivity between 67% and 100%, a specificity between 66.7 and 71.4%, a positive predictive value between 66 and 75% and a negative predictive value between 70% and 100% in the test sets. This proof-of-concept study demonstrates that the metabolomics has a role in evaluating the biological effect of an investigational drug and may be a candidate biomarker as a secondary outcome measure in clinical trials.
Collapse
Affiliation(s)
- Hélène Blasco
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
- * E-mail:
| | - Franck Patin
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
| | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Guillaume Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA, IMPECS, Lille, France
| | - Philippe Corcia
- Université François-Rabelais, Inserm, Tours, France
- Centre SLA, Service de Neurologie, CHRU Bretonneau, Tours, France
| | - Patrick Gelé
- Centre d'Investigation Clinique, Université de Lille, Lille, France
| | - Timothée Lenglet
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Peter Bede
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | | | - David Devos
- INSERM U1171, Pharmacologie Médicale & Neurologie, Université, Faculté de Médecine, CHU de Lille, Lille, France
| | - Jean François Gossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| |
Collapse
|
55
|
Sas K, Szabó E, Vécsei L. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules 2018; 23:molecules23010191. [PMID: 29342113 PMCID: PMC6017505 DOI: 10.3390/molecules23010191] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, the potential causes of ageing are discussed. We seek to gain insight into the main physiological functions of mitochondria and discuss alterations in their function and the genome, which are supposed to be the central mechanisms in senescence. We conclude by presenting the potential modulating role of the kynurenine pathway in the ageing processes. Mitochondrial dynamics are supposed to have important physiological roles in maintaining cell homeostasis. During ageing, a decrease in mitochondrial dynamics was reported, potentially compromising the function of mitochondria. Mitochondrial biogenesis not only encompasses mitochondrial dynamics, but also the regulation of transcription and translation of genes, and mitochondria are supposed to play a prominent role in cell death during senescence. Defects in the mtDNA replication machinery and failure in the repair of mtDNA might result in the accumulation of mutations, leading to mitochondrial dysfunction and bioenergetic failure of the cell. The role of reactive oxygen species (ROS) in the ageing processes is widely acknowledged. Exaggerated oxidative damage to mDNA is supposed to take place during senescence, including single-nucleotide base alterations, nucleotide base pair alterations, chain breaks and cross linkage. A broad repertoire for the repair of DNA faults has evolved, but they do not function efficiently during senescence. Poly (ADP-ribose) polymerase (PARP) is an enzyme that assists in DNA repair, i.e., it participates in the repair of single-stranded DNA nicks, initiating base excision repair (BER). In the case of extensive DNA damage, PARP-1 becomes overactivated and rapidly depletes the intracellular NAD+ and ATP pools. This results in a profound energy loss of the cell and leads to cell dysfunction, or even cell death. Alterations in the kynurenine system have been linked with ageing processes and several age-related disorders. The kynurenine pathway degrades tryptophan (TRP) to several metabolites, among others kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN). The end product of the route is NAD+. The first metabolic reaction is mediated by TRP-2,3-dioxygenase (TDO) or indolamine-2,3-dioxygenases (IDO), the latter being induced by inflammation, and it is thought to have a significant role in several disorders and in ageing. Research is currently focusing on the KYN pathway, since several intermediates possess neuro- and immunoactive properties, and hence are capable of modulating the activity of certain brain cells and inflammatory responses. During ageing, and in many age-associated disorders like obesity, dyslipidaemia, hypertension, insulin resistance and neurodegenerative diseases, low-grade, sustained inflammation and upregulation of IDO have been reported. However, TRP downstream catabolites create a negative feedback loop by weakening the activated immune system through several actions, including a decline in the Th1 response and an enhancement of Th2-type processes. The broad actions of the KYN-intermediates in brain excitation/inhibition and their role in regulating immune responses may provide the possibility of modifying the pathological processes in an array of age-associated diseases in the future.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
| | - Elza Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, 6725 Szeged, Hungary.
| |
Collapse
|
56
|
Grams ME, Tin A, Rebholz CM, Shafi T, Köttgen A, Perrone RD, Sarnak MJ, Inker LA, Levey AS, Coresh J. Metabolomic Alterations Associated with Cause of CKD. Clin J Am Soc Nephrol 2017; 12:1787-1794. [PMID: 28971980 PMCID: PMC5672969 DOI: 10.2215/cjn.02560317] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Causes of CKD differ in prognosis and treatment. Metabolomic indicators of CKD cause may provide clues regarding the different physiologic processes underlying CKD development and progression. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS Metabolites were quantified from serum samples of participants in the Modification of Diet in Renal Disease (MDRD) Study, a randomized controlled trial of dietary protein restriction and BP control, using untargeted reverse phase ultraperformance liquid chromatography tandem mass spectrometry quantification. Known, nondrug metabolites (n=687) were log-transformed and analyzed to discover associations with CKD cause (polycystic kidney disease, glomerular disease, and other cause). Discovery was performed in Study B, a substudy of MDRD with low GFR (n=166), and replication was performed in Study A, a substudy of MDRD with higher GFR (n=423). RESULTS Overall in MDRD, average participant age was 51 years and 61% were men. In the discovery study (Study B), 29% of participants had polycystic kidney disease, 28% had glomerular disease, and 43% had CKD of another cause; in the replication study (Study A), the percentages were 28%, 24%, and 48%, respectively. In the discovery analysis, adjusted for demographics, randomization group, body mass index, hypertensive medications, measured GFR, log-transformed proteinuria, and estimated protein intake, seven metabolites (16-hydroxypalmitate, kynurenate, homovanillate sulfate, N2,N2-dimethylguanosine, hippurate, homocitrulline, and 1,5-anhydroglucitol) were associated with CKD cause after correction for multiple comparisons (P<0.0008). Five of these metabolite associations (16-hydroxypalmitate, kynurenate, homovanillate sulfate, N2,N2-dimethylguanosine, and hippurate) were replicated in Study A (P<0.007), with all replicated metabolites exhibiting higher levels in polycystic kidney disease and lower levels in glomerular disease compared with CKD of other causes. CONCLUSIONS Metabolomic profiling identified several metabolites strongly associated with cause of CKD.
Collapse
Affiliation(s)
- Morgan E. Grams
- Division of Nephrology, Department of Medicine, and
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Adrienne Tin
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Casey M. Rebholz
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tariq Shafi
- Division of Nephrology, Department of Medicine, and
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Ronald D. Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Mark J. Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Lesley A. Inker
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Andrew S. Levey
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
57
|
Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, Devasahayam R, Adamson SJ, Benson VL, Chan-Ling T, Grant MB. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 2017; 58:5043-5055. [PMID: 28980000 PMCID: PMC5633007 DOI: 10.1167/iovs.17-21654] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We investigated the relationship between inflammation, neuronal loss, and expression of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D. Methods Retinas from T1D (n = 7), T2D (n = 13), and 20 age-matched nondiabetic human donors and from T1D (n = 3) and control rats (n = 3) were examined using immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM; for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels). Results Based on morphologic criteria, CD39+/ionized calcium binding adaptor molecule 1(Iba-1+) resident microglia and CD39−/Iba-1+ bone marrow–derived macrophages were present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when compared with controls. The density and brightness of IDO+ microglia were increased in both T1D and T2D human retinas. The intensity of QUIN+ expression on CD39+ microglia and VIM+ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas showed a 63% loss of NeuN+ neurons and T2D retinas lost approximately 43% when compared with nondiabetic human retinas. Few QUIN+ microglia-like cells were seen in nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central retina. In T1D rat retinas, the density of IDO+ microglia increased 2.8-fold and brightness increased 2.1-fold when compared with controls. Conclusions Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats and humans could contribute to the neuronal degeneration that is characteristic of diabetic retinopathy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Nicholas H Hunt
- Department of Pathology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank Arfuso
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Stem Cell & Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Lynn C Shaw
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Mohammad Nasir Uddin
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Meidong Zhu
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia.,Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, New South Wales, Australia
| | - Raj Devasahayam
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Samuel J Adamson
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Vicky L Benson
- Department of Physiology, Faculty of Health and Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tailoi Chan-Ling
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Maria B Grant
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States.,Univeristy of Alabama, Birmingham, Alabama, United States
| |
Collapse
|
58
|
Sadok I, Gamian A, Staniszewska MM. Chromatographic analysis of tryptophan metabolites. J Sep Sci 2017; 40:3020-3045. [PMID: 28590049 PMCID: PMC5575536 DOI: 10.1002/jssc.201700184] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
| | - Andrzej Gamian
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
- Department of Medical BiochemistryWroclaw Medical UniversityWroclawPoland
| | - Magdalena Maria Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| |
Collapse
|
59
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
60
|
Koshiguchi M, Komazaki H, Hirai S, Egashira Y. Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFκB and p38 MAPK in lipopolysaccharide-stimulated microglial cells. Biosci Biotechnol Biochem 2017; 81:966-971. [DOI: 10.1080/09168451.2016.1274636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.
Collapse
Affiliation(s)
- Manami Koshiguchi
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Hitoshi Komazaki
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Shizuka Hirai
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| |
Collapse
|
61
|
Yang X, Zheng J, Tian S, Chen Y, An R, Zhao Q, Xu Y. HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. J Neurol Sci 2017; 373:124-128. [DOI: 10.1016/j.jns.2016.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022]
|
62
|
Lee JM, Tan V, Lovejoy D, Braidy N, Rowe DB, Brew BJ, Guillemin GJ. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology 2017; 112:346-364. [DOI: 10.1016/j.neuropharm.2016.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
63
|
Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017; 112:373-388. [DOI: 10.1016/j.neuropharm.2016.03.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
|
64
|
Strasser B, Becker K, Fuchs D, Gostner JM. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017; 112:286-296. [DOI: 10.1016/j.neuropharm.2016.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
|
65
|
Mangas A, Yajeya J, González N, Ruiz I, Geffard M, Coveñas R. 3-hydroxi-anthranilic acid is early expressed in stroke. Eur J Histochem 2016; 60:2709. [PMID: 28076933 PMCID: PMC5159783 DOI: 10.4081/ejh.2016.2709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022] Open
Abstract
Using an immunohistochemical technique, we have studied the distribution of 3-OH-anthranilic acid (3-HAA) in the rat brain. Our study was carried out in control animals and in rats in which a stroke model (single transient middle cerebral artery occlusion) was performed. A monoclonal antibody directed against 3-HAA was also developed. 3-HAA was exclusively observed in the infarcted regions (ipsilateral striatum/cerebral cortex), 2, 5 and 21 days after the induction of stroke. In control rats and in the contralateral side of the stroke animals, no immunoreactivity for 3-HAA was visualized. Under pathological conditions (from early phases of stroke), we reported for the first time the presence of 3-HAA in the mammalian brain. By double immunohistochemistry, the coexistence of 3-HAA and GFAP was observed in astrocytes. The distribution of 3-HAA matched perfectly with the infarcted regions. Our findings suggest that, in stroke, 3-HAA could be involved in the tissue damage observed in the infarcted regions, since it is well known that 3-HAA exerts cytotoxic effects.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio - Institute for the Development of Research in Human Pathology and Therapeutic (IDRPHT) - University of Salamanca.
| | | | | | | | | | | |
Collapse
|
66
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
67
|
Mazarei G, Leavitt BR. Indoleamine 2,3 Dioxygenase as a Potential Therapeutic Target in Huntington's Disease. J Huntingtons Dis 2016; 4:109-18. [PMID: 26397892 PMCID: PMC4923717 DOI: 10.3233/jhd-159003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Within the past decade, there has been increasing interest in the role of tryptophan (Trp) metabolites and the kynurenine pathway (KP) in diseases of the brain such as Huntington’s disease (HD). Evidence is accumulating to suggest that this pathway is imbalanced in neurologic disease states. The KP diverges into two branches that can lead to production of either neuroprotective or neurotoxic metabolites. In one branch, kynurenine (Kyn) produced as a result of tryptophan (Trp) catabolism is further metabolized to neurotoxic metabolites such as 3-hydroxykunurenine (3-HK) and quinolinic acid (QA). In the other branch, Kyn is converted to the neuroprotective metabolite kynurenic acid (KA). The enzyme Indoleamine 2,3 dioxygenase (IDO1) catalyzes the conversion of Trp into Kyn, the first and rate-limiting enzymatic step of the KP. This reaction takes place throughout the body in multiple cell types as a required step in the degradation of the essential amino acid Trp. Studies of IDO1 in brain have focused primarily on a potential role in depression, immune tolerance associated with brain tumours, and multiple sclerosis; however the role of this enzyme in neurodegenerative disease has garnered significant attention in recent years. This review will provide a summary of the current understanding of the role of IDO1 in Huntington’s disease and will assess this enzyme as a potential therapeutic target for HD.
Collapse
Affiliation(s)
- Gelareh Mazarei
- Centre for Molecular Medicine & Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine & Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
68
|
Schwarcz R. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:13-37. [PMID: 27288072 PMCID: PMC5803753 DOI: 10.1016/bs.apha.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is firmly established as the major excitatory neurotransmitter in the mammalian brain and is actively involved in most aspects of neurophysiology. Moreover, glutamatergic impairments are associated with a wide variety of dysfunctional states, and both hypo- and hyperfunction of glutamate have been plausibly linked to the pathophysiology of neurological and psychiatric diseases. Metabolites of the kynurenine pathway (KP), the major catabolic route of the essential amino acid tryptophan, influence glutamatergic activity in several distinct ways. This includes direct effects of these "kynurenines" on ionotropic and metabotropic glutamate receptors or vesicular glutamate transport, and indirect effects, which are initiated by actions at various other recognition sites. In addition, some KP metabolites affect glutamatergic functions by generating or scavenging highly reactive free radicals. This review summarizes these phenomena and discusses implications for brain physiology and pathology.
Collapse
Affiliation(s)
- R Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
69
|
Aeinehband S, Brenner P, Ståhl S, Bhat M, Fidock MD, Khademi M, Olsson T, Engberg G, Jokinen J, Erhardt S, Piehl F. Cerebrospinal fluid kynurenines in multiple sclerosis; relation to disease course and neurocognitive symptoms. Brain Behav Immun 2016; 51:47-55. [PMID: 26189678 DOI: 10.1016/j.bbi.2015.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms. Levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) were determined with liquid chromatography mass spectrometry in cell-free CSF. At the group level MS patients (cohort 1; n=71) did not differ in absolute levels of TRP, KYN, KYNA or QUIN as compared to non-inflammatory neurological disease controls (n=20). Stratification of patients into different disease courses revealed that both absolute QUIN levels and the QUIN/KYN ratio were increased in relapsing-remitting MS (RRMS) patients in relapse. Interestingly, secondary progressive MS (SPMS) displayed a trend for lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls (n=13). In the second cohort (n=48), MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. In a supervised multivariate analysis using orthogonal projection to latent structures (OPLS-DA) depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. Still, this model had low predictive value and could not completely separate the clinically depressed patients from the non-depressed MS patients. No correlation was evident for other neurocognitive measures. Taken together these results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In contrast, PPMS patients displayed a more divergent pattern more resembling inflammatory conditions such as systemic lupus erythematosus. The pattern of KP metabolites in RRMS patients could not predict neurocognitive symptoms.
Collapse
Affiliation(s)
- Shahin Aeinehband
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Philip Brenner
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ståhl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bhat
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mark D Fidock
- AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
70
|
The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases. J Allergy Clin Immunol 2015; 137:1830-1840. [PMID: 26725996 DOI: 10.1016/j.jaci.2015.09.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many human diseases arise from or have pathogenic contributions from a dysregulated immune response. One pathway with immunomodulatory ability is the tryptophan metabolism pathway, which promotes immune suppression through the enzyme indoleamine 2,3-dioxygenase (IDO) and subsequent production of kynurenine. However, in patients with chronic inflammatory skin disease, such as psoriasis and atopic dermatitis (AD), another tryptophan metabolism enzyme downstream of IDO, L-kynureninase (KYNU), is heavily upregulated. The role of KYNU has not been explored in patients with these skin diseases or in general human immunology. OBJECTIVE We sought to explore the expression and potential immunologic function of the tryptophan metabolism enzyme KYNU in inflammatory skin disease and its potential contribution to general human immunology. METHODS Psoriatic skin biopsy specimens, as well as normal human skin, blood, and primary cells, were used to investigate the immunologic role of KYNU and tryptophan metabolites. RESULTS Here we show that KYNU(+) cells, predominantly of myeloid origin, infiltrate psoriatic lesional skin. KYNU expression positively correlates with disease severity and inflammation and is reduced on successful treatment of psoriasis or AD. Tryptophan metabolites downstream of KYNU upregulate several cytokines, chemokines, and cell adhesions. By mining data on several human diseases, we found that in patients with cancer, IDO is preferentially upregulated compared with KYNU, whereas in patients with inflammatory diseases, such as AD, KYNU is preferentially upregulated compared with IDO. CONCLUSION Our results suggest that tryptophan metabolism might dichotomously modulate immune responses, with KYNU as a switch between immunosuppressive versus inflammatory outcomes. Although tryptophan metabolism is increased in many human diseases, how tryptophan metabolism is proceeding might qualitatively affect the immune response in patients with that disease.
Collapse
|
71
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
72
|
Lopez YP, Kenis G, Rutten BPF, Myint AM, Steinbusch HWM, van den Hove DLA. Quinolinic acid-immunoreactivity in the naïve mouse brain. J Chem Neuroanat 2015; 71:6-12. [PMID: 26686288 DOI: 10.1016/j.jchemneu.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Quinolinic acid (QUIN) has been suggested to be involved in infections, inflammatory neurological disorders and in the development of psychiatric disorders. In this view, several studies have been performed to investigate QUIN localization in the brain and its neurotoxic effects. However, evidence is lacking regarding QUIN in healthy, control conditions. The aim of this study was to investigate the region-specific distribution and pattern of QUIN expression in the naïve mouse brain. In addition, possible sex differences in QUIN-immunoreactivity and its link with affect-related behavioural observations were assessed. For this purpose, naïve mice were subjected to the forced swim test (FST) and 20 min open field (OF) testing to measure affect-related behaviour. Afterwards, brains were assessed for QUIN-immunoreactivity. QUIN-immunoreactivity was particularly observed in the cingulate cortex (CC), highlighting clearly delineated cells, and the thalamic reticular nucleus (TRN), showing a more diffuse staining pattern. Subsequently, QUIN-positive cells in the CC were counted, while QUIN-immunoreactivity in the TRN was examined using gray value measurements. No significant differences between sexes were observed for the number of QUIN-positive cells in the CC, neither in levels of QUIN-immunoreactivity in the TRN. A direct correlation was found between QUIN-positive cells in the CC and QUIN-immunoreactivity in the TRN. Moreover, in male mice, a very strong correlation (rsp=.943; p<.01) between QUIN-immunoreactivity at the level of the TRN and motor activity in the OF was observed. Thus, our results suggest that QUIN - detected in the CC and the TRN - may play a role in regulating motor activity in normal conditions.
Collapse
Affiliation(s)
- Yara Pujol Lopez
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Aye M Myint
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
73
|
Karabacak M, Sinha L, Prasad O, Bilgili S, Sachan AK, Asiri A, Atac A. Spectral investigation and theoretical study of zwitterionic and neutral forms of quinolinic acid. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
López-Pedrajas R, Ramírez-Lamelas DT, Muriach B, Sánchez-Villarejo MV, Almansa I, Vidal-Gil L, Romero FJ, Barcia JM, Muriach M. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum. Front Cell Neurosci 2015; 9:279. [PMID: 26283916 PMCID: PMC4516895 DOI: 10.3389/fncel.2015.00279] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022] Open
Abstract
Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.
Collapse
Affiliation(s)
- Rosa López-Pedrajas
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera Moncada, Valencia, Spain
| | - Dolores T Ramírez-Lamelas
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera Moncada, Valencia, Spain
| | - Borja Muriach
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera Moncada, Valencia, Spain
| | - María V Sánchez-Villarejo
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera Moncada, Valencia, Spain
| | - Inmaculada Almansa
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera Moncada, Valencia, Spain
| | - Lorena Vidal-Gil
- Structure and Function of the Human Body, Facultad de Medicina y Odontología, Universidad Católica de Valencia 'San Vicente Mártir,' Valencia Spain
| | - Francisco J Romero
- Structure and Function of the Human Body, Facultad de Medicina y Odontología, Universidad Católica de Valencia 'San Vicente Mártir,' Valencia Spain
| | - Jorge M Barcia
- Structure and Function of the Human Body, Facultad de Medicina y Odontología, Universidad Católica de Valencia 'San Vicente Mártir,' Valencia Spain
| | - María Muriach
- UP Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón Spain
| |
Collapse
|
75
|
Jones SP, Franco NF, Varney B, Sundaram G, Brown DA, de Bie J, Lim CK, Guillemin GJ, Brew BJ. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease. PLoS One 2015; 10:e0131389. [PMID: 26114426 PMCID: PMC4482723 DOI: 10.1371/journal.pone.0131389] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.
Collapse
Affiliation(s)
- Simon P. Jones
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
- * E-mail:
| | - Nunzio F. Franco
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
| | - Bianca Varney
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
| | - Gayathri Sundaram
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
| | - David A. Brown
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Josien de Bie
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Chai K. Lim
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J. Guillemin
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Bruce J. Brew
- Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
- Department of Neurology, St Vincent’s Hospital, Sydney, Australia
| |
Collapse
|
76
|
Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation 2015; 12:110. [PMID: 26025142 PMCID: PMC4457980 DOI: 10.1186/s12974-015-0328-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Abstract During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. Methods Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9–10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. Results In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. Conclusion TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN’s detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.
Collapse
Affiliation(s)
- Edwin B Yan
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Tony Frugier
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Chai K Lim
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - May Tan
- Hospital Queen Elizabeth, Karung Berkunci No. 2029, 88586, Kota Kinabalu, Sabah, Malaysia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.,Department of Surgery, Central Clinical School and Monash Institute of Medical Engineering, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Australia
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Maria Cristina Morganti-Kossmann
- Australian New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Child Health, Barrow Neurological Institute, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
77
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new integrative explanation. This framework proposes that ammonia neurotoxicity is a main player in ALS pathogenesis. According to this explanation, a combination of impaired ammonia removal- mainly because of impaired hepatic urea cycle dysfunction-and increased ammoniagenesis- mainly because of impaired glycolytic metabolism in fast twitch skeletal muscle-causes chronic hyperammonia in ALS. In the absence of neuroprotective calcium binding proteins (calbindin, calreticulin and parvalbumin), elevated ammonia-a neurotoxin-damages motor neurons. Ammonia-induced motor neuron damage occurs through multiple mechanisms such as macroautophagy-endolysosomal impairment, endoplasmic reticulum (ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal hyperexcitability and neuroinflammation. Furthermore, the regional pattern of calcium binding proteins' loss, owing to either ER stress and/or impaired oxidative metabolism, determines clinical variability of ALS. Most importantly, this new framework can be generalised to explain other neurodegenerative disorders such as Huntington's disease and Parkinsonism.
Collapse
Affiliation(s)
- Bhavin Parekh
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
78
|
Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 2015; 16:9772-93. [PMID: 25938971 PMCID: PMC4463617 DOI: 10.3390/ijms16059772] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases.
Collapse
|
79
|
The degree of astrocyte activation in multiple system atrophy is inversely proportional to the distance to α-synuclein inclusions. Mol Cell Neurosci 2015; 65:68-81. [PMID: 25731829 DOI: 10.1016/j.mcn.2015.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25μm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25μm), with a reciprocal linear correlation (m, 90μm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.
Collapse
|
80
|
Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Träskman-Bendz L, Guillemin GJ, Erhardt S, Brundin L. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun 2015; 43:110-7. [PMID: 25124710 DOI: 10.1016/j.bbi.2014.07.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with depression and suicidality suffer from low-grade neuroinflammation. Pro-inflammatory cytokines activate indoleamine 2,3-dioxygenase, an initial enzyme of the kynurenine pathway. This pathway produces neuroactive metabolites, including quinolinic- and kynurenic acid, binding to the glutamate N-methyl-d-aspartate-receptor, which is hypothesized to be part of the neural mechanisms underlying symptoms of depression. We therefore hypothesized that symptoms of depression and suicidality would fluctuate over time in patients prone to suicidal behavior, depending on the degree of inflammation and kynurenine metabolite levels in the cerebrospinal fluid (CSF). METHODS We measured cytokines and kynurenine metabolites in CSF, collected from suicide attempters at repeated occasions over 2 years (total patient samples n=143, individuals n=30) and healthy controls (n=36). The association between the markers and psychiatric symptoms was assessed using the Montgomery Asberg Depression Rating Scale and the Suicide Assessment Scale. RESULTS Quinolinic acid was increased and kynurenic acid decreased over time in suicidal patients versus healthy controls. Furthermore, we found a significant association between low kynurenic acid and severe depressive symptoms, as well as between high interleukin-6 levels and more severe suicidal symptoms. CONCLUSIONS We demonstrate a long-term dysregulation of the kynurenine pathway in the central nervous system of suicide attempters. An increased load of inflammatory cytokines was coupled to more severe symptoms. We therefore suggest that patients with a dysregulated kynurenine pathway are vulnerable to develop depressive symptoms upon inflammatory conditions, as a result the excess production of the NMDA-receptor agonist quinolinic acid. This study provides a neurobiological framework supporting the use of NMDA-receptor antagonists in the treatment of suicidality and depression.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.
| | - Klas R Linderholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Chai K Lim
- Neuroinflammation Group, Australian School of Advanced Medicine, Macquarie University, NSW, Australia
| | - Martin Samuelsson
- Faculty of Health Sciences, Department of Clinical and Experimental Medicine, Division of Psychiatry, Linköping University, Linköping, Sweden
| | - Lil Träskman-Bendz
- Department of Clinical Sciences, Section of Psychiatry, Lund University, Lund, Sweden
| | - Gilles J Guillemin
- Neuroinflammation Group, Australian School of Advanced Medicine, Macquarie University, NSW, Australia
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lena Brundin
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA; Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
81
|
Hill J, Rom S, Ramirez SH, Persidsky Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J Neuroimmune Pharmacol 2014; 9:591-605. [PMID: 25119834 PMCID: PMC4209199 DOI: 10.1007/s11481-014-9557-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
Pericytes of the central nervous system (CNS) are uniquely positioned within a multicellular structure termed the neurovascular unit (NVU) to provide crucial support to blood brain barrier (BBB) formation, maintenance, and stability. Numerous CNS diseases are associated with some aspect of BBB dysfunction. A dysfunction can manifest as one or multiple disruptions to any of the following barriers: physical, metabolic, immunological and transport barrier. A breach in the BBB can notably result in BBB hyper-permeability, endothelial activation and enhanced immune-endothelial interaction. How the BBB is regulated within this integrated unit remains largely unknown, especially as it relates to pericyte-endothelial interaction. We summarize the latest findings on pericyte origin, possible marker expression, and availability within different organ systems. We highlight pericyte-endothelial cell interactions, concentrating on extra- and intra- cellular signaling mechanisms linked to platelet derived growth factor-B, transforming growth factor -β, angiopoietins, Notch, and gap junctions. We discuss the role of pericytes in the NVU under inflammatory insult, focusing on how pericytes may indirectly affect leukocyte CNS infiltration, the direct role of pericyte-mediated basement membrane modifications, and immune responses. We review new findings of pericyte actions in CNS pathologies including Alzheimer's disease, stroke, multiple sclerosis, diabetic retinopathy, and HIV-1 infection. The uncovering of the regulatory role of pericytes on the BBB will provide key insight into how barrier integrity can be re-established during neuroinflammation.
Collapse
Affiliation(s)
- Jeremy Hill
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Servio H. Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| |
Collapse
|
82
|
Colín-González AL, Maya-López M, Pedraza-Chaverrí J, Ali SF, Chavarría A, Santamaría A. The Janus faces of 3-hydroxykynurenine: Dual redox modulatory activity and lack of neurotoxicity in the rat striatum. Brain Res 2014; 1589:1-14. [DOI: 10.1016/j.brainres.2014.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
|
83
|
Development of a liquid chromatography–mass spectrometry method for the determination of the neurotoxic quinolinic acid in human serum. Clin Chim Acta 2014; 436:268-72. [DOI: 10.1016/j.cca.2014.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022]
|
84
|
Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer's disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm (Vienna) 2013; 121:881-9. [PMID: 24346138 DOI: 10.1007/s00702-013-1135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Abstract
The pathomechanism of neurodegenerative disorders still poses a challenge to neuroscientists, and continuous research is under way with the aim of attaining an understanding of the exact background of these devastating diseases. The pathomechanism of Alzheimer's disease (AD) is associated with characteristic neuropathological features such as extracellular amyloid-β and intracellular tau deposition. Glutamate excitotoxicity and neuroinflammation are also factors that are known to contribute to the neurodegenerative process, but a cerebrovascular dysfunction has recently also been implicated in AD. Current therapeutic tools offer moderate symptomatic treatment, but fail to reduce disease progression. The kynurenine pathway (KP) has been implicated in the development of neurodegenerative processes, and alterations in the KP have been demonstrated in both acute and chronic neurological disorders. Kynurenines have been suggested to be involved in the regulation of neurotransmission and in immunological processes. Targeting the KP, therefore, offers a valuable strategic option for the attenuation of glutamatergic excitotoxicity, and for neuroprotection.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | |
Collapse
|
85
|
Vallerini GP, Amori L, Beato C, Tararina M, Wang XD, Schwarcz R, Costantino G. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. J Med Chem 2013; 56:9482-95. [PMID: 24274468 DOI: 10.1021/jm401249c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3-HAO) is the enzyme responsible for the production of the neurotoxic tryptophan metabolite quinolinic acid (QUIN). Elevated brain levels of QUIN are observed in several neurodegenerative diseases, but pharmacological investigation on its role in the pathogenesis of these conditions is difficult because only one class of substrate-analogue 3-HAO inhibitors, with poor chemical stability, has been reported so far. Here we describe the design, synthesis, and biological evaluation of a novel class of chemically stable inhibitors based on the 2-aminonicotinic acid 1-oxide nucleus. After the preliminary in vitro evaluation of newly synthesized compounds using brain tissue homogenate, we selected the most active inhibitor and showed its ability to acutely reduce the production of QUIN in the rat brain in vivo. These findings provide a novel pharmacological tool for the study of the mechanisms underlying the onset and propagation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gian Paolo Vallerini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
86
|
Quinolinic acid: an endogenous neurotoxin with multiple targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104024. [PMID: 24089628 PMCID: PMC3780648 DOI: 10.1155/2013/104024] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death.
Collapse
|
87
|
Mazarei G, Budac DP, Lu G, Lee H, Möller T, Leavitt BR. The absence of indoleamine 2,3-dioxygenase expression protects against NMDA receptor-mediated excitotoxicity in mouse brain. Exp Neurol 2013; 249:144-8. [PMID: 23994717 DOI: 10.1016/j.expneurol.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022]
Abstract
We previously showed that the expression and activity of indoleamine 2,3-dioxygenase (Ido1) are chronically elevated in the striatum of YAC128 mouse model of HD. This was followed by increased production of neurotoxic metabolite hydroxykynurenine (3-HK) in the striatum of symptomatic mice. We therefore hypothesized that the chronic Ido1 induction in the striatum of YAC128 mice leads to increased neurotoxicity in this mouse model; based on this hypothesis, we predicted that the absence of Ido1 expression would result in decreased sensitivity to neurotoxicity in mice. The work described in this brief communication will include the characterization of Ido(-/-) striatum in terms of enzymatic expression and activity in the first step of the pathway. Additionally, we assessed the sensitivity of the striatum to excitotoxic insult in the absence of Ido1 expression in the striatum of constitutive Ido1 null mice (Ido(-/-)) and demonstrated that Ido(-/-) mice are less sensitive to QA-induced striatal neurotoxicity. Finally, through measurement of kynurenine pathway (KP) metabolites in Ido(-/-) mice, we showed decreased levels of 3-HK in the striatum of these mice. This study suggests that the inhibition of the first step in the KP may be neuroprotective and should be considered as a potential therapeutic target in HD and other neurodegenerative diseases.
Collapse
MESH Headings
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/enzymology
- Corpus Striatum/pathology
- Disease Models, Animal
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Huntington Disease/enzymology
- Huntington Disease/genetics
- Huntington Disease/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Injections, Intraventricular
- Male
- Mice
- Mice, Knockout
- Neuroprotective Agents/pharmacology
- Quinolinic Acid/administration & dosage
- Quinolinic Acid/toxicity
- Receptors, N-Methyl-D-Aspartate/physiology
Collapse
Affiliation(s)
- G Mazarei
- Centre for Molecular Medicine and Therapeutics and Department of Medical Genetics, University of British Columbia, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Klockow JL, Glass TE. Development of a fluorescent chemosensor for the detection of kynurenine. Org Lett 2012; 15:235-7. [PMID: 23265271 DOI: 10.1021/ol303025m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kynurenine, a metabolite of tryptophan, is known to contribute to cancer progression when overproduced. A method for facile fluorescent sensing of kynurenine using sensor 1 has been developed. When bound at low pH, sensor 1 undergoes a very large bathochromic shift because kynurenine extends the conjugation of the fluorophore. This unusual mechanism of activation provides a 390-fold fluorescence enhancement that is very specific to kynurenine and a wavelength of fluorescence that extends into the red.
Collapse
Affiliation(s)
- Jessica L Klockow
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
89
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
90
|
Adams S, Braidy N, Bessesde A, Brew BJ, Grant R, Teo C, Guillemin GJ. The Kynurenine Pathway in Brain Tumor Pathogenesis. Cancer Res 2012; 72:5649-57. [DOI: 10.1158/0008-5472.can-12-0549] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 2012; 34:136-43. [PMID: 23123095 DOI: 10.1016/j.tips.2012.09.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway of tryptophan metabolism accounts for most of the tryptophan that is not committed to protein synthesis and includes compounds active in the nervous and immune systems. Kynurenine acts on the aryl hydrocarbon receptor, affecting the metabolism of xenobiotics and promoting carcinogenesis. Quinolinic acid is an agonist at N-methyl-D-aspartate receptors (NMDARs), but is also pro-oxidant, has immunomodulatory actions, and promotes the formation of hyperphosphorylated tau proteins. Kynurenic acid blocks NMDARs and α7-homomeric nicotinic cholinoceptors and is also an agonist at the orphan G-protein-coupled receptor GPR35. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid have pronounced redox activity and regulate T cell function. Cinnabarinic acid can activate metabotropic glutamate receptors. This review highlights the increasing range of molecular targets for components of the kynurenine pathway in both the nervous and immune systems in relation to their relevance to disease and drug development.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
92
|
Vecsei L, Plangar I, Szalardy L. Manipulation with kynurenines: a possible tool for treating neurodegenerative diseases? Expert Rev Clin Pharmacol 2012; 5:351-3. [PMID: 22943114 DOI: 10.1586/ecp.12.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Tan L, Yu JT, Tan L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 2012; 323:1-8. [PMID: 22939820 DOI: 10.1016/j.jns.2012.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
The kynurenine pathway (KP), the primary route of tryptophan degradation in mammalian cells, consists of many metabolites including kynurenic acid (KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine (3-HK) and picolinic acid (PIC). The former two are neuroactive, while the latter two are molecules with pro-oxidants and antioxidants properties. These agents are considered to be involved in aging and numerous neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Several studies have demonstrated that altered kynurenine metabolism plays an important role in the pathogenesis of this group of diseases. The important metabolites and key enzymes show significant importance in those disorders. Both analogs of the neuroprotective metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic compounds may have potential therapeutic significance. In this review we discuss the mechanistic and therapeutic considerations of KP in aging and the main neurodegenerative diseases and review the updated knowledge in this therapeutic field.
Collapse
Affiliation(s)
- Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China.
| | | | | |
Collapse
|
94
|
Abstract
Over the last two decades, evidence for the involvement of quinolinic acid (QUIN) in neuroinflammatory diseases has been exponentially increasing. Within the brain, QUIN is produced and released by infiltrating macrophages and activated microglia, the very cells that are prominent during neuroinflammation. QUIN acts as an agonist of the N-methyl-D-aspartate receptor and as such is considered to be a brain endogenous excitotoxin. Since the discovery of the excitotoxic activity of QUIN in the early 1980s, several other cytotoxic mechanisms have been identified. We know today that QUIN acts as a neurotoxin, gliotoxin, proinflammatory mediator, pro-oxidant molecule and can alter the integrity and cohesion of the blood-brain barrier. This paper aims to review some of the most recent findings about the effects of QUIN and its mode of action.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
95
|
The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications. J Neural Transm (Vienna) 2012; 119:225-34. [DOI: 10.1007/s00702-012-0765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
|
96
|
Lack of association of indoleamine 2,3-dioxygenase polymorphisms with interferon-alpha-related depression in hepatitis C. Brain Behav Immun 2011; 25:1491-7. [PMID: 21693183 DOI: 10.1016/j.bbi.2011.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/22/2011] [Accepted: 06/06/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Major depression is a frequent adverse effect of interferon-alpha (IFN-α) therapy. Although the indoleamine 2,3-dioxygenase (IDO) enzyme seems to be involved in the pathophysiology of IFN-α-induced depression, no pharmacogenetic study has investigated whether variation in the IDO gene modifies vulnerability to this adverse effect. METHODS A cross-sectional study assessing 277 hepatitis C patients recruited in two specialized outpatient clinics of Brazil. They were interviewed with the Mini International Neuropsychiatric Interview (MINI) approximately 1 month after the end of IFN-α plus ribavirin therapy. Genomic DNA of individuals was extracted from venous blood. Three IDO single-nucleotide polymorphisms (SNPs) were genotyped (rs3824259; rs10089084 and rs35099072). RESULTS MINI indicated that 21.3% of the sample met criteria for a major depressive episode during the course of IFN-α therapy. No association with the diagnosis of a major depressive episode during the course of IFN-α therapy was observed genotype or allele-wise (p>0.05). Current major depression and/or current anxiety disorder was significantly associated with IFN-α-related depression (p<0.005). However, gender, age, route of infection, result of the antiviral treatment, past history of substance use disorders, depression or any other psychiatric disorder showed no association with IFN-α-related depression (p>0.05). CONCLUSIONS Our results suggest no influence of the variants in the IDO gene and the diagnosis of interferon-α-related depression in the Brazilian population. Interferon-α-related depression may impose persistent psychopathology on at least 15% of the depressed patients even 2 years after antiviral therapy termination. The cross-sectional design is a limitation of our study, predisposing memory bias. Prospective pharmacogenetic studies are warranted to continue investigation of the impact of IDO polymorphisms on the development of IFN-α-induced depression.
Collapse
|
97
|
Chen Y, Brew BJ, Guillemin GJ. Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem 2011; 118:816-25. [PMID: 21182524 DOI: 10.1111/j.1471-4159.2010.07159.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron degenerative disease for which the aetiology is still unknown. The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of NAD(+) and is also one of the major regulatory mechanisms of the immune response. The KP is known to be involved in several neuroinflammatory disorders. Among the KP intermediates, quinolinic acid (QUIN) is a potent excitotoxin, while kynurenic acid and picolinic acid are both neuroprotectant. This study aimed to (i) characterize the components of the KP in NSC-34 cells (a rodent motor neuron cell line) and (ii) assess the effects of QUIN on the same cells. RT-PCR and immunocytochemistry were used to characterize the KP enzymes, and lactate dehydrogenase (LDH) test was used to assess the effect of QUIN in the absence and presence of NMDA receptor antagonists, kynurenines and 1-methyl tryptophan. Our data demonstrate that a functional KP is present in NSC-34 cells. LDH tests showed that (i) QUIN toxicity on NSC-34 cells increases with time and concentration; (ii) NMDA antagonists, 2-amino-5-phosphonopentanoic acid, MK-801 and memantine, can partially decrease QUIN toxicity; (iii) kynurenic acid can decrease LDH release in a linear manner, whereas picolinic acid does the same but non-linearly; and (iv) 1-methyl tryptophan is effective in decreasing QUIN release by the rodent microglial cell line BV-2 and thus protects NSC-34 from cell death. There is currently a lack of effective treatment for ALS and our in vitro results provide a novel therapeutic strategy for ALS patients.
Collapse
Affiliation(s)
- Yiquan Chen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
98
|
Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One 2010; 5:e14123. [PMID: 21152063 PMCID: PMC2994931 DOI: 10.1371/journal.pone.0014123] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/26/2010] [Indexed: 12/14/2022] Open
Abstract
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.
Collapse
Affiliation(s)
- Ming-Chak Lee
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Ka Ka Ting
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Seray Adams
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Bruce J. Brew
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital, Sydney, Australia
| | - Roger Chung
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
- * E-mail:
| |
Collapse
|
99
|
Davies NW, Guillemin G, Brew BJ. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder. Int J Tryptophan Res 2010; 3:121-40. [PMID: 22084594 PMCID: PMC3195234 DOI: 10.4137/ijtr.s4321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer's disease, HIV-associated neurocognitive disorder, Huntington's disease, motor neurone disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Nicholas W.S. Davies
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Gilles Guillemin
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Bruce J. Brew
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| |
Collapse
|