51
|
Bell CG. The Epigenomic Analysis of Human Obesity. Obesity (Silver Spring) 2017; 25:1471-1481. [PMID: 28845613 DOI: 10.1002/oby.21909] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Analysis of the epigenome-the chemical modifications and packaging of the genome that can influence or indicate its activity-enables molecular insight into cell type-specific machinery. It can, therefore, reveal the pathophysiological mechanisms at work in disease. Detected changes can also represent physiological responses to adverse environmental exposures, thus enabling the epigenetic mark of DNA methylation to act as an epidemiological biomarker, even in surrogate tissue. This makes epigenomic analysis an attractive prospect to further understand the pathobiology and epidemiological aspects of obesity. Furthermore, integrating epigenomic data with known obesity-associated common genetic variation can aid in deciphering their molecular mechanisms. METHODS AND CONCLUSIONS This review primarily examines epidemiological or population-based studies of epigenetic modifications in relation to adiposity traits, as opposed to animal or cell models. It discusses recent work exploring the epigenome with respect to human obesity, which to date has predominately consisted of array-based studies of DNA methylation in peripheral blood. It is of note that highly replicated BMI DNA methylation associations are not causal, but strongly driven by coassociations for more precisely measured intertwined outcomes and factors, such as hyperlipidemia, hyperglycemia, and inflammation. Finally, the potential for the future exploration of the epigenome in obesity and related disorders is considered.
Collapse
Affiliation(s)
- Christopher G Bell
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Epigenomic Medicine, Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
- Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
52
|
Muñoz AM, Velásquez CM, Agudelo GM, Uscátegui RM, Estrada A, Patiño FA, Parra BE, Parra MV, Bedoya G. Examining for an association between candidate gene polymorphisms in the metabolic syndrome components on excess weight and adiposity measures in youth: a cross-sectional study. GENES AND NUTRITION 2017; 12:19. [PMID: 28690685 PMCID: PMC5496328 DOI: 10.1186/s12263-017-0567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/28/2017] [Indexed: 01/14/2023]
Abstract
Background A polymorphism in a gene may exert its effects on multiple phenotypes. The aim of this study is to explore the association of 10 metabolic syndrome candidate genes with excess weight and adiposity and evaluate the effect of perinatal and socioeconomic factors on these associations. Methods The anthropometry, socioeconomic and perinatal conditions and 10 polymorphisms were evaluated in 1081 young people between 10 and 18 years old. Genotypic associations were calculated using logistic and linear models adjusted by age, gender, and pubertal maturation, and a genetic risk score (GRS) was calculated by summing the number of effect alleles. Results We found that AGT-rs699 and the IRS2-rs1805097 variants were significantly associated with excess weight, OR = 1.25 (CI 95% 1.01–1.54; p = 0.034); OR = 0.77 (CI 95% 0.62–0.96; p = 0.022), respectively. AGT-rs699 and FTO-rs17817449 variants were significantly and directly associated with body mass index (BMI) (p = 0.036 and p = 0.031), while IRS2-rs1805097 and UCP3-rs1800849 were significantly and negatively associated with BMI and waist circumference, correspondingly. Each additional effect allele in GRS was associated with an increase of 0.020 log(BMI) (p = 0.004). No effects from the socioeconomic and perinatal factors evaluated on the association of the candidate genes with the phenotypes were detected. Conclusions Our observation suggests that AGT-rs699 and FTO-rs17817449 variants may contribute to the risk development of excess weight and an increase in the BMI, while IRS2-rs1805097 showed a protector effect; in addition, UCP3- rs1800849 showed a decreasing waist circumference. Socioeconomic and perinatal factors had no effect on the associations of the candidate gene. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0567-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica María Muñoz
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Claudia María Velásquez
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UdeA), Calle 62 No. 52-59, Laboratorio 413, Medellin, Colombia
| | - Gloria María Agudelo
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Vidarium Research Group, Nutrition, Health and Wellness Research Center, Nutresa Business Group (Grupo Empresarial Nutresa), Calle 8 Sur No. 50-67, Medellin, Colombia
| | | | - Alejandro Estrada
- Research Group on Demography and Health, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Fredy Alonso Patiño
- Research Group of Sciences Applied to Physical Activity and Sports, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Beatriz Elena Parra
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - María Victoria Parra
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Gabriel Bedoya
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
53
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
54
|
Leroy JLMR, Valckx SDM, Jordaens L, De Bie J, Desmet KLJ, Van Hoeck V, Britt JH, Marei WF, Bols PEJ. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2017; 27:693-703. [PMID: 25690396 DOI: 10.1071/rd14363] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although fragmented and sometimes inconsistent, the proof of a vital link between the importance of the physiological status of the mother and her subsequent reproductive success is building up. High-yielding dairy cows are suffering from a substantial decline in fertility outcome over past decades. For many years, this decrease in reproductive output has correctly been considered multifactorial, with factors including farm management, feed ratios, breed and genetics and, last, but not least, ever-rising milk production. Because the problem is complex and requires a multidisciplinary approach, it is hard to formulate straightforward conclusions leading to improvements on the 'work floor'. However, based on remarkable similarities on the preimplantation reproductive side between cattle and humans, there is a growing tendency to consider the dairy cow's negative energy balance and accompanying fat mobilisation as an interesting model to study the impact of maternal metabolic disorders on human fertility and, more specifically, on oocyte and preimplantation embryo quality. Considering the mutual interest of human and animal scientists studying common reproductive problems, this review has several aims. First, we briefly introduce the 'dairy cow case' by describing the state of the art of research into metabolic imbalances and their possible effects on dairy cow reproduction. Second, we try to define relevant in vitro models that can clarify certain mechanisms by which aberrant metabolite levels may influence embryonic health. We report on recent advances in the assessment of embryo metabolism and meantime critically elaborate on advantages and major limitations of in vitro models used so far. Finally, we discuss hurdles to be overcome to successfully translate the scientific data to the field.
Collapse
Affiliation(s)
- Jo L M R Leroy
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Sara D M Valckx
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Lies Jordaens
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Jessie De Bie
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Karolien L J Desmet
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Veerle Van Hoeck
- Laboratório de Fisiologia e Endocrinologia Molecular, University SaoPaulo Pirassununga, CEP 13-3565-4220 Pirassununga, Sao Paulo, Brasil
| | - Jack H Britt
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Waleed F Marei
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| |
Collapse
|
55
|
Perera E, Yúfera M. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:563-578. [PMID: 27807713 DOI: 10.1007/s10695-016-0310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.
Collapse
Affiliation(s)
- Erick Perera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain.
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | - Manuel Yúfera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
56
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
57
|
Gao T, Zhao M, Zhang L, Li J, Yu L, Lv P, Gao F, Zhou G. Effects of in ovo feeding of l -arginine on the development of lymphoid organs and small intestinal immune barrier function in posthatch broilers. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
58
|
Kaushik P, Anderson JT. Obesity: epigenetic aspects. Biomol Concepts 2017; 7:145-55. [PMID: 27327133 DOI: 10.1515/bmc-2016-0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.
Collapse
|
59
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring. PLoS One 2017; 12:e0169889. [PMID: 28072825 PMCID: PMC5224989 DOI: 10.1371/journal.pone.0169889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which is associated with the insulin signaling pathway in the mice livers.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofang Sun
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
60
|
Van Eetvelde M, Heras S, Leroy JLMR, Van Soom A, Opsomer G. The Importance of the Periconception Period: Immediate Effects in Cattle Breeding and in Assisted Reproduction Such as Artificial Insemination and Embryo Transfer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:41-68. [PMID: 28864984 DOI: 10.1007/978-3-319-62414-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In livestock breeding, the successful outcome is largely depending on the "periconception environment" which, in a narrow sense, refers to the genital tract, where gametogenesis and embryogenesis occur. During these early stages of development, gametes and embryos are known to be particularly sensitive to alterations in their microenvironment. However, as the microenvironment somehow reflects what is going on in the external world, we must widen our definition of "periconception environment" and refer to all events taking place around the time of conception, including metabolic state and health and nutrition of the dam. In modern dairy cows that have to manage an optimal reproductive performance with continued growth and high milk yield, the periconception period is particularly challenging. The metabolic priority for growth and lactation is known to generate adverse conditions hampering optimal ovarian function, oocyte maturation, and development of embryo/fetus. In addition, by using artificial reproductive technologies (ARTs), gametes and/or embryos of livestock are exposed to unnatural conditions outside the male and female genital tract. Artificial insemination, the most widely used technique, is currently yielding pregnancy rates similar to natural mating, and calves produced by AI are equally viable after natural mating. In contrast, other ART, such as multiple ovulation and embryo transfer, have been reported to induce changes in gene expression and DNA methylation patterns with potential consequences for development.Finally, the "periconceptional" environment has been shown to not only influence the successful establishment of pregnancy but also the long-term health and productivity of the offspring. Hence, the optimization of management around the time of conception might open doors to improve animal production and product quality.
Collapse
Affiliation(s)
- Mieke Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - J L M R Leroy
- University of Antwerp, Campus Drie Eiken, Universiteitsplein 1 D.U.010, 2610, Wilrijk, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| |
Collapse
|
61
|
Huang X, Chang J, Feng W, Xu Y, Xu T, Tang H, Wang H, Pan X. Development of a New Growth Standard for Breastfed Chinese Infants: What Is the Difference from the WHO Growth Standards? PLoS One 2016; 11:e0167816. [PMID: 27977706 PMCID: PMC5158189 DOI: 10.1371/journal.pone.0167816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
The objectives of this longitudinal study were to examine the trajectory of breastfed infants' growth in China to update growth standards for early childhood, and to compare these updated Chinese growth standards with the growth standards recommended by the World Health Organization (WHO) in 2006.This longitudinal cohort study enrolled 1,840 healthy breastfed infants living in an "optimal" environment favorable to growth and followed up until one year of age from 2007 to 2010. The study subjects were recruited from 60 communities in twelve cities in China. A participating infant's birth weight was measured within the first hour of the infant's life, and birth length and head circumference within 24 hours after birth. Repeated weekly and monthly anthropometric measurements were also taken. Multilevel (ML) modelling via MLwiN2.25 was fitted to estimate the growth curves of weight-for-age (WFA), length-for-age (LFA), and head circumference-for-age (HFA) for the study sample as a whole and by child sex, controlling for mode of delivery, the gravidity and parity of the mother, infant's physical measurements at birth, infant's daily food intaking frequency per day, infant's medical conditions, the season when the infant's physical measurement was taken, parents' ages, heights, and attained education, and family structure and income per month. During the first four weeks after birth, breastfed infants showed an increase in weight, length, and head circumference of 1110g, 4.9 cm, and 3.2 cm, respectively, among boys, and 980 g, 4.4 cm, and 2.8 cm, respectively, among girls. Throughout infancy, the total growth for these three was 6930 g, 26.4 cm, and 12.5 cm, respectively, among boys, and 6480 g, 25.5 cm, and 11.7 cm, respectively, among girls. As expected, there was a significant sex difference in growth during the first year. In comparison with the WHO growth standards, breastfed children in our study were heavier in weight, longer in length, and bigger in head circumference, with the exception of a few age points during the first two to four months on the upper two percentile curves.Our data suggested the growth curves for breastfed infants in China were significantly different in comparison with those based on the WHO standards. The adoption of the WHO infant growth standards among Chinese infants, as well as the methods used in the development of such growth standards in China, need careful and coordinated consideration.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| | - Jenjen Chang
- Department of Epidemiology, Saint Louis University College for Public Health and Social Justice, St. Louis. MO, United States of America
| | - Weiwei Feng
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| | - Yiqun Xu
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| | - Tao Xu
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| | - He Tang
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| | - Huishan Wang
- Department of Children Health, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
- * E-mail:
| | - Xiaoping Pan
- Department of Epidemiology, National Center for Women and Children Health, Chinese Disease Prevention Control Center, Beijing, China
| |
Collapse
|
62
|
Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across Prenatal and Postnatal Periods. Int J Mol Sci 2016; 17:ijms17121994. [PMID: 27916805 PMCID: PMC5187794 DOI: 10.3390/ijms17121994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.
Collapse
Affiliation(s)
- Ilaria Floris
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Jamie D Kraft
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Illimar Altosaar
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
63
|
Friso S, Udali S, De Santis D, Choi SW. One-carbon metabolism and epigenetics. Mol Aspects Med 2016; 54:28-36. [PMID: 27876555 DOI: 10.1016/j.mam.2016.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
The function of one-carbon metabolism is that of regulating the provision of methyl groups for biological methylation reactions including that of DNA and histone proteins. Methylation at specific sites into the DNA sequence and at histone tails are among the major epigenetic feature of mammalian genome for the regulation of gene expression. The enzymes within one-carbon metabolism are dependent from a number of vitamins or nutrients that serve either as co-factors or methyl acceptors or donors among which folate, vitamin B12, vitamin B6, betaine, choline and methionine have a major role. Several evidences show that there is a strict inter-relationship between one-carbon metabolism nutrients and epigenetic phenomena. Epigenetics is closely involved in gene transcriptional regulation through modifications super-imposed to the nucleotide sequence of DNA, such as DNA methylation, through chromatin remodeling systems that involves post-translational modifications of histones or through non-coding RNAs-based mechanisms. The epigenetic features of the genome are potentially modifiable by the action of several environmental factors among which nutrients cover a special place and interest considering their potential of influencing regulatory pathways at a molecular level by specific nutritional intervention and eventually influence disease prevention and outcomes. The present review will focus on the link between one-carbon nutrients and epigenetic phenomena based on the current knowledge from findings in cell culture, animal models and human studies.
Collapse
Affiliation(s)
- Simonetta Friso
- Department of Medicine, University of Verona School of Medicine, Verona, Italy.
| | - Silvia Udali
- Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Domenica De Santis
- Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Sang-Woon Choi
- Tufts University School of Nutrition Science and Policy, Boston, MA, USA; Chaum Life Center, CHA University, Seoul, South Korea
| |
Collapse
|
64
|
Lynch SM, O'Neill KM, McKenna MM, Walsh CP, McKenna DJ. Regulation of miR-200c and miR-141 by Methylation in Prostate Cancer. Prostate 2016; 76:1146-59. [PMID: 27198154 PMCID: PMC5082568 DOI: 10.1002/pros.23201] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND In prostate cancer (PCa), abnormal expression of several microRNAs (miRNAs) has been previously reported. Increasing evidence shows that aberrant epigenetic regulation of miRNAs is a contributing factor to their altered expression in cancer. In this study, we investigate whether expression of miR-200c and miR-141 in PCa is related to the DNA methylation status of their promoter. METHODS PCR analysis of miR-200c and miR-141, and CpG methylation analysis of their common promoter, was performed in PCa cell-lines and in archived prostate biopsy specimens. The biological significance of miR-200c and miR-141 expression in prostate cancer cells was assessed by a series of in vitro bioassays and the effect on proposed targets DNMT3A and TET1/TET3 was investigated. The effect on promoter methylation status in cells treated with demethylating agents was also examined. RESULTS miR-200c and miR-141 are both highly elevated in LNCaP, 22RV1, and DU145 cells, but significantly reduced in PC3 cells. This correlates inversely with the methylation status of the miR-200c/miR-141 promoter, which is unmethylated in LNCaP, 22RV1, and DU145 cells, but hypermethylated in PC3. In PC3 cells, miR-200c and miR-141 expression is subsequently elevated by treatment with the demethylating drug decitabine (5-aza-2'deoxycytidine) and by knockdown of DNA methyltransferase 1 (DNMT1), suggesting their expression is regulated by methylation. Expression of miR-200c and miR-141 in prostate biopsy tissue was inversely correlated with methylation in promoter CpG sites closest to the miR-200c/miR-141 loci. In vitro, over-expression of miR-200c in PC3 cells inhibited growth and clonogenic potential, as well as inducing apoptosis. Expression of the genes DNMT3A and TET1/TET3 were down-regulated by miR-200c and miR-141 respectively. Finally, treatment with the soy isoflavone genistein caused demethylation of the promoter CpG sites closest to the miR-200c/miR-141 loci resulting in increased miR-200c expression. CONCLUSIONS Our findings provide evidence that miR-200c and miR-141 are under epigenetic regulation in PCa cells. We propose that profiling their expression and methylation status may have potential as a novel biomarker or focus of therapeutic intervention in the diagnosis and prognosis of PCa. Prostate 76:1146-1159, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Karla M. O'Neill
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
- School of MedicineDentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Michael M. McKenna
- Department of Cellular PathologyWestern Health and Social Care TrustAltnagelvin Area HospitalDerryUK
| | - Colum P. Walsh
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Declan J. McKenna
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| |
Collapse
|
65
|
Wang J, Cao M, Yang M, Lin Y, Che L, Fang Z, Xu S, Feng B, Li J, Wu D. Intra-uterine undernutrition amplifies age-associated glucose intolerance in pigs via altered DNA methylation at muscle GLUT4 promoter. Br J Nutr 2016; 116:390-401. [PMID: 27265204 DOI: 10.1017/s0007114516002166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study aimed to investigate the effect of maternal malnutrition on offspring glucose tolerance and the epigenetic mechanisms involved. In total, twelve primiparous Landrace×Yorkshire gilts were fed rations providing either 100 % (control (CON)) or 75 % (undernutrition (UN)) nutritional requirements according to the National Research Council recommendations, throughout gestation. Muscle samples of offspring were collected at birth (dpn1), weaning (dpn28) and adulthood (dpn189). Compared with CON pigs, UN pigs showed lower serum glucose concentrations at birth, but showed higher serum glucose and insulin concentrations as well as increased area under the blood glucose curve during intravenous glucose tolerance test at dpn189 (P<0·05). Compared with CON pigs, GLUT-4 gene and protein expressions were decreased at dpn1 and dpn189 in the muscle of UN pigs, which was accompanied by increased methylation at the GLUT4 promoter (P<0·05). These alterations in methylation concurred with increased mRNA levels of DNA methyltransferase (DNMT) 1 at dpn1 and dpn28, DNMT3a at dpn189 and DNMT3b at dpn1 in UN pigs compared with CON pigs (P<0·05). Interestingly, although the average methylation levels at the muscle GLUT4 promoter were decreased at dpn189 compared with dpn1 in pigs exposed to a poor maternal diet (P<0·05), the methylation differences in individual CpG sites were more pronounced with age. Our results indicate that in utero undernutrition persists to silence muscle GLUT4 likely through DNA methylation during the ageing process, which may lead to the amplification of age-associated glucose intolerance.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Meng Cao
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Mei Yang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Yan Lin
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Lianqiang Che
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Zhengfeng Fang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Shengyu Xu
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Bin Feng
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Jian Li
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - De Wu
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| |
Collapse
|
66
|
Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:189-199. [PMID: 27475301 DOI: 10.1016/j.cbpa.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Lda, Area Empresarial de Marim, Lote C. 8700-221 Olhão, Portugal
| | - Inge Geurden
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Maria Teresa Dinis
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Stephane Panserat
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sofia Engrola
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
67
|
Steegenga WT, Mischke M, Lute C, Boekschoten MV, Lendvai A, Pruis MGM, Verkade HJ, van de Heijning BJM, Boekhorst J, Timmerman HM, Plösch T, Müller M, Hooiveld GJEJ. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol Nutr Food Res 2016; 61. [PMID: 27129739 PMCID: PMC5215441 DOI: 10.1002/mnfr.201600141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Scope The long‐lasting consequences of nutritional programming during the early phase of life have become increasingly evident. The effects of maternal nutrition on the developing intestine are still underexplored. Methods and results In this study, we observed (1) altered microbiota composition of the colonic luminal content, and (2) differential gene expression in the intestinal wall in 2‐week‐old mouse pups born from dams exposed to a Western‐style (WS) diet during the perinatal period. A sexually dimorphic effect was found for the differentially expressed genes in the offspring of WS diet‐exposed dams but no differences between male and female pups were found for the microbiota composition. Integrative analysis of the microbiota and gene expression data revealed that the maternal WS diet independently affected gene expression and microbiota composition. However, the abundance of bacterial families not affected by the WS diet (Bacteroidaceae, Porphyromonadaceae, and Lachnospiraceae) correlated with the expression of genes playing a key role in intestinal development and functioning (e.g. Pitx2 and Ace2). Conclusion Our data reveal that maternal consumption of a WS diet during the perinatal period alters both gene expression and microbiota composition in the intestinal tract of 2‐week‐old offspring.
Collapse
Affiliation(s)
- Wilma T Steegenga
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mona Mischke
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Carolien Lute
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Agnes Lendvai
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien G M Pruis
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Müller
- Nutrigenomics and Systems Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Guido J E J Hooiveld
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
68
|
Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR. PLoS One 2016; 11:e0158899. [PMID: 27391076 PMCID: PMC4938405 DOI: 10.1371/journal.pone.0158899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7–28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular mechanisms of MC-LR hepatotoxicity.
Collapse
|
69
|
Bay JL, Morton SM, Vickers MH. Realizing the Potential of Adolescence to Prevent Transgenerational Conditioning of Noncommunicable Disease Risk: Multi-Sectoral Design Frameworks. Healthcare (Basel) 2016; 4:E39. [PMID: 27417627 PMCID: PMC5041040 DOI: 10.3390/healthcare4030039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence from the field of Developmental Origins of Health and Disease (DOHaD) demonstrates that early life environmental exposures impact later-life risk of non-communicable diseases (NCDs). This has revealed the transgenerational nature of NCD risk, thus demonstrating that interventions to improve environmental exposures during early life offer important potential for primary prevention of DOHaD-related NCDs. Based on this evidence, the prospect of multi-sectoral approaches to enable primary NCD risk reduction has been highlighted in major international reports. It is agreed that pregnancy, lactation and early childhood offer significant intervention opportunities. However, the importance of interventions that establish positive behaviors impacting nutritional and non-nutritional environmental exposures in the pre-conceptual period in both males and females, thus capturing the full potential of DOHaD, must not be overlooked. Adolescence, a period where life-long health-related behaviors are established, is therefore an important life-stage for DOHaD-informed intervention. DOHaD evidence underpinning this potential is well documented. However, there is a gap in the literature with respect to combined application of theoretical evidence from science, education and public health to inform intervention design. This paper addresses this gap, presenting a review of evidence informing theoretical frameworks for adolescent DOHaD interventions that is accessible collectively to all relevant sectors.
Collapse
Affiliation(s)
- Jacquie L Bay
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Susan M Morton
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
- Centre for Longitudinal Research-He Ara ki Mua, University of Auckland, Auckland 1743, New Zealand.
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
70
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
71
|
Food contaminants and programming of type 2 diabetes: recent findings from animal studies. J Dev Orig Health Dis 2016; 7:505-512. [PMID: 27292028 DOI: 10.1017/s2040174416000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is now accepted that the way our health evolves with aging is intimately linked to the quality of our early life. The present review highlights the emerging data of Developmental Origins of Health and Disease field on developmental disruption by toxicants and their subsequent effect on type 2 diabetes. We report adverse neonatal effects of several food contaminants during pregnancy and lactation, among them bisphenol A, chlorpyrifos, perfluorinated chemicals on pancreas integrity and functionality in later life. The described alterations, in conjunction with disruption of β cell mass in early life, can lead to dysregulation of glucose metabolism, insulin synthesis, which facilitates the development of insulin resistance and progression of diabetes in the adult. Despite limited and often inconclusive epidemiologic and experimental data, more recent data clearly show that infants appear to be at increased risk of type 2 diabetes in later life. This may be a result of continued exposure to chemical food contaminants during the critical window of pancreas development. In societies already burdened with increased incidence of non-communicable chronic diseases, there is a clear need for information regarding the potential harmful effects of chemical food contaminants on adult health diseases.
Collapse
|
72
|
Rana S, Kumar S, Rathore N, Padwad Y, Bhushana S. Nutrigenomics and its Impact on Life Style Associated Metabolic Diseases. Curr Genomics 2016; 17:261-78. [PMID: 27252592 PMCID: PMC4869012 DOI: 10.2174/1389202917666160202220422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Post-human genome revelation observes the emergence of 'Nutigenomics' as one of the exciting scientific advancement influencing mankind around the world. Food or more precisely 'nutrition' has the major impact in defining the cause-response interaction between nutrient (diet) and human health. In addition to substantial understanding of nutrition-human-health interaction, bases of 'nutrigenomic' development foster on advent in transcriptomics, genomics, proteomics and metabolomics as well as insight into food as health supplement. Interaction of selected nutrient with associated genes in specific organ or tissue necessary to comprehend that how individual's genetic makeup (DNA transcribed into mRNA and then to proteins) respond to particular nutrient. It provided new opportunities to incorporate natural bioactive compounds into food for specific group of people with similar genotype. As inception of diabetes associated with change in gene expression of, not limited to, protein kinase B, insulin receptor, duodenal homeobox and glucokinase, thus, targeting such proteins by modifying or improving the nutritional availability or uptake may help to devise novel food, supplements, or nutraceuticals. In this article, various aspects of R&D in nutrigenomics are reviewed to ascertain its impact on human health, especially with life-style associated diseases.
Collapse
Affiliation(s)
- Shalika Rana
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061 (HP), India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology,
Palampur176 061 (HP), India
| | - Shiv Kumar
- Pharmacology and Toxicology Lab, Department of Food Nutraceuticals and Quality
Control, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061 (HP), India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology,
Palampur176 061 (HP), India
| | - Nikita Rathore
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061 (HP), India
| | - Yogendra Padwad
- Pharmacology and Toxicology Lab, Department of Food Nutraceuticals and Quality
Control, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061 (HP), India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology,
Palampur176 061 (HP), India
| | - Shashi Bhushana
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061 (HP), India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology,
Palampur176 061 (HP), India
| |
Collapse
|
73
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
74
|
Perera E, Yúfera M. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish 2016; 13:61-9. [PMID: 26716770 DOI: 10.1089/zeb.2015.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.
Collapse
Affiliation(s)
- Erick Perera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| |
Collapse
|
75
|
Lettieri Barbato D, Tatulli G, Vegliante R, Cannata SM, Bernardini S, Ciriolo MR, Aquilano K. Dietary fat overload reprograms brown fat mitochondria. Front Physiol 2015; 6:272. [PMID: 26483700 PMCID: PMC4586425 DOI: 10.3389/fphys.2015.00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic nutrient overload accelerates the onset of several aging-related diseases reducing life expectancy. Although the mechanisms by which overnutrition affects metabolic processes in many tissues are known, its role on BAT physiology is still unclear. Herein, we investigated the mitochondrial responses in BAT of female mice exposed to high fat diet (HFD) at different steps of life. Although adult mice showed an unchanged mitochondrial amount, both respiration and OxPHOS subunits were strongly affected. Differently, offspring pups exposed to HFD during pregnancy and lactation displayed reduced mitochondrial mass but high oxidative efficiency that, however, resulted in increased bioenergetics state of BAT rather than augmented uncoupling respiration. Interestingly, the metabolic responses triggered by HFD were accompanied by changes in mitochondrial dynamics characterized by decreased content of the fragmentation marker Drp1 both in mothers and offspring pups. HFD-induced inactivation of the FoxO1 transcription factor seemed to be the up-stream modulator of Drp1 levels in brown fat cells. Furthermore, HFD offspring pups weaned with normal diet only partially reverted the mitochondrial dysfunctions caused by HFD. Finally these mice failed in activating the thermogenic program upon cold exposure. Collectively our findings suggest that maternal dietary fat overload irreversibly commits BAT unresponsiveness to physiological stimuli such as cool temperature and this dysfunction in the early stage of life might negatively modulate health and lifespan.
Collapse
Affiliation(s)
| | | | - Rolando Vegliante
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Stefano M Cannata
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Sergio Bernardini
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Maria R Ciriolo
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy ; IRCCS San Raffaele Roma Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy ; IRCCS San Raffaele Roma Rome, Italy
| |
Collapse
|
76
|
Troesch B, Biesalski HK, Bos R, Buskens E, Calder PC, Saris WHM, Spieldenner J, Verkade HJ, Weber P, Eggersdorfer M. Increased Intake of Foods with High Nutrient Density Can Help to Break the Intergenerational Cycle of Malnutrition and Obesity. Nutrients 2015; 7:6016-37. [PMID: 26197337 PMCID: PMC4517043 DOI: 10.3390/nu7075266] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022] Open
Abstract
A workshop held at the University Medical Center in Groningen, The Netherlands, aimed at discussing the nutritional situation of the population in general and the role diet plays during critical windows in the life course, during which the body is programmed for the development of non-communicable diseases (NCDs). NCDs are increasingly prevalent as our society ages, and nutrition is well known to play an important role in determining the risk and the time of onset of many common NCDs. Even in affluent countries, people have difficulties to achieve adequate intakes for a range of nutrients: Economic constraints as well as modern lifestyles lead people to consume diets with a positive energy balance, but low in micronutrients, resulting in increasing prevalence of obesity and suboptimal nutritional status. Information about nutrient density, which refers to the content of micronutrients relative to energy in food or diets, can help identify foods that have a low calorie to nutrient ratio. It thus allows the consumption of diets that cover nutritional needs without increasing the risk of becoming obese. Given the impact a nutrient dense, low energy diet can have on health, researchers, food industry and governments jointly should develop options for affordable, appealing nutrient-rich food products, which, in combination with physical activity, allow for optimal health throughout the life-course.
Collapse
Affiliation(s)
- Barbara Troesch
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - Hans K Biesalski
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Stuttgart 70599, Germany.
| | - Rolf Bos
- FrieslandCampina, Bronland 20, Wageningen 6708 WH, The Netherlands.
| | - Erik Buskens
- Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, University of Groningen, P.O. Box 30001, Groningen 9700 RB, The Netherlands.
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht 6200MD, The Netherlands.
| | - Jörg Spieldenner
- Nestlé Research Center, Vers-chez-les Blanc, Lausanne 26 1000, Switzerland.
| | - Henkjan J Verkade
- Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, University of Groningen, P.O. Box 30001, Groningen 9700 RB, The Netherlands.
| | - Peter Weber
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - Manfred Eggersdorfer
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
- Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, University of Groningen, P.O. Box 30001, Groningen 9700 RB, The Netherlands.
| |
Collapse
|
77
|
Weight gain and reduced energy expenditure in low-income Brazilian women living in slums: a 4-year follow-up study. Br J Nutr 2015; 114:462-71. [DOI: 10.1017/s0007114515001816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study aimed to investigate the possible changes in anthropometric and biochemical parameters in low-income women living in the outskirts of Maceió (northeast Brazil), and to explore the possible role of dietary intake and physical activity in these changes. A prospective longitudinal study was conducted in a cohort of mothers of malnourished children who attended the Center for Nutritional Recovery and Education, an outreach programme of the Federal University of Alagoas. Socio-economic, anthropometric, biochemical and dietary intake data were assessed at baseline and after a follow-up period of 4 years. Energy expenditure (using doubly labelled water) and physical activity (using triaxial accelerometers) were assessed only in a subgroup of women after 4 years. A total of eighty-five women were assessed. Participants showed an altered biochemical profile, increased systolic blood pressure, decreased thyroid hormone levels, and body-weight gain. However, dietary intakes of the participants did not include large quantities of highly processed and high-glycaemic index foods. The energy intake of the participants did not differ from their total energy expenditure (7990·3 (7173·7–8806·8)v. 8798·1 (8169·0–9432·4) kJ, respectively;P= 0·084). Multivariate analyses showed a significant effect of time spent watching television (β = 0·639 (0·003 to 1·275);P= 0·048) and dietary diversity score (β = − 1·039 ( − 2·010 to − 0·067);P= 0·036) on weight gain. The present study indicates that poor women, who are mothers of malnourished children and have a reasonably balanced dietary intake, exhibit weight gain and are at risk of developing chronic diseases.
Collapse
|
78
|
Bolton JL, Bilbo SD. Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364282 PMCID: PMC4214174 DOI: 10.31887/dcns.2014.16.3/jbolton] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may “program” offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Psychology and Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, USA
| |
Collapse
|
79
|
Toloni MHDA, Longo-Silva G, Konstantyner T, Taddei JADAC. Consumption of industrialized food by infants attending child day care centers. ACTA ACUST UNITED AC 2015; 32:37-43. [PMID: 24676188 PMCID: PMC4183000 DOI: 10.1590/s0103-05822014000100007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/08/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To identify the age of introduction of petit suisse cheese and instant noodles in the diet of infants attending nurseries of public day care centers and to compare the nutritional composition of these foods with the healthy recommended diet (breast milk and salt meal) for this age, in order to estimate nutritional errors. METHODS Cross-sectional study of 366 children (from nine to 36 months old) who attended day care centers, whose mothers were interviewed about the age of introduction of those foods. The means of the nutrients indicated on the labels of the most consumed brands were considered. For the calculation of the percent composition of breast milk and salt meal, Tables of Food Composition were used. To assess the nutritional adequacy, we used the Dietary Reference Intakes by age group. The percentage of adequacy evaluation of the petit suisse cheese and the instant noodles nutritional compositions was made by comparing them with those of the human milk and the salt meal, respectively. RESULTS The petit suisse cheese and the instant noodles were consumed by 89.6 and 65.3% of the children in the first year of life. The percentages of adequacy for carbohydrates were more than twice and the percentages for sodium were 20 times higher than those found in the recommended foods. CONCLUSIONS Both industrialized products are inappropriate for infants, emphasizing the need for adoption of norms that can inform health professionals, educators and parents about the risks of consumption.
Collapse
|
80
|
Tang LL, Zhang LY, Lao LJ, Hu QY, Gu WZ, Fu LC, Du LZ. Epigenetics of Notch1 regulation in pulmonary microvascular rarefaction following extrauterine growth restriction. Respir Res 2015; 16:66. [PMID: 26040933 PMCID: PMC4486133 DOI: 10.1186/s12931-015-0226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) plays an important role in the developmental origin of adult cardiovascular diseases. In an EUGR rat model, we reported an elevated pulmonary arterial pressure in adults and genome-wide epigenetic modifications in pulmonary vascular endothelial cells (PVECs). However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular consequences later in life remains unclear. METHODS A rat model was used to investigate the physiological and structural effect of EUGR on early pulmonary vasculature by evaluating right ventricular systolic pressure and pulmonary vascular density in male rats. Epigenetic modifications of the Notch1 gene in PVECs were evaluated. RESULTS EUGR decreased pulmonary vascular density with no significant impact on right ventricular systolic pressure at 3 weeks. Decreased transcription of Notch1 was observed both at 3 and 9 weeks, in association with decreased downstream target gene, Hes-1. Chromatin immunoprecipitation and bisulfite sequencing were performed to analyze the epigenetic modifications of the Notch1 gene promoter in PVECs. EUGR caused a significantly increased H3K27me3 in the proximal Notch1 gene promoter, and increased methylation of single CpG sites in the distal Notch1 gene promoter, both at 3 and 9 weeks. CONCLUSIONS We conclude that EUGR results in decreased pulmonary vascular growth in association with decreased Notch1 in PVECs. This may be mediated by increased CpG methylation and H3K27me3 in the Notch1 gene promoter region.
Collapse
Affiliation(s)
- Li-Li Tang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Yan Zhang
- Department of Neonatology, The Children's Hospital of Fuzhou, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| | - Lin-Jiang Lao
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Qiong-Yao Hu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Lin-Chen Fu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Zhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| |
Collapse
|
81
|
Lecoutre S, Breton C. Maternal nutritional manipulations program adipose tissue dysfunction in offspring. Front Physiol 2015; 6:158. [PMID: 26029119 PMCID: PMC4429565 DOI: 10.3389/fphys.2015.00158] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.
Collapse
Affiliation(s)
- Simon Lecoutre
- Unité Environnement Périnatal et Santé, UPRES EA 4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Université de Lille Villeneuve d'Ascq, France
| | - Christophe Breton
- Unité Environnement Périnatal et Santé, UPRES EA 4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Université de Lille Villeneuve d'Ascq, France
| |
Collapse
|
82
|
Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015; 145:1109S-1115S. [PMID: 25833887 PMCID: PMC4410493 DOI: 10.3945/jn.114.194639] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk of chronic disease development. A few studies have begun to investigate whether dietary nutrients play a beneficial role by modifying or reversing epigenetically induced inflammation. Results of these studies show that nutrients modify epigenetic pathways. However, little is known about how nutrients modulate inflammation by regulating immune cell function and/or immune cell differentiation via epigenetic pathways. This overview will provide information about the current understanding of the role of nutrients in the epigenetic control mechanisms of immune function.
Collapse
Affiliation(s)
- Kate J Claycombe
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Othman Ghribi
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| |
Collapse
|
83
|
Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr Opin Pediatr 2015; 27:248-53. [PMID: 25635586 PMCID: PMC4535724 DOI: 10.1097/mop.0000000000000191] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Although diseases may appear clinically throughout the lifespan, it is clear that many diseases have origins during development. Altered nutrition, as well as exposure to environmental chemicals, drugs, infections, or stress during specific times of development, can lead to functional changes in tissues, predisposing those tissues to diseases that manifest later in life. This review will focus on the role of altered nutrition and exposures to environmental chemicals during development in the role of disease and dysfunction. RECENT FINDINGS The effects of altered nutrition or exposure to environmental chemicals during development are likely because of altered programming of epigenetic marks, which persist across the lifespan. Indeed some changes can be transmitted to future generations. SUMMARY The evidence in support of the developmental origins of the health and disease paradigm is sufficiently robust and repeatable across species, including humans, to suggest a need for greater emphasis in the clinical area. As a result of these data, obesity, diabetes, cardiovascular morbidity, and neuropsychiatric diseases can all be considered pediatric diseases. Disease prevention must start with improved nutrition and reduced exposure to environmental chemicals during development.
Collapse
Affiliation(s)
- Jerrold J Heindel
- aDivision of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina bDivision of Environmental Health Sciences, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
84
|
Abstract
Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology.
Collapse
Affiliation(s)
- Barbara T Alexander
- Department of Physiology and Biophysics, Women's Health Research Center, Center for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
85
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|
86
|
The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015; 7:922-47. [PMID: 25647662 PMCID: PMC4344568 DOI: 10.3390/nu7020922] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/04/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
Unlike the genome, the epigenome can be modified and hence some epigenetic risk markers have the potential to be reversed. Such modifications take place by means of drugs, diet or environmental exposures. It is widely accepted that epigenetic modifications take place during early embryonic and primordial cell development, but it is also important that we gain an understanding of the potential for such changes later in life. These “later life” epigenetic modifications in response to dietary intervention are the focus of this paper. The epigenetic modifications investigated include DNA methylation, histone modifications and the influence of microRNAs. The epigenotype could be used not only to predict susceptibility to certain cancers but also to assess the effectiveness of dietary modifications to reduce such risk. The influence of diet or dietary components on epigenetic modifications and the impact on cancer initiation or progression has been assessed herein.
Collapse
|
87
|
Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life. Br J Nutr 2015; 113:403-13. [PMID: 25609020 DOI: 10.1017/s0007114514003869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.
Collapse
|
88
|
Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 2015; 218:50-8. [DOI: 10.1242/jeb.110320] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent and rapid worldwide increase in non-communicable diseases challenges the assumption that genetic factors are the primary contributors to such diseases. A new concept of the ‘developmental origins of health and disease’ (DOHaD) is at stake and therefore requires a paradigm shift. Maternal obesity and malnutrition predispose offspring to develop metabolic syndrome, a vicious cycle leading to transmission to subsequent generation(s), with differences in response and susceptibility according to the sex of the individual. The placenta is a programming agent of adult health and disease. Adaptations of placental phenotype in response to maternal diet and metabolic status alter fetal nutrient supply. This implies important epigenetic changes that are, however, still poorly documented in DOHaD studies, particularly concerning overnutrition. The aim of this review is to discuss the emerging knowledge on the relationships between the effect of maternal nutrition or metabolic status on placental function and the risk of diseases later in life, with a specific focus on epigenetic mechanisms and sexual dimorphism. Explaining the sex-specific causal variables and how males versus females respond and adapt to environmental perturbations should help physicians and patients to anticipate disease susceptibility.
Collapse
Affiliation(s)
- Anne Tarrade
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Claudine Junien
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
- UVSQ, Université Versailles-Saint-Quentin-en-Yvelines, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
89
|
Wilhelmova R, Hruba D, Vesela L. Key Determinants Influencing the Health Literacy of Pregnant Women in the Czech Republic. Zdr Varst 2014; 54:27-36. [PMID: 27646619 PMCID: PMC4820146 DOI: 10.1515/sjph-2015-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022] Open
Abstract
Background Health literacy is a critical determinant of women’s and children’s health and therefore has immense consequences for the health of society as well. Evidence from epidemiological, clinical and experimental studies indicates that unhealthy lifestyles and risky behavioural habits of parents before conception and during pregnancy influence the etiology of various health defects. Decreasing primary risk factors, practicing physical wellness, monitoring physiological markers and preparing for labour, breastfeeding and newborn care should be the main parental responsibilities during the prenatal period. Methods Our study focused on specifying the main determinants of health literacy among 360 pregnant Czech women by using an anonymous questionnaire and selected anthropometric data of mothers. The criteria for study participation produced a sample representing 1.41% of Czech women in labour during a given 2012 reference period. Results Despite quite adequate knowledge of both risks and supporting factors for pregnancy and foetal development, the lifestyles of a majority of the women surveyed were far from optimum: only 30% reported good dietary and physical activity habits, 24% were active or passive smokers and one third of the women occasionally drank alcohol, more often among those who were university educated. Conclusion Our results have confirmed previously published data noting that health literacy and a healthier lifestyle of pregnant women are associated with a higher level of education (except for alcohol drinking) and with contact with a midwife (in some examined parameters) in prenatal courses.
Collapse
Affiliation(s)
- Radka Wilhelmova
- Masaryk University, Faculty of Medicine, Department of Midwifery, Komenskeho nam. 2, 66243 Brno, Czech Republic; Masaryk University, Faculty of Medicine, Department of Preventive Medicine, Kamenice 5, 62500 Brno, Czech Republic
| | - Drahoslava Hruba
- Masaryk University, Faculty of Medicine, Department of Preventive Medicine, Kamenice 5, 62500 Brno, Czech Republic
| | - Lenka Vesela
- Masaryk University, Faculty of Medicine, Department of Midwifery, Komenskeho nam. 2, 66243 Brno, Czech Republic
| |
Collapse
|
90
|
Abstract
Obesity in pregnancy is the leading cause of maternal and fetal morbidity, and gestational weight gain (GWG) is one modifiable risk factor that improves pregnancy outcomes. Most pregnant women gain more than the 2009 Institute of Medicine recommendations, particularly overweight and obese women. GWG even less than the 2009 IOM guidelines in obese women may improve pregnancy outcomes and reduce large-for-gestational-age (LGA) infants, an independent risk factor for childhood obesity, without increasing small-for-gestational-age (SGA) infants. Unfortunately, despite the fact that over 50 interventional trials designed to decrease excess GWG have been conducted, these interventions have been only modestly effective, and interventions designed to facilitate weight postpartum weight loss have also been disappointing. Successful interventions are of paramount importance not only to improve pregnancy outcomes but also for the future metabolic health of the mother and her infant, and may be key in attenuating the trans-generational risk on childhood obesity.
Collapse
Affiliation(s)
- Jacinda M. Nicklas
- Division of General Internal Medicine, University of Colorado School of Medicine, 12348 E. Montview Blvd, C263, Aurora, CO 80045, 303-724-9028 (work phone), 617-510-7273 (cell phone), 303-724-9976 (fax)
| | - Linda A. Barbour
- Professor of Medicine and Obstetrics and Gynecology, Divisions of Endocrinology, Metabolism, and Diabetes and Maternal-Fetal Medicine, University of Colorado School of Medicine, Mail Stop 8106, 12801 E. 17 Avenue, Aurora, CO 80045, 303-724-3921 (work phone), 303-594-0474 (cell phone), 303-724-3920 (fax)
| |
Collapse
|
91
|
Vaněčková I, Maletínská L, Behuliak M, Nagelová V, Zicha J, Kuneš J. Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223:R63-78. [PMID: 25385879 DOI: 10.1530/joe-14-0368] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension is one of the major risk factors of cardiovascular diseases, but despite a century of clinical and basic research, the discrete etiology of this disease is still not fully understood. The same is true for obesity, which is recognized as a major global epidemic health problem nowadays. Obesity is associated with an increasing prevalence of the metabolic syndrome, a cluster of risk factors including hypertension, abdominal obesity, dyslipidemia, and hyperglycemia. Epidemiological studies have shown that excess weight gain predicts future development of hypertension, and the relationship between BMI and blood pressure (BP) appears to be almost linear in different populations. There is no doubt that obesity-related hypertension is a multifactorial and polygenic trait, and multiple potential pathogenetic mechanisms probably contribute to the development of higher BP in obese humans. These include hyperinsulinemia, activation of the renin-angiotensin-aldosterone system, sympathetic nervous system stimulation, abnormal levels of certain adipokines such as leptin, or cytokines acting at the vascular endothelial level. Moreover, some genetic and epigenetic mechanisms are also in play. Although the full manifestation of both hypertension and obesity occurs predominantly in adulthood, their roots can be traced back to early ontogeny. The detailed knowledge of alterations occurring in the organism of experimental animals during particular critical periods (developmental windows) could help to solve this phenomenon in humans and might facilitate the age-specific prevention of human obesity-related hypertension. In addition, better understanding of particular pathophysiological mechanisms might be useful in so-called personalized medicine.
Collapse
Affiliation(s)
- Ivana Vaněčková
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Lenka Maletínská
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Michal Behuliak
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Veronika Nagelová
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Josef Zicha
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|
92
|
Li C, Guo S, Gao J, Guo Y, Du E, Lv Z, Zhang B. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J Nutr Biochem 2014; 26:173-83. [PMID: 25541535 DOI: 10.1016/j.jnutbio.2014.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
A20 is an anti-inflammatory protein that suppresses ubiquitin-dependent nuclear factor κB (NF-κB) signaling, which can be regulated by the microelement zinc (Zn). In mammals, Zn deficiency contributes to a decrease in A20 abundance, which impairs the gut mucosa barrier. However, it is unclear whether the epigenetic reprogramming of the A20 promoter is involved in enhanced Zn-induced intestinal immunity, especially in avian species. Herein, we show that maternal organic Zn exposure resulted in significantly improved intestinal morphological characteristics, increased mucin 2 (MUC2) abundance and secretory IgA (sIgA) production in progeny jejunums. Maternal and offspring Zn supplementation partially alleviated Zn-deficiency-induced inflammatory response, accompanied by repression of NF-κB signaling. Additionally, we observed DNA hypomethylation and histone H3 at lysine 9 (H3K9) hyperacetylation at the A20 promoter region and subsequent activated A20 expression in Zn-supplemented hens compared with control. Notably, maternal dietary organic Zn exposure exhibited greater attenuation of gut impairment, along with increased MUC2 expression and sIgA level, and decreased the abundance of TNF-α and A20 relative to the inorganic-Zn group. Furthermore, enhanced acetylated H3K9 and A20 transcription at day 14 was found in the offspring adequate dietary Zn group. Thus, A20 may be a novel inflammatory-suppressed factor of chick gut that is persistently promoted by dietary Zn supplementation via epigenetic modifications at A20 promoter.
Collapse
Affiliation(s)
- Changwu Li
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| | - Shuangshuang Guo
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| | - Jing Gao
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| | - Yuming Guo
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193.
| | - Encun Du
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| | - Zengpeng Lv
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| | - Beibei Zhang
- State key Laboratory of Animal Nutrition, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, Yuanmingyuan West Road, Haidian District, Beijing, People's Republic of China, 100193
| |
Collapse
|
93
|
Vaiserman AM. Epigenetic programming by early-life stress: Evidence from human populations. Dev Dyn 2014; 244:254-65. [PMID: 25298004 DOI: 10.1002/dvdy.24211] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A substantial body of experimental and epidemiological evidence has been accumulated suggesting that stressful events in early life including acute perinatal stress, maternal deprivation or separation, and variation in maternal care may lead to neuroendocrine perturbations thereby affecting reproductive performance, cognitive functions, and stress responses as well as the risk for infectious, cardio-metabolic and psychiatric diseases in later life. RESULTS Findings from recent studies based on both genome-wide and candidate gene approaches highlighted the importance of mechanisms that are involved in epigenetic regulation of gene expression, such as DNA methylation, histone modifications, and non-coding RNAs, in the long-term effects of exposure to stress in early life. CONCLUSIONS This review is focused on the findings from human studies indicating the role of epigenetic mechanisms in the causal link between early-life stress and later-life health outcomes.
Collapse
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kiev, Ukraine
| |
Collapse
|
94
|
Lecoutre S, Breton C. The cellularity of offspring's adipose tissue is programmed by maternal nutritional manipulations. Adipocyte 2014; 3:256-62. [PMID: 26317049 DOI: 10.4161/adip.29806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies initially demonstrated that maternal undernutrition leads to low birth weight with increased risk of adult-onset obesity. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catch-up growth also predispose offspring to fat accumulation. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set-point. Adipose tissue is a key fuel storage unit mainly involved in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a gender- and depot-specific manner. This review summarizes the impact of maternal nutritional manipulations on cellularity (i.e., cell number, size, and type) of adipose tissue in programmed offspring. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Maternal nutritional manipulations result in increased adipogenesis and modified fat distribution and composition. Inflammation changes such as infiltration of macrophages and increased inflammatory markers are also observed. Overall, it may predispose offspring to fat accumulation and obesity. Inappropriate hormone levels, modified tissue sensitivity, and epigenetic mechanisms are key factors involved in the programming of adipose tissue's cellularity during the perinatal period.
Collapse
|
95
|
Oszkiel H, Wilczak J, Jank M. Biologically active substances-enriched diet regulates gonadotrope cell activation pathway in liver of adult and old rats. GENES AND NUTRITION 2014; 9:427. [PMID: 25156242 PMCID: PMC4172640 DOI: 10.1007/s12263-014-0427-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023]
Abstract
According to the Hippocrates’ theorem “Let food be your medicine and medicine be your food”, dietary interventions may induce changes in the metabolic and inflammatory state by modulating the expression of important genes involved in the chronic disorders. The aim of the present study was to evaluate the influence of long-term (14 months) use of biologically active substances-enriched diet (BASE-diet) on transcriptomic profile of rats’ liver. The experiment was conducted on 36 Sprague–Dawley rats divided into two experimental groups (fed with control or BASE-diet, both n = 18). Control diet was a semi-synthetic diet formulated according to the nutritional requirements for laboratory animals. The BASE-diet was enriched with a mixture of polyphenolic compounds, β-carotene, probiotics, and n-3 and n-6 polyunsaturated fatty acids. In total, n = 3,017 differentially expressed (DE) genes were identified, including n = 218 DE genes between control and BASE groups after 3 months of feeding and n = 1,262 after 14 months. BASE-diet influenced the expression of genes involved particularly in the gonadotrope cell activation pathway and guanylate cyclase pathway, as well as in mast cell activation, gap junction regulation, melanogenesis and apoptosis. Especially genes involved in regulation of GnRH were strongly affected by BASE-diet. This effect was stronger with the age of animals and the length of diet use. It may suggest a link between the diet, reproductive system function and aging.
Collapse
Affiliation(s)
- Hanna Oszkiel
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159 Str., 02-776, Warsaw, Poland
| | | | | |
Collapse
|
96
|
Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, Bauer J, Ong KK, Constância M, Lowe WL, Affara NA, Dunger DB. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J 2014; 28:4868-79. [PMID: 25145626 DOI: 10.1096/fj.14-255240] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Size at birth, postnatal weight gain, and adult risk for type 2 diabetes may reflect environmental exposures during developmental plasticity and may be mediated by epigenetics. Both low birth weight (BW), as a marker of fetal growth restraint, and high birth weight (BW), especially after gestational diabetes mellitus (GDM), have been linked to increased risk of adult type 2 diabetes. We assessed DNA methylation patterns using a bead chip in cord blood samples from infants of mothers with GDM (group 1) and infants with prenatal growth restraint indicated by rapid postnatal catch-up growth (group 2), compared with infants with normal postnatal growth (group 3). Seventy-five CpG loci were differentially methylated in groups 1 and 2 compared with the controls (group 3), representing 72 genes, many relevant to growth and diabetes. In replication studies using similar methodology, many of these differentially methylated regions were associated with levels of maternal glucose exposure below that defined by GDM [the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study] or were identified as changes observed after randomized periconceptional nutritional supplementation in a Gambian cohort characterized by maternal deprivation. These studies provide support for the concept that similar epigenetic modifications may underpin different prenatal exposures and potentially increase long-term risk for diseases such as type 2 diabetes.
Collapse
Affiliation(s)
| | - Wendy N Cooper
- Metabolic Research Laboratories, Medical Research Council (MRC) Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, Centre for Trophoblast Research, and
| | - Kerry M Cliffe
- Mammalian Molecular Genetics Group, Department of Pathology
| | | | - Philippa M Prentice
- National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Department of Paediatrics, University of Cambridge, Cambridge, UK; and
| | - LaTasha Nelson
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago, Chicago, Illinois, USA
| | - Julien Bauer
- Mammalian Molecular Genetics Group, Department of Pathology
| | - Ken K Ong
- National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Department of Paediatrics, University of Cambridge, Cambridge, UK; and
| | - Miguel Constância
- Metabolic Research Laboratories, Medical Research Council (MRC) Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, Centre for Trophoblast Research, and
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago, Chicago, Illinois, USA
| | | | - David B Dunger
- National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Department of Paediatrics, University of Cambridge, Cambridge, UK; and
| |
Collapse
|
97
|
|
98
|
Barbour LA. Changing perspectives in pre-existing diabetes and obesity in pregnancy: maternal and infant short- and long-term outcomes. Curr Opin Endocrinol Diabetes Obes 2014; 21:257-63. [PMID: 24937039 DOI: 10.1097/med.0000000000000079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Climbing obesity rates in women have propelled the increasing prevalence of type 2 diabetes mellitus (T2DM) in pregnancy, and an increasing number of women with type 1 diabetes mellitus (T1DM) are also affected by obesity. Increasing recognition that an intrauterine environment characterized by obesity, insulin resistance, nutrient excess, and diabetes may be fueling the obesity epidemic in children has created enormous pressure to re-examine the conventional wisdom of our current approaches. RECENT FINDINGS Compelling data in pregnancies complicated by diabetes, in particular those accompanied by insulin resistance and obesity, support a fetal programming effect resulting in increased susceptibility to metabolic disease for the offspring later in life. Recent data also underscore the contribution of obesity, lipids, and lesser degrees of hyperglycemia on fetal fat accretion, challenging the wisdom of current gestational weight gain recommendations with and without diabetes. The risks of adverse pregnancy outcomes in T2DM are at least as high as in T1DM and there remains controversy about the ideal glucose treatment targets, the benefit of different insulin analogues, and the role of continuous glucose monitoring in T1DM and T2DM. SUMMARY It has become unmistakably evident that achieving optimal outcomes in mothers with diabetes is clearly impacted by ideal glycemic control but goes far beyond it. The intrauterine metabolic environment seems to have long-term implications on the future health of the offspring so that the effectiveness of our current approaches can no longer be simply measured by whether or not maternal glucose values are at goal.
Collapse
Affiliation(s)
- Linda A Barbour
- Divisions of Endocrinology, Metabolism and Diabetes and Maternal-Fetal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
99
|
Impact of nutritional recovery with linear growth on the concentrations of adipokines in undernourished children living in Brazilian slums. Br J Nutr 2014; 112:937-44. [PMID: 25069062 DOI: 10.1017/s0007114514001743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Undernutrition in early life has been reported to be closely associated with the development of non-communicable diseases in adulthood. Adequate treatment is important for reversing these effects. In the present study, we investigated the effects of undernutrition and anthropometric recovery on the weights and heights of children in relation to the concentrations of leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). A total of 119 children (aged 6-16 years) from the slums of São Paulo were selected according to their nutritional status and divided into three groups as follows: control (healthy without intervention, n 38) with a height-for-age Z score (HAZ) and a BMI-for-age Z score (BAZ) > -1·6; undernourished (HAZ and/or BAZ < -1·6, n 54); recovered from undernutrition (after treatment in a rehabilitation centre; HAZ and BAZ > -1·6, n 27). Blood samples were collected to determine insulin, glucose, leptin, adiponectin and PAI-1 concentrations. Leptin concentrations in the undernourished group were lower than those in the control and recovered groups (mean 0·92 (95% CI 0·67, 1·25), 2·03 (95% CI 1·46, 2·82) and 1·66 (95% CI 1·15, 2·44) ng/ml, P=0·003), which had similar leptin concentrations. There were no differences in adiponectin and PAI-1 concentrations among the groups. A positive correlation between waist circumference and leptin concentrations was observed in all the girls and boys of the control group (control: r 0·729, P<0·01; undernourished: r 0·490, P<0·05; and recovered: r 0·829, P<0·01; r 0·673, P<0·05). Stronger correlations between leptin and insulin concentrations were observed in the recovered group. The results of the present study indicate that normal leptin concentrations are found when normal height and weight are achieved.
Collapse
|
100
|
Lawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, Lalli M, Bhutta Z, Barros AJD, Christian P, Mathers C, Cousens SN. Every Newborn: progress, priorities, and potential beyond survival. Lancet 2014; 384:189-205. [PMID: 24853593 DOI: 10.1016/s0140-6736(14)60496-7] [Citation(s) in RCA: 1167] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Series paper, we review trends since the 2005 Lancet Series on Neonatal Survival to inform acceleration of progress for newborn health post-2015. On the basis of multicountry analyses and multi-stakeholder consultations, we propose national targets for 2035 of no more than 10 stillbirths per 1000 total births, and no more than 10 neonatal deaths per 1000 livebirths, compatible with the under-5 mortality targets of no more than 20 per 1000 livebirths. We also give targets for 2030. Reduction of neonatal mortality has been slower than that for maternal and child (1-59 months) mortality, slowest in the highest burden countries, especially in Africa, and reduction is even slower for stillbirth rates. Birth is the time of highest risk, when more than 40% of maternal deaths (total about 290,000) and stillbirths or neonatal deaths (5·5 million) occur every year. These deaths happen rapidly, needing a rapid response by health-care workers. The 2·9 million annual neonatal deaths worldwide are attributable to three main causes: infections (0·6 million), intrapartum conditions (0·7 million), and preterm birth complications (1·0 million). Boys have a higher biological risk of neonatal death, but girls often have a higher social risk. Small size at birth--due to preterm birth or small-for-gestational-age (SGA), or both--is the biggest risk factor for more than 80% of neonatal deaths and increases risk of post-neonatal mortality, growth failure, and adult-onset non-communicable diseases. South Asia has the highest SGA rates and sub-Saharan Africa has the highest preterm birth rates. Babies who are term SGA low birthweight (10·4 million in these regions) are at risk of stunting and adult-onset metabolic conditions. 15 million preterm births, especially of those younger than 32 weeks' gestation, are at the highest risk of neonatal death, with ongoing post-neonatal mortality risk, and important risk of long-term neurodevelopmental impairment, stunting, and non-communicable conditions. 4 million neonates annually have other life-threatening or disabling conditions including intrapartum-related brain injury, severe bacterial infections, or pathological jaundice. Half of the world's newborn babies do not get a birth certificate, and most neonatal deaths and almost all stillbirths have no death certificate. To count deaths is crucial to change them. Failure to improve birth outcomes by 2035 will result in an estimated 116 million deaths, 99 million survivors with disability or lost development potential, and millions of adults at increased risk of non-communicable diseases after low birthweight. In the post-2015 era, improvements in child survival, development, and human capital depend on ensuring a healthy start for every newborn baby--the citizens and workforce of the future.
Collapse
Affiliation(s)
- Joy E Lawn
- Centre for Maternal Reproductive & Child Health, and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Saving Newborn Lives/Save the Children USA, Washington, DC, USA; Research and Evidence Division, Department for International Development, London, UK.
| | - Hannah Blencowe
- Centre for Maternal Reproductive & Child Health, and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Shefali Oza
- Centre for Maternal Reproductive & Child Health, and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Danzhen You
- Division of Policy and Strategy, UNICEF, New York, NY, USA
| | - Anne C C Lee
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter Waiswa
- Makerere University, School of Public Health, Kampala, Uganda; Division of Global Health, Karolinska Institutet, Stockholm, Sweden
| | - Marek Lalli
- Centre for Maternal Reproductive & Child Health, and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Zulfiqar Bhutta
- Center for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada; Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Aluisio J D Barros
- Universidade Federal de Pelotas, Pelotas, Brasil; Countdown to 2015 Equity Technical Working Group, Pelotas, Brasil
| | - Parul Christian
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colin Mathers
- Mortality and Burden of Disease Unit, WHO, Geneva, Switzerland
| | - Simon N Cousens
- Centre for Maternal Reproductive & Child Health, and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|