51
|
Iliev ID, Brown GD, Bacher P, Gaffen SL, Heitman J, Klein BS, Lionakis MS. Focus on fungi. Cell 2024; 187:5121-5127. [PMID: 39303681 PMCID: PMC11722117 DOI: 10.1016/j.cell.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Fungi play critical roles in the homeostasis of ecosystems globally and have emerged as significant causes of an expanding repertoire of devastating diseases in plants, animals, and humans. In this Commentary, we highlight the importance of fungal pathogens and argue for concerted research efforts to enhance understanding of fungal virulence, antifungal immunity, novel drug targets, antifungal resistance, and the mycobiota to improve human health.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, The Jill Roberts Institute for Research in Inflammatory Bowel Disease, and Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Petra Bacher
- Institute of Immunology and Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Bruce S Klein
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
52
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
53
|
Joshi PR, Adhikari S, Onah C, Carrier C, Judd A, Mack M, Baral P. Lung-innervating nociceptor sensory neurons promote pneumonic sepsis during carbapenem-resistant Klebsiella pneumoniae lung infection. SCIENCE ADVANCES 2024; 10:eadl6162. [PMID: 39241063 PMCID: PMC11378917 DOI: 10.1126/sciadv.adl6162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes Gram-negative lung infections and fatal pneumonic sepsis for which limited therapeutic options are available. The lungs are densely innervated by nociceptor sensory neurons that mediate breathing, cough, and bronchoconstriction. The role of nociceptors in defense against Gram-negative lung pathogens is unknown. Here, we found that lung-innervating nociceptors promote CRKP pneumonia and pneumonic sepsis. Ablation of nociceptors in mice increased lung CRKP clearance, suppressed trans-alveolar dissemination of CRKP, and protected mice from hypothermia and death. Furthermore, ablation of nociceptors enhanced the recruitment of neutrophils and Ly6Chi monocytes and cytokine induction. Depletion of Ly6Chi monocytes, but not of neutrophils, abrogated lung and extrapulmonary CRKP clearance in ablated mice, suggesting that Ly6Chi monocytes are a critical cellular population to regulate pneumonic sepsis. Further, neuropeptide calcitonin gene-related peptide suppressed the induction of reactive oxygen species in Ly6Chi monocytes and their CRKP-killing abilities. Targeting nociceptor signaling could be a therapeutic approach for treating multidrug-resistant Gram-negative infection and pneumonic sepsis.
Collapse
Affiliation(s)
- Prabhu Raj Joshi
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sandeep Adhikari
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem Onah
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Camille Carrier
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Abigail Judd
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthias Mack
- Department of Nephrology, Regensburg University Medical Center, Regensburg 93042, Germany
| | - Pankaj Baral
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
54
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
55
|
Yin Y, Zhao P, Xu X, Zhou B, Chen J, Jiang X, Liu Y, Wu Y, Yue W, Xu H, Bu W. Piezoelectric Analgesia Blocks Cancer-Induced Bone Pain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403979. [PMID: 39044708 DOI: 10.1002/adma.202403979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Indexed: 07/25/2024]
Abstract
The manipulation of cell surface receptors' activity will open a new frontier for drug development and disease treatment. However, limited by the desensitization of drugs, effective physical intervention strategy remains challenging. Here, the controllable internalization of transient receptor potential vanilloid 1 (TRPV1) on neural cells by local piezoelectric field is reported. Single-cell-level local electric field is construct by synthesizing piezoelectric BiOIO3 nanosheets (BIONSs). Upon a mild ultrasound of 0.08 W cm-2, an electric field of 15.29 µV is generated on the surface of BIONSs, further inducing TRPV1 internalization in 5 min. The as-downregulated TRPV1 expression results in the reduction of Ca2+ signal in a spinal neuron and the inhibition of the activity of wide range dynamic neurons, therefore effectively preventing the transmission of cancer-induced bone pain (CIBP). This strategy not only charts a new course for CIBP alleviation, but also introduces a promising nanotechnology for regulating cell surface receptors, showing significant potential in neuropathological and receptor-related diseases.
Collapse
Affiliation(s)
- Yifei Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xianyun Xu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, China
| | - Bangguo Zhou
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yelin Wu
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
56
|
Yeh YA, Liao HY, Hsiao IH, Hsu HC, Lin YW. Electroacupuncture Reduced Fibromyalgia-Pain-like Behavior through Inactivating Transient Receptor Potential V1 and Interleukin-17 in Intermittent Cold Stress Mice Model. Brain Sci 2024; 14:869. [PMID: 39335365 PMCID: PMC11430684 DOI: 10.3390/brainsci14090869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a widespread musculoskeletal pain associated with psychological disturbances, the etiopathogenesis of which is still not clear. One hypothesis implicates inflammatory cytokines in increasing central and peripheral sensitization along with neuroinflammation, leading to an elevation in pro-inflammatory cytokines, e.g., interleukin-17A (IL-17A), enhanced in FM patients and animal models. The intermittent cold stress (ICS)-induced FM-like model in C57BL/6 mice has been developed since 2008 and proved to have features which mimic the clinical pattern in FM patients such as mechanical allodynia, hyperalgesia, and female predominance of pain. Electroacupuncture (EA) is an effective treatment for relieving pain in FM patients, but its mechanism is not totally clear. It was reported as attenuating pain-like behaviors in the ICS mice model through the transient receptor potential vanilloid 1 (TRPV1) pathway. Limited information indicates that TRPV1-positive neurons trigger IL-17A-mediated inflammation. Therefore, we hypothesized that the IL-17A would be inactivated by EA and TRPV1 deletion in the ICS-induced FM-like model in mice. We distributed mice into a control (CON) group, ICS-induced FM model (FM) group, FM model with EA treatment (EA) group, FM model with sham EA treatment (Sham) group, and TRPV1 gene deletion (Trpv1-/-) group. In the result, ICS-induced mechanical and thermal hyperalgesia increased pro-inflammatory cytokines including IL-6, IL-17, TNFα, and IFNγ in the plasma, as well as TRPV1, IL-17RA, pPI3K, pAkt, pERK, pp38, pJNK, and NF-κB in the somatosensory cortex (SSC) and cerebellum (CB) lobes V, VI, and VII. Moreover, EA and Trpv1-/- but not sham EA countered these effects significantly. The molecular mechanism may involve the pro-inflammatory cytokines, including IL-6, IL-17, TNFα, and IFNγ. IL-17A-IL-17RA play a crucial role in peripheral and central sensitization as well as neuroinflammation and cannot be activated without TRPV1 in the ICS mice model. EA alleviated FM-pain-like behaviors, possibly by abolishing the TRPV1- and IL-17A-related pathways. It suggests that EA is an effective and potential therapeutic strategy in FM.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Chinese Traumatology Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Hsien-Yin Liao
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; (H.-Y.L.)
| | - I-Han Hsiao
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
57
|
Wang JC, Crosson T, Nikpoor AR, Gupta S, Rafei M, Talbot S. NOCICEPTOR NEURONS CONTROL POLLUTION-MEDIATED NEUTROPHILIC ASTHMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609202. [PMID: 39229121 PMCID: PMC11370576 DOI: 10.1101/2024.08.22.609202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The immune and sensory nervous systems, having evolved together, use a shared language of receptors and transmitters to maintain homeostasis by responding to external and internal disruptions. Although beneficial in many cases, neurons can exacerbate inflammation during allergic reactions, such as asthma. Our research modeled asthma aggravated by pollution, exposing mice to ambient PM2.5 particles and ovalbumin. This exposure significantly increased bronchoalveolar lavage fluid neutrophils and γδ T cells compared to exposure to ovalbumin alone. We normalized airway inflammation and lung neutrophil levels by silencing nociceptor neurons at inflammation's peak using intranasal QX-314 or ablating TRPV1-expressing neurons. Additionally, we observed heightened sensitivity in chemical-sensing TRPA1 channels in neurons from pollution-exacerbated asthmatic mice. Elevated levels of artemin were detected in the bronchoalveolar lavage fluid from pollution-exposed mice, with artemin levels normalizing in mice with ablated nociceptor neurons. Upon exposure PM2.5 particles, alveolar macrophages expressing pollution-sensing aryl hydrocarbon receptors, were identified as the source of artemin. This molecule enhanced TRPA1 responsiveness and increased neutrophil influx, providing a novel mechanism by which lung-innervating neurons respond to air pollution and suggesting a potential therapeutic target for controlling neutrophilic airway inflammation in asthma, a clinically intractable condition.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Amin Reza Nikpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Surbhi Gupta
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| |
Collapse
|
58
|
Zhang Y, Li T, Zhao H, Xiao X, Hu X, Wang B, Huang Y, Yin Z, Zhong Y, Li Y, Li J. High-sensitive sensory neurons exacerbate rosacea-like dermatitis in mice by activating γδ T cells directly. Nat Commun 2024; 15:7265. [PMID: 39179539 PMCID: PMC11344132 DOI: 10.1038/s41467-024-50970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
Rosacea patients show facial hypersensitivity to stimulus factors (such as heat and capsaicin); however, the underlying mechanism of this hyperresponsiveness remains poorly defined. Here, we show capsaicin stimulation in mice induces exacerbated rosacea-like dermatitis but has no apparent effect on normal skin. Nociceptor ablation substantially reduces the hyperresponsiveness of rosacea-like dermatitis. Subsequently, we find that γδ T cells express Ramp1, the receptor of the neuropeptide CGRP, and are in close contact with these nociceptors in the skin. γδ T cells are significantly increased in rosacea skin lesions and can be further recruited and activated by neuron-secreted CGRP. Rosacea-like dermatitis is reduced in T cell receptor δ-deficient (Tcrd-/-) mice, and the nociceptor-mediated aggravation of rosacea-like dermatitis is also reduced in these mice. In vitro experiments show that CGRP induces IL17A secretion from γδ T cells by regulating inflammation-related and metabolism-related pathways. Finally, rimegepant, a CGRP receptor antagonist, shows efficacy in the treatment of rosacea-like dermatitis. In conclusion, our findings demonstrate a neuron-CGRP-γδT cell axis that contributes to the hyperresponsiveness of rosacea, thereby showing that targeting CGRP is a potentially effective therapeutic strategy for rosacea.
Collapse
MESH Headings
- Animals
- Rosacea/immunology
- Mice
- Calcitonin Gene-Related Peptide/metabolism
- Sensory Receptor Cells/metabolism
- Capsaicin/pharmacology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Skin/pathology
- Skin/immunology
- Skin/metabolism
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Dermatitis/immunology
- Dermatitis/metabolism
- Dermatitis/pathology
- Disease Models, Animal
- Male
- Nociceptors/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Humans
- Receptors, Calcitonin Gene-Related Peptide/metabolism
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
59
|
Lee KMC, Lupancu T, Chang L, Manthey CL, Zeeman M, Fourie AM, Hamilton JA. The mode of action of IL-23 in experimental inflammatory arthritic pain and disease. Arthritis Res Ther 2024; 26:148. [PMID: 39107827 PMCID: PMC11302168 DOI: 10.1186/s13075-024-03380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES We have previously reported using gene-deficient mice that the interleukin (IL)-23p19 subunit is required for the development of innate immune-driven arthritic pain and disease. We aimed to explore here, using a number of in vivo approaches, how the IL-23p19 subunit can mechanistically control arthritic pain and disease in a T- and B- lymphocyte-independent manner. METHODS We used the zymosan-induced arthritis (ZIA) model in wild-type and Il23p19-/- mice, by a radiation chimera approach, and by single cell RNAseq and qPCR analyses, to identify the IL23p19-expressing and IL-23-responding cell type(s) in the inflamed joints. This model was also utilized to investigate the efficacy of IL-23p19 subunit blockade with a neutralizing monoclonal antibody (mAb). A novel IL-23-driven arthritis model was established, allowing the identification of putative downstream mediators of IL-23 in the control of pain and disease. Pain and arthritis were assessed by relative static weight distribution and histology, respectively. RESULTS We present evidence that (i) IL-23p19+ non-bone marrow-derived macrophages are required for the development of ZIA pain and disease, (ii) prophylactic and therapeutic blockade of the IL-23p19 subunit ameliorate ZIA pain and disease and (iii) systemically administered IL-23 can induce arthritic pain and disease in a manner dependent on TNF, GM-CSF, CCL17 and cyclooxygenase activity, but independently of lymphocytes, CGRP, NGF and substance P. CONCLUSIONS The data presented should aid IL-23 targeting both in the choice of inflammatory disease to be treated and the design of clinical trials.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Leon Chang
- Janssen Research & Development, San Diego, CA, USA
| | | | - Martha Zeeman
- Janssen Research & Development, Spring House, PA, USA
| | | | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
60
|
Zhu Y, Meerschaert KA, Galvan-Pena S, Bin NR, Yang D, Kawamoto R, Shalaby A, Liberles SD, Mathis D, Benoist C, Chiu IM. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 2024; 385:eadk1679. [PMID: 39088603 PMCID: PMC11416019 DOI: 10.1126/science.adk1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/03/2024]
Abstract
Neuroimmune cross-talk participates in intestinal tissue homeostasis and host defense. However, the matrix of interactions between arrays of molecularly defined neuron subsets and of immunocyte lineages remains unclear. We used a chemogenetic approach to activate eight distinct neuronal subsets, assessing effects by deep immunophenotyping, microbiome profiling, and immunocyte transcriptomics in intestinal organs. Distinct immune perturbations followed neuronal activation: Nitrergic neurons regulated T helper 17 (TH17)-like cells, and cholinergic neurons regulated neutrophils. Nociceptor neurons, expressing Trpv1, elicited the broadest immunomodulation, inducing changes in innate lymphocytes, macrophages, and RORγ+ regulatory T (Treg) cells. Neuroanatomical, genetic, and pharmacological follow-up showed that Trpv1+ neurons in dorsal root ganglia decreased Treg cell numbers via the neuropeptide calcitonin gene-related peptide (CGRP). Given the role of these neurons in nociception, these data potentially link pain signaling with gut Treg cell function.
Collapse
Affiliation(s)
- Yangyang Zhu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly A. Meerschaert
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Galvan-Pena
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Na Ryum Bin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Kawamoto
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amre Shalaby
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D. Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane Mathis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
61
|
Zeng J, Pan Y, Chaker SC, Torres-Guzman R, Lineaweaver WC, Qi F. Neural and Inflammatory Interactions in Wound Healing. Ann Plast Surg 2024; 93:S91-S97. [PMID: 39101856 DOI: 10.1097/sap.0000000000003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
ABSTRACT The skin is an intricate network of both neurons and immunocytes, where emerging evidence has indicated that the regulation of neural-inflammatory processes may play a crucial role in mediating wound healing. Disease associated abnormal immunological dysfunction and peripheral neuropathy are implicated in the pathogenesis of wound healing impairment. However, the mechanisms through which neural-inflammatory interactions modulate wound healing remain ambiguous. Understanding the underlying mechanisms may provide novel insights to develop therapeutic devices, which could manipulate neural-inflammatory crosstalk to aid wound healing. This review aims to comprehensively illustrate the neural-inflammatory interactions during different stages of the repair process. Numerous mediators including neuropeptides secreted by the sensory and autonomic nerve fibers and cytokines produced by immunocytes play an essential part during the distinct phases of wound healing.
Collapse
Affiliation(s)
- Junhao Zeng
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ricardo Torres-Guzman
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Guo J, Lei L, Yang H, Zhou B, Fan D, Wu B, Wang G, Yu L, Zhang C, Zhang W, Han Q, Zhang XY, Zhao J. Effects of nasal allergens and environmental particulate matter on brainstem metabolites and the consequence of brain-spleen axis in allergic rhinitis. ENVIRONMENT INTERNATIONAL 2024; 190:108890. [PMID: 39033732 DOI: 10.1016/j.envint.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.
Collapse
Affiliation(s)
- JianShu Guo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China; The Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - DongXia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Biao Wu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Wang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lu Yu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - ChiHang Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Wenqing Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - QingJian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; College of Health Science and Technology & Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - JinZhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
63
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
64
|
Miyamoto S, Takayama Y, Kondo T, Maruyama K. Senso-immunology: the hidden relationship between sensory system and immune system. J Bone Miner Metab 2024; 42:413-420. [PMID: 39060499 DOI: 10.1007/s00774-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The primary sensory neurons involved in pain perception express various types of receptor-type ion channels at their nerve endings. These molecules are responsible for triggering neuronal excitation, translating environmental stimuli into pain signals. Recent studies have shown that acute nociception, induced by neuronal excitation, not only serves as a sensor for signaling life-threatening situations but also modulates our pathophysiological conditions. This modulation occurs through the release of neuropeptides by primary sensory neurons excited by nociceptive stimuli, which directly or indirectly affect peripheral systems, including immune function. Senso-immunology, an emerging research field, integrates interdisciplinary studies of pain and immunology and has garnered increasing attention in recent years. This review provides an overview of the systemic pathophysiological functions regulated by receptor-type ion channels, such as transient receptor potential (TRP) channels in primary sensory neurons, from the perspective of senso-immunology.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Takeshi Kondo
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Kenta Maruyama
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.
| |
Collapse
|
65
|
Pepin R, Ringuet J, Beaudet MJ, Bellenfant S, Galbraith T, Veillette H, Pouliot R, Berthod F. Sensory neurons increase keratinocyte proliferation through CGRP release in a tissue engineered in vitro model of innervation in psoriasis. Acta Biomater 2024; 182:1-13. [PMID: 38750917 DOI: 10.1016/j.actbio.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.
Collapse
Affiliation(s)
- Rémy Pepin
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Julien Ringuet
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | | | - Sabrina Bellenfant
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Todd Galbraith
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Hélène Veillette
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Roxane Pouliot
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - François Berthod
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
66
|
Huang C, Sun PY, Jiang Y, Liu Y, Liu Z, Han SL, Wang BS, Huang YX, Ren AR, Lu JF, Jiang Q, Li Y, Zhu MX, Yao Z, Tian Y, Qi X, Li WG, Xu TL. Sensory ASIC3 channel exacerbates psoriatic inflammation via a neurogenic pathway in female mice. Nat Commun 2024; 15:5288. [PMID: 38902277 PMCID: PMC11190258 DOI: 10.1038/s41467-024-49577-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.
Collapse
Affiliation(s)
- Chen Huang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Basic Medicine Experimental Teaching Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pei-Yi Sun
- Department of Dermatology, Xinhua Hospital, Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yiming Jiang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shao-Ling Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bao-Shan Wang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong-Xin Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - An-Ran Ren
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Fei Lu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Jiang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Li
- Basic Medicine Experimental Teaching Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xin Qi
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Tian-Le Xu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
67
|
Wu M, Song G, Li J, Song Z, Zhao B, Liang L, Li W, Hu H, Tu H, Li S, Li P, Zhang B, Wang W, Zhang Y, Zhang W, Zheng W, Wang J, Wen Y, Wang K, Li A, Zhou T, Zhang Y, Li H. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 2024; 187:2935-2951.e19. [PMID: 38772371 DOI: 10.1016/j.cell.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.
Collapse
Affiliation(s)
- Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Guangping Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Jianing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bing Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Liyun Liang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Wenlong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Peiyao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yu Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wanpeng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Weifan Zheng
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiarong Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yuqi Wen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Yucheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
68
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
69
|
Xie L, Wu G, Liu X, Duan X, Zhou K, Li H, Ning W. The TRIP6/LATS1 complex constitutes the tension sensor of α-catenin/vinculin at both bicellular and tricellular junctions. Eur J Cell Biol 2024; 103:151426. [PMID: 38805800 DOI: 10.1016/j.ejcb.2024.151426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Cell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway. However, their associations with the α-catenin-based tension sensors at cell junctions are still not fully addressed. Here, we uncovered the TRIP6/LATS1 complex co-localizes with α-catenin/vinculin at both bicellular junctions (BCJs) and tricellular junctions (TCJs). The localization of TRIP6/LATS1 complex to both TCJs and BCJs requires ROCK1 and α-catenin. Treatment by cytochalasin B, Y-27632 and blebbistatin all impaired the BCJ and TCJ junctional localization of TRIP6/LATS1, indicating that the junctional localization of TRIP6/LATS1 is mechanosensitive. The α-catenin/vinculin/TRIP6/LATS1 complex strongly localized to TCJs and exhibited a discontinuous button-like pattern on BCJs. Additionally, we developed and validated an α-catenin/vinculin BiFC-based mechanosensor that co-localizes with TRIP6/LATS1 at BCJs and TCJs. The mechanosensor exhibited a discontinuous distribution and motile signals at BCJs. Overall, our study revealed that TRIP6 and LATS1 are novel compositions of the tension sensor, together with the core complex of α-catenin/vinculin, at both the BCJs and TCJs.
Collapse
Affiliation(s)
- Lin Xie
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Gangyun Wu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiayu Liu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiufen Duan
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Kaiyao Zhou
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Hua Li
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China.
| | - Wenxiu Ning
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China.
| |
Collapse
|
70
|
Paroli M, Gioia C, Accapezzato D, Caccavale R. Inflammation, Autoimmunity, and Infection in Fibromyalgia: A Narrative Review. Int J Mol Sci 2024; 25:5922. [PMID: 38892110 PMCID: PMC11172859 DOI: 10.3390/ijms25115922] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Fibromyalgia (FM) is a chronic disease characterized by widespread musculoskeletal pain of unknown etiology. The condition is commonly associated with other symptoms, including fatigue, sleep disturbances, cognitive impairment, and depression. For this reason, FM is also referred to as FM syndrome. The nature of the pain is defined as nociplastic according to the latest international classification and is characterized by altered nervous sensitization both centrally and peripherally. Psychosocial conditions have traditionally been considered critical in the genesis of FM. However, recent studies in animal models and humans have provided new evidence in favor of an inflammatory and/or autoimmune pathogenesis. In support of this hypothesis are epidemiological data of an increased female prevalence, similar to that of autoimmune diseases, and the frequent association with immune-mediated inflammatory disorders. In addition, the observation of an increased incidence of this condition during long COVID revived the hypothesis of an infectious pathogenesis. This narrative review will, therefore, discuss the evidence supporting the immune-mediated pathogenesis of FM in light of the most current data available in the literature.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University di Roma, 00185 Rome, Italy; (C.G.); (D.A.); (R.C.)
| | | | | | | |
Collapse
|
71
|
Tynan A, Tsaava T, Gunasekaran M, Bravo Iñiguez CE, Brines M, Chavan SS, Tracey KJ. TRPV1 nociceptors are required to optimize antigen-specific primary antibody responses to novel antigens. Bioelectron Med 2024; 10:14. [PMID: 38807193 PMCID: PMC11134756 DOI: 10.1186/s42234-024-00145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Key to the advancement of the field of bioelectronic medicine is the identification of novel pathways of neural regulation of immune function. Sensory neurons (termed nociceptors) recognize harmful stimuli and initiate a protective response by eliciting pain and defensive behavior. Nociceptors also interact with immune cells to regulate host defense and inflammatory responses. However, it is still unclear whether nociceptors participate in regulating primary IgG antibody responses to novel antigens. METHODS To understand the role of transient receptor potential vanilloid 1 (TRPV1)-expressing neurons in IgG responses, we generated TRPV1-Cre/Rosa-ChannelRhodopsin2 mice for precise optogenetic activation of TRPV1 + neurons and TRPV1-Cre/Lox-diphtheria toxin A mice for targeted ablation of TRPV1-expressing neurons. Antigen-specific antibody responses were longitudinally monitored for 28 days. RESULTS Here we show that TRPV1 expressing neurons are required to develop an antigen-specific immune response. We demonstrate that selective optogenetic stimulation of TRPV1+ nociceptors during immunization significantly enhances primary IgG antibody responses to novel antigens. Further, mice rendered deficient in TRPV1- expressing nociceptors fail to develop primary IgG antibody responses to keyhole limpet hemocyanin or haptenated antigen. CONCLUSION This functional and genetic evidence indicates a critical role for nociceptor TRPV1 in antigen-specific primary antibody responses to novel antigens. These results also support consideration of potential therapeutic manipulation of nociceptor pathways using bioelectronic devices to enhance immune responses to foreign antigens.
Collapse
Affiliation(s)
- Aisling Tynan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Téa Tsaava
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Manojkumar Gunasekaran
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Carlos E Bravo Iñiguez
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| |
Collapse
|
72
|
Gallo RL, Horswill AR. Staphylococcus aureus: The Bug Behind the Itch in Atopic Dermatitis. J Invest Dermatol 2024; 144:950-953. [PMID: 38430083 DOI: 10.1016/j.jid.2024.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
Pruritus or itch is a defining symptom of atopic dermatitis (AD). The origins of itch are complex, and it is considered both a defense mechanism and a cause of disease that leads to inflammation and psychological stress. Considerable progress has been made in understanding the processes that trigger itch, particularly the pruritoceptive origins that are generated in the skin. This perspective review discusses the implications of a recent observation that the V8 protease expressed by Staphylococcus aureus can directly trigger sensory neurons in the skin through activation of protease-activated receptor 1. This may be a key to understanding why itch is so common in AD because S. aureus commonly overgrows in this disease owing to deficient antimicrobial defense from both the epidermis and the cutaneous microbiome. Increased understanding of the role of microbes in AD provides increased opportunities for safely improving the treatment of this disorder.
Collapse
Affiliation(s)
- Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| | - Alexander R Horswill
- Department of Immunology & Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
73
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
74
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
75
|
Deng L, Gillis JE, Chiu IM, Kaplan DH. Sensory neurons: An integrated component of innate immunity. Immunity 2024; 57:815-831. [PMID: 38599172 PMCID: PMC11555576 DOI: 10.1016/j.immuni.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob E Gillis
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
76
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
77
|
Yang J, Zhang S, Wu Q, Chen P, Dai Y, Long J, Wu Y, Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J Autoimmun 2024; 144:103176. [PMID: 38364575 DOI: 10.1016/j.jaut.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.
Collapse
Affiliation(s)
- Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qixuan Wu
- Mental Health Services, Blacktown Hospital, Blacktow, NSW, 2148, Australia
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
78
|
Goode DJ. Immunotherapy, a new approach for the treatment of human pain. Pain 2024; 165:725-726. [PMID: 37975869 DOI: 10.1097/j.pain.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Diana J Goode
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
79
|
Laumet G. Peripheral somatosensory neurons listen and orchestrate the immune response. J Allergy Clin Immunol 2024; 153:977-979. [PMID: 37995857 PMCID: PMC10999328 DOI: 10.1016/j.jaci.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, Mich.
| |
Collapse
|
80
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
81
|
O'Brien JA, Karrasch JF, Huang Y, Vine EE, Cunningham AL, Harman AN, Austin PJ. Nerve-myeloid cell interactions in persistent human pain: a reappraisal using updated cell subset classifications. Pain 2024; 165:753-771. [PMID: 37975868 DOI: 10.1097/j.pain.0000000000003106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
ABSTRACT The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor. High-dimensional functional analyses have substantially changed myeloid cell classifications, with recently described subsets such as epidermal dendritic cells and DC3s unveiling new insight into how myeloid cells interact with nerve fibres. However, it is unclear whether this new understanding has informed the study of human chronic pain. In this article, we perform a scoping review investigating neuroimmune interactions between myeloid cells and peripheral nerve fibres in human chronic pain conditions. We found 37 papers from multiple pain states addressing this aim in skin, cornea, peripheral nerve, endometrium, and tumour, with macrophages, Langerhans cells, and mast cells the most investigated. The directionality of results between studies was inconsistent, although the clearest pattern was an increase in macrophage frequency across conditions, phases, and tissues. Myeloid cell definitions were often outdated and lacked correspondence with the stated cell types of interest; overreliance on morphology and traditional structural markers gave limited insight into the functional characteristics of investigated cells. We therefore critically reappraise the existing literature considering contemporary myeloid cell biology and advocate for the application of established and emerging high-dimensional proteomic and transcriptomic single-cell technologies to clarify the role of specific neuroimmune interactions in chronic pain.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jackson F Karrasch
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Yun Huang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erica E Vine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Anthony L Cunningham
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Andrew N Harman
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Paul J Austin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| |
Collapse
|
82
|
Ren W, Chen J, Wang W, Li Q, Yin X, Zhuang G, Zhou H, Zeng W. Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function. Neuron 2024; 112:972-990.e8. [PMID: 38242116 DOI: 10.1016/j.neuron.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Glucose homeostasis is controlled by brain-gut communications. Yet our understanding of the neuron-gut interface in the glucoregulatory system remains incomplete. Here, we find that sympathetic nerves elevate postprandial blood glucose but restrict brain glucose utilization by repressing the release of glucagon-like peptide-1 (GLP-1) from enteroendocrine L cells. Sympathetic nerves are in close apposition with the L cells. Importantly, sympathetic denervation or intestinal deletion of the adrenergic receptor α2 (Adra2a) augments postprandial GLP-1 secretion, leading to reduced blood glucose levels and increased brain glucose uptake. Conversely, sympathetic activation shows the opposite effects. At the cellular level, adrenergic signaling suppresses calcium flux to limit GLP-1 secretion upon sugar ingestion. Consequently, abrogation of adrenergic signal results in a significant improvement in learning and memory ability. Together, our results reveal a sympathetic nerve-enteroendocrine unit in constraining GLP-1 secretion, thus providing a therapeutic nexus of mobilizing endogenous GLP-1 for glucose management and cognitive improvement.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Li
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Xia Yin
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
83
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2322574121. [PMID: 38451947 PMCID: PMC10945812 DOI: 10.1073/pnas.2322574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.
Collapse
Affiliation(s)
- Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Unite Metaorganisme, Immunology Department, Pasteur Institute, 75015 Paris, France
| |
Collapse
|
84
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
85
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
86
|
Montanari M, Manière G, Berthelot-Grosjean M, Dusabyinema Y, Gillet B, Grosjean Y, Kurz CL, Royet J. Larval microbiota primes the Drosophila adult gustatory response. Nat Commun 2024; 15:1341. [PMID: 38351056 PMCID: PMC10864365 DOI: 10.1038/s41467-024-45532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
Collapse
Affiliation(s)
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Yves Dusabyinema
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - C Léopold Kurz
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
87
|
Wang L, Wu S, Chen T, Xiong L, Wang F, Song H, Zhou J, Wei S, Ren B, Shen X. A quinoa peptide protects impaired mucus barriers in colitis mice by inhibiting NF-κB-TRPV1 signaling and regulating the gut microbiota. Food Funct 2024; 15:1223-1236. [PMID: 38226896 DOI: 10.1039/d3fo04905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that lead to the disruption of the colonic mucus barrier. Quinoa has a well-balanced profile of essential amino acids and exhibits excellent anti-inflammatory effects. We recently explored the beneficial effects and relevant mechanisms of a novel quinoa peptide TPGAFF on impaired mucus barriers in mice with chemically induced colitis. Our findings demonstrated that TPGAFF, administered in low and high doses for 28 days, effectively attenuated the pathological phenotype and reduced intestinal permeability in colitis mice. TPGAFF demonstrated its protective abilities by restoring the impaired mucus barrier, inhibiting the activation of inflammatory signaling and reducing inflammatory cytokine levels. Moreover, TPGAFF positively influenced the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, TPGAFF inhibited the activation of TRPV1 nociceptor and decreased the levels of neuropeptides. Conclusively, our results indicated that oral administration of TPGAFF may be an optional approach for the treatment of mucus barrier damage.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shufeng Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Tong Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jianxin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shixiang Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
88
|
Chen HH, Mohsin M, Ge JY, Feng YT, Wang JG, Ou YS, Jiang ZJ, Hu BY, Liu XJ. Optogenetic Activation of Peripheral Somatosensory Neurons in Transgenic Mice as a Neuropathic Pain Model for Assessing the Therapeutic Efficacy of Analgesics. ACS Pharmacol Transl Sci 2024; 7:236-248. [PMID: 38230281 PMCID: PMC10789130 DOI: 10.1021/acsptsci.3c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.
Collapse
Affiliation(s)
- Hao-Hao Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Muhammad Mohsin
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Jia-Yi Ge
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Ting Feng
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing-Ge Wang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Sen Ou
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Zuo-Jie Jiang
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Bo-Ya Hu
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xing-Jun Liu
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
89
|
Tamari M, Del Bel KL, Ver Heul AM, Zamidar L, Orimo K, Hoshi M, Trier AM, Yano H, Yang TL, Biggs CM, Motomura K, Shibuya R, Yu CD, Xie Z, Iriki H, Wang Z, Auyeung K, Damle G, Demircioglu D, Gregory JK, Hasson D, Dai J, Chang RB, Morita H, Matsumoto K, Jain S, Van Dyken S, Milner JD, Bogunovic D, Hu H, Artis D, Turvey SE, Kim BS. Sensory neurons promote immune homeostasis in the lung. Cell 2024; 187:44-61.e17. [PMID: 38134932 PMCID: PMC10811756 DOI: 10.1016/j.cell.2023.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPβ was dependent on JAK1 in the vagus nerve, and CGRPβ suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.
Collapse
Affiliation(s)
- Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo 1058471, Japan; Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan
| | - Kate L Del Bel
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan
| | - Masato Hoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan
| | - Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chuyue D Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zili Xie
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hisato Iriki
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Wang
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kelsey Auyeung
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gargi Damle
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Skin Biology and Disease Resource-based Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Skin Biology and Disease Resource-based Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jill K Gregory
- Digital and Technology Partners, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Skin Biology and Disease Resource-based Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jinye Dai
- Department of Pharmacological Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui B Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan; Allergy Center, National Center for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 1578535, Japan
| | - Sanjay Jain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua D Milner
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Dusan Bogunovic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongzhen Hu
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA.
| |
Collapse
|
90
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
91
|
Yao P, Jia Y, Kan X, Chen J, Xu J, Xu H, Shao S, Ni B, Tang J. Identification of ADAM23 as a Potential Signature for Psoriasis Using Integrative Machine-Learning and Experimental Verification. Int J Gen Med 2023; 16:6051-6064. [PMID: 38148887 PMCID: PMC10750783 DOI: 10.2147/ijgm.s441262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Background Psoriasis is a common chronic, recurrent, and inflammatory skin disease. Identifying novel and potential biomarkers is valuable in the treatment and diagnosis of psoriasis. The goal of this study was to identify novel key biomarkers of psoriasis and analyze the potential underlying mechanisms. Methods Psoriasis-related datasets were downloaded from the Gene Expression Omnibus database to screen differential genes in the datasets. Functional and pathway enrichment analyses were performed on the differentially expressed genes (DEGs). Candidate biomarkers for psoriasis were identified from the GSE30999 and GSE6710 datasets using four machine learning algorithms, namely, random forest (RF), least absolute shrinkage and selection operator (LASSO) logistic regression, weighted gene co-expression network analysis (WGCNA), and support vector machine recursive feature elimination (SVM-RFE), and were validated using the GSE41662 dataset. Next, we used CIBERSORT and single-cell RNA analysis to explore the relationship between ADAM23 and immune cells. Finally, we validated the expression of the identified biomarkers expressions in human and mouse experiments. Results A total of 709 overlapping DEGs were identified, including 426 upregulated and 283 downregulated genes. Enhanced by enrichment analysis, the differentially expressed genes (DEGs) were spatially arranged in relation to immune cell involvement, immune-activating processes, and inflammatory signals. Based on the enrichment analysis, the DEGs were mapped to immune cell involvement, immune-activating processes, and inflammatory signals. Four machine learning strategies and single-cell RNA sequencing analysis showed that ADAM23, a disintegrin and metalloprotease, may be a unique, critical biomarker with high diagnostic accuracy for psoriasis. Based on CIBERSORT analysis, ADAM23 was found to be associated with a variety of immune cells, such as macrophages and mast cells, and it was upregulated in the macrophages of psoriatic lesions in patients and mice. Conclusion ADAM23 may be a potential biomarker in the diagnosis of psoriasis and may contribute to the pathogenesis by regulating immunological activity in psoriatic lesions.
Collapse
Affiliation(s)
- Pingping Yao
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yuying Jia
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Xuewei Kan
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jiaqi Chen
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jinliang Xu
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Huichao Xu
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Shuyang Shao
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, People’s Republic of China
| | - Jun Tang
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| |
Collapse
|
92
|
Huang C, Chen Y, Cai Y, Ding H, Hong J, You S, Lin Y, Hu H, Chen Y, Hu X, Chen Y, Huang Y, Zhang C, Lin Y, Huang Z, Li W, Zhang W, Fang X. TRPV1 + neurons alter Staphylococcus aureus skin infection outcomes by affecting macrophage polarization and neutrophil recruitment. BMC Immunol 2023; 24:55. [PMID: 38129779 PMCID: PMC10740264 DOI: 10.1186/s12865-023-00584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The interaction between the nervous system and the immune system can affect the outcome of a bacterial infection. Staphylococcus aureus skin infection is a common infectious disease, and elucidating the relationship between the nervous system and immune system may help to improve treatment strategies. RESULTS In this study, we found that the local release of calcitonin gene-related peptide (CGRP) increased during S. aureus skin infection, and S. aureus could promote the release of CGRP from transient receptor potential cation channel subfamily V member 1 (TRPV1+) neurons in vitro. The existence of TRPV1+ neurons inhibited the recruitment of neutrophils to the infected region and regulated the polarization of macrophages toward M2 while inhibiting polarization toward M1. This reduces the level of inflammation in the infected area, which aggravates the local infection. Furthermore, this study demonstrates that TRPV1 may be a target for the treatment of S. aureus skin infections and that botulinum neurotoxin A (BoNT/A) and BIBN4096 may reverse the inhibited inflammatory effect of CGRP, making them potential therapeutics for the treatment of skin infection in S. aureus. CONCLUSIONS In S. aureus skin infection, TRPV1+ neurons inhibit neutrophil recruitment and regulate macrophage polarization by releasing CGRP. BoNT/A and BIBN4096 may be potential therapeutic agents for S. aureus skin infection.
Collapse
Affiliation(s)
- Changyu Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yang Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaoying Hong
- Department of Anesthesiology, The Second Hospital of Nan'an, Quanzhou, Fujian, China
| | - Shan You
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yongfa Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xueni Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanshu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chaofan Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenbo Li
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| | - Xinyu Fang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| |
Collapse
|
93
|
Cremin M, Tay EXY, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. PLoS Pathog 2023; 19:e1011576. [PMID: 38109366 PMCID: PMC10758261 DOI: 10.1371/journal.ppat.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
94
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Wu Q, Pastore CF, Stephenson A, Femoe UM, Rossi HL, Reed DR, Luo W, Abdus-Saboor I, Herbert DR. "MrgprA3 neurons selectively control myeloid-derived cytokines for IL-17 dependent cutaneous immunity". RESEARCH SQUARE 2023:rs.3.rs-3644984. [PMID: 38076920 PMCID: PMC10705600 DOI: 10.21203/rs.3.rs-3644984/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.
Collapse
Affiliation(s)
- Juan M. Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila M. Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annabel A. Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher F. Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulrich M. Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heather L. Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York, USA
| | - De’Broski R. Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
95
|
Zhang MQ, Jia X, Cheng CQ, Wang YX, Li YY, Kong LD, Li QQ, Xie F, Yu YL, He YT, Dong QT, Jia ZH, Wang Y, Xu AL. Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection. Acta Pharmacol Sin 2023; 44:2253-2264. [PMID: 37311796 PMCID: PMC10618195 DOI: 10.1038/s41401-023-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cui-Qin Cheng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Xi Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi-Ying Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling-Dong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Qi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Li Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Ting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiu-Tong Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhan-Hong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - An-Long Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
96
|
Coulpier F, Pulh P, Oubrou L, Naudet J, Fertitta L, Gregoire JM, Bocquet A, Schmitt AM, Wolkenstein P, Radomska KJ, Topilko P. Topical delivery of mitogen-activated protein kinase inhibitor binimetinib prevents the development of cutaneous neurofibromas in neurofibromatosis type 1 mutant mice. Transl Res 2023; 261:16-27. [PMID: 37331503 DOI: 10.1016/j.trsl.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cutaneous neurofibromas (cNFs) are a hallmark of patients with the neurofibromatosis type 1 (NF1) genetic disorder. These benign nerve sheath tumors, which can amount to thousands, develop from puberty onward, often cause pain and are considered by patients to be the primary burden of the disease. Mutations of NF1, encoding a negative regulator of the RAS signaling pathway, in the Schwann cell (SCs) lineage are considered to be at the origin of cNFs. The mechanisms governing cNFs development are poorly understood, and therapeutics to reduce cNFs are missing, mainly due to the lack of appropriate animal models. To address this, we designed the Nf1-KO mouse model that develops cNFs. Using this model, we found that cNFs development is a singular event and goes through 3 successive stages: initiation, progression, and stabilization characterized by changes in the proliferative and MAPK activities of tumor SCs. We found that skin trauma accelerated the development of cNFs and further used this model to explore the efficacy of the MEK inhibitor binimetinib to cure these tumors. We showed that while topically delivered binimetinib has a selective and minor effect on mature cNFs, the same drug prevents their development over long periods.
Collapse
Affiliation(s)
- Fanny Coulpier
- Mondor Institute for Biomedical Research, Creteil, France
| | - Pernelle Pulh
- Mondor Institute for Biomedical Research, Creteil, France
| | - Layna Oubrou
- Mondor Institute for Biomedical Research, Creteil, France
| | - Julie Naudet
- Mondor Institute for Biomedical Research, Creteil, France
| | - Laura Fertitta
- Mondor Institute for Biomedical Research, Creteil, France; Dermatology Department, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP, Créteil, France
| | | | | | | | - Pierre Wolkenstein
- Mondor Institute for Biomedical Research, Creteil, France; Dermatology Department, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP, Créteil, France
| | | | - Piotr Topilko
- Mondor Institute for Biomedical Research, Creteil, France.
| |
Collapse
|
97
|
Yang D, Almanzar N, Chiu IM. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 2023; 20:1259-1269. [PMID: 37336989 PMCID: PMC10616093 DOI: 10.1038/s41423-023-01054-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.
Collapse
Affiliation(s)
- Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicole Almanzar
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
98
|
Zhu H, Liang H, Gao Z, Zhang X, He Q, He C, Cai C, Chen J. MiR-483-5p downregulation alleviates ox-LDL induced endothelial cell injury in atherosclerosis. BMC Cardiovasc Disord 2023; 23:521. [PMID: 37891465 PMCID: PMC10612234 DOI: 10.1186/s12872-023-03496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1β, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.
Collapse
Affiliation(s)
- Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hui Liang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Qian He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chaoyong He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chao Cai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| | - Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| |
Collapse
|
99
|
Dourson AJ, Jankowski MP. Developmental impact of peripheral injury on neuroimmune signaling. Brain Behav Immun 2023; 113:156-165. [PMID: 37442302 PMCID: PMC10530254 DOI: 10.1016/j.bbi.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
A peripheral injury drives neuroimmune interactions at the level of the injury and throughout the neuraxis. Understanding these systems will be beneficial in the pursuit to target persistent pain that involves both neural and immune components. In this review, we discuss the impact of injury on the development of neuroimmune signaling, along with data that suggest a possible cellular immune memory. We also discuss the parallel effects of injury in the nervous system and immune related areas including bone marrow, lymph node and central nervous system-related cells. Finally, we relate these findings to patient populations and current research that evaluates human tissue.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
100
|
Miyamoto S, Kondo T, Maruyama K. Senso-immunology: the past, present, and future. J Biochem 2023; 174:305-315. [PMID: 37461198 DOI: 10.1093/jb/mvad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pain and mechanical stimulation are thought to be alarm systems that alert the brain to physical abnormalities. When we experience unpleasant feelings in infected or traumatized tissues, our awareness is directed to the afflicted region, prompting activities such as resting or licking the tissue. Despite extensive research into the molecular biology of nociceptors, it was unclear whether their role was limited to the generation and transmission of unpleasant feelings or whether they actively modulate the pathogenesis of infected or traumatized tissues. Recently, it has become clear how the sensory and immune systems interact with one another and share similar receptors and ligands to modify the pathogenesis of various diseases. In this paper, we summarize the mechanisms of crosstalk between the sensory and immune systems and the impact of this new interdisciplinary field, which should be dubbed 'senso-immunology,' on medical science.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 3N7, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8787, Japan
| |
Collapse
|