51
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
52
|
Shang Q, Xiang W, Wu Y, Lu Y, Li Z, Zheng J, Wang X, Wang X, Song X. Identification and analysis of immunogenicity and immunotherapy efficacy by fatty acid genes: a novel prognostic features of lumbar disc herniation and Mendelian randomization analysis. Int J Neurosci 2024:1-15. [PMID: 38738478 DOI: 10.1080/00207454.2024.2353367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Sciatica is a phrase used to describe radiating leg discomfort. The most common cause is lumbar disc herniation (LDH), which is considered to start in the nucleus pulposus. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in LDH, remain largely unexplored and are a subject of ongoing research. METHODS The junction of the weighted correlation network analysis (WGCNA) test with 6 FAMGs enabled the finding of FAMGs. Gene set variation analysis (GSVA) was used to identify the possible biological activities and pathways of FAMGs. LASSO was used to determine diagnostic effectiveness of the four FAMGs in diagnosing LDH. GSE124272, GSE147383, GSE150408, and GSE153761 were utilized to confirm the levels of expression of four FAMGs. RESULTS Four FAMGs were discovered [Acyl-CoA Thioesterase 4 (ACOT4), Cytochrome P450 Family 4 Subfamily A Member 11 (CYP4A11), Acyl-CoA Dehydrogenase Long Chain (ACADL), Enoyl-CoA Hydratase and 3-Hydroxyacyl CoA Dehydrogenase (EHHADH)] For biological function analysis, mhc class ib receptor activity, response to thyroxine, response to l phenylalanine derivative were emphasized. CONCLUSIONS FAMGs can help with prognosis and immunology, and provide evidence for fatty acid metabolism-related targeted therapeutics. In LDH, FAMGs and their interactions with immune cells might be therapeutic targets.
Collapse
Affiliation(s)
- Qisong Shang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Spine Surgery, The Third Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Wei Xiang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuanyuan Wu
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yun Lu
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhe Li
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junru Zheng
- Department of Spine Surgery, The Third Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Xing Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Xiaonan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Xinghua Song
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
53
|
Su Y, Tang M, Wang M. Mitochondrial Dysfunction of Astrocytes Mediates Lipid Accumulation in Temporal Lobe Epilepsy. Aging Dis 2024; 15:1289-1295. [PMID: 37450928 PMCID: PMC11081153 DOI: 10.14336/ad.2023.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Lipid-accumulated reactive astrocytes (LARAs) have recently been confirmed to be a pivotal cell type present in temporal lobe epilepsy (TLE) lesions. These cells not only induce anomalous lipid accumulation within the epileptic foci but also decrease the seizure threshold by employing upregulated activation of the adenosine A2A receptor (A2AR). Furthermore, disturbances in mitochondrial oxidative phosphorylation (OxPhos) have been noted as significant drivers of lipid accumulation in astrocytes. Moreover, the deficiency of OxPhos in astrocytes can induce severe neuroinflammation, which can worsen the progression of TLE. Accordingly, further exploration of the correlation between mitochondrial dysfunction, LARAs-mediated lipid accumulation, and A2AR activation within epilepsy lesions is warranted. It could potentially elucidate the vital role of mitochondrial dysfunction in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China.
- Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
54
|
Harders AR, Spellerberg P, Dringen R. Exogenous Substrates Prevent the Decline in the Cellular ATP Content of Primary Rat Astrocytes During Glucose Deprivation. Neurochem Res 2024; 49:1188-1199. [PMID: 38341839 PMCID: PMC10991069 DOI: 10.1007/s11064-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Paul Spellerberg
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
55
|
Liu X, Beck T, Dhana K, Tangney CC, Desai P, Krueger K, Evans DA, Rajan KB. Dietary fats and the APOE-e4 risk allele in relation to cognitive decline: a longitudinal investigation in a biracial population sample. J Nutr Health Aging 2024; 28:100211. [PMID: 38507884 PMCID: PMC11623058 DOI: 10.1016/j.jnha.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND APOE-e4 is the strongest genetic risk factor for Alzheimer's disease. However, the influence of APOE-e4 on dietary fat intake and cognition has not been investigated. OBJECTIVE We aim to examine the association of types of dietary fat and their association to cognitive decline among those with and without the APOE-e4 allele. METHODS The study included 3,360 Chicago Health and Aging Project (CHAP) participants from four Southside Chicago communities. Global cognition was assessed using a composite score of episodic memory, perceptual speed, MMSE, and diet using a 144-item food frequency questionnaire. APOE genotype was assessed by the hME Sequenom mass-array platform. Longitudinal mixed-effect regression models were used to examine the association of dietary fat and the APOE-e4 allele with cognitive decline, adjusted for age, sex, education, smoking status, and calorie intake. RESULTS The present study involved 3,360 participants with a mean age of 74 at baseline, 62% African Americans, 63% females, and a mean follow-up of 7.8 years. Among participants with the APOE-e4 risk allele, higher intakes of total and saturated fat (SFA) were associated with a faster decline in global cognition. Among individuals with the APOE-e4 risk allele, a 5% increase in calories from SFA was associated with a 21% faster decline (β = -0.0197, P = 0.0038). In contrast, a higher intake of long-chain n-3 polyunsaturated fatty acids (LC-n3 PUFA) was associated with a slower rate of decline in global cognition among APOE-e4 carriers. Specifically, for every 1% energy increment from LC-n3 PUFA, the annual rate of global cognitive decline was slower by 0.024 standardized unit (SD 0.010, P = 0.023), about 30.4% slower annual cognitive decline. Higher SFA or other types of dietary fat were not associated with cognitive decline among APOE-e4 non-carriers. CONCLUSIONS Our study found a significant association between SFA and faster cognitive decline, LC-n3 PUFA and slower cognitive decline among those with the APOE-e4 allele. Our findings suggested that higher intake of SFA might contribute faster cognitive decline in combination with APOE-e4 whereas LC-n3 PUFA might compensate the adverse effects of APOE-e4. The interaction between intakes of different types of dietary fat and APOE-e4 on cognitive function warrants further research.
Collapse
Affiliation(s)
- Xiaoran Liu
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Todd Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Christy C Tangney
- Department of Clinical Nutrition & Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kristin Krueger
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Denis A Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
56
|
Maniscalchi A, Benzi Juncos ON, Conde MA, Funk MI, Fermento ME, Facchinetti MM, Curino AC, Uranga RM, Alza NP, Salvador GA. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol 2024; 71:103074. [PMID: 38367511 PMCID: PMC10879836 DOI: 10.1016/j.redox.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Collapse
Affiliation(s)
- Athina Maniscalchi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - Oriana N Benzi Juncos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melania I Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - María E Fermento
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María M Facchinetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Alejandro C Curino
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Química - UNS, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
57
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
58
|
Anderson T, Sharma S, Kelberman MA, Ware C, Guo N, Qin Z, Weinshenker D, Parent MB. Obesity during preclinical Alzheimer's disease development exacerbates brain metabolic decline. J Neurochem 2024; 168:801-821. [PMID: 37391269 DOI: 10.1111/jnc.15900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aβ), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.
Collapse
Affiliation(s)
- Thea Anderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Sumeet Sharma
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Ware
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Nanxi Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, Georgia, USA
| |
Collapse
|
59
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
60
|
Zimmer TS, Orr AL, Orr AG. Astrocytes in selective vulnerability to neurodegenerative disease. Trends Neurosci 2024; 47:289-302. [PMID: 38521710 PMCID: PMC11006581 DOI: 10.1016/j.tins.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Selective vulnerability of specific brain regions and cell populations is a hallmark of neurodegenerative disorders. Mechanisms of selective vulnerability involve neuronal heterogeneity, functional specializations, and differential sensitivities to stressors and pathogenic factors. In this review we discuss the growing body of literature suggesting that, like neurons, astrocytes are heterogeneous and specialized, respond to and integrate diverse inputs, and induce selective effects on brain function. In disease, astrocytes undergo specific, context-dependent changes that promote different pathogenic trajectories and functional outcomes. We propose that astrocytes contribute to selective vulnerability through maladaptive transitions to context-divergent phenotypes that impair specific brain regions and functions. Further studies on the multifaceted roles of astrocytes in disease may provide new therapeutic approaches to enhance resilience against neurodegenerative disorders.
Collapse
Affiliation(s)
- Till S Zimmer
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam L Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
61
|
Windham IA, Powers AE, Ragusa JV, Wallace ED, Zanellati MC, Williams VH, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. J Cell Biol 2024; 223:e202305003. [PMID: 38334983 PMCID: PMC10857907 DOI: 10.1083/jcb.202305003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to lipogenesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the endoplasmic reticulum (ER) lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs after a fatty acid pulse, which contain more unsaturated triglyceride after fatty acid pulse-chase. This LD size phenotype was rescued by chimeric APOE that targets only LDs. Like APOE depletion, APOE4-expressing astrocytes form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 causes aberrant LD composition and morphology. Our study contributes to accumulating evidence that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation, which could contribute to Alzheimer's disease risk.
Collapse
Affiliation(s)
- Ian A. Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex E. Powers
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E. Diane Wallace
- Mass Spectrometry Core Laboratory, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria H. Williams
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colby H. Wagner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen K. White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
62
|
Windham IA, Cohen S. The cell biology of APOE in the brain. Trends Cell Biol 2024; 34:338-348. [PMID: 37805344 PMCID: PMC10995109 DOI: 10.1016/j.tcb.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Apolipoprotein E (APOE) traffics lipids in the central nervous system. The E4 variant of APOE is a major genetic risk factor for Alzheimer's disease (AD) and a multitude of other neurodegenerative diseases, yet the molecular mechanisms by which APOE4 drives disease are still unclear. A growing collection of studies in iPSC models, knock-in mice, and human postmortem brain tissue have demonstrated that APOE4 expression in astrocytes and microglia is associated with the accumulation of cytoplasmic lipid droplets, defects in endolysosomal trafficking, impaired mitochondrial metabolism, upregulation of innate immune pathways, and a transition into a reactive state. In this review, we collate these developments and suggest testable mechanistic hypotheses that could explain common APOE4 phenotypes.
Collapse
Affiliation(s)
- Ian A Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
63
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
64
|
Nam YR, Kang M, Kim M, Seok MJ, Yang Y, Han YE, Oh SJ, Kim DG, Son H, Chang MY, Lee SH. Preparation of human astrocytes with potent therapeutic functions from human pluripotent stem cells using ventral midbrain patterning. J Adv Res 2024:S2090-1232(24)00112-7. [PMID: 38521186 DOI: 10.1016/j.jare.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Astrocytes are glial-type cells that protect neurons from toxic insults and support neuronal functions and metabolism in a healthy brain. Leveraging these physiological functions, transplantation of astrocytes or their derivatives has emerged as a potential therapeutic approach for neurodegenerative disorders. METHODS To substantiate the clinical application of astrocyte-based therapy, we aimed to prepare human astrocytes with potent therapeutic capacities from human pluripotent stem cells (hPSCs). To that end, we used ventral midbrain patterning during the differentiation of hPSCs into astrocytes, based on the roles of midbrain-specific factors in potentiating glial neurotrophic/anti-inflammatory activity. To assess the therapeutic effects of human midbrain-type astrocytes, we transplanted them into mouse models of Parkinson's disease (PD) and Alzheimer's disease (AD). RESULTS Through a comprehensive series of in-vitro and in-vivo experiments, we were able to establish that the midbrain-type astrocytes exhibited the abilities to effectively combat oxidative stress, counter excitotoxic glutamate, and manage pathological protein aggregates. Our strategy for preparing midbrain-type astrocytes yielded promising results, demonstrating the strong therapeutic potential of these cells in various neurotoxic contexts. Particularly noteworthy is their efficacy in PD and AD-specific proteopathic conditions, in which the midbrain-type astrocytes outperformed forebrain-type astrocytes derived by the same organoid-based method. CONCLUSION The enhanced functions of the midbrain-type astrocytes extended to their ability to release signaling molecules that inhibited neuronal deterioration and senescence while steering microglial cells away from a pro-inflammatory state. This success was evident in both in-vitro studies using human cells and in-vivo experiments conducted in mouse models of PD and AD. In the end, our human midbrain-type astrocytes demonstrated remarkable effectiveness in alleviating neurodegeneration, neuroinflammation, and the pathologies associated with the accumulation of α-synuclein and Amyloid β proteins.
Collapse
Affiliation(s)
- Ye Rim Nam
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Min Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Young Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Premedicine, College of Medicine, Hanyang University, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea.
| |
Collapse
|
65
|
Bu F, Qin X, Wang T, Li N, Zheng M, Wu Z, Ma K. Unlocking potential biomarkers bridging coronary atherosclerosis and pyrimidine metabolism-associated genes through an integrated bioinformatics and machine learning approach. BMC Cardiovasc Disord 2024; 24:148. [PMID: 38454353 PMCID: PMC10921789 DOI: 10.1186/s12872-024-03819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study delves into the intricate landscape of atherosclerosis (AS), a chronic inflammatory disorder with significant implications for cardiovascular health. AS poses a considerable burden on global healthcare systems, elevating both mortality and morbidity rates. The pathological underpinnings of AS involve a marked metabolic disequilibrium, particularly within pyrimidine metabolism (PyM), a crucial enzymatic network central to nucleotide synthesis and degradation. While the therapeutic relevance of pyrimidine metabolism in diverse diseases is acknowledged, the explicit role of pyrimidine metabolism genes (PyMGs) in the context of AS remains elusive. Utilizing bioinformatics methodologies, this investigation aims to reveal and substantiate PyMGs intricately linked with AS. METHODS A set of 41 candidate PyMGs was scrutinized through differential expression analysis. GSEA and GSVA were employed to illuminate potential biological pathways and functions associated with the identified PyMGs. Simultaneously, Lasso regression and SVM-RFE were utilized to distill core genes and assess the diagnostic potential of four quintessential PyMGs (CMPK1, CMPK2, NT5C2, RRM1) in discriminating AS. The relationship between key PyMGs and clinical presentations was also explored. Validation of the expression levels of the four PyMGs was performed using the GSE43292 and GSE9820 datasets. RESULTS This investigation identified four PyMGs, with NT5C2 and RRM1 emerging as key players, intricately linked to AS pathogenesis. Functional analysis underscored their critical involvement in metabolic processes, including pyrimidine-containing compound metabolism and nucleotide biosynthesis. Diagnostic evaluation of these PyMGs in distinguishing AS showcased promising results. CONCLUSION In conclusion, this exploration has illuminated a constellation of four PyMGs with a potential nexus to AS pathogenesis. These findings unveil emerging biomarkers, paving the way for novel approaches to disease monitoring and progression, and providing new avenues for therapeutic intervention in the realm of atherosclerosis.
Collapse
Affiliation(s)
- Fanli Bu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Xiao Qin
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Tiantian Wang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Na Li
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Man Zheng
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Ma
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China.
| |
Collapse
|
66
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
67
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
68
|
Almeida FC, Patra K, Giannisis A, Niesnerova A, Nandakumar R, Ellis E, Oliveira TG, Nielsen HM. APOE genotype dictates lipidomic signatures in primary human hepatocytes. J Lipid Res 2024; 65:100498. [PMID: 38216055 PMCID: PMC10875595 DOI: 10.1016/j.jlr.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.
Collapse
Affiliation(s)
- Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Kalicharan Patra
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anezka Niesnerova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, USA
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, (CLINTEC), Division of Transplantation surgery, Karolinska Institutet and ME Transplantation, Karolinska University Hospital, Huddinge, Sweden
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, Braga, Portugal.
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
69
|
Carling GK, Fan L, Foxe NR, Norman K, Ye P, Wong MY, Zhu D, Yu F, Xu J, Yarahmady A, Chen H, Huang Y, Amin S, Zacharioudakis E, Chen X, Holtzman DM, Mok SA, Gavathiotis E, Sinha SC, Cheng F, Luo W, Gong S, Gan L. Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577107. [PMID: 38328219 PMCID: PMC10849737 DOI: 10.1101/2024.01.24.577107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H ( R47H ) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the R47H variant induces neurodegeneration in female APOE4 mice without impacting hippocampal tau load. The combination of APOE4 and R47H amplified tauopathy-induced cell-autonomous microglial cGAS-STING signaling and type-I interferon response, and interferon signaling converged across glial cell types in the hippocampus. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
Collapse
|
70
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Wang W, Yin F, Weiss R, Selleck SB. Heparan sulfate modified proteins affect cellular processes central to neurodegeneration and modulate presenilin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576895. [PMID: 38328107 PMCID: PMC10849577 DOI: 10.1101/2024.01.23.576895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aβ-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
|
71
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
72
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
73
|
Schneider Y, Gauer C, Andert M, Hoffmann A, Riemenschneider MJ, Krebs W, Chalmers N, Lötzsch C, Naumann UJ, Xiang W, Rothhammer V, Beckervordersandforth R, Schlachetzki JCM, Winkler J. Distinct forebrain regions define a dichotomous astrocytic profile in multiple system atrophy. Acta Neuropathol Commun 2024; 12:1. [PMID: 38167307 PMCID: PMC10759635 DOI: 10.1186/s40478-023-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.
Collapse
Affiliation(s)
- Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - M Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - W Krebs
- Core Unit Bioinformatics, Data Integration and Analysis (CUBiDA), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - N Chalmers
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - C Lötzsch
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - U J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - W Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - V Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - R Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
74
|
Eisenbaum M, Pearson A, Ortiz C, Mullan M, Crawford F, Ojo J, Bachmeier C. ApoE4 expression disrupts tau uptake, trafficking, and clearance in astrocytes. Glia 2024; 72:184-205. [PMID: 37668005 DOI: 10.1002/glia.24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Tauopathies are a collection of neurodegenerative diseases characterized by the accumulation of pathogenic aggregates of the microtubule-associated protein tau. Despite the prevalence and diversity of tau astrogliopathy in tauopathies, the interactions between astrocytes and tau in the brain, and the influence of neurodegenerative genetic risk factors like the apolipoprotein E4 (apoE4) isoform, are largely unknown. Here, we leveraged primary and immortalized astrocytes expressing humanized apoE isoforms to characterize the mechanisms by which astrocytes interact with and eliminate extracellular tau, and the influence of apoE genotype on these processes. Our work indicates that astrocytes rapidly internalize, process, and release tau via an exosomal secretory mechanism under physiological conditions. However, we found that apoE4 disrupted these processes in comparison to apoE3, resulting in an astrocytic phenotype prone to intracellular tau accumulation. Furthermore, exposure to repetitive mild traumatic brain injuries exacerbated the apoE4-induced impairments in tau processing and elimination by astrocytes in apoE4 targeted-replacement mice. The diminished ability of apoE4 astrocytes to eliminate extracellular tau can lead to an accumulation of pathogenic tau, which induces mitochondrial dysfunction, as demonstrated by our studies. In total, our findings suggest that the apoE4 isoform lowers the threshold of astrocytic resilience to pathogenic tau, rendering them susceptible to bioenergetic deficits in the early stages of neurodegenerative diseases such as traumatic brain injury, potentially contributing to neurological decline.
Collapse
Affiliation(s)
| | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, Florida, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, Florida, USA
- Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| |
Collapse
|
75
|
Saltanova VA, Kicherova OA, Reikhert LI, Doyan YI, Mazurov NA. [Genetic basis of postoperative cognitive dysfunction]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:43-47. [PMID: 38676676 DOI: 10.17116/jnevro202412404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- V A Saltanova
- Tyumen State Medical University, Tyumen, Russia
- Regional clinical hospital No. 2, Tyumen, Russia
| | | | | | - Yu I Doyan
- Tyumen State Medical University, Tyumen, Russia
- Regional clinical hospital No. 2, Tyumen, Russia
| | - N A Mazurov
- Tyumen State Medical University, Tyumen, Russia
| |
Collapse
|
76
|
Wang T, Chen S, Mao Z, Shang Y, Brinton RD. Allopregnanolone pleiotropic action in neurons and astrocytes: calcium signaling as a unifying mechanism. Front Endocrinol (Lausanne) 2023; 14:1286931. [PMID: 38189047 PMCID: PMC10771836 DOI: 10.3389/fendo.2023.1286931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Allopregnanolone (Allo) is a neurosteroid with pleiotropic action in the brain that includes neurogenesis, oligogenesis, human and rodent neural stem cell regeneration, increased glucose metabolism, mitochondrial respiration and biogenesis, improved cognitive function, and reduction of both inflammation and Alzheimer's disease (AD) pathology. Because the breadth of Allo-induced responses requires activation of multiple systems of biology in the absence of an Allo-specific nuclear receptor, analyses were conducted in both neurons and astrocytes to identify unifying systems and signaling pathways. Methods Mechanisms of Allo action were investigated in embryonic hippocampal neurons and astrocytes cultured in an Aging Model (AM) media. Cellular morphology, mitochondrial function, and transcriptomics were investigated followed by mechanistic pathway analyses. Results In hippocampal neurons, Allo significantly increased neurite outgrowth and synaptic protein expression, which were paralleled by upregulated synaptogenesis and long-term potentiation gene expression profiles. Mechanistically, Allo induced Ca2+/CREB signaling cascades. In parallel, Allo significantly increased maximal mitochondrial respiration, mitochondrial membrane potential, and Complex IV activity while reducing oxidative stress, which required both the GABAA and L-type Ca2+ channels. In astrocytes, Allo increased ATP generation, mitochondrial function and dynamics while reducing oxidative stress, inflammasome indicators, and apoptotic signaling. Mechanistically, Allo regulation of astrocytic mitochondrial function required both the GABAA and L-type Ca2+ channels. Furthermore, Allo activated NRF1-TFAM signaling and increased the DRP1/OPA1 protein ratio, which led to increased mitochondrial biogenesis and dynamics. Conclusion Collectively, the cellular, mitochondrial, transcriptional, and pharmacological profiles provide evidence in support of calcium signaling as a unifying mechanism for Allo pleiotropic actions in the brain.
Collapse
Affiliation(s)
- Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
77
|
Valencia-Olvera AC, Balu D, Bellur S, McNally T, Saleh Y, Pham D, Ghura S, York J, Johansson JO, LaDu MJ, Tai L. A novel apoE-mimetic increases brain apoE levels, reduces Aβ pathology and improves memory when treated before onset of pathology in male mice that express APOE3. Alzheimers Res Ther 2023; 15:216. [PMID: 38102668 PMCID: PMC10722727 DOI: 10.1186/s13195-023-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aβ). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression. In glia, apoE is lipidated via cholesterol efflux from intracellular pools, primarily by the ATP-binding cassette transporter A1 (ABCA1). Therefore, increasing ABCA1 activity is suggested to be a therapeutic approach for AD. CS-6253 (CS) is a novel apoE mimetic peptide that was developed to bind and stabilize ABCA1 and maintain its localization into the plasma membrane therefore promoting cholesterol efflux. The goal of this study was to determine whether CS could modulate apoE levels and lipidation, Aβ pathology, and behavior in a model that expresses human APOE and overproduce Aβ. METHODS In vitro, APOE3-glia or APOE4-glia were treated with CS. In vivo, male and female, E3FAD (5xFAD+/-/APOE3+/+) and E4FAD (5xFAD+/-/APOE4+/+) mice were treated with CS via intraperitoneal injection at early (from 4 to 8 months of age) and late ages (from 8 to 10 months of age). ApoE levels, ABCA1 levels and, apoE lipidation were measured by western blot and ELISA. Aβ and amyloid levels were assessed by histochemistry and ELISA. Learning and memory were tested by Morris Water Maze and synaptic proteins were measured by Western blot. RESULTS CS treatment increased apoE levels and cholesterol efflux in primary glial cultures. In young male E3FAD mice, CS treatment increased soluble apoE and lipid-associated apoE, reduced soluble oAβ and insoluble Aβ levels as well as Aβ and amyloid deposition, and improved memory and synaptic protein levels. CS treatment did not induce any therapeutic benefits in young female E3FAD and E4FAD mice or in any groups when treatment was started at later ages. CONCLUSIONS CS treatment reduced Aβ pathology and improved memory only in young male E3FAD, the cohort with the least AD pathology. Therefore, the degree of Aβ pathology or Aβ overproduction may impact the ability of targeting ABCA1 to be an effective AD therapeutic. This suggests that ABCA1-stabilizing treatment by CS-6253 works best in conditions of modest Aβ levels.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shreya Bellur
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas McNally
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Don Pham
- Department of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivesh Ghura
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
78
|
Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. iScience 2023; 26:108316. [PMID: 38026173 PMCID: PMC10663748 DOI: 10.1016/j.isci.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Medical Scientist Training Program, University of Arizona College of Medicine; Tucson AZ, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | | | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Center of Bioinformatics and Biostatistics, University of Arizona College of Medicine; Tucson AZ, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Department of Neurology, University of Arizona College of Medicine; Tucson AZ, USA
| |
Collapse
|
79
|
Connolly KJ, Margaria J, Di Biase E, Cooper O, Hallett PJ, Isacson O. Loss of Lipid Carrier ApoE Exacerbates Brain Glial and Inflammatory Responses after Lysosomal GBA1 Inhibition. Cells 2023; 12:2564. [PMID: 37947642 PMCID: PMC10647680 DOI: 10.3390/cells12212564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tightly regulated and highly adaptive lipid metabolic and transport pathways are critical to maintaining brain cellular lipid homeostasis and responding to lipid and inflammatory stress to preserve brain function and health. Deficits in the lipid handling genes APOE and GBA1 are the most significant genetic risk factors for Lewy body dementia and related dementia syndromes. Parkinson's disease patients who carry both APOE4 and GBA1 variants have accelerated cognitive decline compared to single variant carriers. To investigate functional interactions between brain ApoE and GBA1, in vivo GBA1 inhibition was tested in WT versus ApoE-deficient mice. The experiments demonstrated glycolipid stress caused by GBA1 inhibition in WT mice induced ApoE expression in several brain regions associated with movement and dementia disorders. The absence of ApoE in ApoE-KO mice amplified complement C1q elevations, reactive microgliosis and astrocytosis after glycolipid stress. Mechanistically, GBA1 inhibition triggered increases in cell surface and intracellular lipid transporters ABCA1 and NPC1, respectively. Interestingly, the absence of NPC1 in mice also triggered elevations of brain ApoE levels. These new data show that brain ApoE, GBA1 and NPC1 functions are interconnected in vivo, and that the removal or reduction of ApoE would likely be detrimental to brain function. These results provide important insights into brain ApoE adaptive responses to increased lipid loads.
Collapse
Affiliation(s)
| | | | | | | | - Penelope J. Hallett
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
80
|
Phu TA, Vu NK, Ng M, Gao AS, Stoolman JS, Chandel NS, Raffai RL. ApoE enhances mitochondrial metabolism via microRNA-142a/146a-regulated circuits that suppress hematopoiesis and inflammation in hyperlipidemia. Cell Rep 2023; 42:113206. [PMID: 37824329 DOI: 10.1016/j.celrep.2023.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Apolipoprotein E (ApoE) is recognized for its pleiotropic properties that suppress inflammation. We report that ApoE serves as a metabolic rheostat that regulates microRNA control of glycolytic and mitochondrial activity in myeloid cells and hematopoietic stem and progenitor cells (HSPCs). ApoE expression in myeloid cells increases microRNA-146a, which reduces nuclear factor κB (NF-κB)-driven GLUT1 expression and glycolytic activity. In contrast, ApoE expression reduces microRNA-142a, which increases carnitine palmitoyltransferase 1a (CPT1A) expression, fatty acid oxidation, and oxidative phosphorylation. Improved mitochondrial metabolism by ApoE expression causes an enrichment of tricarboxylic acid (TCA) cycle metabolites and nicotinamide adenine dinucleotide (NAD+) in macrophages. The study of mice with conditional ApoE expression supports the capacity of ApoE to foster microRNA-controlled immunometabolism. Modulation of microRNA-146a and -142a in the hematopoietic system of hyperlipidemic mice using RNA mimics and antagonists, respectively, improves mitochondrial metabolism, which suppresses inflammation and hematopoiesis. Our findings unveil microRNA regulatory circuits, controlled by ApoE, that exert metabolic control over hematopoiesis and inflammation in hyperlipidemia.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
81
|
Lee H, Cho S, Kim MJ, Park YJ, Cho E, Jo YS, Kim YS, Lee JY, Thoudam T, Woo SH, Lee SI, Jeon J, Lee YS, Suh BC, Yoon JH, Go Y, Lee IK, Seo J. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep 2023; 42:113183. [PMID: 37777962 DOI: 10.1016/j.celrep.2023.113183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Sukhee Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Mi-Jin Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Yeo Jin Park
- Korean Medicine Life Science, University of Science and Technology, Daejeon 34054, South Korea; Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Eunji Cho
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yeon Suk Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea; Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yong-Seok Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Se-In Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Younghoon Go
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea.
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea.
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea.
| |
Collapse
|
82
|
Makki BE, Rahman S. Alzheimer's Disease in Diabetic Patients: A Lipidomic Prospect. Neuroscience 2023; 530:79-94. [PMID: 37652288 DOI: 10.1016/j.neuroscience.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. Insulin resistance is the tipping point beyond where advanced glycation end (AGE) products and free radicals are produced leading to oxidative stress and lipid peroxidation. Additionally, different types of lipids are playing a crucial role in the development and the relationship between those diseases. Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
Collapse
Affiliation(s)
| | - Sarah Rahman
- School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
83
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
84
|
Palmer JM, Huentelman M, Ryan L. More than just risk for Alzheimer's disease: APOE ε4's impact on the aging brain. Trends Neurosci 2023; 46:750-763. [PMID: 37460334 DOI: 10.1016/j.tins.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The apolipoprotein ε4 (APOE ε4) allele is most commonly associated with increased risk for late-onset Alzheimer's disease (AD). However, recent longitudinal studies suggest that these risks are overestimated; most ε4 carriers will not develop dementia in their lifetime. In this article, we review new evidence regarding the impact of APOE ε4 on cognition among healthy older adults. We discuss emerging work from animal models suggesting that ε4 impacts brain structure and function in multiple ways that may lead to age-related cognitive impairment, independent from AD pathology. We discuss the importance of taking an individualized approach in future studies by incorporating biomarkers and neuroimaging methods that may better disentangle the phenotypic influences of APOE ε4 on the aging brain from prodromal AD pathology.
Collapse
Affiliation(s)
- Justin M Palmer
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Lee Ryan
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
85
|
Zhao J, Ikezu TC, Lu W, Macyczko JR, Li Y, Lewis-Tuffin LJ, Martens YA, Ren Y, Zhu Y, Asmann YW, Ertekin-Taner N, Kanekiyo T, Bu G. APOE deficiency impacts neural differentiation and cholesterol biosynthesis in human iPSC-derived cerebral organoids. Stem Cell Res Ther 2023; 14:214. [PMID: 37605285 PMCID: PMC10441762 DOI: 10.1186/s13287-023-03444-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/β-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Tadafumi C Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
86
|
Flannagan K, Stopperan JA, Hauger BM, Troutwine BR, Lysaker CR, Strope TA, Csikos Drummond V, Gilmore CA, Swerdlow NA, Draper JM, Gouvion CM, Vivian JL, Haeri M, Swerdlow RH, Wilkins HM. Cell type and sex specific mitochondrial phenotypes in iPSC derived models of Alzheimer's disease. Front Mol Neurosci 2023; 16:1201015. [PMID: 37614699 PMCID: PMC10442646 DOI: 10.3389/fnmol.2023.1201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aβ, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.
Collapse
Affiliation(s)
- Kaitlin Flannagan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia A. Stopperan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M. Hauger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Benjamin R. Troutwine
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vivien Csikos Drummond
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb A. Gilmore
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Natalie A. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia M. Draper
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cynthia M. Gouvion
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jay L. Vivian
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Missouri-Kansas City School of Medicine, Kansas City, KS, United States
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mohammad Haeri
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
87
|
Morant-Ferrando B, Jimenez-Blasco D, Alonso-Batan P, Agulla J, Lapresa R, Garcia-Rodriguez D, Yunta-Sanchez S, Lopez-Fabuel I, Fernandez E, Carmeliet P, Almeida A, Garcia-Macia M, Bolaños JP. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab 2023; 5:1290-1302. [PMID: 37460843 PMCID: PMC10447235 DOI: 10.1038/s42255-023-00835-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Having direct access to brain vasculature, astrocytes can take up available blood nutrients and metabolize them to fulfil their own energy needs and deliver metabolic intermediates to local synapses1,2. These glial cells should be, therefore, metabolically adaptable to swap different substrates. However, in vitro and in vivo studies consistently show that astrocytes are primarily glycolytic3-7, suggesting glucose is their main metabolic precursor. Notably, transcriptomic data8,9 and in vitro10 studies reveal that mouse astrocytes are capable of mitochondrially oxidizing fatty acids and that they can detoxify excess neuronal-derived fatty acids in disease models11,12. Still, the factual metabolic advantage of fatty acid use by astrocytes and its physiological impact on higher-order cerebral functions remain unknown. Here, we show that knockout of carnitine-palmitoyl transferase-1A (CPT1A)-a key enzyme of mitochondrial fatty acid oxidation-in adult mouse astrocytes causes cognitive impairment. Mechanistically, decreased fatty acid oxidation rewired astrocytic pyruvate metabolism to facilitate electron flux through a super-assembled mitochondrial respiratory chain, resulting in attenuation of reactive oxygen species formation. Thus, astrocytes naturally metabolize fatty acids to preserve the mitochondrial respiratory chain in an energetically inefficient disassembled conformation that secures signalling reactive oxygen species and sustains cognitive performance.
Collapse
Affiliation(s)
- Brenda Morant-Ferrando
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain
| | - Paula Alonso-Batan
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Dario Garcia-Rodriguez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Sara Yunta-Sanchez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), Madrid, Spain.
| |
Collapse
|
88
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
89
|
Emmerson JT, Do Carmo S, Liu Y, Shalhoub A, Liu A, Bonomo Q, Malcolm JC, Breuillaud L, Cuello AC. Progressive human-like tauopathy with downstream neurodegeneration and neurovascular compromise in a transgenic rat model. Neurobiol Dis 2023; 184:106227. [PMID: 37454780 DOI: 10.1016/j.nbd.2023.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.
Collapse
Affiliation(s)
- Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Yingying Liu
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Ali Shalhoub
- Department of Biochemistry, McGill University, Montreal H3A 0C7, Canada
| | - Ai Liu
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Quentin Bonomo
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Janice C Malcolm
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Lionel Breuillaud
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada; Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada; Department of Pharmacology, Oxford University, Oxford OX13QT, UK.
| |
Collapse
|
90
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
91
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
92
|
Valencia-Olvera AC, Balu D, Faulk N, Amiridis A, Wang Y, Pham C, Avila-Munoz E, York JM, Thatcher GRJ, LaDu MJ. Inhibition of ACAT as a Therapeutic Target for Alzheimer's Disease Is Independent of ApoE4 Lipidation. Neurotherapeutics 2023; 20:1120-1137. [PMID: 37157042 PMCID: PMC10457278 DOI: 10.1007/s13311-023-01375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
APOE4, encoding apolipoprotein E4 (apoE4), is the greatest genetic risk factor for Alzheimer's disease (AD), compared to the common APOE3. While the mechanism(s) underlying APOE4-induced AD risk remains unclear, increasing the lipidation of apoE4 is an important therapeutic target as apoE4-lipoproteins are poorly lipidated compared to apoE3-lipoproteins. ACAT (acyl-CoA: cholesterol-acyltransferase) catalyzes the formation of intracellular cholesteryl-ester droplets, reducing the intracellular free cholesterol (FC) pool. Thus, inhibiting ACAT increases the FC pool and facilitates lipid secretion to extracellular apoE-containing lipoproteins. Previous studies using commercial ACAT inhibitors, including avasimibe (AVAS), as well as ACAT-knock out (KO) mice, exhibit reduced AD-like pathology and amyloid precursor protein (APP) processing in familial AD (FAD)-transgenic (Tg) mice. However, the effects of AVAS with human apoE4 remain unknown. In vitro, AVAS induced apoE efflux at concentrations of AVAS measured in the brains of treated mice. AVAS treatment of male E4FAD-Tg mice (5xFAD+/-APOE4+/+) at 6-8 months had no effect on plasma cholesterol levels or distribution, the original mechanism for AVAS treatment of CVD. In the CNS, AVAS reduced intracellular lipid droplets, indirectly demonstrating target engagement. Surrogate efficacy was demonstrated by an increase in Morris water maze measures of memory and postsynaptic protein levels. Amyloid-beta peptide (Aβ) solubility/deposition and neuroinflammation were reduced, critical components of APOE4-modulated pathology. However, there was no increase in apoE4 levels or apoE4 lipidation, while amyloidogenic and non-amyloidogenic processing of APP were significantly reduced. This suggests that the AVAS-induced reduction in Aβ via reduced APP processing was sufficient to reduce AD pathology, as apoE4-lipoproteins remained poorly lipidated.
Collapse
Affiliation(s)
- Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Naomi Faulk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | | | - Yueting Wang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612 USA
- Present Address: AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064 USA
| | - Christine Pham
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Eva Avila-Munoz
- Syneos Health, Av. Gustavo Baz 309, La Loma, Tlalnepantla de Baz, 54060 Mexico
| | - Jason M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, University of Arizona, 1703 E Mabel St., Tucson, AZ 85721 USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
93
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
94
|
Lyu S, Lan Z, Li C. The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases. Chin Med J (Engl) 2023; 136:1291-1299. [PMID: 37130227 PMCID: PMC10309513 DOI: 10.1097/cm9.0000000000002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Collapse
Affiliation(s)
- Shukai Lyu
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zhuoqing Lan
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Caixia Li
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
95
|
Li Y, Chang P, Sankaran S, Jang H, Nie Y, Zeng A, Hussain S, Wu JY, Chen X, Shi L. Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in Drosophila Brain During Aging. GEN BIOTECHNOLOGY 2023; 2:247-261. [PMID: 37363411 PMCID: PMC10286263 DOI: 10.1089/genbio.2023.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics in situ. Applying deuterium water (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in Drosophila brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in Drosophila brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity in situ but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Phyllis Chang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Shriya Sankaran
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hongje Jang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Yuhang Nie
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Audrey Zeng
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sahran Hussain
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jane Y. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
96
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
97
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
98
|
Fleeman RM, Kuhn MK, Chan DC, Proctor EA. Apolipoprotein E ε4 modulates astrocyte neuronal support functions in the presence of amyloid-β. J Neurochem 2023; 165:536-549. [PMID: 36762973 PMCID: PMC10903110 DOI: 10.1111/jnc.15781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Apolipoprotein E (APOE) is a lipid transporter produced predominantly by astrocytes in the brain. The ε4 variant of APOE (APOE4) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). Although the molecular mechanisms of this increased risk are unclear, APOE4 is known to alter immune signaling and lipid and glucose metabolism. Astrocytes provide various forms of support to neurons, including regulating neuronal metabolism and immune responses through cytokine signaling. Changes in astrocyte function because of APOE4 may therefore decrease neuronal support, leaving neurons more vulnerable to stress and disease insults. To determine whether APOE4 alters astrocyte neuronal support functions, we measured glycolytic and oxidative metabolism of neurons treated with conditioned media from APOE4 or APOE3 (the common, risk-neutral variant) primary astrocyte cultures. We found that APOE4 neurons treated with conditioned media from resting APOE4 astrocytes had similar metabolism to APOE3 neurons treated with media from resting APOE3 astrocytes, but treatment with astrocytic conditioned media from astrocytes challenged with amyloid-β (Aβ), a key pathological protein in AD, caused APOE4 neurons to increase their basal mitochondrial and glycolytic metabolic rates more than APOE3 neurons. These changes were not because of differences in astrocytic lactate production or glucose utilization, but instead correlated with increased glycolytic ATP production and a lack of cytokine secretion in response to Aβ. Additionally, we identified that astrocytic cytokine signatures could predict basal metabolism of neurons treated with the astrocytic conditioned media. Together, these findings suggest that in the presence of Aβ, APOE4 astrocytes alter immune and metabolic functions that result in a compensatory increase in neuronal metabolic stress.
Collapse
Affiliation(s)
- Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| |
Collapse
|
99
|
Windham IA, Ragusa JV, Wallace ED, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538740. [PMID: 37162939 PMCID: PMC10168303 DOI: 10.1101/2023.04.28.538740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to neutral lipid synthesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the ER lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs containing more unsaturated triglyceride. This LD size distribution phenotype was rescued by chimeric APOE that targets only LDs. APOE4 - expressing astrocytes also form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the larger LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 is a toxic gain of function variant that causes aberrant LD composition and morphology. We propose that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation or lipotoxicity, which could contribute to Alzheimer's disease risk. Summary Windham et al . discover that APOE in astrocytes can traffic to lipid droplets (LDs), where it modulates LD composition and size. Astrocytes expressing the Alzheimer's risk variant APOE4 form large LDs with impaired turnover and increased peroxidation sensitivity.
Collapse
|
100
|
Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE, Clarke HA, Goulding DS, Allenger EJ, Morillo-Segovia G, Friday CM, Gorman AA, Hawkinson TR, MacLean SM, Williams HC, Sun RC, Morganti JM, Johnson LA. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep 2023; 42:112196. [PMID: 36871219 PMCID: PMC10117631 DOI: 10.1016/j.celrep.2023.112196] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism and provide valuable, interactive resources for discovery and validation research.
Collapse
Affiliation(s)
- Sangderk Lee
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - James L Schwartz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Danielle S Goulding
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | - Cassi M Friday
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy A Gorman
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ramon C Sun
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|