51
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
52
|
Bello AT, Sarafian MH, Wimborne EA, Middleton B, Revell VL, Raynaud FI, Chowdhury NR, van der Veen DR, Skene DJ, Swann JR. Exposing 24-hour cycles in bile acids of male humans. Nat Commun 2024; 15:10014. [PMID: 39562795 PMCID: PMC11576969 DOI: 10.1038/s41467-024-53673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Bile acids are trans-genomic molecules arising from the concerted metabolism of the human host and the intestinal microbiota and are important for digestion, energy homeostasis and metabolic regulation. While diurnal variation has been demonstrated in the enterohepatic circulation and the gut microbiota, existing human data are poorly resolved, and the influence of the host circadian system has not been determined. Using entrained laboratory protocols, we demonstrate robust daily rhythms in the circulating bile acid pool in healthy male participants. We identify temporal relationships between bile acids and plasma lipids and show that these relationships are lost following sleep deprivation. We also highlight that bile acid rhythmicity is predominantly lost when environmental timing cues are held constant. Here we show that the environment is a stronger determinant of these temporal dynamics than the intrinsic circadian system of the host. This has significance for the intimate relationship between circadian timing and metabolism.
Collapse
Affiliation(s)
- Adesola T Bello
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Elizabeth A Wimborne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benita Middleton
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Victoria L Revell
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Florence I Raynaud
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Namrata R Chowdhury
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Daan R van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Debra J Skene
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jonathan R Swann
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
53
|
Jakubowicz D, Matz Y, Landau Z, Rosenblum RC, Twito O, Wainstein J, Tsameret S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:12355. [PMID: 39596418 PMCID: PMC11594859 DOI: 10.3390/ijms252212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light-dark cycle and the eating-fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Yael Matz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Landau
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Rachel Chava Rosenblum
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Orit Twito
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Julio Wainstein
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
54
|
Enache RM, Profir M, Roşu OA, Creţoiu SM, Gaspar BS. The Role of Gut Microbiota in the Onset and Progression of Obesity and Associated Comorbidities. Int J Mol Sci 2024; 25:12321. [PMID: 39596385 PMCID: PMC11595101 DOI: 10.3390/ijms252212321] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity, a global public health problem, is constantly increasing, so the concerns in preventing and combating it are increasingly focused on the intestinal microbiota. It was found that the microbiota is different in lean people compared to obese individuals, but the exact mechanisms by which energy homeostasis is influenced are still incompletely known. Numerous studies show the involvement of certain bacterial species in promoting obesity and associated diseases such as diabetes, hypertension, cancer, etc. Our aim is to summarize the main findings regarding the influence of several factors such as lifestyle changes, including diet and bariatric surgery, on the diversity of the gut microbiota in obese individuals. The second purpose of this paper is to investigate the potential effect of various microbiota modulation techniques on ameliorating obesity and its comorbidities. A literature search was conducted using the PubMed database, identifying articles published between 2019 and 2024. Most studies identified suggest that obesity is generally associated with alterations of the gut microbiome such as decreased microbial diversity, an increased Firmicutes-to-Bacteroidetes ratio, and increased SCFAs levels. Our findings also indicate that gut microbiota modulation techniques could represent a novel strategy in treating obesity and related metabolic diseases. Although some mechanisms (e.g., inflammation or hormonal regulation) are already considered a powerful connection between gut microbiota and obesity development, further research is needed to enhance the knowledge on this particular topic.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
55
|
Xi YY, Chen C, Zheng JJ, Jiang B, Dong XY, Lou SY, Luo JG, Zhang XH, Zhou ZY, Luo QJ, Wang W, Zhou XD. Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation. NPJ Sci Food 2024; 8:93. [PMID: 39537664 PMCID: PMC11561287 DOI: 10.1038/s41538-024-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Liver fibrosis (LF) is a common sequela to diverse chronic liver injuries, leading to rising rates of cirrhosis and hepatocellular carcinoma (HCC). As the medicinal and edible homologous material, traditional teas have exhibited promising applications in the clinical management of liver fibrosis. Here, we generated a liver fibrosis mouse model to explore the potent therapeutic ability of Ampelopsis grossedentata (AG) tea on this condition by multi-omics analysis. The biochemistry results pointed towards mitigated increases of ALT, AST, TBIL, and ALP triggered by BDL in the AG-treated group. Examination using H&E and Sirius Red staining revealed severe liver injuries, inflammation infiltration, amplified fibrosed regions, and the creation of bile ducts, all of which were fallout from BDL. Immunohistochemistry findings also implicated a noteworthy upregulation of the HSC activation marker α-smooth muscle actin (α-SMA) and the fibrosis marker collagen I in the BDL group. However, these symptoms demonstrated a significant improvement in the group treated with 100 mg/kg AG. Findings from the Western Blot test corroborated the prominent elevation of TNF-α, col1a1, α-SMA, and TGF-β, instigated by BDL, while AG treatment meaningfully modulated these proteins. Furthermore, our study underscored the potential involvement of several microbiota, such as Ruminococcaceae UCG-014, Eubacterium Ruminantium, Ruminococcus 1, Christensenellaceae R-7, Acetatifactor, Dubosiella, Parasutterella, Faecalibaculum, and Defluviitaleaceae UCG-011, in the progression of liver fibrosis and the therapeutic efficacy of AG. This investigation shows that during the process of AG ameliorating BDL-induced liver fibrosis, bile acid derivatives such as CDCA, TCDCA, 3-DHC, UCA, DCA, among others, play significant roles. In this study, we identified that several non-bile acid metabolites, such as Deltarasin, Thr-Ile-Arg, etc., are entailed in the process of AG improving liver fibrosis.
Collapse
Affiliation(s)
- Yi-Yuan Xi
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Chen
- School of Electronic and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Ju-Jia Zheng
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Jiang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin-Ya Dong
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shu-Ying Lou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Guo Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiu-Hua Zhang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zi-Ye Zhou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qu-Jing Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
56
|
Zhuang T, Wang X, Wang Z, Gu L, Yue D, Wang Z, Li X, Yang L, Huang W, Ding L. Biological functions and pharmacological behaviors of bile acids in metabolic diseases. J Adv Res 2024:S2090-1232(24)00495-8. [PMID: 39522690 DOI: 10.1016/j.jare.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bile acids, synthesized endogenously from cholesterol, play a central role in metabolic regulation within the enterohepatic circulatory system. Traditionally known as emulsifying agents that facilitate the intestinal absorption of vitamins and lipids, recent research reveals their function as multifaceted signal modulators involved in various physiological processes. These molecules are now recognized as key regulators of chronic metabolic diseases and immune dysfunction. Despite progress in understanding their roles, their structural diversity and the specific functions of individual bile acids remain underexplored. AIM OF REVIEW This study categorizes the bile acids based on their chemical structures and their roles as signaling molecules in physiological processes. It consolidates current knowledge and provides a comprehensive overview of the current research. The review also includes natural and semisynthetic variants that have demonstrated potential in regulating metabolic processes in animal models or clinical contexts. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acids circulate primarily within the enterohepatic circulation, where they help maintain a healthy digestive system. Disruptions in their balance are linked to metabolic disorders, hepatobiliary diseases and intestinal inflammation. Through receptor-mediated pathways, bile acids influence the progression of metabolic diseases by regulating glucose and lipid metabolism, immune function, and energy expenditure. This review aims to provide a comprehensive, systematic foundation to for understanding their physiological roles and supporting future therapeutic developments for metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Dawei Yue
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200163, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Wendong Huang
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
57
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
58
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
59
|
Dai H, Shan Z, Shi L, Duan Y, An Y, He C, Lyu Y, Zhao Y, Wang M, Du Y, Xie J, Yang Y, Zhao B. Mulberry leaf polysaccharides ameliorate glucose and lipid metabolism disorders via the gut microbiota-bile acids metabolic pathway. Int J Biol Macromol 2024; 282:136876. [PMID: 39490871 DOI: 10.1016/j.ijbiomac.2024.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Mulberry leaf polysaccharides (MLP) are integral components of Mulberry leaves that confer hypoglycemic and hypolipidemic properties. This study investigated the efficacy of MLP in treating Type 2 Diabetes Mellitus (T2DM) and the underlying mechanisms related to gut microbiota-bile acids metabolism in T2DM rats. The findings revealed that MLP apparently reduced fasting blood glucose and lipid levels, ameliorated disorders in glucose and lipid metabolism, and mitigated insulin resistance. MLP enhanced the abundance of Prevotella, Ruminococcus, and Lactobacillus, thereby rectifying the gut microbiota dysbiosis in rats, which effectively restored gut microbiota homeostasis and composition. Furthermore, the data demonstrated that MLP modulated bile acid metabolism, as evidenced by reduced serum cholesterol levels, enhanced mRNA expression of hepatic cholesterol 7α- hydroxylase (Cyp7a1) and cholesterol 12α- hydroxylase (Cyp8b1), and ileal G protein-coupled bile acid receptor (Tgr5), while suppressing hepatic and ileal farnesoid X receptor (Fxr) mRNA expression in T2DM rats. Additionally, MLP upregulated the protein expression of hepatic CYP7A1 and CYP8B1, and ileal TGR5, while inhibiting FXR protein levels in the liver and ileum of T2DM rats. These results suggest that MLP can rectify disorders in glucose and lipid metabolism via the gut microbiota-bile acids metabolic pathway.
Collapse
Affiliation(s)
- Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Operations and Management Department, Ya'an People's Hospital, Ya'an 625099, China
| | - Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Central Laboratories, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinglan Lyu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yige Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
60
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
61
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
62
|
Lee B, Jo D, Park J, Kim OY, Song J. Gut microbiota and their relationship with circulating adipokines in an acute hepatic encephalopathy mouse model induced by surgical bile duct ligation. Heliyon 2024; 10:e38534. [PMID: 39391493 PMCID: PMC11466606 DOI: 10.1016/j.heliyon.2024.e38534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aims Various studies have shown the importance of the gut microbiota in human health. However, little is known about gut microbiome patterns and their effect on circulating adipo-myokine levels in hepatic encephalopathy (HE). We investigated the relationship between the gut microbiota and adipo-myokine levels using a mouse model of HE induced by surgical bile duct ligation (BDL). Methods and results Wild-type C57BL/6J mice were subjected to sham surgery or BDL. Severe body weight loss, suppressed feed intake, and liver failure were observed in BDL mice compared with sham control mice. Additionally, changes in gut microbial communities and serum adipo-myokine levels were noted in BDL mice. In the BDL mouse gut, we identified 15 differentially abundant taxa including the phylum Verrucomicrobiota, the classes Actinomycetes and Verrucomicrobiae, the order Verrucomicrobiales, the families Akkermansiaceae, Bacteroidaceae, Rikenellaceae, and Oscillospiraceae, the genera Alistipes, Akkermansia, Muribaculum, and Phocaeicola, and the species Akkermansia muciniphila, Alistipes okayasuensis, and Muribaculum gordoncarteri by LEfSe analysis (LDA score≥4.0). Higher levels of certain adipo-myokines such as BDNF were detected in the serum of BDL mice. Spearman correlation analysis revealed that certain adipo-myokines (e.g., FSTL1) were positively correlated with the class Actinomycetes, the family Rikenellaceae, the genus Alistipes, and the species Alistipes okayasuensis. Interestingly, A. okayasuensis and M. gordoncarteri, recently isolated microbes, showed richness in the gut of BDL mice and demonstrated positive correlations with adipo-myokines such as FGF21. Conclusions Overall, our results suggest that alteration of the gut microbiota in patients with HE may be closely correlated to the levels of adipo-myokines in the blood.
Collapse
Affiliation(s)
- Bokyung Lee
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
63
|
Papadopoulos MGE, Perhal AF, Medel-Lacruz B, Ladurner A, Selent J, Dirsch VM, Kolb P. Discovery and characterization of small-molecule TGR5 ligands with agonistic activity. Eur J Med Chem 2024; 276:116616. [PMID: 38996653 DOI: 10.1016/j.ejmech.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The Takeda G protein-coupled receptor 5 (TGR5) is activated endogenously by primary and secondary bile acids. This receptor is considered a candidate target for addressing inflammatory and metabolic disorders. We have targeted TGR5 with structure-based methods for ligand finding using the recently solved experimental structures, as well as structures obtained from molecular dynamics simulations. Through addressing the orthosteric as well as a putative allosteric site, we identified agonists and positive allosteric modulators. While the predicted binding locations were not in line with their efficacy, our work contributes activating small-molecule ligands that we have thoroughly characterized in vitro.
Collapse
Affiliation(s)
| | - Alexander F Perhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Angela Ladurner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany.
| |
Collapse
|
64
|
Yu J, Gao M, Wang L, Guo X, Liu X, Sheng M, Cheng S, Guo Y, Wang J, Zhao C, Guo W, Zhang Z, Liu Y, Hu C, Ma X, Xie C, Zhang Q, Xu L. An insoluble cellulose nanofiber with robust expansion capacity protects against obesity. Int J Biol Macromol 2024; 277:134401. [PMID: 39097049 DOI: 10.1016/j.ijbiomac.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingying Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
65
|
Chen W, Huang J, Xiao J, Xu Q, Liu W, He X. Ileum excision partially reverses improvement of glucose metabolism in diabetic rats after biliopancreatic diversion with duodenal switch. Surg Obes Relat Dis 2024; 20:962-969. [PMID: 38782612 DOI: 10.1016/j.soard.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bile acids can stimulate the secretion of glucagon-like peptide-1 (GLP-1) and be mostly reabsorbed in the ileum. OBJECTIVES We aimed to investigate whether ileum excision could reverse the glucose improvement after biliopancreatic diversion with duodenal switch (BPD/DS). SETTING Peking Union Medical College Hospital. METHODS Thirty diabetic rats were randomly divided into the BPD/DS group, BPD/DS plus ileectomy (BDI) group, and control group. The fasting blood glucose, bile acids, and glucagon-like peptide-1(GLP-1) levels in plasma samples were analyzed. RESULTS In postoperative week 20, the fasting blood glucose level in the BDI group was significantly higher than that in the BPD/DS group (11.5 ± 1.4 mmol/L versus 7.6 ± 1.0 mmol/L, P < .001), and the AUCOGTT value was also significantly higher than that in the BPD/DS group (2186.1 ± 237.2 mmol/L·min versus 1551.2 ± 136.9 mmol/L·min, P < .001). The plasma level of bile acids in the BDI group was lower than that in the BPD/DS group (P = .012) and was not significantly different from that in the control group (P = .629). The plasma level of GLP-1 in the BDI group was lower than that in the BPD/DS group (P = .009) and was not significantly different from that in the control group (P = .530). Moreover, the intestinal TGR5 expression in the BDI group was significantly lower than that in the BPD/DS group (P < .001). CONCLUSIONS The results show that excision of the ileum can partially reverse the improvement in glucose metabolism after BPD/DS.
Collapse
Affiliation(s)
- Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jianhao Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
66
|
Wang G, Xie B, Yang X, Wang R, Zhong G, Gao L, Chen X, Lin M, Huang Q, Zhang C, Huang H, Li T, Xu J, Deng W. The "crosstalk" between gut microbiota, metabolites and genes in diet-induced hepatic steatosis mice intervened with Cordyceps guangdongensis polysaccharides. Int J Biol Macromol 2024; 277:134607. [PMID: 39127294 DOI: 10.1016/j.ijbiomac.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijuan Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guorui Zhong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangnv Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hao Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
67
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
68
|
Bhimanwar RS, Mittal A, Chaudhari S, Sharma V. Recent advancements in the structural exploration of TGR5 agonists for diabetes treatment. RSC Med Chem 2024; 15:3026-3037. [PMID: 39309359 PMCID: PMC11411620 DOI: 10.1039/d4md00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
TGR5, a receptor that interacts with bile acids on cell surfaces, has become a promising therapeutic target for type II diabetes due to its ability to regulate energy expenditure and blood sugar levels. While several TGR5 agonists have been identified, only a few are currently in clinical trials. This article reviews the promising TGR5 agonists discovered in recent years, highlighting the chemical structure and pharmacological profile of the most effective compounds. With the limited number of effective drugs available for treating type II diabetes, the search for a potent TGR5 agonist with high efficacy and fewer side effects continues. The goal of this article is to provide an overview of the latest advancements in TGR5 agonists and offer insights for the future development of novel, potent TGR5 agonists for diabetes treatment. A noteworthy aspect addressed in the discussion is the common side effect associated with TGR5 agonist treatment - gallbladder filling. The review also explores potential strategies to mitigate this side effect, with the goal of improving the overall safety and tolerability of TGR5-targeted therapies.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri Pune Maharashtra-411018 India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Snehal Chaudhari
- Department of Biochemistry, University of Wisconsin-Madison Madison WI-53706 USA
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| |
Collapse
|
69
|
Zhang K, Zhang Q, Qiu H, Ma Y, Hou N, Zhang J, Kan C, Han F, Sun X, Shi J. The complex link between the gut microbiome and obesity-associated metabolic disorders: Mechanisms and therapeutic opportunities. Heliyon 2024; 10:e37609. [PMID: 39290267 PMCID: PMC11407058 DOI: 10.1016/j.heliyon.2024.e37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial interactions are widespread and important processes that support the link between disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can have detrimental or beneficial effects on human health. It is also an endocrine organ that maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut microbiome is associated with several diseases including obesity-related metabolic disorders. This review summarizes the complex association between the gut microbiome and obesity-associated metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity-associated metabolic diseases by modulating the gut microbiota are discussed.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
70
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
71
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
72
|
Jiang X, Liu K, Luo P, Li Z, Xiao F, Jiang H, Wu S, Tang M, Yuan F, Li X, Shu Y, Peng B, Chen S, Ni S, Guo F. Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice. Nat Commun 2024; 15:7948. [PMID: 39261456 PMCID: PMC11391058 DOI: 10.1038/s41467-024-52059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
The central nervous system has been implicated in the age-induced reduction in adipose tissue lipolysis. However, the underlying mechanisms remain unclear. Here, we show the expression of SLC7A14 is reduced in proopiomelanocortin (POMC) neurons of aged mice. Overexpression of SLC7A14 in POMC neurons alleviates the aging-reduced lipolysis, whereas SLC7A14 deletion mimics the age-induced lipolysis impairment. Metabolomics analysis reveals that POMC SLC7A14 increased taurochenodeoxycholic acid (TCDCA) content, which mediates the SLC7A14 knockout- or age-induced WAT lipolysis impairment. Furthermore, SLC7A14-increased TCDCA content is dependent on intestinal apical sodium-dependent bile acid transporter (ASBT), which is regulated by intestinal sympathetic afferent nerves. Finally, SLC7A14 regulates the intestinal sympathetic afferent nerves by inhibiting mTORC1 signaling through inhibiting TSC1 phosphorylation. Collectively, our study suggests the function for central SLC7A14 and an upstream mechanism for the mTORC1 signaling pathway. Moreover, our data provides insights into the brain-gut-adipose tissue crosstalk in age-induced lipolysis impairment.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Kan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peixiang Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Xiao
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Haizhou Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shangming Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Tang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoying Li
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shihong Ni
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
73
|
Dekker Nitert M, Ovadia C. Microbial metabolites as a way to provide crosstalk between gut and liver. Obstet Med 2024; 17:168-174. [PMID: 39262911 PMCID: PMC11384814 DOI: 10.1177/1753495x241258383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 09/13/2024] Open
Abstract
Bile acid metabolism is partially regulated through the activity of the gut microbiota. Primary bile acids can be deconjugated and modified by bacteria expressing bile salt hydrolase and other enzymes, changing bile acid recycling by changing the interactions between enterocytes and hepatocytes. The modified bile acids can also activate signalling in cells regulating metabolism including colonic L-cells, skeletal muscle cells and brown adipocytes. In pregnancy, both bile acid metabolism and gut microbiota composition are altered. In women with intrahepatic cholestasis of pregnancy, the changes in bile acid metabolism are exacerbated and there is some evidence that the gut microbiota composition is also altered. Here we review the crosstalk between the liver and the gut especially in women with intrahepatic cholestasis of pregnancy, with a focus on the role of the gut microbiota in this crosstalk.
Collapse
Affiliation(s)
- Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caroline Ovadia
- Department of Women and Children's Health, King's College London, London, UK
| |
Collapse
|
74
|
DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch 2024; 476:1353-1368. [PMID: 38570355 PMCID: PMC11310250 DOI: 10.1007/s00424-024-02953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.
Collapse
Affiliation(s)
- Emily DeMichele
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cormac T Taylor
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
75
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
76
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
77
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
78
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
79
|
Chen Y, Chaudhari SN, Harris DA, Roberts CF, Moscalu A, Mathur V, Zhao L, Tavakkoli A, Devlin AS, Sheu EG. A small intestinal bile acid modulates the gut microbiome to improve host metabolic phenotypes following bariatric surgery. Cell Host Microbe 2024; 32:1315-1330.e5. [PMID: 39043190 PMCID: PMC11332993 DOI: 10.1016/j.chom.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Bariatric surgical procedures such as sleeve gastrectomy (SG) provide effective type 2 diabetes (T2D) remission in human patients. Previous work demonstrated that gastrointestinal levels of the bacterial metabolite lithocholic acid (LCA) are decreased after SG in mice and humans. Here, we show that LCA worsens glucose tolerance and impairs whole-body metabolism. We also show that taurodeoxycholic acid (TDCA), which is the only bile acid whose concentration increases in the murine small intestine post-SG, suppresses the bacterial bile acid-inducible (bai) operon and production of LCA both in vitro and in vivo. Treatment of diet-induced obese mice with TDCA reduces LCA levels and leads to microbiome-dependent improvements in glucose handling. Moreover, TDCA abundance is decreased in small intestinal tissue from T2D patients. This work reveals that TDCA is an endogenous inhibitor of LCA production and suggests that TDCA may contribute to the glucoregulatory effects of bariatric surgery.
Collapse
Affiliation(s)
- Yingjia Chen
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cullen F Roberts
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrei Moscalu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vasundhara Mathur
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci 2024; 25:8731. [PMID: 39201418 PMCID: PMC11354927 DOI: 10.3390/ijms25168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), often featuring hyperglycemia or insulin resistance, is a global health concern that is increasing in prevalence in the United States and worldwide. A common complication is metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome that is also rapidly increasing in prevalence. The majority of patients with T2DM will experience MASLD, and likewise, individuals with MASLD are at an increased risk for developing T2DM. These two disorders may act synergistically, in part due to increased lipotoxicity and inflammation within the liver, among other causes. However, the pathophysiological mechanisms by which this occurs are unclear, as is how the improvement of one disorder can ameliorate the other. This review aims to discuss the pathogenic interactions between T2D and MASLD, and will highlight novel therapeutic targets and ongoing clinical trials for the treatment of these diseases.
Collapse
Affiliation(s)
- Shifat-E Ferdous
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
81
|
Hansen LS, Gasbjerg LS, Brønden A, Dalsgaard NB, Bahne E, Stensen S, Hellmann PH, Rehfeld JF, Hartmann B, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. The role of glucagon-like peptide 1 in the postprandial effects of metformin in type 2 diabetes: a randomized crossover trial. Eur J Endocrinol 2024; 191:192-203. [PMID: 39049802 DOI: 10.1093/ejendo/lvae095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS Although metformin is widely used for treatment of type 2 diabetes (T2D), its glucose-lowering mechanism remains unclear. Using the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) antagonist exendin(9-39)NH2, we tested the hypothesis that postprandial GLP-1-mediated effects contribute to the glucose-lowering potential of metformin in T2D. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 15 individuals with T2D (median HbA1c 50 mmol/mol [6.7%], body mass index 30.1 kg/m2, age 71 years) underwent, in randomized order, 14 days of metformin and placebo treatment, respectively. Each treatment period was preceded by 14 days without any glucose-lowering medicine and concluded by two 4 h mixed meal tests performed in randomized order and separated by >24 h with either continuous intravenous exendin(9-39)NH2 or saline infusion. RESULTS Compared to placebo, metformin treatment lowered fasting plasma glucose (mean of differences [MD] 1.4 mmol/L × min [95% CI 0.8-2.0]) as well as postprandial plasma glucose excursions during both saline infusion (MD 186 mmol/L × min [95% CI 64-307]) and exendin(9-39)NH2 infusion (MD 268 mmol/L × min [95% CI 108-427]). The metformin-induced improvement in postprandial glucose tolerance was unaffected by GLP-1R antagonization (MD 82 mmol/L × min [95% CI -6564-170]). Metformin treatment increased fasting plasma GLP-1 (MD 1.7 pmol/L × min [95% CI 0.39-2.9]) but did not affect postprandial GLP-1 responses (MD 820 pmol/L × min [95% CI -1750-111]). CONCLUSIONS Using GLP-1R antagonization, we could not detect GLP-1-mediated postprandial glucose-lowering effect of metformin in individuals with T2D. We show that 2 weeks of metformin treatment increases fasting plasma GLP-1, which may contribute to metformin's beneficial effect on fasting plasma glucose in T2D. Trial registration: Clinicaltrials.gov NCT03246451.
Collapse
Affiliation(s)
- Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen NV, Denmark
| | - Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Pernille H Hellmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
82
|
Lin YL, Yao T, Wang YW, Yu JS, Zhen C, Lin JF, Chen SB. Association between primary biliary cholangitis with diabetes and cardiovascular diseases: A bidirectional multivariable Mendelian randomization study. Clin Res Hepatol Gastroenterol 2024; 48:102419. [PMID: 38992425 DOI: 10.1016/j.clinre.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is an autoimmune disease often accompanied by multisystem damage. This study aimed to explore the causal association between genetically predicted PBC and diabetes, as well as multiple cardiovascular diseases (CVDs). METHODS Genome-wide association studies (GWAS) summary data of PBC in 24,510 individuals of European ancestry from the European Association for the Study of the Liver was used to identify genetically predicted PBC. We conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to estimate the impacts of PBC on diabetes (N = 17,685 to 318,014) and 20 CVDs from the genetic consortium (N = 171,875 to 1,030,836). RESULTS SVMR provided evidence that genetically predicted PBC is associated with an increased risk of type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI), heart failure (HF), hypertension, atrial fibrillation (AF), stroke, ischemic stroke, and small-vessel ischemic stroke. Additionally, there was no evidence of a causal association between PBC and coronary atherosclerosis. In the MVMR analysis, PBC maintained independent effects on T1D, HF, MI, and small-vessel ischemic stroke in most models. CONCLUSION Our findings revealed the causal effects of PBC on diabetes and 7 CVDs, and no causal relationship was detected between PBC and coronary atherosclerosis.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Sheng Yu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Cheng Zhen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Shui-Bing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
83
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
84
|
Gu P, Zhao J, Zhang W, Ruan X, Hu L, Zeng Y, Hou X, Zheng X, Gao M, Chi J. An Inducible CRISPR-dCas9-Based Transcriptional Repression System for Cancer Therapy. SMALL METHODS 2024; 8:e2301310. [PMID: 38164884 DOI: 10.1002/smtd.202301310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Gene therapy has been adapted for improving malignant tumor treatment. However, pharmacotherapies targeting cancer remain limited and are generally inapplicable for rare disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment for many disorders. Here, the congruent pharmacological activities of OA and CRISPR-dCas9 in targeting AURKA or KDM1A and improving disease-specific prognosis and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs are utilized. In particular, the OA-triggered CRISPR-dCas9 transcriptional repression system rapidly and simultaneously attenuated lung and thyroid cancer. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficiencies of single therapeutics.
Collapse
Affiliation(s)
- Pengfei Gu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin, 300211, China
| | - Wei Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Key Laboratory of General Surgery in construction, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
85
|
Zhang C, Wang G, Yin X, Gou L, Guo M, Suo F, Zhuang T, Yuan Z, Liu Y, Gu M, Yao R. Hepatic protein phosphatase 1 regulatory subunit 3G alleviates obesity and liver steatosis by regulating the gut microbiota and bile acid metabolism. J Pharm Anal 2024; 14:100976. [PMID: 39263354 PMCID: PMC11388703 DOI: 10.1016/j.jpha.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 09/13/2024] Open
Abstract
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in high-body mass index (BMI) and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight, fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholic acid (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol-12α-hydroxylase (CYP8B1), and concurrently upregulated oxysterol 7-α hydroxylase and G protein-coupled BA receptor 5 (TGR5) expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis, which may serve as potential therapeutic targets for obesity-related disorders.
Collapse
Affiliation(s)
- Chu Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Gui Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xin Yin
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Lingshan Gou
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Mengyuan Guo
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Feng Suo
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Tao Zhuang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhenya Yuan
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yanan Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Maosheng Gu
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Ruiqin Yao
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
86
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
87
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
88
|
Vanden Brink H, Vandeputte D, Brito IL, Ronnekleiv OK, Roberson MS, Lomniczi A. Changes in the Bile Acid Pool and Timing of Female Puberty: Potential Novel Role of Hypothalamic TGR5. Endocrinology 2024; 165:bqae098. [PMID: 39082696 PMCID: PMC11334072 DOI: 10.1210/endocr/bqae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 08/21/2024]
Abstract
CONTEXT The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood. OBJECTIVE To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model. METHODS Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure. RESULTS Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats. CONCLUSION Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.
Collapse
Affiliation(s)
- Heidi Vanden Brink
- Department of Nutrition, Texas A&M University, College Station, TX 77840, USA
| | - Doris Vandeputte
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Oline K Ronnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie School of Medicine, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
89
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
90
|
Palatini Jackson KM, Mhawish R, Komarnytsky S. Bitter Phytochemicals Acutely Lower Blood Glucose Levels by Inhibition of Glucose Absorption in the Gut. ENDOCRINES 2024; 5:304-322. [DOI: 10.3390/endocrines5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
For early hominids, frequent encounters with plant foods necessitated the ability to discern bitter poisons and adjust the activity of the gastrointestinal system in anticipation of carbohydrate-rich meals. Plants bitters were also used historically to manage a variety of metabolic and digestive disorders despite an immense structural diversity of bitter phytochemicals without a common molecular target. Our study confirms these observations in a standardized C57BL/6J prediabetic mouse model using 24 model compounds by demonstrating acute lower peak blood glucose values and improved glucose tolerance following intragastric, but not intraperitoneal, treatment. The administration of the synthetic bitter compound denatonium benzoate yielded similar results that were attenuated by co-application of the allosteric inhibitor of the bitter TAS2R receptors. We also show that these effects occur dose-dependently; associate with reduced glucose uptake, increased intracellular [Ca2+] fluxes, and enhanced GLP-1 expression; and are attenuated by the TAS2R inhibitor in the neuroendocrine STC-1 intestinal cells. These findings support the view that inhibition of glucose transport from the intestinal lumen to the blood by TAS2R bitter receptor signaling in the gut may represent a common mechanism in the acute response to oral ingestion of bitter phytochemicals.
Collapse
Affiliation(s)
| | - Reham Mhawish
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
91
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
92
|
Finamore C, De Marino S, Cassiano C, Napolitano G, Rapacciuolo P, Marchianò S, Biagioli M, Roselli R, Di Giorgio C, Festa C, Fiorucci S, Zampella A. BAR502/fibrate conjugates: synthesis, biological evaluation and metabolic profile. Front Chem 2024; 12:1425867. [PMID: 39086986 PMCID: PMC11289669 DOI: 10.3389/fchem.2024.1425867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | |
Collapse
|
93
|
Martínez-Álvaro M, Zubiri-Gaitán A, Hernández P, Casto-Rebollo C, Ibáñez-Escriche N, Santacreu MA, Artacho A, Pérez-Brocal V, Blasco A. Correlated Responses to Selection for Intramuscular Fat on the Gut Microbiome in Rabbits. Animals (Basel) 2024; 14:2078. [PMID: 39061540 PMCID: PMC11273372 DOI: 10.3390/ani14142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Intramuscular fat (IMF) content is important for meat production and human health, where the host genetics and its microbiome greatly contribute to its variation. The aim of this study is to describe the consequences of the genetic modification of IMF by selecting the taxonomic composition of the microbiome, using rabbits from the 10th generation of a divergent selection experiment for IMF (high (H) and low (L) lines differ by 3.8 standard deviations). The selection altered the composition of the gut microbiota. Correlated responses were better distinguished at the genus level (51 genera) than at the phylum level (10 phyla). The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Legionella, Lysinibacillus, Phorphyromonas, Methanosphaera, Desulfovibrio, and Akkermansia, while the L-line was enriched in Escherichia, Methanobrevibacter, Fonticella, Candidatus Amulumruptor, Methanobrevibacter, Exiguobacterium, Flintibacter, and Coprococcus, among other genera with smaller line differences. A microbial biomarker generated from the abundance of four of these genera classified the lines with 78% accuracy in a logit regression. Our results demonstrate different gut microbiome compositions in hosts with divergent IMF genotypes. Furthermore, we provide a microbial biomarker to be used as an indicator of hosts genetically predisposed to accumulate muscle lipids, which opens up the opportunity for research to develop probiotics or microbiome-based breeding strategies targeting IMF.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Maria Antonia Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alejandro Artacho
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
94
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
95
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
96
|
Vliex LMM, Penders J, Nauta A, Zoetendal EG, Blaak EE. The individual response to antibiotics and diet - insights into gut microbial resilience and host metabolism. Nat Rev Endocrinol 2024; 20:387-398. [PMID: 38486011 DOI: 10.1038/s41574-024-00966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic use disrupts microbial composition and activity in humans, but whether this disruption in turn affects host metabolic health is unclear. Cohort studies show associations between antibiotic use and an increased risk of developing obesity and type 2 diabetes mellitus. Here, we review available clinical trials and show the disruptive effect of antibiotic use on the gut microbiome in humans, as well as its impact on bile acid metabolism and microbial metabolites such as short-chain fatty acids. Placebo-controlled human studies do not show a consistent effect of antibiotic use on body weight and insulin sensitivity at a population level, but rather an individual-specific or subgroup-specific response. This response to antibiotic use is affected by the resistance and resilience of the gut microbiome, factors that determine the extent of disruption and the speed of recovery afterwards. Nutritional strategies to improve the composition and functionality of the gut microbiome, as well as its recovery after antibiotic use (for instance, with prebiotics), require a personalized approach to increase their efficacy. Improved insights into key factors that influence the individual-specific response to antibiotics and dietary intervention may lead to better efficacy in reversing or preventing antibiotic-induced microbial dysbiosis as well as strategies for preventing cardiometabolic diseases.
Collapse
Affiliation(s)
- Lars M M Vliex
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
97
|
He Y, Chen X, Li Y, Liang Y, Hong T, Yang J, Cao Z, Mai H, Yao J, Zhang T, Wu K, Zou J, Feng D. Curcumin supplementation alleviates hepatic fat content associated with modulation of gut microbiota-dependent bile acid metabolism in patients with nonalcoholic simple fatty liver disease: a randomized controlled trial. Am J Clin Nutr 2024; 120:66-79. [PMID: 38795741 DOI: 10.1016/j.ajcnut.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Our previous studies showed that curcumin prevented hepatic steatosis in animal models. OBJECTIVES This study aimed to assess the effects of curcumin on hepatic fat content, body composition, and gut microbiota-dependent bile acid (BA) metabolism in patients with nonalcoholic simple fatty liver (NASFL). METHODS In a 24-wk double-blind randomized trial, 80 patients with NASFL received 500 mg/d curcumin or placebo. Hepatic fat content was measured using FibroTouch-based controlled attenuation parameters (CAPs). Microbial composition and BA metabolites were analyzed using 16S rRNA sequencing and metabolomics. RESULTS Curcumin consumption significantly reduced CAP value compared with placebo (-17.5 dB/m; 95% confidence interval [CI]: -27.1, -7.8 dB/m; P < 0.001). This corresponded to reduction in weight (-2.6 kg; 95% CI: -4.4, -0.8 kg; P < 0.001) and BMI (-1.0 kg/m2; 95% CI: -2.0, -0.1 kg/m2; P = 0.032) compared with placebo group. Additionally, free fatty acid (-0.12 mmol/L; 95% CI: -0.20, -0.04 mmol/L; P = 0.004), triglycerides (-0.29 mmol/L; 95% CI: -0.41, -0.14 mmol/L; P < 0.001), fasting blood glucose (-0.06 mmol/L; 95% CI: -0.12, -0.01 mmol/L; P = 0.038), hemoglobin A1c (-0.06%; 95% CI: -0.33, -0.01%; P = 0.019), and insulin (-4.94 μU/L; 95% CI: -9.73, -0.15 μU/L; P = 0.043) showed significant reductions in the curcumin group compared with placebo group. Gut microbiota analysis indicated that curcumin significantly decreased Firmicutes to Bacteroidetes ratio and significantly increased Bacteroides abundance. Serum levels of deoxycholic acid, the most potent activator of Takeda G protein-coupled receptor 5 (TGR5), were significantly elevated after curcumin intervention (37.5 ng/mL; 95% CI: 6.7, 68.4 ng/mL; P = 0.018). Curcumin treatment also increased TGR5 expression in peripheral blood mononuclear cells and serum glucagon-like peptide-1 levels (0.73 ng/mL; 95% CI: 0.16, 1.30 ng/mL; P = 0.012). CONCLUSIONS Improvements in gut microbiota-dependent BA metabolism and TGR5 activation after 24-wk curcumin intervention were associated with a reduction in hepatic fat content in patients with NASFL, providing evidence that curcumin is a potential nutritional therapy for NASFL. The trial was registered at www.chictr.org.cn as ChiCTR2200058052.
Collapse
Affiliation(s)
- Youming He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongchun Li
- Department of Infectious Diseases, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yunyi Liang
- Health Management Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Mai
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiale Yao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Kaize Wu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
98
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
99
|
Yang Y, Chi L, Hsiao YC, Lu K. Sex-specific effects of gut microbiome on shaping bile acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601003. [PMID: 38979196 PMCID: PMC11230406 DOI: 10.1101/2024.06.27.601003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gut microbiome is a group of microorganisms that plays important roles in contributing to health and diseases. These bacterial compositions have been demonstrated to impact bile acids (BAs) profiles, either by directly metabolizing primary BAs to secondary BAs or indirect ways through host metabolism by influencing BAs synthesis, transportation and conjugation in liver. It has been observed sexually dimorphic gut microbiome and bile acids composition, with variations in expression levels of bile acid metabolizing genes in the liver. However, associations between sex-specific differences in gut microbiome and BAs profiles are not well understood. This study aimed to investigate whether gut microbiome could influence BAs profiles in host in a sexspecific manner. We transplanted cecum feces of male and female C57BL/6 mice to male mice and measured BAs concentrations in feces, serum and liver samples 7 days after fecal transplantation. We found different BAs profiles between mice with male and female gut microbiome, including altering levels and proportions of secondary BAs. We also observed varied expression levels of genes related to bile acid metabolism in the liver and distal ileum. Our results highlight sex-specific effects of gut microbiome on shaping bile acid metabolism through gut bacteria and regulation of host genes.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| |
Collapse
|
100
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|