51
|
Feng G, Wu Z, Yang L, Wang K, Wang H. β-hydroxybutyrate and ischemic stroke: roles and mechanisms. Mol Brain 2024; 17:48. [PMID: 39075604 PMCID: PMC11287974 DOI: 10.1186/s13041-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Stroke is a significant global burden, causing extensive morbidity and mortality. In metabolic states where glucose is limited, ketone bodies, predominantly β-hydroxybutyrate (BHB), act as alternative fuel sources. Elevated levels of BHB have been found in the ischemic hemispheres of animal models of stroke, supporting its role in the pathophysiology of cerebral ischemia. Clinically, higher serum and urinary BHB concentrations have been associated with adverse outcomes in ischemic stroke, highlighting its potential utility as a prognostic biomarker. In both animal and cellular models, exogenous BHB administration has exhibited neuroprotective effects, reduction of infarct size, and improvement of neurological outcomes. In this review, we focus on the role of BHB before and after ischemic stroke, with an emphasis on the therapeutic potential and mechanisms of ketone administration after ischemic stroke.
Collapse
Affiliation(s)
- Ge Feng
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Leyi Yang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Kaimeng Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China.
| |
Collapse
|
52
|
Gary NC, Misganaw B, Hammamieh R, Gautam A. Exploring metabolomic dynamics in acute stress disorder: amino acids, lipids, and carbohydrates. Front Genet 2024; 15:1394630. [PMID: 39119583 PMCID: PMC11306072 DOI: 10.3389/fgene.2024.1394630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute Stress Disorder (ASD) is a psychiatric condition that can develop shortly after trauma exposure. Although molecular studies of ASD are only beginning, groups of metabolites have been found to be significantly altered with acute stress phenotypes in various pre-clinical and clinical studies. ASD implicated metabolites include amino acids (β-hydroxybutyrate, glutamate, 5-aminovalerate, kynurenine and aspartate), ketone bodies (β-hydroxybutyrate), lipids (cortisol, palmitoylethanomide, and N-palmitoyl taurine) and carbohydrates (glucose and mannose). Network and pathway analysis with the most prominent metabolites shows that Extracellular signal-regulated kinases and c-AMP response element binding (CREB) protein can be crucial players. After highlighting main recent findings on the role of metabolites in ASD, we will discuss potential future directions and challenges that need to be tackled. Overall, we aim to showcase that metabolomics present a promising opportunity to advance our understanding of ASD pathophysiology as well as the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas C. Gary
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, Alexandria, VA, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
53
|
Yoshida Y, Li D, Li X, Fonseca VA, Qi L, Mauvais-Jarvis F. Sex differences in circulating metabolites across glycemic status and risk of coronary heart disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.23.24310540. [PMID: 39108525 PMCID: PMC11302618 DOI: 10.1101/2024.07.23.24310540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Women with type 2 diabetes (T2D) have a 50% excess risk of coronary heart disease (CHD) than men with T2D. We compared circulating metabolites and their associations with CHD in men and women across glycemic status. Methods We used metabolomic data (lipoproteins, fatty acids, amino acids, glycolysis, ketones, inflammation, and fluid balance) for 87,326 CHD-free UK Biobank participants. We used linear regressions to examine the association of sex and metabolites (log) in newly diagnosed T2D (diagnosis<2 yrs from baseline), prediabetes (A1c 5.7-6.5%), and euglycemia, accounting for age, race, Deprivation Index, income, smoking, alcohol drinking, obesity, physical activity, medications for hypertension, hyperlipidemia, and diabetes. We used Cox models to evaluate the association of metabolites and CHD risk by sex, adjusting the same covariates and menopausal status (women). All analyses were FDR-adjusted. Findings We included 1250 individuals with new T2D, 12,706 with prediabetes, and 83,315 with euglycemia. In adjusted linear regressions, women showed a progressive increase in atherogenic lipid and lipoprotein markers and inflammatory marker, glycoprotein acetyls, compared to men as their glycemic status advanced. However, women had lower levels of albumin during this transition. Menopausal status did not alter these sex differences. In a 10-year follow-up, an SD higher total TG, TG in VLDL, LDL, and HDL, saturated fatty acids (SFA) were positively associated with a higher risk of CHD in women with T2D but not in men (p-interactions 0.03-0.15). Interpretation With advancing glycemic status, women exhibited higher levels of atherogenic lipids and lipoproteins, as well as inflammatory markers, but lower circulating albumin. Women with T2D appear to be at a higher risk of CHD associated with TG, VLDL-TG, LDL-TG, and HDL-TG, and SFA than men with T2D.
Collapse
Affiliation(s)
- Yilin Yoshida
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Danting Li
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Xiang Li
- Department of Medicine, University of Illionis College of Medicine, Chicago, Illionis
| | - Vivian A. Fonseca
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
54
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
55
|
Kashiwagi Y, Nagoshi T, Tanaka Y, Oi Y, Kimura H, Ogawa K, Kawai M, Yoshimura M. Effects of angiotensin receptor-neprilysin inhibitor on ketone body metabolism in pre-heart failure/heart failure patients. Sci Rep 2024; 14:16493. [PMID: 39020009 PMCID: PMC11255280 DOI: 10.1038/s41598-024-67524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Recently, a mild elevation of the blood ketone levels was found to exert multifaceted cardioprotective effects. To investigate the effect of angiotensin receptor neprilysin inhibitors (ARNIs) on the blood ketone body levels, 46 stable pre-heart failure (HF)/HF patients were studied, including 23 who switched from angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) to ARNIs (ARNI group) and 23 who continued treatment with ACE inhibitors or ARBs (control group). At baseline, there were no significant differences in the total ketone body (TKB) levels between the two groups. Three months later, the TKB levels in the ARNI group were higher than the baseline values (baseline to 3 months: 71 [51, 122] to 92 [61, 270] μmol/L, P < 0.01). In the control group, no significant change was observed between the baseline and 3 months later. A multiple regression analysis demonstrated that the initiation of ARNI and an increase in the blood non-esterified fatty acid (NEFA) levels at 3 months increased the percentage changes in the TKB levels from baseline to 3 months (%ΔTKB level) (initiation of ARNI: P = 0.017, NEFA level at 3 months: P < 0.001). These results indicate that ARNI administration induces a mild elevation of the blood TKB levels in pre-HF/HF patients.
Collapse
Affiliation(s)
- Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuo Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
56
|
Shao Y, Zhang H, Guan H, Wu C, Qi W, Yang L, Yin J, Zhang H, Liu L, Lu Y, Zhao Y, Zhang S, Zeng C, Wang G, Bai X, Cai D. PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function. Bone Res 2024; 12:41. [PMID: 39019845 PMCID: PMC11255281 DOI: 10.1038/s41413-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 07/19/2024] Open
Abstract
Mechanical overloading and aging are two essential factors for osteoarthritis (OA) development. Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology, but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated. Herein, we found that PDZ domain containing 1 (PDZK1), one of the PDZ proteins, which belongs to the Na+/H+ Exchanger (NHE) regulatory factor family, is a key factor in biomechanically induced mitochondrial dysfunction and chondrocyte senescence during OA progression. PDZK1 is reduced by mechanical overload, and is diminished in the articular cartilage of OA patients, aged mice and OA mice. Pdzk1 knockout in chondrocytes exacerbates mechanical overload-induced cartilage degeneration, whereas intraarticular injection of adeno-associated virus-expressing PDZK1 had a therapeutic effect. Moreover, PDZK1 loss impaired chondrocyte mitochondrial function with accumulated damaged mitochondria, decreased mitochondrion DNA (mtDNA) content and increased reactive oxygen species (ROS) production. PDZK1 supplementation or mitoubiquinone (MitoQ) application alleviated chondrocyte senescence and cartilage degeneration and significantly protected chondrocyte mitochondrial functions. MRNA sequencing in articular cartilage from Pdzk1 knockout mice and controls showed that PDZK1 deficiency in chondrocytes interfered with mitochondrial function through inhibiting Hmgcs2 by increasing its ubiquitination. Our results suggested that PDZK1 deficiency plays a crucial role in mediating excessive mechanical load-induced chondrocyte senescence and is associated with mitochondrial dysfunction. PDZK1 overexpression or preservation of mitochondrial functions by MitoQ might present a new therapeutic approach for mechanical overload-induced OA.
Collapse
Affiliation(s)
- Yan Shao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hong Guan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Orthopedics Department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Chunyu Wu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingfeng Yang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianbin Yin
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liangliang Liu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuheng Lu
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yitao Zhao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guiqing Wang
- Orthopedics Department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaochun Bai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
57
|
Davis NK, Chionh YH, McBee ME, Hia F, Ma D, Cui L, Sharaf ML, Cai WM, Jumpathong W, Levine SS, Alonso S, Dedon PC. Facile metabolic reprogramming distinguishes mycobacterial adaptation to hypoxia and starvation: ketosis drives starvation-induced persistence in M. bovis BCG. Commun Biol 2024; 7:866. [PMID: 39009734 PMCID: PMC11250799 DOI: 10.1038/s42003-024-06562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Mycobacteria adapt to infection stresses by entering a reversible non-replicating persistence (NRP) with slow or no cell growth and broad antimicrobial tolerance. Hypoxia and nutrient deprivation are two well-studied stresses commonly used to model the NRP, yet little is known about the molecular differences in mycobacterial adaptation to these distinct stresses that lead to a comparable NRP phenotype. Here we performed a multisystem interrogation of the Mycobacterium bovis BCG (BCG) starvation response, which revealed a coordinated metabolic shift away from the glycolysis of nutrient-replete growth to depletion of lipid stores, lipolysis, and fatty acid ß-oxidation in NRP. This contrasts with BCG's NRP hypoxia response involving a shift to cholesterol metabolism and triglyceride storage. Our analysis reveals cryptic metabolic vulnerabilities of the starvation-induced NRP state, such as their newfound hypersensitivity to H2O2. These observations pave the way for developing precision therapeutics against these otherwise drug refractory pathogens.
Collapse
Affiliation(s)
- Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- GenScript Biotech (Singapore) Pte. Ltd, Singapore, Singapore
| | - Megan E McBee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Fabian Hia
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Duanduan Ma
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Mariam Lucila Sharaf
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- BioNTech SE An der Goldgrube, Mainz, Germany
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- British High Commission, Singapore, Singapore
| | - Watthanachai Jumpathong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical Biology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
58
|
Sharma V, Khokhar M, Panigrahi P, Gadwal A, Setia P, Purohit P. Advancements, Challenges, and clinical implications of integration of metabolomics technologies in diabetic nephropathy. Clin Chim Acta 2024; 561:119842. [PMID: 38969086 DOI: 10.1016/j.cca.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN), a severe complication of diabetes, involves a range of renal abnormalities driven by metabolic derangements. Metabolomics, revealing dynamic metabolic shifts in diseases like DN and offering insights into personalized treatment strategies, emerges as a promising tool for improved diagnostics and therapies. METHODS We conducted an extensive literature review to examine how metabolomics contributes to the study of DN and the challenges associated with its implementation in clinical practice. We identified and assessed relevant studies that utilized metabolomics methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) to assess their efficacy in diagnosing DN. RESULTS Metabolomics unveils key pathways in DN progression, highlighting glucose metabolism, dyslipidemia, and mitochondrial dysfunction. Biomarkers like glycated albumin and free fatty acids offer insights into DN nuances, guiding potential treatments. Metabolomics detects small-molecule metabolites, revealing disease-specific patterns for personalized care. CONCLUSION Metabolomics offers valuable insights into the molecular mechanisms underlying DN progression and holds promise for personalized medicine approaches. Further research in this field is warranted to elucidate additional metabolic pathways and identify novel biomarkers for early detection and targeted therapeutic interventions in DN.
Collapse
Affiliation(s)
- V Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - M Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - A Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India.
| |
Collapse
|
59
|
Gao Q, Zhang K, Fan M, Qian H, Li Y, Wang L. Effects of short-term carbohydrate deprivation on glycolipid metabolism and hepatic lipid accumulation in mice. Food Funct 2024; 15:7400-7415. [PMID: 38288875 DOI: 10.1039/d3fo05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
To investigate the effect of dietary carbohydrate levels on liver glycolipid metabolism, this study used C57BL/6J male mice receiving standard diet (CON), no-carbohydrate high-fat diet (NCD), and high-carbohydrate no-fat diet (HCD). One week after intervention, mice in the NCD group showed lower blood glucose, HbA1c and LDL-C as well as liver weight and liver index compared with the CON group. Further research found that the liver fat synthesis genes of mice in the NCD group were significantly down-regulated at the gene level, and histopathological sections showed that the livers of mice in the NCD group had less lipid accumulation. Furthermore, liver metabolomic analysis showed that primary bile acid levels and acylcarnitine levels in the liver of mice in the NCD group were significantly increased, and conversely, lysophosphatidylcholine and fatty acyl metabolites were significantly decreased. KEGG metabolic pathway analysis showed that metabolic pathways such as biosynthesis of unsaturated fatty acids and starch and sucrose metabolism were significantly inhibited in mice in the NCD group, while metabolic pathways such as primary bile acid biosynthesis, linoleic acid metabolism and glycerophospholipid metabolism were enhanced. Taken together, these results indicate that short-term carbohydrate deprivation improves blood glucose and lipid metabolism levels in mice; the molecular mechanism of action may involve inhibition of de novo lipogenesis and enhancement of bile acid metabolism.
Collapse
Affiliation(s)
- Qiang Gao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
60
|
Xue L, Chen X, Sun J, Fan M, Qian H, Li Y, Wang L. Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients 2024; 16:2269. [PMID: 39064712 PMCID: PMC11280101 DOI: 10.3390/nu16142269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary nutrition plays a crucial role in determining pregnancy outcomes, with poor diet being a major contributor to pregnancy metabolic syndrome and metabolic disorders in offspring. While carbohydrates are essential for fetal development, the excessive consumption of low-quality carbohydrates can increase the risk of pregnancy complications and have lasting negative effects on offspring development. Recent studies not only highlighted the link between carbohydrate intake during pregnancy, maternal health, and offspring well-being, but also suggested that the quality of carbohydrate foods consumed is more critical. This article reviews the impacts of low-carbohydrate and high-carbohydrate diets on pregnancy complications and offspring health, introduces the varied physiological effects of different types of carbohydrate consumption during pregnancy, and emphasizes the importance of both the quantity and quality of carbohydrates in nutritional interventions during pregnancy. These findings may offer valuable insights for guiding dietary interventions during pregnancy and shaping the future development of carbohydrate-rich foods.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Xiaofang Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| |
Collapse
|
61
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
62
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
63
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d'Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602593. [PMID: 39026753 PMCID: PMC11257565 DOI: 10.1101/2024.07.09.602593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-β-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-βOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.
Collapse
|
64
|
Rahmel T, Effinger D, Bracht T, Griep L, Koos B, Sitek B, Hübner M, Hirschberger S, Basten J, Timmesfeld N, Adamzik M, Kreth S. An open-label, randomized controlled trial to assess a ketogenic diet in critically ill patients with sepsis. Sci Transl Med 2024; 16:eadn9285. [PMID: 38985853 DOI: 10.1126/scitranslmed.adn9285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Patients with sepsis experience metabolic and immunologic dysfunction that may be amplified by standard carbohydrate-based nutrition. A ketogenic diet (KD) may offer an immunologically advantageous alternative, although clinical evidence is limited. We conducted a single-center, open-label, randomized controlled trial to assess whether a KD could induce stable ketosis in critically ill patients with sepsis. Secondary outcomes included assessment of feasibility and safety of KD, as well as explorative analysis of clinical and immunological characteristics. Forty critically ill adults were randomized to either a ketogenic or standard high-carbohydrate diet. Stable ketosis was achieved in all KD patients, with significant increases in β-hydroxybutyrate levels compared with controls [mean difference 1.4 milimoles per liter; 95% confidence interval (CI): 1.0 to 1.8; P < 0.001). No major adverse events or harmful metabolic side effects (acidosis, dysglycemia, or dyslipidemia) were observed. After day 4, none of the patients in the KD group required insulin treatment, whereas in the control group, insulin dependency ranged between 35% and 60% (P = 0.009). There were no differences in 30-day survival, but ventilation-free [incidence rate ratio (IRR) 1.7; 95% CI: 1.5 to 2.1; P < 0.001], vasopressor-free (IRR 1.7; 95% CI: 1.5 to 2.0; P < 0.001), dialysis-free (IRR 1.5; 95% CI: 1.3 to 1.8; P < 0.001), and intensive care unit-free days (IRR 1.7; 95% CI: 1.4 to 2.1; P < 0.001) were higher in the ketogenic group. Next-generation sequencing of CD4+/CD8+ T cells and protein analyses showed reduced immune dysregulation, with decreased gene expression of T-cell activation and signaling markers and lower pro-inflammatory cytokine secretion. This trial demonstrated the safe induction of a stable ketogenic state in sepsis, warranting larger trials to investigate potential benefits in sepsis-related organ dysfunction.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - David Effinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Thilo Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Leonore Griep
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Max Hübner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Simon Hirschberger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Jale Basten
- Department of Medical Informatics, Biometry & Epidemiology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Nina Timmesfeld
- Department of Medical Informatics, Biometry & Epidemiology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| |
Collapse
|
65
|
Wang W, Zhang Y, Yao W, Tang W, Li Y, Sun H, Ding W. Association between preoperative persistent hyperglycemia and postoperative delirium in geriatric hip fracture patients. BMC Geriatr 2024; 24:585. [PMID: 38977983 PMCID: PMC11232206 DOI: 10.1186/s12877-024-05192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The management of preoperative blood glucose levels in reducing the incidence of postoperative delirium (POD) remains controversial. This study aims to investigate the impact of preoperative persistent hyperglycemia on POD in geriatric patients with hip fractures. METHODS This retrospective cohort study analyzed medical records of patients who underwent hip fracture surgery at a tertiary medical institution between January 2013 and November 2023. Patients were categorized based on preoperative hyperglycemia (hyperglycemia defined as ≥ 6.1mmol/L), clinical classification of hyperglycemia, and percentile thresholds. Multivariate logistic regression and propensity score matching analysis (PSM) were employed to assess the association between different levels of preoperative glucose and POD. Subgroup analysis was conducted to explore potential interactions. RESULTS A total of 1440 patients were included in this study, with an incidence rate of POD at 19.1% (275/1440). Utilizing multiple logistic analysis, we found that patients with hyperglycemia had a 1.65-fold increased risk of experiencing POD compared to those with normal preoperative glucose levels (95% CI: 1.17-2.32). Moreover, a significant upward trend was discerned in both the strength of association and the predicted probability of POD with higher preoperative glucose levels. PSM did not alter this trend, even after meticulous adjustments for potential confounding factors. Additionally, when treating preoperative glucose levels as a continuous variable, we observed a 6% increase in the risk of POD (95% CI: 1-12%) with each 1mmol/L elevation in preoperative glucose levels. CONCLUSIONS There exists a clear linear dose-response relationship between preoperative blood glucose levels and the risk of POD. Higher preoperative hyperglycemia was associated with a greater risk of POD. CLINICAL TRIAL NUMBER NCT06473324.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Yingqi Zhang
- School of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Wei Yao
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wanyun Tang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Yuhao Li
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Hongbo Sun
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China.
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, Liaoning Province, 118002, P.R. China.
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China.
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, Liaoning Province, 118002, P.R. China.
| |
Collapse
|
66
|
Umemura A, Sasaki A, Kumagai H, Tanahashi Y, Iwasaki T, Nitta H. Relationships Between Changes in Serum Ketone Body Levels and Metabolic Effects in Patients with Severe Obesity Who Underwent Laparoscopic Sleeve Gastrectomy. Obes Surg 2024; 34:2607-2616. [PMID: 38842760 PMCID: PMC11217106 DOI: 10.1007/s11695-024-07337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Serum ketone bodies increase due to dynamic changes in the lipid metabolisms of patients undergoing bariatric surgery. However, there have been few studies on the role of ketone bodies after bariatric surgery. We aimed to clarify the role of and relationship between the changes in serum ketone bodies and weight loss, as well as between those changes and the metabolic effects after laparoscopic sleeve gastrectomy (LSG). METHODS We recruited 52 patients with severe obesity who underwent LSG. We measured acetoacetic acid (AcAc) and β-hydroxybutyric acid (β-OHB) at the baseline, 1 month, and 6 months after LSG. Subsequently, we compared the changes in the serum ketone bodies with weight-loss effects and various metabolic parameters. RESULTS At 1 month after LSG, β-OHB significantly increased (p = 0.009), then significantly decreased 6 months after LSG (p = 0.002). In addition, β-OHB in patients without Type 2 diabetes (T2D) and metabolic dysfunction-associated steatohepatitis (MASH) was notably higher than in patients with T2D at 1 month after LSG (p < 0.001). In the early phase, both AcAc and β-OHB mainly had strong positive correlations with changes in T2D- and MASH-related parameters. In the middle term after LSG, changes in both AcAc and β-OHB were positively correlated with changes in lipid parameters and chronic kidney disease-related parameters. CONCLUSION We demonstrated that the postoperative surge of ketone bodies plays a crucial function in controlling metabolic effects after LSG. These findings suggest the cause- and consequence-related roles of ketone bodies in the metabolic benefits of bariatric surgery.
Collapse
Affiliation(s)
- Akira Umemura
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan.
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Hideki Kumagai
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Yota Tanahashi
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Takafumi Iwasaki
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Hiroyuki Nitta
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| |
Collapse
|
67
|
Huang C, Tan H, Wang J, Huang L, Liu H, Shi Y, Zhong C, Weng S, Chen C, Zhao W, Lin Z, Li J, Zhi F, Zhang B. β-hydroxybutyrate restrains colitis-associated tumorigenesis by inhibiting HIF-1α-mediated angiogenesis. Cancer Lett 2024; 593:216940. [PMID: 38729554 DOI: 10.1016/j.canlet.2024.216940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Decreased levels of β-hydroxybutyrate (BHB), a lipid metabolic intermediate known to slow the progression of colorectal cancer (CRC), have been observed in the colon mucosa of patients with inflammatory bowel diseases (IBD). In particular, patients with recurrent IBD present an increased risk of developing colitis-associated colorectal cancer (CAC). The role and molecular mechanism of BHB in the inflammatory and carcinogenic process of CAC remains unclear. Here, the anti-tumor effect of BHB was investigated in the Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-induced CAC model and tumor organoids derivatives. The underlying mechanisms were studied using transcriptome and non-target metabolomic assay and further validated in colon tumor cell lineage CT26 in vitro. The tumor tissues and the nearby non-malignant tissues from colon cancer patients were collected to measure the expression levels of ketogenic enzymes. The exogenous BHB supplement lightened tumor burden and angiogenesis in the CAC model. Notably, transcriptome analysis revealed that BHB effectively decreased the expression of VEGFA in the CAC tumor mucosa. In vitro, BHB directly reduced VEGFA expression in hypoxic-treated CT26 cells by targeting transcriptional factor HIF-1α. Conversely, the deletion of HIF-1α largely reversed the inhibitory effect of BHB on CAC tumorigenesis. Additionally, decreased expression of ketogenesis-related enzymes in tumor tissues were associated with poor survival outcomes in patients with colon cancer. In summary, BHB carries out anti-angiogenic activity in CAC by regulating HIF-1α/VEGFA signaling. These findings emphasize the role of BHB in CAC and may provide novel perspectives for the prevention and treatment of colonic tumors.
Collapse
Affiliation(s)
- Chongyang Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huishi Tan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linwen Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiang Shi
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Cailing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Senhui Weng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhui Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyingzi Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zelong Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jierui Li
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
68
|
Ge Z, Chen C, Chen J, Jiang Z, Chen L, Wei Y, Chen H, He L, Zou Y, Long X, Zhan H, Wang H, Wang H, Lu Y. Gut Microbiota-Derived 3-Hydroxybutyrate Blocks GPR43-Mediated IL6 Signaling to Ameliorate Radiation Proctopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306217. [PMID: 38742466 PMCID: PMC11267371 DOI: 10.1002/advs.202306217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.
Collapse
Affiliation(s)
- Zhenhuang Ge
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Chun Chen
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai201620China
| | - Junyi Chen
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Zhou Jiang
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Lingming Chen
- School of Medical TechnologyGuangdong Medical UniversityDongguan523808China
| | - Yingqi Wei
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Lei He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou510095China
- Key Laboratory for Cell HomeostasisCancer Research of Guangdong Higher Education InstitutesGuangzhou510095China
| | - Yi Zou
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaoxuan Long
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hongyu Zhan
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
69
|
Li R, Liu Y, Wu J, Chen X, Lu Q, Xia K, Liu C, Sui X, Liu Y, Wang Y, Qiu Y, Chen J, Wang Y, Li R, Ba Y, Fang J, Huang W, Lu Z, Li Y, Liao X, Xiang AP, Huang Y. Adaptive Metabolic Responses Facilitate Blood-Brain Barrier Repair in Ischemic Stroke via BHB-Mediated Epigenetic Modification of ZO-1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400426. [PMID: 38666466 PMCID: PMC11220715 DOI: 10.1002/advs.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local β-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.
Collapse
|
70
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
71
|
Wong A, Sun Q, Latif II, Karwi QG. Metabolic flux in macrophages in obesity and type-2 diabetes. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13210. [PMID: 38988822 PMCID: PMC11233469 DOI: 10.3389/jpps.2024.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ismail Ibrahim Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| |
Collapse
|
72
|
Orban B, Tengölics R, Zavori L, Simon D, Erdo-Bonyar S, Molnar T, Schwarcz A, Csecsei P. The Difference in Serum Metabolomic Profiles between the Good and Poor Outcome Groups at 3 Months in the Early and Late Phases of Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2024; 25:6597. [PMID: 38928303 PMCID: PMC11203497 DOI: 10.3390/ijms25126597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to investigate the characteristics of serum metabolomics in aneurysmal subarachnoid hemorrhage patients (aSAH) with different 3-month outcomes (good = modified Rankin score: 0-3 vs. poor = mRS 4-6). We collected serum samples from 46 aSAH patients at 24 (D1) and 168 (D7) hours after injury for analysis by liquid chromatography-mass spectrometry. Ninety-six different metabolites were identified. Groups were compared using multivariate (orthogonal partial least squares discriminant analysis), univariate, and receiving operator characteristic (ROC) methods. We observed a marked decrease in serum homocysteine levels at the late phase (D7) compared to the early phase (D1). At both D1 and D7, mannose and sorbose levels were notably higher, alongside elevated levels of kynurenine (D1) and increased 2-hydroxybutyrate, methyl-galactoside, creatine, xanthosine, p-hydroxyphenylacetate, N-acetylalanine, and N-acetylmethionine (all D7) in the poor outcome group. Conversely, levels of guanidinoacetate (D7) and several amino acids (both D1 and D7) were significantly lower in patients with poor outcomes. Our results indicate significant changes in energy metabolism, shifting towards ketosis and alternative energy sources, both in the early and late phases, even with adequate enteral nutrition, particularly in patients with poor outcomes. The early activation of the kynurenine pathway may also play a role in this process.
Collapse
Affiliation(s)
- Brigitta Orban
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Roland Tengölics
- Metabolomics Lab, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary;
- Core Facilities, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Lab, 6726 Szeged, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates;
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7632 Pecs, Hungary;
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| |
Collapse
|
73
|
Grundler F, Mesnage R, Ruppert PMM, Kouretas D, Wilhelmi de Toledo F. Long-Term Fasting-Induced Ketosis in 1610 Subjects: Metabolic Regulation and Safety. Nutrients 2024; 16:1849. [PMID: 38931204 PMCID: PMC11206495 DOI: 10.3390/nu16121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND There is a growing consensus that fasting-induced ketosis has beneficial effects on human physiology. Despite these compelling benefits, fasting-induced ketosis raises concerns in some clinicians because it is often inappropriately compared with the pathologic uncontrolled ketone production in diabetic ketoacidosis. The determinants of the inter-individual differences in the intensity of ketosis during long-term fasting is unknown. METHODS We monitored daily variations in fasting ketonemia, as well as ketonuria, which is less invasive, in a large cohort of 1610 subjects, fasting between 4 and 21 days with the Buchinger Wilhelmi program, minimally supplemented with ~75-250 kcal (daily fruit juice, vegetable soup, and honey). RESULTS Ketonuria was detected in more than 95% of fasting subjects from day 4 onwards. Subjects consuming only soups, without fruit juice or honey, exhibited reduced caloric intake (72 kcal instead of 236 kcal) and carbohydrate intake (15.6 g instead of 56.5 g), leading to more intense ketonuria. Participants with high ketonuria were, in the majority, males, young, had a higher body weight, and had lower HDL-C and urea values. They had a larger decrease in blood glucose, glycated haemoglobin levels, body weight, and waist circumference. Furthermore, in the high-ketonuria group, a larger increase in blood uric acid concentration was observed. CONCLUSION Our study showed that long-term fasting triggered ketosis, never reaching pathological levels, and that ketosis is influenced by age, gender, health, and the level of physical activity. Furthermore, it is modulated but not suppressed by minimal carbohydrate intake. Our study paves the way for better understanding how supplementation can modulate the therapeutic effects and tolerability of long-term fasting.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662 Überlingen, Germany; (F.G.); (F.W.d.T.)
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662 Überlingen, Germany; (F.G.); (F.W.d.T.)
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Philip M. M. Ruppert
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, 5230 Odense, Denmark;
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | | |
Collapse
|
74
|
Khorrami Chokami K, Khorrami Chokami A, Cammarata G, Piras G, Albertelli M, Gatto F, Vera L, Ferone D, Boschetti M. Current perspectives in obesity management: unraveling the impact of different therapy approach in real life obesity care. J Transl Med 2024; 22:536. [PMID: 38844956 PMCID: PMC11155047 DOI: 10.1186/s12967-024-05322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The challenge of addressing obesity persists in healthcare, necessitating nuanced approaches and personalized strategies. This study aims to evaluate the effects of diverse therapeutic interventions on anthropometric and biochemical parameters in individuals with overweight and obesity within a real-world clinical context. METHODS A retrospective analysis was conducted on 192 patients (141 females, 51 males) aged 18 to 75, with a BMI ranging from 25 to 30 (14.1%) and BMI ≥ 30 (85.9%), observed over a 12-month period at our Endocrinology Unit. Treatment cohorts comprised individuals following different regimens: Mediterranean Diet (MD), with an approximate daily intake of 1500 kcal for women and 1800 kcal for men (71% patients); Ketogenic Diet (KD), utilizing the VLCKD protocol characterized by a highly hypocaloric dietary regimen < 800 kcal/day (14% patients); metformin, administered using the oral formulation (5% patients); pharmacological intervention with GLP1-RA administered via subcutaneous injection with incremental dosage (10% patients). Supply constraints limited the efficacy of Liraglutide, whereas Semaglutide was excluded from comparisons due to its unavailability for obesity without diabetes. Blood tests were conducted to assess lipid profile, glycemic profile, and anthropometric parameters, including BMI, waist circumference, and waist-to-height ratio. RESULTS Significant BMI changes were observed from baseline to 6 months across MD, KD, and Liraglutide groups (p < 0.05). KD exhibited notable reductions in waist circumference and waist-to-height ratio within the initial quarter (p < 0.05), with a significant triglyceride decrease after 6 months (p < 0.05), indicating its efficacy over MD. Liraglutide demonstrated a substantial reduction in HbA1c levels in the first quarter (p < 0.05). During the first three months, the ANOVA test on fasting blood glucose showed a statistically significant impact of the time variable (p < 0.05) rather than the specific treatments themselves (Liraglutide and KD), suggesting that adherence during the early stages of therapy may be more critical than treatment choice. CONCLUSIONS Positive outcomes from targeted interventions, whether pharmacological or dietary should encourage the exploration of innovative, long-term strategies that include personalized treatment alternation. The absence of standardized protocols underscores the importance of careful and tailored planning in managing obesity as a chronic condition.
Collapse
Affiliation(s)
- Keyvan Khorrami Chokami
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy
| | | | - Giuseppe Cammarata
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy
| | - Grazia Piras
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy
| | - Manuela Albertelli
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy
| | - Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy
| | - Lara Vera
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy
| | - Mara Boschetti
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genoa, 16132, Italy.
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy.
| |
Collapse
|
75
|
Antunes BC, Mateus T, Morais VA. In the Brain, It Is Not All about Sugar. NEUROSCI 2024; 5:209-221. [PMID: 39483499 PMCID: PMC11493208 DOI: 10.3390/neurosci5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Collapse
Affiliation(s)
- Bernardo C Antunes
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Tomás Mateus
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Vanessa A Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| |
Collapse
|
76
|
Rico JE, Barrientos-Blanco MA. Invited review: Ketone biology-The shifting paradigm of ketones and ketosis in the dairy cow. J Dairy Sci 2024; 107:3367-3388. [PMID: 38246539 DOI: 10.3168/jds.2023-23904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Ketosis is currently regarded as a major metabolic disorder of dairy cows, reflective of the animal's efforts to adapt to energy deficit while transitioning into lactation. Currently viewed as a pathology by some, ketosis is associatively implicated in milk production losses and peripartal health complications that increase the risk of early removal of cows from the herd, thus carrying economic losses for dairy farmers and jeopardizing the sustainability of the dairy industry. Despite decades of intense research in the mitigation of ketosis and its sequelae, our ability to lessen its purported effects remains limited. Moreover, the association of ketosis to reduced milk production and peripartal disease is often erratic and likely mired by concurrent potential confounders. In this review, we discuss the potential reasons for these apparent paradoxes in the light of currently available evidence, with a focus on the limitations of observational research and the necessary steps to unambiguously identify the effects of ketosis on cow health and performance via controlled randomized experimentation. A nuanced perspective is proposed that considers the dissociation of ketosis-as a disease-from healthy hyperketonemia. Furthermore, in consideration of a growing body of evidence that highlights positive roles of ketones in the mitigation of metabolic dysfunction and chronic diseases, we consider the hypothetical functions of ketones as health-promoting metabolites and ponder on their potential usefulness to enhance dairy cow health and productivity.
Collapse
Affiliation(s)
- J Eduardo Rico
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 24740.
| | | |
Collapse
|
77
|
Lundanes J, Sandnes F, Gjeilo KH, Hansson P, Salater S, Martins C, Nymo S. Effect of a low-carbohydrate diet on pain and quality of life in female patients with lipedema: a randomized controlled trial. Obesity (Silver Spring) 2024; 32:1071-1082. [PMID: 38627016 DOI: 10.1002/oby.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The primary objective of this study was to evaluate the effect of a low-carbohydrate diet (LCD) compared with a control diet on pain in female patients with lipedema. The secondary objectives were to compare the impact of the two diets on quality of life (QoL) and investigate potential associations of changes in pain with changes in body weight, body composition, and ketosis. METHODS Adult female patients with lipedema and obesity were randomized to either the LCD or control diet (energy prescription: 1200 kcal/day) for 8 weeks. Body weight and body composition, pain (Brief Pain Inventory measured pain), and QoL (RAND 36-Item Health Survey [RAND-36], Impact of Weight on Quality of Life [IWQOL]-Lite, and Lymphoedema Quality of Life [LYMQOL]) were measured at baseline and at postintervention. RESULTS A total of 70 female patients (age, mean [SD], 47 [11] years; BMI 37 [5] kg/m2) were included. The LCD group had greater weight loss (-2.8 kg; 95% CI: -4.1 to -1.0; p < 0.001) and larger reduction in pain now (-1.1; 95% CI: -1.9 to -0.3; p = 0.009) compared with the control group. No association was found between changes in pain now and weight loss. Both groups experienced improvements in several QoL dimensions. CONCLUSIONS Diet-induced weight loss in women with lipedema can improve QoL. An energy-restricted LCD seems to be superior to a standard control diet in reducing pain.
Collapse
Affiliation(s)
- Julianne Lundanes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, Nord-Trøndelag Hospital Trust, Namsos Hospital, Namsos, Norway
| | - Frida Sandnes
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Nutrition and Speech-Language Therapy, Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Hanne Gjeilo
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patrik Hansson
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Sissel Salater
- Regional Center for Obesity Research and Innovation (ObeCe), Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Catia Martins
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Regional Center for Obesity Research and Innovation (ObeCe), Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Siren Nymo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, Nord-Trøndelag Hospital Trust, Namsos Hospital, Namsos, Norway
- Regional Center for Obesity Research and Innovation (ObeCe), Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
78
|
Padilla CJ, Harris H, Volek JS, Clark BC, Arnold WD. Effects of a ketogenic diet on motor function and motor unit number estimation in aged C57BL/6 mice. J Nutr Health Aging 2024; 28:100219. [PMID: 38582033 DOI: 10.1016/j.jnha.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE Pathological, age-related loss of muscle function, commonly referred to as sarcopenia, contributes to loss of mobility, impaired independence, as well as increased risk of adverse health events. Sarcopenia has been attributed to changes in both neural and muscular integrity during aging. Current treatment options are primarily limited to exercise and dietary protein fortification, but the therapeutic impact of these approaches are often inadequate. Prior work has suggested that a ketogenic diet (KD) might improve healthspan and lifespan in aging mice. Thus, we sought to investigate the effects of a KD on neuromuscular indices of sarcopenia in aged C57BL/6 mice. DESIGN A randomized, controlled pre-clinical experiment consisting of longitudinal assessments performed starting at 22-months of age (baseline) as well as 2, 6 and 10 weeks after the start of a KD vs. regular chow intervention. SETTING Preclinical laboratory study. SAMPLE SIZE Thirty-six 22-month-old mice were randomized into 2 dietary groups: KD [n = 22 (13 female and 9 male)], and regular chow [n = 15 (7 female and 8 male)]. MEASUREMENTS Measures included body mass, hindlimb and all limb grip strength, rotarod for motor performance, plantarflexion muscle contractility, motor unit number estimations (MUNE), and repetitive nerve stimulation (RNS) as an index of neuromuscular junction transmission efficacy recorded from the gastrocnemius muscle. At end point, muscle wet weight and blood samples were collected to assess blood beta-hydroxybutyrate levels. STATISTICAL ANALYSIS Primary analyses were two-way mixed effects ANOVA (diet and time × diet) to determine the effect of a KD on indices of motor function (grip, rotarod) and indices of motor unit (MUNE) and muscle (contractility) function. RESULTS Beta-hydroxybutyrate (BHB) was significantly higher at 10 weeks in mice on a KD vs control group (0.83 ± 0.44 mmol/l versus 0.42 ± 0.21 mmol/l, η2 = 0.265, unpaired t-test, p = 0.0060). Mice on the KD intervention demonstrated significantly increased hindlimb grip strength (diet, p = 0.0001; time × diet, p = 0.0030), all limb grip strength (diet, p = 0.0005; time × diet, p = 0.0523), and rotarod latency to fall (diet, p = 0.0126; time × diet, p = 0.0021). Mice treated with the KD intervention also demonstrated increased MUNE (diet, p = 0.0465; time × diet, p = 0.0064), but no difference in muscle contractility (diet, p = 0.5248; time × diet, p = 0.5836) or RNS (diet, p = 0.3562; time × diet, p = 0.9871). CONCLUSION KD intervention improved neuromuscular and motor function in aged mice. This pre-clinical work suggests that further research is needed to assess the efficacy and physiological effects of a KD on indices of sarcopenia.
Collapse
Affiliation(s)
- Carlos J Padilla
- Department of Kinesiology, University of Wisconsin - Madison, Madison, WI, USA.
| | - Hallie Harris
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, USA.
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Brian C Clark
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA; Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA.
| | - W David Arnold
- University of Missouri, School of Medicine, Columbia, MO, USA; NextGen Precision Health Initiative, University of Missouri System, Columbia, MO, USA.
| |
Collapse
|
79
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
80
|
Wang P, Tadeo X, Chew HSJ, Sapanel Y, Ong YH, Leung NYT, Chow EKH, Ho D. N-of-1 health optimization: Digital monitoring of biomarker dynamics to gamify adherence to metabolic switching. PNAS NEXUS 2024; 3:pgae214. [PMID: 38881838 PMCID: PMC11179112 DOI: 10.1093/pnasnexus/pgae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
The digital health field is experiencing substantial growth due to its potential for sustained and longitudinal deployment. In turn, this may drive improved monitoring and intervention as catalysts for behavioral change compared to traditional point-of-care practices. In particular, the increase in incidence of population health challenges such as diabetes, heart disease, fatty liver disease, and other disorders coupled with rising healthcare costs have emphasized the importance of exploring technical, economics, and implementation considerations, among others in the decentralization of health and healthcare innovations. Both healthy individuals and patients stand to benefit from continued technical advances and studies in these domains. To address these points, this study reports a N-of-1 study comprised of sustained regimens of intermittent fasting, fitness (strength and cardiovascular training), and high protein, low carbohydrate diet and parallel monitoring. These regimens were paired with serial blood ketone, blood glucose (wearable and finger stick) and blood pressure readings, as well as body weight measurements using a collection of devices. Collectively this suite of platforms and approaches were used to monitor metabolic switching from glucose to ketones as energy sources-a process associated with potential cardio- and neuroprotective functions. In addition to longitudinal biomarker dynamics, this work discusses user perspectives on the potential role of harnessing digital devices to these dynamics as potential gamification factors, as well as considerations for the role of biomarker monitoring in health regimen development, user stratification, and potentially informing downstream population-scale studies to address metabolic disease, healthy aging and longevity, among other indications.
Collapse
Affiliation(s)
- Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Xavier Tadeo
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yoann Sapanel
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Yoong Hun Ong
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Nicole Yong Ting Leung
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
81
|
Khouri H, Roberge M, Ussher JR, Aguer C. Acetoacetate and d- and l-β-hydroxybutyrate have distinct effects on basal and insulin-stimulated glucose uptake in L6 skeletal muscle cells. Am J Physiol Cell Physiol 2024; 326:C1710-C1720. [PMID: 38708524 DOI: 10.1152/ajpcell.00718.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Ketone bodies (acetoacetate and β-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that β-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two β-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-β-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with β-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-β-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.
Collapse
Affiliation(s)
- Hannah Khouri
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - Mathilde Roberge
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University - Campus Outaouais, Gatineau, Quebec, Canada
| |
Collapse
|
82
|
Ruan T, Wu Y, Liu C, Xu M, Yu J. Prognostic role of urinary ketone body in patients with sepsis-associated encephalopathy without hepatic failure: a retrospective cohort study. Intern Emerg Med 2024; 19:983-991. [PMID: 38480612 DOI: 10.1007/s11739-024-03563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/11/2024] [Indexed: 06/20/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is defined as a dysfunction of the central nervous system experienced during sepsis with variable clinical features. The study aims to identify the prognostic role of urinary ketone bodies in relation to clinical outcomes in patients with SAE. The Medical Information Mart for Intensive Care III (MIMIC-III) database was used to conduct a retrospective cohort study. We recruited 427 patients with SAE admitted to the intensive care unit (ICU) from the MIMIC-III database. Patients with SAE were divided into a survival group (380 patients) and a non-survival group (47 patients). We used the Wilcoxon signed-rank test and the multivariate logistic regression analysis to analyze the relationship between the level of urinary ketone bodies and the clinical prognosis in patients with SAE. The primary outcome was the relationship between urinary ketone body levels and 28-day mortality of SAE. The secondary outcomes were the relationship between urinary ketone body levels and length of ICU stays, Simplified Acute Physiology Score II, Sequential Organ Failure Assessment (SOFA), Glasgow Coma Scale, mechanical ventilation, renal replacement therapy, and the use of vasopressors. The 28-day mortality of patients with SAE was 11.0%. Urinary ketone body levels were not significantly associated with the 28-day mortality of patients with SAE. Urinary ketone body levels were associated with SOFA score and the use of vasopressors in patients with SAE. The SOFA score was an independent risk factor for the 28-day mortality in patients with SAE. Urinary ketone body levels were significantly associated with SOFA score and the use of vasopressors in patients with SAE. Furthermore, the SOFA score can predict the prognosis of short-term outcomes of patients with SAE. Therefore, we should closely monitor the changes of urinary ketone bodies and SOFA score and intervene in time.
Collapse
Affiliation(s)
- Tian Ruan
- Department of Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Ya Wu
- Department of Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Chuanning Liu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Mu Xu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Jianbo Yu
- Department of Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, 6 Changjiang Road, Nankai District, Tianjin, 300100, China.
| |
Collapse
|
83
|
Jeon Y, Li L, Bhatia M, Ryu H, Santo Domingo JW, Brown J, Goetz J, Seo Y. Impact of harmful algal bloom severity on bacterial communities in a full-scale biological filtration system for drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171301. [PMID: 38423320 PMCID: PMC11333992 DOI: 10.1016/j.scitotenv.2024.171301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.
Collapse
Affiliation(s)
- Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Mudit Bhatia
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Hodon Ryu
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States of America
| | - Jorge W Santo Domingo
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States of America
| | - Jess Brown
- Carollo Engineers' Research and Development Practice, Costa Mesa, CA 92626, United States of America
| | - Jake Goetz
- City of Toledo Colins Park Water Treatment, Toledo, OH 43605, United States of America
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America; Department of Chemical and Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH 43606, United States of America.
| |
Collapse
|
84
|
Ren T, He J, Zhang T, Niu A, Yuan Y, Zuo Y, Miao Y, Zhang H, Zang L, Qiao C, Cao X, Yang X, Zheng Z, Xu Y, Wu D, Zheng H. Exercise activates interferon response of the liver via Gpld1 to enhance antiviral innate immunity. SCIENCE ADVANCES 2024; 10:eadk5011. [PMID: 38809975 DOI: 10.1126/sciadv.adk5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Healthy behavioral patterns could modulate organ functions to enhance the body's immunity. However, how exercise regulates antiviral innate immunity remains elusive. Here, we found that exercise promotes type I interferon (IFN-I) production in the liver and enhances IFN-I immune activity of the body. Despite the possibility that many exercise-induced factors could affect IFN-I production, we identified Gpld1 as a crucial molecule, and the liver as the major organ to promote IFN-I production after exercise. Exercise largely loses the efficiency to induce IFN-I in Gpld1-/- mice. Further studies demonstrated that exercise-produced 3-hydroxybutanoic acid (3-HB) critically induces Gpld1 expression in the liver. Gpld1 blocks the PP2A-IRF3 interaction, thus enhancing IRF3 activation and IFN-I production, and eventually improving the body's antiviral ability. This study reveals that exercise improves antiviral innate immunity by linking the liver metabolism to systemic IFN-I activity and uncovers an unknown function of liver cells in innate immunity.
Collapse
Affiliation(s)
- Tengfei Ren
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- Department/Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiuyi He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingting Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anxing Niu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yibo Zuo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Miao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongguang Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Caixia Qiao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinhua Cao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hui Zheng
- Department/Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
85
|
Cousineau CM, Snyder D, Redd JR, Turner S, Carr T, Bridges D. Reduced beta-hydroxybutyrate disposal after ketogenic diet feeding in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594369. [PMID: 38798372 PMCID: PMC11118456 DOI: 10.1101/2024.05.16.594369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The ketogenic diet (KD) has garnered considerable attention due to its potential benefits in weight loss, health improvement, and performance enhancement. However, the phenotypic responses to KD vary widely between individuals. Skeletal muscle is a major contributor to ketone body (KB) catabolism, however, the regulation of ketolysis is not well understood. In this study, we evaluated how mTORC1 activation and a ketogenic diet modify ketone body disposal in muscle Tsc1 knockout (KO) mice, inbred A/J mice, and Diversity Outbred (DO) mice. Muscle Tsc1 KO mice demonstrated enhanced ketone body clearance. Contrary to expectations, KD feeding in A/J mice did not improve KB disposal, and in most strains disposal was reduced. Transcriptional analysis revealed reduced expression of important ketolytic genes in KD-fed A/J mice, suggesting impaired KB catabolism. Diversity Outbred (DO) mice displayed variable responses to KD, with most mice showing worsened KB disposal. Exploratory analysis on these data suggest potential correlations between KB disposal and cholesterol levels as well as weight gain on a KD. Our findings suggest that ketone body disposal may be regulated by both nutritional and genetic factors and these relationships may help explain interindividual variability in responses to ketogenic diets.
Collapse
|
86
|
Tamas C, Tamas F, Kovecsi A, Cehan A, Balasa A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci 2024; 25:5482. [PMID: 38791520 PMCID: PMC11122426 DOI: 10.3390/ijms25105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Alina Cehan
- Department of Plastic, Esthetics and Reconstructive Surgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
| | - Adrian Balasa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
87
|
Murphy S, Rahmy S, Gan D, Liu G, Zhu Y, Manyak M, Duong L, He J, Schofield JH, Schafer ZT, Li J, Lu X, Lu X. Ketogenic Diet Alters the Epigenetic and Immune Landscape of Prostate Cancer to Overcome Resistance to Immune Checkpoint Blockade Therapy. Cancer Res 2024; 84:1597-1612. [PMID: 38588411 PMCID: PMC11096030 DOI: 10.1158/0008-5472.can-23-2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body β-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.
Collapse
Affiliation(s)
- Sean Murphy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sharif Rahmy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guoqiang Liu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maxim Manyak
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Loan Duong
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jianping He
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H Schofield
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zachary T Schafer
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Li
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
88
|
Vargas-López M, Quiroz-Vicente CA, Pérez-Hernández N, Gómez-Chávez F, Bañuelos-Hernández AE, Pérez-Hernández E. The ketone body β-Hydroxybutyrate as a fuel source of chondrosarcoma cells. Heliyon 2024; 10:e30212. [PMID: 38694129 PMCID: PMC11061739 DOI: 10.1016/j.heliyon.2024.e30212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
Chondrosarcoma (CS) is a malignant bone tumor arising from cartilage-producing cells. The conventional subtype of CS typically develops within a dense cartilaginous matrix, creating an environment deficient in oxygen and nutrients, necessitating metabolic adaptation to ensure proliferation under stress conditions. Although ketone bodies (KBs) are oxidized by extrahepatic tissue cells such as the heart and brain, specific cancer cells, including CS cells, can undergo ketolysis. In this study, we found that KBs catabolism is activated in CS cells under nutrition-deprivation conditions. Interestingly, cytosolic β-hydroxybutyrate dehydrogenase 2 (BDH2), rather than mitochondrial BDH1, is expressed in these cells, indicating a specific metabolic adaptation for ketolysis in this bone tumor. The addition of the KB, β-Hydroxybutyrate (β-HB) in serum-starved CS cells re-induced the expression of BDH2, along with the key ketolytic enzyme 3-oxoacid CoA-transferase 1 (OXCT1) and monocarboxylate transporter-1 (MCT1). Additionally, internal β-HB production was quantified in supplied and starved cells, suggesting that CS cells are also capable of ketogenesis alongside ketolysis. These findings unveil a novel metabolic adaptation wherein nutrition-deprived CS cells utilize KBs for energy supply and proliferation.
Collapse
Affiliation(s)
- Misael Vargas-López
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Carlos A. Quiroz-Vicente
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Nury Pérez-Hernández
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Angel E. Bañuelos-Hernández
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Elizabeth Pérez-Hernández
- Laboratorio de Microbiología Molecular, Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| |
Collapse
|
89
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
90
|
Theron IJ, Mason S, van Reenen M, Stander Z, Kleynhans L, Ronacher K, Loots DT. Characterizing poorly controlled type 2 diabetes using 1H-NMR metabolomics. Metabolomics 2024; 20:54. [PMID: 38734832 PMCID: PMC11088559 DOI: 10.1007/s11306-024-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The prevalence of type 2 diabetes has surged to epidemic proportions and despite treatment administration/adherence, some individuals experience poorly controlled diabetes. While existing literature explores metabolic changes in type 2 diabetes, understanding metabolic derangement in poorly controlled cases remains limited. OBJECTIVE This investigation aimed to characterize the urine metabolome of poorly controlled type 2 diabetes in a South African cohort. METHOD Using an untargeted proton nuclear magnetic resonance metabolomics approach, urine samples from 15 poorly controlled type 2 diabetes patients and 25 healthy controls were analyzed and statistically compared to identify differentiating metabolites. RESULTS The poorly controlled type 2 diabetes patients were characterized by elevated concentrations of various metabolites associated with changes to the macro-fuel pathways (including carbohydrate metabolism, ketogenesis, proteolysis, and the tricarboxylic acid cycle), autophagy and/or apoptosis, an uncontrolled diet, and kidney and liver damage. CONCLUSION These results indicate that inhibited cellular glucose uptake in poorly controlled type 2 diabetes significantly affects energy-producing pathways, leading to apoptosis and/or autophagy, ultimately contributing to kidney and mild liver damage. The study also suggests poor dietary compliance as a cause of the patient's uncontrolled glycemic state. Collectively these findings offer a first-time comprehensive overview of urine metabolic changes in poorly controlled type 2 diabetes and its association with secondary diseases, offering potential insights for more targeted treatment strategies to prevent disease progression, treatment efficacy, and diet/treatment compliance.
Collapse
Affiliation(s)
- Isabella J Theron
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
91
|
Czerwińska-Ledwig O, Kryst J, Ziemann E, Borkowska A, Reczkowicz J, Dzidek A, Rydzik Ł, Pałka T, Żychowska M, Kupczak W, Blaščáková MM, Piotrowska A. The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period. Nutrients 2024; 16:1413. [PMID: 38794651 PMCID: PMC11124239 DOI: 10.3390/nu16101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of the study was to assess the impact of two lengths of Nordic walking (NW) training interventions combined with time-restricted eating (TRE) on improving body-composition parameters, lipid profiles, and levels of selected adipokines in women with elevated body mass. Overweight and obese women (n = 55, age: 21-85) were recruited. Four groups were selected: 6 weeks (SG6, n = 13) and 12 weeks intervention (SG12, n = 13); and two control groups: CON6 (n = 13) and CON12 (n = 13). The training sessions took place three times a week (60 min each) and were conducted outdoors under the supervision of a professional coach. The training intensity was determined individually. The extended NW program combined with TRE induced a significant weight reduction in SG12 by 1.96 kg (p = 0.010) and fat tissue by 1.64 kg (p = 0.05). The proposed interventions did not affect LBM, TBW [kg], VFA, and lipid profile. The LDL/HDL ratio changed with a small size effect. The leptin concentration differed between groups (p = 0.006), but not over time. For resistin, the differentiating factor was time (p = 0.019), with lower results observed after the intervention. The change in leptin concentration was negatively correlated with its baseline concentration (p = 0.025). Extended to 12 weeks, this intervention allows for an improvement in body composition. Neither 6 nor 12 weeks of training and fasting affected the lipoprotein profile. It is, therefore, indicated to recommend prolonged training protocols and to inform patients that beneficial effects will be seen only after prolonged use of training and time-restricted eating.
Collapse
Affiliation(s)
- Olga Czerwińska-Ledwig
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland; (O.C.-L.); (J.K.); (A.D.)
| | - Joanna Kryst
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland; (O.C.-L.); (J.K.); (A.D.)
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.B.); (J.R.)
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.B.); (J.R.)
| | - Adrianna Dzidek
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland; (O.C.-L.); (J.K.); (A.D.)
| | - Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland;
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Krakow, Poland;
| | - Małgorzata Żychowska
- Faculty of Health Sciences and Physical Culture, Biological Fundation of Physical Culture, Kazimierz Wielki 10 University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Wojciech Kupczak
- Student’s Science Club, Department of Chemistry and Biochemistry, University of Physical Education, 31-571 Krakow, Poland
| | - Marta Mydlárová Blaščáková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, 08-116 Presov, Slovakia;
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education, 31-571 Krakow, Poland; (O.C.-L.); (J.K.); (A.D.)
| |
Collapse
|
92
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
93
|
Qiu S, Liu Z, Jiang WD, Sun JH, Liu ZQ, Sun XD, Wang CT, Liu W. Diabetes and aortic dissection: unraveling the role of 3-hydroxybutyrate through mendelian randomization. Cardiovasc Diabetol 2024; 23:159. [PMID: 38715052 PMCID: PMC11077732 DOI: 10.1186/s12933-024-02266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In observational and experimental studies, diabetes has been reported as a protective factor for aortic dissection. 3-Hydroxybutyrate, a key constituent of ketone bodies, has been found to favor improvements in cardiovascular disease. However, whether the protective effect of diabetes on aortic dissection is mediated by 3-hydroxybutyrate is unclear. We aimed to investigate the causal effects of diabetes on the risk of aortic dissection and the mediating role of 3-hydroxybutyrate in them through two-step Mendelian randomization. MATERIALS AND METHODS We performed a two-step Mendelian randomization to investigate the causal connections between diabetes, 3-hydroxybutyrate, and aortic dissection and calculate the mediating effect of 3-hydroxybutyrate. Publicly accessible data for Type 1 diabetes, Type 2 diabetes, dissection of aorta and 3-hydroxybutyrate were obtained from genome-wide association studies. The association between Type 1 diabetes and dissection of aorta, the association between Type 2 diabetes and dissection of aorta, and mediation effect of 3-hydroxybutyrate were carried out separately. RESULTS The IVW method showed that Type 1 diabetes was negatively associated with the risk of aortic dissection (OR 0.912, 95% CI 0.836-0.995), The weighted median, simple mode and weighted mode method showed consistent results. The mediated proportion of 3-hydroxybutyrate on the relationship between Type 1 diabetes and dissection of aorta was 24.80% (95% CI 5.12-44.47%). The IVW method showed that Type 2 diabetes was negatively associated with the risk of aortic dissection (OR 0.763, 95% CI 0.607-0.960), The weighted median, simple mode and weighted mode method showed consistent results. 3-Hydroxybutyrate does not have causal mediation effect on the relationship between Type 2 diabetes and dissection of aorta. CONCLUSION Mendelian randomization study revealed diabetes as a protective factor for dissection of aorta. The protective effect of type 1 diabetes on aortic dissection was partially mediated by 3-hydroxybutyrate, but type 2 diabetes was not 3-hydroxybutyrate mediated.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Cardiac Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zhen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shangdong, People's Republic of China
| | - Wei-Dong Jiang
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shangdong, People's Republic of China
| | - Jin-Hui Sun
- Department of Cardiac Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zeng-Qiang Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shangdong, People's Republic of China
| | - Xiao-Di Sun
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shangdong, People's Republic of China
| | - Chun-Ting Wang
- Department of Cardiac Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Wen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shangdong, People's Republic of China.
| |
Collapse
|
94
|
Annoni F, Gouvea Bogossian E, Peluso L, Su F, Moreau A, Nobile L, Casu SG, Sterchele ED, Calabro L, Salvagno M, Oddo M, Taccone FS. Ketone Bodies after Cardiac Arrest: A Narrative Review and the Rationale for Use. Cells 2024; 13:784. [PMID: 38727320 PMCID: PMC11083685 DOI: 10.3390/cells13090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fuhong Su
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Anthony Moreau
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Stefano Giuseppe Casu
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Lorenzo Calabro
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Mauro Oddo
- Medical Directorate for Research, Education and Innovation, Direction Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| |
Collapse
|
95
|
Tsuruta H, Yamahara K, Yasuda-Yamahara M, Kume S. Emerging Pathophysiological Roles of Ketone Bodies. Physiology (Bethesda) 2024; 39:0. [PMID: 38260943 DOI: 10.1152/physiol.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
96
|
Awchi M, Singh KD, Brenner SB, Burckhardt MA, Hess M, Zeng J, Datta AN, Frey U, Zumsteg U, Szinnai G, Sinues P. Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis. Front Endocrinol (Lausanne) 2024; 15:1360989. [PMID: 38752172 PMCID: PMC11094216 DOI: 10.3389/fendo.2024.1360989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose This feasibility study aimed to investigate the use of exhaled breath analysis to capture and quantify relative changes of metabolites during resolution of acute diabetic ketoacidosis under insulin and rehydration therapy. Methods Breath analysis was conducted on 30 patients of which 5 with DKA. They inflated Nalophan bags, and their metabolic content was subsequently interrogated by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Results SESI-HRMS analysis showed that acetone, pyruvate, and acetoacetate, which are well known to be altered in DKA, were readily detectable in breath of participants with DKA. In addition, a total of 665 mass spectral features were found to significantly correlate with base excess and prompt metabolic trajectories toward an in-control state as they progress toward homeostasis. Conclusion This study provides proof-of-principle for using exhaled breath analysis in a real ICU setting for DKA monitoring. This non-invasive new technology provides new insights and a more comprehensive overview of the effect of insulin and rehydration during DKA treatment.
Collapse
Affiliation(s)
- Mo Awchi
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kapil Dev Singh
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Sara Bachmann Brenner
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Marie-Anne Burckhardt
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Melanie Hess
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jiafa Zeng
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexandre N. Datta
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Zumsteg
- University Children’s Hospital Basel, Basel, Switzerland
| | - Gabor Szinnai
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
97
|
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res 2024; 102:e25342. [PMID: 38773878 DOI: 10.1002/jnr.25342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Collapse
Affiliation(s)
- Joseph W Molloy
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Denis Barry
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
98
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. PNAS NEXUS 2024; 3:pgae196. [PMID: 38818236 PMCID: PMC11138115 DOI: 10.1093/pnasnexus/pgae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
99
|
Abstract
Cells of the mammalian innate immune system have evolved to protect the host from various environmental or internal insults and injuries which perturb the homeostatic state of the organism. Among the lymphocytes of the innate immune system are natural killer (NK) cells, which circulate and survey host tissues for signs of stress, including infection or transformation. NK cells rapidly eliminate damaged cells in the blood or within tissues through secretion of cytolytic machinery and production of proinflammatory cytokines. To perform these effector functions while traversing between the blood and tissues, patrolling NK cells require sufficient fuel to meet their energetic demands. Here, we highlight the ability of NK cells to metabolically adapt across tissues, during times of nutrient deprivation and within tumor microenvironments. Whether at steady state, or during viral infection and cancer, NK cells readily shift their nutrient uptake and usage in order to maintain metabolism, survival, and function.
Collapse
Affiliation(s)
- Rebecca B. Delconte
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
100
|
Mohammed OA, Saber S, Abdel-Reheim MA, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Eleragi AMS, Eltahir HB, Abdalla MO, Bahashwan E, Ibrahim EK, Rezigalla AA, Abdel-Ghany S, Alzokaky AA, Doghish AS, El-Husseiny HM, Alghamdi M, Youssef ME. Tracking the therapeutic efficacy of a ketone mono ester and β-hydroxybutyrate for ulcerative colitis in rats: New perspectives. Toxicol Appl Pharmacol 2024; 486:116943. [PMID: 38677600 DOI: 10.1016/j.taap.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body β-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases β-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous β-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of β-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous β-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma β-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma β-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, University of Bisha, Bisha 61922, Saudi Arabia
| | - Hanan B Eltahir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohamed Osama Abdalla
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | | | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of basic medical sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt.
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Al Qalyubia 13736, Egypt
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|