51
|
Klarić TS, Salopek M, Micek V, Gornik Kljaić O, Lauc G. Post-natal developmental changes in the composition of the rat neocortical N-glycome. Glycobiology 2020; 31:636-648. [PMID: 33242084 DOI: 10.1093/glycob/cwaa108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.
Collapse
Affiliation(s)
- Thomas S Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Matija Salopek
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Olga Gornik Kljaić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
52
|
Abstract
BACKGROUND With combination antiretroviral therapy (cART), infants with perinatally acquired HIV (pHIV) are living into adolescence and adulthood. Worldwide, many have not received cART in the first years of life, and challenges of adolescence complicate transition to adulthood. Neurobehavioral outcomes in pHIV young adults (pHIVAd) are infrequently reported. OBJECTIVES To examine neurobehavioral characteristics of pHIVAd ages 21-30 years, and to compare them with age-matched young adults infected in the second or third decade of life (HIVagematch), and older adults with similar duration HIV disease (HIVOA). METHODS A comprehensive neuropsychological test battery and questionnaires to determine cognitive function and mood, and reviews of neuromedical and behavioral records were undertaken in three groups of 13 individuals each. Descriptive analysis and bivariate techniques were used for comparisons. RESULTS Rates of cognitive impairment were highest in pHIVAd (85%) compared with HIVagematch (38%) and HIVOA (62%). pHIVAd had the worst scores in global cognition, speed of information processing, working memory, and verbal fluency (0.5--1.0 SD below other groups). There was a trend for higher rates of psychiatric dysfunction (predominantly mood disorders) in pHIVAd (85%) compared with HIV-agematch (46%) and HIVOA (54%). Only four pHIVAd reported employment or enrollment in school. Four had autoimmune disorders. CONCLUSION These pHIVAd displayed high rates of cognitive, psychiatric, and autoimmune dysfunction, greater than age-matched or HIV duration-matched comparators. Although this small study is largely descriptive in nature, it suggests that a lack of cART in early life may result in long-term neurobehavioral and immune abnormalities manifesting into adulthood.
Collapse
|
53
|
Delage CI, Cornil CA. Estrogen‐dependent sex difference in microglia in the developing brain of Japanese quail (
Coturnix japonica
). Dev Neurobiol 2020; 80:239-262. [DOI: 10.1002/dneu.22781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Affiliation(s)
| | - Charlotte Anne Cornil
- Laboratory of Neuroendocrinology GIGA Neurosciences University of Liège Liège Belgium
| |
Collapse
|
54
|
Béchade C, D'Andrea I, Etienne F, Verdonk F, Moutkine I, Banas SM, Kolodziejczak M, Diaz SL, Parkhurst CN, Gan WB, Maroteaux L, Roumier A. The serotonin 2B receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia 2020; 69:638-654. [PMID: 33095507 DOI: 10.1002/glia.23918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.
Collapse
Affiliation(s)
- Catherine Béchade
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivana D'Andrea
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fanny Etienne
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Franck Verdonk
- Experimental Neuropathology, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sophie M Banas
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marta Kolodziejczak
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Silvina L Diaz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Christopher N Parkhurst
- Molecular Neurobiology Program, The Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| | - Wenbiao B Gan
- Molecular Neurobiology Program, The Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| | - Luc Maroteaux
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Anne Roumier
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
55
|
Long-term effects of pre-gestational stress and perinatal venlafaxine treatment on neurobehavioral development of female offspring. Behav Brain Res 2020; 398:112944. [PMID: 33017639 DOI: 10.1016/j.bbr.2020.112944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
Preclinical studies suggest that stress-related disorders even prior gestation can cause long-term changes at the level of neurobehavioral adaptations. Therefore, it is critical to consider undergoing antidepressant therapy which could reverse the negative consequences in the offspring. Venlafaxine is widely used in clinical practice; however insufficient amount of well-controlled studies verified the safety of venlafaxine therapy during gestation and lactation. The aim of this work was to investigate the effects of perinatal venlafaxine therapy on selected neurobehavioral variables in mothers and their female offspring using a model of maternal adversity. Pre-gestational stressed and non-stressed Wistar rat dams were treated with either venlafaxine (10 mg/kg/day) or vehicle during pregnancy and lactation. We have shown that pre-gestational stress decreased the number of pups with a significant reduction in the number of males but not females. Furthermore, we found that offspring of stressed and treated mothers exhibited anxiogenic behavior in juvenile and adolescent age. However, during adulthood pre-gestational stress significantly increased anxiety-like behavior of female, with venlafaxine treatment normalizing the state to control levels. Additionally, we found that even maternal stress prior gestation can have long-term impact on adult number of hippocampal immature neurons of the female offspring. A number of questions related to the best treatment options for maternal depression still remains, however present data may provide greater insight into the possible outcomes associated with perinatal venlafaxine therapy.
Collapse
|
56
|
Bowen C, Childers G, Perry C, Martin N, McPherson CA, Lauten T, Santos J, Harry GJ. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. CHEMOSPHERE 2020; 255:126919. [PMID: 32402876 PMCID: PMC8439439 DOI: 10.1016/j.chemosphere.2020.126919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 05/02/2023]
Abstract
The predominant reliance on bromated flame retardants (BFRs) is diminishing with expanded use of alternative organophosphate flame retardants. However, exposure related issues for susceptible populations, the developing, infirmed, or aged, remain given environmental persistence and home-environment detection. In this regard, reports of flame retardant (FR)-related effects on the innate immune system suggest process by which a spectrum of adverse health effects could manifest across the life-span. As representative of the nervous system innate immune system, the current study examined changes in microglia following exposure to representative FRs, pentabromophenol (PBP), tetrabromobisphenol A (2,2',6,6',-tetrabromo-4,4'-isopropylidine diphenol; TBBPA) and triphenyl phosphate (TPP). Following 18hr exposure of murine BV-2 cells, at dose levels resulting in ≥80% viability (10 and 40 μM), limited alterations in pro-inflammatory responses were observed however, changes were observed in mitochondrial respiration. Basal respiration was altered by PBP; ATP-linked respiration by PBP and TBBPA, and maximum respiration by all three FRs. Basal glycolytic rate was altered by PBP and TBBPA and compensatory glycolysis by all three. Phagocytosis was decreased for PBP and TBBPA. NLRP3 inflammasome activation was assessed using BV-2-ASC (apoptosis-associated speck-like protein containing a CARD) reporter cells to visualize aggregate formation. PBP, showed a direct stimulation of aggregate formation and properties as a NLRP3 inflammasome secondary trigger. TBBPA showed indications of possible secondary triggering activity while no changes were seen with TPP. Thus, the data suggests an effect of all three FRs on mitochondria metabolism yet, different functional outcomes including, phagocytic capability and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
| | | | | | - Negin Martin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
57
|
Thion MS, Mosser CA, Férézou I, Grisel P, Baptista S, Low D, Ginhoux F, Garel S, Audinat E. Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Rep 2020; 28:1119-1126.e4. [PMID: 31365857 PMCID: PMC6685496 DOI: 10.1016/j.celrep.2019.06.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Coralie-Anne Mosser
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Isabelle Férézou
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Département de Neurosciences Intégratives et Computationnelles (ICN), CNRS, Université Paris Sud, UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Grisel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sofia Baptista
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Etienne Audinat
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France; Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France.
| |
Collapse
|
58
|
Thion MS, Garel S. Microglial ontogeny, diversity and neurodevelopmental functions. Curr Opin Genet Dev 2020; 65:186-194. [PMID: 32823206 DOI: 10.1016/j.gde.2020.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
59
|
Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 2020; 147:dev182279. [PMID: 32358096 PMCID: PMC7197727 DOI: 10.1242/dev.182279] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular pathologies of the central nervous system (CNS), which are associated with barrier dysfunction, are leading causes of death and disability. The roles that neuronal and glial progenitors and mature cells play in CNS angiogenesis and neurovascular barrier maturation have been elucidated in recent years. Yet how neuronal activity influences these processes remains largely unexplored. Here, we discuss our current understanding of how neuronal and glial development affects CNS angiogenesis and barriergenesis, and outline future directions to elucidate how neuronal activity might influence these processes. An understanding of these mechanisms is crucial for developing new interventions to treat neurovascular pathologies.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Azzurra Cottarelli
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
60
|
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 2020; 25:351-367. [PMID: 31772305 PMCID: PMC6974435 DOI: 10.1038/s41380-019-0609-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Microglia have been recently shown to manifest a very interesting phenotypical heterogeneity across different regions in the mammalian central nervous system (CNS). However, the underlying mechanism and functional meaning of this phenomenon are currently unclear. Baseline diversities of adult microglia in their cell number, cellular and subcellular structures, molecular signature as well as relevant functions have been discovered. But recent transcriptomic studies using bulk RNAseq and single-cell RNAseq have produced conflicting results on region-specific signatures of microglia. It is highly speculative whether such spatial heterogeneity contributes to varying sensitivities of individual microglia to the same physiological and pathological signals in different CNS regions, and hence underlie their functional relevance for CNS disease development. This review aims to thoroughly summarize up-to-date knowledge on this specific topic and provide some insights on the potential underlying mechanisms, starting from microgliogenesis. Understanding regional heterogeneity of microglia in the context of their diverse neighboring neurons and other glia may provide an important clue for future development of innovative therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yun-Long Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Li Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China.
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
61
|
Neural progenitor cells mediated by H2A.Z.2 regulate microglial development via Cxcl14 in the embryonic brain. Proc Natl Acad Sci U S A 2019; 116:24122-24132. [PMID: 31712428 DOI: 10.1073/pnas.1913978116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play an important role in the brain. Microglia have a special spatiotemporal distribution during the development of the cerebral cortex. Neural progenitor cells (NPCs) are the main source of neural-specific cells in the early brain. It is unclear whether NPCs affect microglial development and what molecular mechanisms control early microglial localization. H2A.Z.2, a histone variant of H2A, has a key role in gene expression regulation, genomic stability, and chromatin remodeling, but its function in brain development is not fully understood. Here, we found that the specific deletion of H2A.Z.2 in neural progenitor cells led to an abnormal increase in microglia in the ventricular zone/subventricular zone (VZ/SVZ) of the embryonic cortex. Mechanistically, H2A.Z.2 regulated microglial development by incorporating G9a into the promoter region of Cxcl14 and promoted H3k9me2 modification to inhibit the transcription of Cxcl14 in neural progenitor cells. Meanwhile, we found that the deletion of H2A.Z.2 in microglia itself had no significant effect on microglial development in the early cerebral cortex. Our findings demonstrate a key role of H2A.Z.2 in neural progenitor cells in controlling microglial development and broaden our knowledge of 2 different types of cells that may affect each other through crosstalk in the central nervous system.
Collapse
|
62
|
Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci 2019; 26:90. [PMID: 31684953 PMCID: PMC6827257 DOI: 10.1186/s12929-019-0584-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
63
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
64
|
Simões-Henriques C, Mateus-Pinheiro M, Gaspar R, Pinheiro H, Mendes Duarte J, Baptista FI, Canas PM, Fontes-Ribeiro CA, Cunha RA, Ambrósio AF, Gomes CA. Microglia cytoarchitecture in the brain of adenosine A 2A receptor knockout mice: Brain region and sex specificities. Eur J Neurosci 2019; 51:1377-1387. [PMID: 31454441 DOI: 10.1111/ejn.14561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 02/02/2023]
Abstract
Microglia cells exert a critical role in brain development, mainly supported by their immune functions, which predicts an impact on the genesis of psychiatric disorders. In fact, microglia stress during gestation is, for instance, associated with chronic anxiety and cognitive deficits accompanied by long-lasting, region- and sex-specific changes in microglia morphology. We recently reported that the pattern of microglia morphologic plasticity, which is sex-determined, impacts on anxious-like behaviour and cognition. We also reported that the pharmacologic blockade of adenosine A2A receptors (A2 A R) is able to reshape microglia morphology, in a sex-specific manner and with behavioural sequelae. In order to better understand the role of A2 A R in the sex differentiation of microglia, we now compared their morphology in wild-type and A2 A R knockout male and female C57BL/6 mice in two cardinal brain regions implicated in anxiety-like behaviour and cognition, the prefrontal cortex (PFC) and the dorsal hippocampus (dHIP). We report interregional differences between PFC and dHIP in a sex-specific manner: while males presented more complex microglia in the dHIP, microglia from females had a more complex morphology in the PFC. Surprisingly, the genetic deletion of A2 A R did not alter these sex differences, but promoted the exclusive remodelling (increase in complexity) in PFC microglia from females. These findings further support the existence of a heterogeneous microglial network, distinct between sexes and brain regions, and help characterizing the role of A2 A R in the sex- and brain region-specific morphologic differentiation of microglia.
Collapse
Affiliation(s)
- Carla Simões-Henriques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Miguel Mateus-Pinheiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Helena Pinheiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Joana Mendes Duarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carlos Alberto Fontes-Ribeiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Catarina A Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
65
|
Jay TR, von Saucken VE, Muñoz B, Codocedo JF, Atwood BK, Lamb BT, Landreth GE. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 2019; 67:1873-1892. [PMID: 31265185 DOI: 10.1002/glia.23664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Variants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2-/- mice. We found that loss of TREM2 impairs normal neurodevelopment, resulting in reduced synapse number across the cortex and hippocampus in 1-month-old mice. This reduction in synapse number was not due directly to alterations in interactions between microglia and synapses. Rather, TREM2 was required for microglia to limit synaptic engulfment by astrocytes during development. While these changes were largely normalized later in adulthood, high fat diet administration was sufficient to reinitiate TREM2-dependent modulation of synapse loss. Together, this identifies a novel role for microglia in instructing synaptic pruning by astrocytes to broadly regulate appropriate synaptic refinement, and suggests novel candidate mechanisms for how TREM2 and microglia could influence synaptic loss in brain injury and disease.
Collapse
Affiliation(s)
- Taylor R Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Victoria E von Saucken
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
66
|
Shi L, Qalieh A, Lam MM, Keil JM, Kwan KY. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 2019; 10:2588. [PMID: 31197172 PMCID: PMC6565622 DOI: 10.1038/s41467-019-10411-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
The brain is a genomic mosaic shaped by cellular responses to genome damage. Here, we manipulate somatic genome stability by conditional Knl1 deletion from embryonic mouse brain. KNL1 mutations cause microcephaly and KNL1 mediates the spindle assembly checkpoint, a safeguard against chromosome missegregation and aneuploidy. We find that following Knl1 deletion, segregation errors in mitotic neural progenitor cells give rise to DNA damage on the missegregated chromosomes. This triggers rapid p53 activation and robust apoptotic and microglial phagocytic responses that extensively eliminate cells with somatic genome damage, thus causing microcephaly. By leaving only karyotypically normal progenitors to continue dividing, these mechanisms provide a second safeguard against brain somatic aneuploidy. Without Knl1 or p53-dependent safeguards, genome-damaged cells are not cleared, alleviating microcephaly, but paradoxically leading to total pre-weaning lethality. Thus, mitotic genome damage activates robust responses to eliminate somatic mutant cells, which if left unpurged, can impact brain and organismal fitness.
Collapse
Affiliation(s)
- Lei Shi
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adel Qalieh
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mandy M Lam
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason M Keil
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth Y Kwan
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
67
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
68
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Kuil LE, Oosterhof N, Geurts SN, van der Linde HC, Meijering E, van Ham TJ. Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. Dis Model Mech 2019; 12:dmm037762. [PMID: 30765415 PMCID: PMC6451432 DOI: 10.1242/dmm.037762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Microglia are brain-resident macrophages, which have specialized functions important in brain development and in disease. They colonize the brain in early embryonic stages, but few factors that drive the migration of yolk sac macrophages (YSMs) into the embryonic brain, or regulate their acquisition of specialized properties, are currently known. Here, we present a CRISPR/Cas9-based in vivo reverse genetic screening pipeline to identify new microglia regulators using zebrafish. Zebrafish larvae are particularly suitable due to their external development, transparency and conserved microglia features. We targeted putative microglia regulators, by Cas9/gRNA complex injections, followed by Neutral-Red-based visualization of microglia. Microglia were quantified automatically in 3-day-old larvae using a software tool we called SpotNGlia. We identified that loss of zebrafish colony-stimulating factor 1 receptor (Csf1r) ligand, Il34, caused reduced microglia numbers. Previous studies on the role of IL34 in microglia development in vivo were ambiguous. Our data, and a concurrent paper, show that, in zebrafish, il34 is required during the earliest seeding of the brain by microglia. Our data also indicate that Il34 is required for YSM distribution to other organs. Disruption of the other Csf1r ligand, Csf1, did not reduce microglia numbers in mutants, whereas overexpression increased the number of microglia. This shows that Csf1 can influence microglia numbers, but might not be essential for the early seeding of the brain. In all, we identified il34 as a modifier of microglia colonization, by affecting distribution of YSMs to target organs, validating our reverse genetic screening pipeline in zebrafish.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Samuël N Geurts
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
- Quantitative Imaging, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
70
|
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 2019; 16:53. [PMID: 30823925 PMCID: PMC6397457 DOI: 10.1186/s12974-019-1434-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Development of central nervous system (CNS) is regulated by both intrinsic and peripheral signals. Previous studies have suggested that environmental factors affect neurological activities under both physiological and pathological conditions. Although there is anatomical separation, emerging evidence has indicated the existence of bidirectional interaction between gut microbiota, i.e., (diverse microorganisms colonizing human intestine), and brain. The cross-talk between gut microbiota and brain may have crucial impact during basic neurogenerative processes, in neurodegenerative disorders and tumors of CNS. In this review, we discuss the biological interplay between gut-brain axis, and further explore how this communication may be dysregulated in neurological diseases. Further, we highlight new insights in modification of gut microbiota composition, which may emerge as a promising therapeutic approach to treat CNS disorders.
Collapse
Affiliation(s)
- Qianquan Ma
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
71
|
Lima Caldeira G, Peça J, Carvalho AL. New insights on synaptic dysfunction in neuropsychiatric disorders. Curr Opin Neurobiol 2019; 57:62-70. [PMID: 30743178 DOI: 10.1016/j.conb.2019.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Growing evidence implicates synaptic proteins in the pathogenesis of neuropsychiatric disorders such as autism spectrum disorder (ASD), intellectual disability (ID) and schizophrenia. In fact, mutations in genes encoding synaptic proteins are enriched and overlap among different conditions highlighting the complex and pleiotropic nature of these disorders. In this review, we discuss recently described candidate genes that affect excitatory synapse function and result in changes in spine number and morphology. Spine pathology has been observed in several animal models of disease and in human brain post-mortem samples from ID, ASD, and schizophrenia patients. Recent data point to convergent mechanisms, such as dysregulation of the actin cytoskeleton and dysfunction of microglia synaptic remodeling, underlying dendritic spine dysgenesis. Interestingly, the reversion of important pathologic features, including spine abnormalities, has been observed in adult animal models of neuropsychiatric disorders, suggesting that therapies may not be restricted to a specific developmental window. Shedding light on the specific mechanisms impacted in neuropsychiatric disorders will undeniably contribute to the development of more directed and personalized therapies.
Collapse
Affiliation(s)
- Gladys Lima Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
72
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
73
|
Anderson SR, Vetter ML. Developmental roles of microglia: A window into mechanisms of disease. Dev Dyn 2019; 248:98-117. [PMID: 30444278 PMCID: PMC6328295 DOI: 10.1002/dvdy.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are engineers of the central nervous system (CNS) both in health and disease. In addition to the canonical immunological roles of clearing damaging entities and limiting the spread of toxicity and death, microglia remodel the CNS throughout life. While they have been extensively studied in disease and injury, due to their highly variable functions, their precise role in these contexts still remains uncertain. Over the past decade, we have greatly expanded our understanding of microglial function, including their essential homeostatic roles during development. Here, we review these developmental roles, identify parallels in disease, and speculate whether developmental mechanisms re-emerge in disease and injury. Developmental Dynamics 248:98-117, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah R Anderson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
74
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
75
|
Embryonic Neocortical Microglia Express Toll-Like Receptor 9 and Respond to Plasmid DNA Injected into the Ventricle: Technical Considerations Regarding Microglial Distribution in Electroporated Brain Walls. eNeuro 2018; 5:eN-MNT-0312-18. [PMID: 30627652 PMCID: PMC6325556 DOI: 10.1523/eneuro.0312-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia, the resident immune cells in the CNS, play multiple roles during development. In the embryonic cerebral wall, microglia modulate the functions of neural stem/progenitor cells through their distribution in regions undergoing cell proliferation and/or differentiation. Previous studies using CX3CR1-GFP transgenic mice demonstrated that microglia extensively survey these regions. To simultaneously visualize microglia and neural-lineage cells that interact with each other, we applied the in utero electroporation (IUE) technique, which has been widely used for gene-transfer in neurodevelopmental studies, to CX3CR1-GFP mice (males and females). However, we unexpectedly faced a technical problem: although microglia are normally distributed homogeneously throughout the mid-embryonic cortical wall with only limited luminal entry, the intraventricular presence of exogenously derived plasmid DNAs induced microglia to accumulate along the apical surface of the cortex and aggregate in the choroid plexus. This effect was independent of capillary needle puncture of the brain wall or application of electrical pulses. The microglial response occurred at plasmid DNA concentrations lower than those routinely used for IUE, and was mediated by activation of Toll-like receptor 9 (TLR9), an innate immune sensor that recognizes unmethylated cytosine-phosphate guanosine motifs abundant in microbial DNA. Administration of plasmid DNA together with oligonucleotide 2088, the antagonist of TLR9, partially restored the dispersed intramural localization of microglia and significantly decreased luminal accumulation of these cells. Thus, via TLR9, intraventricular plasmid DNA administration causes aberrant distribution of embryonic microglia, suggesting that the behavior of microglia in brain primordia subjected to IUE should be carefully interpreted.
Collapse
|
76
|
Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Front Immunol 2018; 9:2325. [PMID: 30344525 PMCID: PMC6182051 DOI: 10.3389/fimmu.2018.02325] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function. However, the current understanding of the mechanisms controlling the maturation and function of microglia is obscure, especially regarding the extrinsic factors affecting microglial function during the developmental process. The gut microflora has been shown to significantly influence microglia from before birth until adulthood, and the metabolites generated by the microbiota regulate the inflammation response mediated by microglia in the CNS; this inspired our hypothesis that microglia act as a critical mediator between the gut microbiome and CNS diseases. Herein, we highlight and discuss current findings that show the influence of host microbiome, as a crucial extrinsic factor, on microglia within the CNS. In addition, we summarize the CNS diseases associated with both the host microbiome and microglia and explore the potential pathways by which the gut bacteria influence the pathogenesis of CNS diseases. Our work is thus a comprehensive theoretical foundation for studies on the gut-microglia connection in the development of CNS diseases; and provides great potential for researchers to target pathways associated with the gut-microglia connection and overcome CNS diseases.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
77
|
Konishi H, Kiyama H, Ueno M. Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci 2018; 77:18-25. [DOI: 10.1016/j.ijdevneu.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological DisordersBrain Research InstituteNiigata UniversityNiigata951‐8585Japan
| |
Collapse
|
78
|
De Biase LM, Bonci A. Region-Specific Phenotypes of Microglia: The Role of Local Regulatory Cues. Neuroscientist 2018; 25:314-333. [PMID: 30280638 DOI: 10.1177/1073858418800996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microglia are ubiquitous, macrophage like cells within the central nervous system (CNS) that play critical roles in supporting neuronal health and viability. They can also influence neuronal membrane properties and synaptic connectivity, positioning microglia as key cellular players in both physiological and pathological contexts. Microglia have generally been assumed to be equivalent throughout the CNS, but accumulating evidence indicates that their properties vary substantially across distinct CNS regions. In comparison to our understanding of neuronal diversity and its functional importance, our knowledge about causes and consequences of microglial regional heterogeneity is extremely limited. To fully understand how microglia influence the function of specific neuronal populations and shape heightened susceptibility of some neurons to damage and disease, greater focus on microglial heterogeneity is needed.
Collapse
Affiliation(s)
- Lindsay M De Biase
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
79
|
Hattori Y, Miyata T. Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes Cells 2018; 23:915-922. [PMID: 30144249 DOI: 10.1111/gtc.12632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023]
Abstract
Neocortical development proceeds through the formation of new zones in which neural-lineage cells are organized based on their differentiation status. Although microglia initially distribute homogeneously throughout the growing cerebral wall, they accumulate in the inner cytogenic zone, the ventricular zone (VZ) and the subventricular zone (SVZ) in the mid-embryonic stage. However, the roles of these cells remain to be elucidated. In this study, we found that microglia, despite being only a minor population of the cells that constitute the cerebral wall, promote the differentiation of neural progenitor cells by frequently moving throughout the cortex; their migration is mediated by the CXCL12/CXCR4 system. Pulse-chase experiments confirmed that microglia help Pax6+ stem-like cells to differentiate into Tbr2+ intermediate progenitors. Further, monitoring of microglia by live imaging showed that administration of AMD3100, an antagonist of CXCR4, dampened microglial movement and decreased microglial surveillance throughout the cortex. In particular, arrest of microglial motion led to a prominent decrease in the abundance of Tbr2+ cells in the SVZ. Based on our findings, we propose that extensive surveillance by microglia contributes to the efficient functioning of these cells, thereby regulating the differentiation of neural stem-like cells.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
80
|
Thion MS, Garel S. [Microbiome and microglia: prenatal and postnatal interactions diverge according to sex]. Med Sci (Paris) 2018; 34:527-529. [PMID: 30067209 DOI: 10.1051/medsci/20183406011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL université Paris, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL université Paris, 75005 Paris, France
| |
Collapse
|
81
|
Bazzi W, Cattenoz PB, Delaporte C, Dasari V, Sakr R, Yuasa Y, Giangrande A. Embryonic hematopoiesis modulates the inflammatory response and larval hematopoiesis in Drosophila. eLife 2018; 7:e34890. [PMID: 29992900 PMCID: PMC6040882 DOI: 10.7554/elife.34890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Recent lineage tracing analyses have significantly improved our understanding of immune system development and highlighted the importance of the different hematopoietic waves. The current challenge is to understand whether these waves interact and whether this affects the function of the immune system. Here we report a molecular pathway regulating the immune response and involving the communication between embryonic and larval hematopoietic waves in Drosophila. Down-regulating the transcription factor Gcm specific to embryonic hematopoiesis enhances the larval phenotypes induced by over-expressing the pro-inflammatory Jak/Stat pathway or by wasp infestation. Gcm works by modulating the transduction of the Upd cytokines to the site of larval hematopoiesis and hence the response to chronic (Jak/Stat over-expression) and acute (wasp infestation) immune challenges. Thus, homeostatic interactions control the function of the immune system in physiology and pathology. Our data also indicate that a transiently expressed developmental pathway has a long-lasting effect on the immune response.
Collapse
Affiliation(s)
- Wael Bazzi
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Vasanthi Dasari
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Yoshihiro Yuasa
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
82
|
Connecting the nervous and the immune systems in evolution. Commun Biol 2018; 1:64. [PMID: 30271946 PMCID: PMC6123671 DOI: 10.1038/s42003-018-0070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 01/28/2023] Open
Abstract
Despite their great importance for biomedical research, the intricate network of relationships between macro- and microglia, in terms of development, function and evolution, remains poorly understood. Drawing inspiration from the recent meeting “Of Glia and Microglia”, held at the University of Strasbourg in December 2017, we here discuss the outstanding questions in the seemingly disparate fields of glial development, physiology and evolution, and also provide suggestions for how the field should move forward. Volker Hartenstein and Angela Giangrande discuss recent advances and future directions in glial biology and evolution in the context of a recent scientific conference. Their Comment illustrates the importance of interdisciplinary approaches to answering outstanding questions in biology.
Collapse
|
83
|
Abstract
Accumulating evidence suggests that the pathophysiology or schizophrenia involves alterations in immune functions, both peripherally and centrally. Immunopsychiatric research has provided a number of candidate biomarkers that could aid estimating the risk of developing schizophrenia and/or predicting its clinical course or outcomes. This chapter summarizes the findings of immune dysfunctions along the clinical course of schizophrenia and discusses their potential value as predictive, trait or state biomarkers. Given the convergence of findings deriving from immunology, epidemiology, and genetics, the possibility of identifying immune-based biomarkers of schizophrenia seems realistic. Despite these promises, however, the field has realized that immune dysfunctions in schizophrenia may be as heterogeneous as the disorder itself. While challenging for psychiatric nosology, this heterogeneity offers the opportunity to define patient subgroups based on the presence or absence of distinct immune dysfunctions. This stratification may be clinically relevant for schizophrenic patients as it may help establishing personalized add-on therapies or preventive interventions with immunomodulating drugs.
Collapse
Affiliation(s)
- Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
84
|
Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G, Coulpier F, Siopi E, David FS, Scholz C, Shihui F, Lum J, Amoyo AA, Larbi A, Poidinger M, Buttgereit A, Lledo PM, Greter M, Chan JKY, Amit I, Beyer M, Schultze JL, Schlitzer A, Pettersson S, Ginhoux F, Garel S. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2017; 172:500-516.e16. [PMID: 29275859 PMCID: PMC5786503 DOI: 10.1016/j.cell.2017.11.042] [Citation(s) in RCA: 510] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease. Microglia undergo sequential phases of differentiation during development The maternal microbiome influences microglial properties during prenatal stages The absence of the microbiome has a sex- and time-specific impact on microglia Microbiome depletions have acute and long-term effects on microglial properties
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Pauline Grisel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Ronnie Blecher
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Thomas Ulas
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Paola Squarzoni
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Guillaume Hoeffel
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| | - Fanny Coulpier
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Eleni Siopi
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Friederike Sophie David
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Claus Scholz
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | | | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Anne Buttgereit
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Pierre-Marie Lledo
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Joachim Ludwig Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform of Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany
| | - Andreas Schlitzer
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Sven Pettersson
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Sonia Garel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
85
|
Hanamsagar R, Bilbo SD. Environment matters: microglia function and dysfunction in a changing world. Curr Opin Neurobiol 2017; 47:146-155. [PMID: 29096243 DOI: 10.1016/j.conb.2017.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023]
Abstract
The immune system is our interface with the environment, and immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy or the early postnatal period, for example, in response to infection, may disrupt the normal developmental trajectory of microglia and consequently their interactions with neurons, thereby contributing to the risk for neurological disorders. The current article outlines recent findings on the impact of diverse, pervasive environmental challenges, beyond infection, including air pollution and maternal stress; and their impact on microglial development and its broad implications for neural pathologies.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pediatrics, Harvard Medical School, and Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02129, United States
| | - Staci D Bilbo
- Department of Pediatrics, Harvard Medical School, and Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02129, United States.
| |
Collapse
|