51
|
Zhang J, Yue L, Wu X, Liu H, Wang W. Function of Small Peptides During Male-Female Crosstalk in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671196. [PMID: 33968121 PMCID: PMC8102694 DOI: 10.3389/fpls.2021.671196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and development. Successful sexual reproduction in plants requires extensive communication between male and female gametophytes, their gametes, and with the surrounding sporophytic tissues. In the past decade, it has been well-documented that small peptides participate in many important reproductive processes such as self-incompatibility, pollen tube growth, pollen tube guidance, and gamete interaction. Here, we provide a comprehensive overview of the peptides regulating the processes of male-female crosstalk in plant, aiming at systematizing the knowledge on the sexual reproduction, and signaling of plant peptides in future.
Collapse
|
52
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
53
|
Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman JM, Qin Y, Zhu X, Yang Z. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev Cell 2021; 56:1030-1042.e6. [PMID: 33756107 DOI: 10.1016/j.devcel.2021.02.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Invasive or penetrative growth is critical for developmental and reproductive processes (e.g., pollen tube penetration of pistils) and disease progression (e.g., cancer metastasis and fungal hyphae invasion). The invading or penetrating cells experience drastic changes in mechanical pressure from the surroundings and must balance growth with cell integrity. Here, we show that Arabidopsis pollen tubes sense and/or respond to mechanical changes via a cell-surface receptor kinase Buddha's Paper Seal 1 (BUPS1) while emerging from compressing female tissues. BUPS1-defective pollen tubes fail to maintain cell integrity after emergence from these tissues. The mechano-transduction function of BUPS1 is established by using a microfluidic channel device mimicking the mechanical features of the in vivo growth path. BUPS1-based mechano-transduction activates Rho-like GTPase from Plant 1 (ROP1) GTPase to promote exocytosis that facilitates secretion of BUPS1's ligands for mechanical signal amplification and cell wall rigidification in pollen tubes. These findings uncover a membrane receptor-based mechano-transduction system for cells to cope with the physical challenges during invasive or penetrative growth.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jun Lu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People's Republic of China
| | - Yuqin Zhang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingzhe Guo
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenwei Lin
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyue Zhu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
54
|
Kim D, Yang J, Gu F, Park S, Combs J, Adams A, Mayes HB, Jeon SJ, Bahk JD, Nielsen E. A temperature-sensitive FERONIA mutant allele that alters root hair growth. PLANT PHYSIOLOGY 2021; 185:405-423. [PMID: 33721904 PMCID: PMC8133571 DOI: 10.1093/plphys/kiaa051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 05/22/2023]
Abstract
In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sungjin Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonathon Combs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Adams
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Heather B Mayes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Su Jeong Jeon
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
55
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
56
|
Lee HK, Goring DR. Two subgroups of receptor-like kinases promote early compatible pollen responses in the Arabidopsis thaliana pistil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1198-1211. [PMID: 33097927 DOI: 10.1093/jxb/eraa496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, cell-cell communication between the compatible pollen grain/growing pollen tube and the pistil is an essential component for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptors that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains regarding the nature of the regulators that function at the earlier stages which are essential steps leading to fertilization. Here, we report on new functions for A. thaliana Receptor-Like Kinase (RLK) genes belonging to the LRR-II and LRR-VIII-2 RLK subgroups in the female reproductive tract to regulate compatible pollen hydration and the early stages of pollen tube growth. Mutant pistils for the A. thaliana RKF1 gene cluster were observed to support reduced wild-type pollen hydration and, when combined with the SERK1 and SERK3/BAK1 mutations, reduced pollen tube travel distances occurred. As these mutant pistils displayed a wild-type morphology, we propose that the observed altered compatible pollen responses result from an impaired pollen-pistil dialogue at these early stages.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
57
|
Yu CY, Zhang HK, Wang N, Gao XQ. Glycosylphosphatidylinositol-anchored proteins mediate the interactions between pollen/pollen tube and pistil tissues. PLANTA 2021; 253:19. [PMID: 33394122 DOI: 10.1007/s00425-020-03526-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In flowering plants, pollen germination on the stigma and pollen tube growth in pistil tissues are critical for sexual plant reproduction, which are involved in the interactions between pollen/pollen tube and pistil tissues. GPI-anchored proteins (GPI-APs) are located on the external surface of the plasma membrane and function in various processes of sexual plant reproduction. The evidences suggest that GPI-APs participate in endosome machinery, Ca2+ oscillations, the development of the transmitting tract, the maintenance of the integrity of pollen tube, the enhancement of interactions of the receptor-like kinase (RLK) and ligand, and guidance of the growth of pollen tube, and so on. In this review, we will summarize the recent progress on the roles of GPI-APs in the interactions between pollen/pollen tube and pistil tissues during pollination, such as pollen germination on the stigma, pollen tube growth in the transmitting tract, pollen tube guidance to the ovule, and pollen tube reception in the embryo sac. We will also discuss the future outlook of GPI-APs in the interactions between pollen/pollen tube and pistil tissues.
Collapse
Affiliation(s)
- Cai Yu Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Kai Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
58
|
Wang ZQ, Yu TF, Sun GZ, Zheng JC, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:614909. [PMID: 33815437 PMCID: PMC8012678 DOI: 10.3389/fpls.2021.614909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Qi Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- *Correspondence: Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Wen-Liang Wei,
| |
Collapse
|
59
|
de Azevedo Manhães AME, Ortiz-Morea FA, He P, Shan L. Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:79-101. [PMID: 33305880 PMCID: PMC7855669 DOI: 10.1111/jipb.13051] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants are exposed to pathogen invasions and environmental fluctuations. To overcome the challenges of their surroundings, plants acquire the potential to sense endogenous and exogenous cues, resulting in their adaptability. Hence, plants have evolved a large collection of plasma membrane-resident receptors, including RECEPTOR-LIKE KINASEs (RLKs) and RECEPTOR-LIKE PROTEINs (RLPs) to perceive those signals and regulate plant growth, development, and immunity. The ability of RLKs and RLPs to recognize distinct ligands relies on diverse categories of extracellular domains evolved. Co-regulatory receptors are often required to associate with RLKs and RLPs to facilitate cellular signal transduction. RECEPTOR-LIKE CYTOPLASMIC KINASEs (RLCKs) also associate with the complex, bifurcating the signal to key signaling hubs, such as MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascades, to regulate diverse biological processes. Here, we discuss recent knowledge advances in understanding the roles of RLKs and RLPs in plant growth, development, and immunity, and their connection with co-regulatory receptors, leading to activation of diverse intracellular signaling pathways.
Collapse
Affiliation(s)
| | - Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Amazonicas CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
60
|
Cascallares M, Setzes N, Marchetti F, López GA, Distéfano AM, Cainzos M, Zabaleta E, Pagnussat GC. A Complex Journey: Cell Wall Remodeling, Interactions, and Integrity During Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:599247. [PMID: 33329663 PMCID: PMC7733995 DOI: 10.3389/fpls.2020.599247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/05/2023]
Abstract
In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
61
|
Wang D, Liang X, Bao Y, Yang S, Zhang X, Yu H, Zhang Q, Xu G, Feng X, Dou D. A malectin-like receptor kinase regulates cell death and pattern-triggered immunity in soybean. EMBO Rep 2020; 21:e50442. [PMID: 32924279 PMCID: PMC7645207 DOI: 10.15252/embr.202050442] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Plant cells can sense conserved molecular patterns through pattern recognition receptors (PRRs) and initiate pattern-triggered immunity (PTI). Details of the PTI signaling network are starting to be uncovered in Arabidopsis, but are still poorly understood in other species, including soybean (Glycine max). In this study, we perform a forward genetic screen for autoimmunity-related lesion mimic mutants (lmms) in soybean and identify two allelic mutants, which carry mutations in Glyma.13G054400, encoding a malectin-like receptor kinase (RK). The mutants exhibit enhanced resistance to both bacterial and oomycete pathogens, as well as elevated ROS production upon treatment with the bacterial pattern flg22. Overexpression of GmLMM1 gene in Nicotiana benthamiana severely suppresses flg22-triggered ROS production and oomycete pattern XEG1-induced cell death. We further show that GmLMM1 interacts with the flg22 receptor FLS2 and its co-receptor BAK1 to negatively regulate flg22-induced complex formation between them. Our study identifies an important component in PTI regulation and reveals that GmLMM1 acts as a molecular switch to control an appropriate immune activation, which may also be adapted to other PRR-mediated immune signaling in soybean.
Collapse
Affiliation(s)
- Dongmei Wang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiangxiu Liang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yazhou Bao
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Xiong Zhang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Qian Zhang
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Guangyuan Xu
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyThe Innovative Academy of Seed DesignChinese Academy of SciencesChangchunChina
| | - Daolong Dou
- Key Laboratory of Pest Monitoring and Green ManagementMOA and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
62
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
63
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
64
|
A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nat Commun 2020; 11:4859. [PMID: 32978401 PMCID: PMC7519094 DOI: 10.1038/s41467-020-18600-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity. MAPK signaling suppresses autoimmunity mediated by the SUMM2 receptor in Arabidopsis. Here Huang et al. show that a trimeric complex consisting of the GPI anchored protein LLG1, and the two receptor-like proteins LET1 and LET2, promotes activation of SUMM2 according to MAPK signaling status.
Collapse
|
65
|
Liu J, Huang Y, Kong L, Yu X, Feng B, Liu D, Zhao B, Mendes GC, Yuan P, Ge D, Wang WM, Fontes EPB, Li P, Shan L, He P. The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. NATURE PLANTS 2020; 6:1106-1115. [PMID: 32839517 PMCID: PMC7492416 DOI: 10.1038/s41477-020-0748-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.
Collapse
Affiliation(s)
- Jun Liu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Yanyan Huang
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, P. R. China
| | - Liang Kong
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Xiao Yu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Baomin Feng
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Derui Liu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Baoyu Zhao
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Giselle C Mendes
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- National Institute of Science and Technology in Plant-Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Peiguo Yuan
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Dongdong Ge
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, P. R. China
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pingwei Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Libo Shan
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Ping He
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
66
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 PMCID: PMC7747976 DOI: 10.1016/j.xplc.2020.100084] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
67
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
68
|
Yang F, Wang T, Liu L. Pollen germination is impaired by disruption of a Shaker K + channel OsAKT1.2 in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153140. [PMID: 32114250 DOI: 10.1016/j.jplph.2020.153140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Potassium homeostasis is essential for pollen development and pollen-pistil interactions during the sexual reproduction of flowering plants. Here, we described the role of a Shaker K+ channel, OsAKT1.2, in rice pollen germination and growth. OsAKT1.2 is specifically expressed in the tricellular pollen, mature pollen grains and growing pollen tubes. Using CRISPR gene editing, we found that knockout lines did not differ from wildtype in vegetative growth, but showed decreased pollen germination rate both in the germination medium and in vivo. OsAKT1.2-GFP fusion protein was localized in the plasma membrane and enriched at the pollen tube tip. OsAKT1.2 could complement the yeast strain which is deficient in K+ intake. These findings suggest that OsAKT1.2 is associated with pollen germination and tube elongation in rice.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100093, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
69
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
70
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
71
|
Chen J, Zhu S, Ming Z, Liu X, Yu F. FERONIA cytoplasmic domain: node of varied signal outputs. ABIOTECH 2020; 1:135-146. [PMID: 36304718 PMCID: PMC9590563 DOI: 10.1007/s42994-020-00017-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
The receptor-like kinase (RLK) FERONIA (FER), located on the plasma membrane, belongs to the Catharanthus roseus RLK1-like kinase family (CrRLK1L) and participates in widespread biological processes in plants in a context-dependent fashion. Genetic studies in Arabidopsis illustrated the versatile roles that FER plays in fertilization, vegetative growth, defense and stress responses, cell-wall homeostasis, as well as protein synthesis. These studies also helped to identify genes and signal pathways involved in FER signal transduction. Despite increasingly larger numbers of studies discussing how FER senses its ligand, Rapid alkalinization factor (RALF) peptides, and further regulates downstream factors, few have shown the mechanisms of how FER mediates the specific regulation of downstream signals in context of the phosphorylation of its cytoplasmic domain. As understanding this would help in better understanding the diversity and complexity of FER function, this paper aims to review the roles of FER in regulating different signal outputs from the view of the role of its cytoplasmic domain.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082 P.R. China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082 P.R. China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004 P.R. China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082 P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082 P.R. China
| |
Collapse
|
72
|
Yang Z, Xing J, Wang L, Liu Y, Qu J, Tan Y, Fu X, Lin Q, Deng H, Yu F. Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2112-2126. [PMID: 31986202 PMCID: PMC7242082 DOI: 10.1093/jxb/erz541] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Genes that provide resistance to fungi and/or bacteria usually reduce plant growth and ultimately affect grain yield. Thus, crop breeding programs need to find genetic resources that balance disease resistance with growth. The receptor kinase FERONIA regulates cell growth and survival in Arabidopsis. Here, we investigate, in rice, the role of members of the FERONIA-like receptor (FLR) gene family in the balance between growth and the response to the fungal pathogen Magnaporthe oryzae (Pyricularia oryzae), which causes the most devastating disease in rice. We carried out genome-wide gene expression and functional screenings in rice via a gene knockout strategy, and we successfully knocked out 14 FLR genes in rice. Using these genetic resources, we found that mutations in the FLR2 and FLR11 genes provide resistance to rice blast without a profound growth penalty. Detailed analyses revealed that FLR2 mutation increased both defense-related gene expression and M. oryzae-triggered production of reactive oxygen species. Thus, our results highlight novel genetic tools for studying the underlying molecular mechanisms of enhancing disease resistance without growth penalty.
Collapse
Affiliation(s)
- Zhuhong Yang
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| | - Long Wang
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Yue Liu
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
| | - Jianing Qu
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Yang Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| | - Feng Yu
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| |
Collapse
|
73
|
Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc Natl Acad Sci U S A 2020; 117:7494-7503. [PMID: 32165538 PMCID: PMC7132299 DOI: 10.1073/pnas.2000100117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Plant reproduction relies on proper pollen tube growth to reach the female gametes. This process is highly regulated by a family of secreted signaling peptides that are recognized by cell-wall monitoring proteins to enable plant fertilization. Here, we report that these signaling peptides are sensed both by specific cell-wall and membrane-anchored proteins, which together enable cell-wall remodeling and, consequently, pollen tube growth. Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) membrane receptor-kinases/LORELEI-like GLYCOLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEINS (LLG) complexes, or by leucine-rich repeat (LRR) extensin proteins (LRXs). Here, we demonstrate that RALF peptides fold into bioactive, disulfide bond-stabilized proteins that bind the LRR domain of LRX proteins with low nanomolar affinity. Crystal structures of LRX2–RALF4 and LRX8–RALF4 complexes at 3.2- and 3.9-Å resolution, respectively, reveal a dimeric arrangement of LRX proteins, with each monomer binding one folded RALF peptide. Structure-based mutations targeting the LRX–RALF4 complex interface, or the RALF4 fold, reduce RALF4 binding to LRX8 in vitro and RALF4 function in growing pollen tubes. Mutants targeting the disulfide-bond stabilized LRX dimer interface fail to rescue lrx infertility phenotypes. Quantitative biochemical assays reveal that RALF4 binds LLGs and LRX cell-wall modules with drastically different binding affinities, and with distinct and mutually exclusive binding modes. Our biochemical, structural, and genetic analyses reveal a complex signaling network by which RALF ligands instruct different signaling proteins using distinct targeting mechanisms.
Collapse
|
74
|
Galindo‐Trigo S, Blanco‐Touriñán N, DeFalco TA, Wells ES, Gray JE, Zipfel C, Smith LM. CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep 2020; 21:e48466. [PMID: 31867824 PMCID: PMC7001495 DOI: 10.15252/embr.201948466] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023] Open
Abstract
Communication between the gametophytes is vital for angiosperm fertilisation. Multiple CrRLK1L-type receptor kinases prevent premature pollen tube burst, while another CrRLK1L protein, FERONIA (FER), is required for pollen tube reception in the female gametophyte. We report here the identification of two additional CrRLK1L homologues, HERCULES RECEPTOR KINASE 1 (HERK1) and ANJEA (ANJ), which act redundantly to promote pollen tube growth arrest at the synergid cells. HERK1 and ANJ localise to the filiform apparatus of the synergid cells in unfertilised ovules, and in herk1 anj mutants, a majority of ovules remain unfertilised due to pollen tube overgrowth, together indicating that HERK1 and ANJ act as female determinants for fertilisation. As in fer mutants, the synergid cell-specific, endomembrane protein NORTIA (NTA) is not relocalised after pollen tube reception; however, unlike fer mutants, reactive oxygen species levels are unaffected in herk1 anj double mutants. Both ANJ and HERK1 associate with FER and its proposed co-receptor LORELEI (LRE) in planta. Together, our data indicate that HERK1 and ANJ act with FER to mediate female-male gametophyte interactions during plant fertilisation.
Collapse
Affiliation(s)
- Sergio Galindo‐Trigo
- Department of Animal and Plant Sciences and the Plant Production and Protection CentreUniversity of SheffieldSheffieldUK
- Department of BiosciencesUniversity of OsloOsloNorway
| | - Noel Blanco‐Touriñán
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones CientíficasUniversidad Politécnica de ValenciaValenciaSpain
| | - Thomas A DeFalco
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Department of Molecular and Cellular Plant PhysiologyZurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Eloise S Wells
- Department of Animal and Plant Sciences and the Plant Production and Protection CentreUniversity of SheffieldSheffieldUK
| | - Julie E Gray
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Department of Molecular and Cellular Plant PhysiologyZurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Lisa M Smith
- Department of Animal and Plant Sciences and the Plant Production and Protection CentreUniversity of SheffieldSheffieldUK
| |
Collapse
|
75
|
Chaudhary A, Chen X, Gao J, Leśniewska B, Hammerl R, Dawid C, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genet 2020; 16:e1008433. [PMID: 31961852 PMCID: PMC6994178 DOI: 10.1371/journal.pgen.1008433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/31/2020] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Plant cells are encased in a semi-rigid cell wall of complex build. As a consequence, cell wall remodeling is essential for the control of growth and development as well as the regulation of abiotic and biotic stress responses. Plant cells actively sense physico-chemical changes in the cell wall and initiate corresponding cellular responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. In Arabidopsis the atypical receptor kinase STRUBBELIG (SUB) mediates tissue morphogenesis. Here, we show that SUB-mediated signal transduction also regulates the cellular response to a reduction in the biosynthesis of cellulose, a central carbohydrate component of the cell wall. SUB signaling affects early increase of intracellular reactive oxygen species, stress gene induction as well as ectopic lignin and callose accumulation upon exogenous application of the cellulose biosynthesis inhibitor isoxaben. Moreover, our data reveal that SUB signaling is required for maintaining cell size and shape of root epidermal cells and the recovery of root growth after transient exposure to isoxaben. SUB is also required for root growth arrest in mutants with defective cellulose biosynthesis. Genetic data further indicate that SUB controls the isoxaben-induced cell wall stress response independently from other known receptor kinase genes mediating this response, such as THESEUS1 or MIK2. We propose that SUB functions in a least two distinct biological processes: the control of tissue morphogenesis and the response to cell wall damage. Taken together, our results reveal a novel signal transduction pathway that contributes to the molecular framework underlying cell wall integrity signaling. Plant cells are encapsulated by a semi-rigid and biochemically complex cell wall. This particular feature has consequences for multiple biologically important processes, such as cell and organ growth or various stress responses. For a plant cell to grow the cell wall has to be modified to allow cell expansion, which is driven by outward-directed turgor pressure generated inside the cell. In return, changes in cell wall architecture need to be monitored by individual cells, and to be coordinated across cells in a growing tissue, for an organ to attain its regular size and shape. Cell wall surveillance also comes into play in the reaction against certain stresses, including for example infection by plant pathogens, many of which break through the cell wall during infection, thereby generating wall-derived factors that can induce defense responses. There is only limited knowledge regarding the molecular system that monitors the composition and status of the cell wall. Here we provide further insight into the mechanism. We show that the cell surface receptor STRUBBELIG, previously known to control organ development in Arabidopsis, also promotes the cell’s response to reduced amounts of cellulose, a main component of the cell wall.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Xia Chen
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jin Gao
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Barbara Leśniewska
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- * E-mail:
| |
Collapse
|
76
|
Zhang MJ, Zhang XS, Gao XQ. ROS in the Male-Female Interactions During Pollination: Function and Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:177. [PMID: 32180782 PMCID: PMC7059789 DOI: 10.3389/fpls.2020.00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 05/18/2023]
Abstract
The male-female interactions in pollination mediate pollen hydration and germination, pollen tube growth and fertilization. Reactive oxygen species (ROS) derived from both male and female tissues play regulatory roles for the communication between the pollen/pollen tube and female tissues at various stages, such as pollen hydration and germination on the stigma, pollen tube growth in the pistil and pollen tube reception in the female gametophyte. In this minireview, we primarily summarize the recent progress on the roles of ROS signaling in male-female interactions during pollination and discuss several ROS-regulated downstream signaling pathways for these interactions. Furthermore, several ROS-involved downstream pathways are outlined, such as Ca2+ signaling, cell wall cytomechanics, the redox modification of CRP, and cell PCD. At the end, we address the roles of ROS in pollen tube guidance and fertilization as future questions that merit study.
Collapse
|
77
|
Feng H, Liu C, Fu R, Zhang M, Li H, Shen L, Wei Q, Sun X, Xu L, Ni B, Li C. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for ANXUR/BUPS Receptor Kinases in Arabidopsis. MOLECULAR PLANT 2019; 12:1612-1623. [PMID: 31541739 DOI: 10.1016/j.molp.2019.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
Pollen tube growth is crucial for successful fertilization. In Arabidopsis thaliana, the ANXUR (ANX)/BUPS receptor kinase complex controls and maintains pollen tube growth in response to autocrine rapid alkalinization factor 4/19 (RALF4/19) signaling; however, the molecular and cellular mechanisms underlying the ANX/BUPS-mediated regulation of pollen tube growth remain unclear. In this study, we found that pollen-specific LORELEI-like GPI-anchored proteins 2 and 3 (LLG2/3) promote pollen tube growth in vitro and in vivo. LLG2/3 interacte with ANX/BUPS in a RALF4-concentration-dependent manner, suggesting that ANX/BUPS and LLG2/3 might form a receptor-coreceptor complex for perceiving RALF peptide signals. Disruption of the ANX/BUPS-LLG2/3 interaction led to the cytoplasmic retention of ANX1/2, in either llg2/3 knockdown mutants or in anx1/2 mutants lacking the J region, which mediates the ANX/BUPS-LLG2/3 interaction. Moreover, we found that RALF4 induced the production of reactive oxygen species (ROS), which stimulate pollen tube growth and reduce pollen burst rate. ROS levels are reduced in the pollen tubes of LLG2/3 RNAi lines, and application of exogenous H2O2 could partially rescue the defective pollen tube growth of LLG2/3 RNAi lines. Taken together, our study identifies LLG2/3 as novel regulatory components of pollen tube growth, and shows that they chaperone ANX/BUPS for secretion to the apical plasma membrane of pollen tube and act as coreceptors of ANX/BUPS in the activation of ROS production for promoting pollen tube growth.
Collapse
Affiliation(s)
- Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chen Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Fu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minmin Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianping Shen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiqi Wei
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiang Sun
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Bin Ni
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
78
|
Vogler H, Santos-Fernandez G, Mecchia MA, Grossniklaus U. To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:131-139. [PMID: 31648148 DOI: 10.1016/j.pbi.2019.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 05/12/2023]
Abstract
In plants, cell-shape is defined by the cell wall, a complex network of polymers located outside the plasma membrane. During cell growth, cell wall properties have to be adjusted, assuring cell expansion without compromising cell integrity. Plasma membrane-located receptors sense cell wall properties, transducing extracellular signals into intracellular cascades through the cell wall integrity (CWI) pathway that, in turn, leads to adjustments in the regulation and composition of the cell wall. Using pollen tube growth as a single celled model system, we describe the importance of RAPID ALKALINIZATION FACTOR (RALF) peptides as sensors of cell wall integrity. RALF peptides can mediate the communication between cell wall components and plasma membrane-localized receptor-like kinases (RLKs) of the CrRLK1L family. The subsequent activation of intracellular pathways regulates H+, Ca2+, and ROS levels in the cell and apoplast, thereby modulating cell wall integrity. Interestingly, the RALF-CrRLK1L module and some of the components working up- and downstream of the RLK is conserved in many other developmental and physiological signaling processes.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Gorka Santos-Fernandez
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Martin A Mecchia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
79
|
Westermann J, Streubel S, Franck CM, Lentz R, Dolan L, Boisson-Dernier A. An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Curr Biol 2019; 29:3899-3908.e3. [PMID: 31679933 DOI: 10.1016/j.cub.2019.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023]
Abstract
Rooting cells and pollen tubes-key adaptative innovations that evolved during the colonization and subsequent radiation of plants on land-expand by tip growth. Tip growth relies on a tight coordination between the protoplast growth and the synthesis/remodeling of the external cell wall. In root hairs and pollen tubes of the seed plant Arabidopsis thaliana, cell wall integrity (CWI) mechanisms monitor this coordination through the Malectin-like receptor kinases (MLRs), such as AtANXUR1 and AtFERONIA, that act upstream of the AtMARIS PTI1-like kinase. Here, we show that rhizoid growth in the early diverging plant, Marchantia polymorpha, is also controlled by an MLR and PTI1-like signaling module. Rhizoids, root hairs, and pollen tubes respond similarly to disruption of MLR and PTI1-like encoding genes. Thus, the MLR and PTI1-like signaling module that controls CWI during tip growth is conserved between M. polymorpha and A. thaliana, suggesting that it was active in the common ancestor of land plants.
Collapse
Affiliation(s)
| | - Susanna Streubel
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Roswitha Lentz
- University of Cologne, Biocenter, 50674 Cologne, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
80
|
Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, Xiao J, Gu H, Wu HM, Dong J, Dresselhaus T, Cheung AY, Qu LJ. LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Curr Biol 2019; 29:3256-3265.e5. [PMID: 31564495 PMCID: PMC7179479 DOI: 10.1016/j.cub.2019.08.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
In angiosperms, two sperm cells are transported and delivered by the pollen tube to the ovule to achieve double fertilization. Extensive communication takes place between the pollen tube and the female tissues until the sperm cell cargo is ultimately released. During this process, a pollen tube surface-located receptor complex composed of ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1/2 (BUPS1/2) was reported to control the maintenance of pollen tube integrity by perceiving the autocrine peptide ligands rapid alkalinization factor 4 and 19 (RALF4/19). It was further hypothesized that pollen-tube rupture to release sperm is caused by the paracrine RALF34 peptide from the ovule interfering with this signaling pathway. In this study, we identified two Arabidopsis pollen-tube-expressed glycosylphosphatidylinositol-anchored proteins (GPI-APs), LORELEI-like-GPI-anchored protein 2 (LLG2) and LLG3, as co-receptors in the BUPS-ANX receptor complex. llg2 llg3 double mutants exhibit severe fertility defects. Mutant pollen tubes rupture early during the pollination process. Furthermore, LLG2 and LLG3 interact with ectodomains of both BUPSs and ANXURs, and this interaction is remarkably enhanced by the presence of RALF4/19 peptides. We further demonstrate that the N terminus (including a YISY motif) of the RALF4 peptide ligand interacts strongly with BUPS-ANX receptors but weakly with LLGs and is essential for its biological function, and its C-terminal region is sufficient for LLG binding. In conclusion, we propose that LLG2/3 serve as co-receptors during BUPS/ANX-RALF signaling and thereby further establish the importance of GPI-APs as key regulators in plant reproduction processes.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuling Zhao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiahao Jiang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Tianxu Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China.
| |
Collapse
|
81
|
Zhong S, Qu LJ. Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:7-14. [PMID: 30999163 DOI: 10.1016/j.pbi.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 05/10/2023]
Abstract
In flowering plants, extensive male-female interactions during pollen germination on the stigma, pollen tube growth and guidance in the transmitting tract, and pollen tube reception by the female gametophyte are required for successful double fertilization in which various signaling cascades are involved. Peptide/receptor-like kinase-mediated signaling has been found playing important roles in these male-female interactions. Here, we mainly summarized the progress made on the regulatory roles of peptide/receptor-like kinase-mediated signaling pathways in four critical stages during reproduction in higher plants.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
82
|
Landrein B, Ingram G. Connected through the force: mechanical signals in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3507-3519. [PMID: 30821332 DOI: 10.1093/jxb/erz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 05/12/2023]
Abstract
As multicellular organisms, plants acquire characteristic shapes through a complex set of biological processes known as morphogenesis. Biochemical signalling underlies much of development, as it allows cells to acquire specific identities based on their position within tissues and organs. However, as growing physical structures, plants, and their constituent cells, also experience internal and external physical forces that can be perceived and can influence key processes such as growth, polarity, and gene expression. This process, which adds another layer of control to growth and development, has important implications for plant morphogenesis. This review provides an overview of recent research into the role of mechanical signals in plant development and aims to show how mechanical signalling can be used, in concert with biochemical signals, as a cue allowing cells and tissues to coordinate their behaviour and to add robustness to developmental processes.
Collapse
Affiliation(s)
- Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| |
Collapse
|
83
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
84
|
Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:809-837. [PMID: 30822112 DOI: 10.1146/annurev-arplant-050718-100133] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA;
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | | |
Collapse
|
85
|
Ge Z, Cheung AY, Qu LJ. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. THE NEW PHYTOLOGIST 2019; 222:687-693. [PMID: 30556141 DOI: 10.1111/nph.15645] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/30/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 687 I. Introduction 687 II. Pollen tube membrane-localized receptors coordinate cell integrity and sperm release 689 III. RALF peptides mediate autocrine and paracrine signaling 689 IV. ROS and ion channel signaling mediate intracellular response 690 V. Involvements from pollen tube cell wall components 690 VI. Concluding remarks 691 Acknowledgements 692 Author contributions 692 References 692 SUMMARY: Unlike in animals, sperm in flowering plants are immotile and they are embraced as passive cargoes by a pollen tube which embarks on a long journey in the pistil to deliver them to the female gametophyte for fertilization. How the pollen tube switches from a rapid polarized growth towards its target to an abrupt disintegration for sperm cell release inside the female gametophyte is puzzling. Recent studies have shown that members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase family and their ligands, 5-kDa cysteine-rich peptide rapid alkalinization factors (RALFs), engage in an intricate balancing act involving autocrine and paracrine signaling to maintain pollen tube growth and induce timely tube rupture at the spatially confined pollen tube-female gametophyte interface. Here, we review recent progress related to pollen tube integrity control, mainly focusing on the molecular understanding of signaling as well as intracellular signaling nodes in Arabidopsis. Some missing links and future perspectives are also discussed.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
- The National Plant Gene Research Center (Beijing), Beijing, 100101, China
| |
Collapse
|
86
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
87
|
Muro K, Matsuura-Tokita K, Tsukamoto R, Kanaoka MM, Ebine K, Higashiyama T, Nakano A, Ueda T. ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun Biol 2018; 1:152. [PMID: 30272028 PMCID: PMC6158268 DOI: 10.1038/s42003-018-0158-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
During plant reproduction, sperm cells are delivered to ovules through growing pollen tubes. This process involves tip-localized receptor kinases regulating integrity and/or guidance of pollen tubes, whose localizations must be strictly regulated. However, the molecular basis for tip-localization of these molecules remains largely elusive. Here we show that a pair of AP180 N-terminal homology domain-containing proteins, PICALM5a and PICALM5b, is responsible for the tip-localization of ANXUR receptor kinases acting in an autocrine signaling pathway required for pollen tube integrity in Arabidopsis thaliana. The picalm5a picalm5b double mutant exhibits reduced fertility, and the double mutant pollen is defective in pollen tube integrity with premature bursts. The tip localization of ANXUR proteins is severely impaired in picalm5a picalm5b pollen tubes, whereas another receptor kinase PRK6 acting in pollen tube guidance is not affected. Based on these results, we propose that PICALM5 proteins serve as specific loading adaptors to recycle ANXUR proteins.
Collapse
Affiliation(s)
- Keita Muro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kumi Matsuura-Tokita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
88
|
Nagashima Y, von Schaewen A, Koiwa H. Function of N-glycosylation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:70-79. [PMID: 30080642 DOI: 10.1016/j.plantsci.2018.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Protein N-glycosylation is one of the major post-translational modifications in eukaryotic cells. In lower unicellular eukaryotes, the known functions of N-glycans are predominantly in protein folding and quality control within the lumen of the endoplasmic reticulum (ER). In multicellular organisms, complex N-glycans are important for developmental programs and immune responses. However, little is known about the functions of complex N-glycans in plants. Formed in the Golgi apparatus, plant complex N-glycans have structures distinct from their animal counterparts due to a set of glycosyltransferases unique to plants. Severe basal underglycosylation in the ER lumen induces misfolding of newly synthesized proteins, which elicits the unfolded protein response (UPR) and ER protein quality control (ERQC) pathways. The former promotes higher capacity of proper protein folding and the latter degradation of misfolded proteins to clear the ER. Although our knowledge on plant complex N-glycan functions is limited, genetic studies revealed the importance of complex N-glycans in cellulose biosynthesis and growth under stress.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
89
|
Richter J, Watson JM, Stasnik P, Borowska M, Neuhold J, Berger M, Stolt-Bergner P, Schoft V, Hauser MT. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci Rep 2018; 8:12182. [PMID: 30111865 PMCID: PMC6093868 DOI: 10.1038/s41598-018-30711-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISPR/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously. We introduce single mutations within and deletions between MDS genes as well as knock-outs of the whole 11 kb gene cluster. The large MDS cluster deletion was inherited in up to 25% of plants lacking the CRISPR/Cas9 construct in the T2 generation. In contrast to described phenotypes of already characterized CrRLK1L mutants, quadruple mds knock-outs were fully fertile, developed normal root hairs and trichomes and responded to pharmacological inhibition of cellulose biosynthesis similar to wildtype. Recently, we demonstrated the role of four CrRLK1L in growth adaptation to metal ion stress. Here we show the involvement of MDS genes in response to Ni2+ during hypocotyl elongation and to Cd2+ and Zn2+ during root growth. Our finding supports the model of an organ specific network of positively and negatively acting CrRLK1Ls.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - James Matthew Watson
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Peter Stasnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Monika Borowska
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Jana Neuhold
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Matthias Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Vera Schoft
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
90
|
Fan M, Zhang C, Shi L, Liu C, Ma W, Chen M, Liu K, Cai F, Wang G, Wei Z, Jiang M, Liu Z, Javeed A, Lin F. ZmSTK1 and ZmSTK2, encoding receptor-like cytoplasmic kinase, are involved in maize pollen development with additive effect. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1402-1414. [PMID: 29327510 PMCID: PMC6041449 DOI: 10.1111/pbi.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 05/11/2023]
Abstract
Pollen germination and pollen tube growth are important physiological processes of sexual reproduction of plants and also are involved in signal transduction. Our previous study reveals that ZmSTK1 and ZmSTK2 are two receptor-like cytoplasmic kinases (RLCK) homologs in Zea mays as members of receptor-like protein kinase (RLK) subfamily, sharing 86% identity at the amino acid level. Here, we report that ZmSTK1 and ZmSTK2, expressed at late stages of pollen development, regulate maize pollen development with additive effect. ZmSTK1 or ZmSTK2 mutation exhibited severe pollen transmission deficiency, which thus influenced pollen fertility. Moreover, the kinase domains of ZmSTKs were cross-interacted with C-terminus of enolases detected by co-immunoprecipitation (Co-IP) and yeast two-hybrid system (Y2H), respectively. Further, the detective ZmSTK1 or ZmSTK2 was associated with decreased activity of enolases and also reduced downstream metabolite contents, which enolases are involved in glycolytic pathway, such as phosphoenolpyruvate (PEP), pyruvate, ADP/ATP, starch, glucose, sucrose and fructose. This study reveals that ZmSTK1 and ZmSTK2 regulate maize pollen development and indirectly participate in glycolytic pathway.
Collapse
Affiliation(s)
- Mingxia Fan
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Chunyu Zhang
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lei Shi
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Chen Liu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Wenjuan Ma
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Meiming Chen
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Kuichen Liu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Fengchun Cai
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Guohong Wang
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Zhengyi Wei
- Laboratory of Plant Bioreactor and Genetics EngineeringJilin Provincial Key Laboratory of Agricultural BiotechnologyAgro‐Biotechnology Research InstituteJilin Academy of Agricultural SciencesJilinChangchunChina
| | - Min Jiang
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Zaochang Liu
- Shanghai Agrobiological Gene CenterShanghai Academy of Agricultural SciencesShanghaiChina
| | - Ansar Javeed
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Feng Lin
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
91
|
Zhu L, Chu LC, Liang Y, Zhang XQ, Chen LQ, Ye D. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:474-486. [PMID: 29763520 DOI: 10.1111/tpj.13963] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 05/10/2023]
Abstract
In flowering plants, the interaction of pollen tubes with female tissues is important for the accomplishment of double fertilization. Little information is known about the mechanisms that underlie signalling between pollen tubes and female tissues. In this study, two Arabidopsis pollen tube-expressed CrRLK1L protein kinases, Buddha's Paper Seal 1 (BUPS1) and BUPS2, were identified as being required for normal tip growth of pollen tubes in the pistil. They are expressed prolifically in pollen and pollen tubes and are localized on the plasma membrane of the pollen tube tip region. Mutations in BUPS1 drastically reduced seed set. Most of the bups1 mutant pollen tubes growing in the pistil exhibited a swollen pollen tube tip, leading to failure of fertilization. The bups2 pollen tubes had a slightly abnormal morphology but could still accomplish double fertilization. The bups1 bups2 double mutant exhibited a slightly enhanced phenotype compared to the single bups1 mutants. The BUPS1 proteins could form homomers and heteromers with BUPS2, whereas BUPS2 could only form heteromers with BUPS1. The BUPS proteins could interact with the Arabidopsis pollen-expressed RopGEFs in the yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. The results indicated that the BUPSs may mediate normal polar growth of pollen tubes in the pistil.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang-Cui Chu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
92
|
Azevedo RF, Gonçalves‐Vidigal MC, Oblessuc PR, Melotto M. The common bean COK-4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defence. MOLECULAR PLANT PATHOLOGY 2018; 19:1765-1778. [PMID: 29352746 PMCID: PMC6638044 DOI: 10.1111/mpp.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 05/30/2023]
Abstract
Receptor-like kinases are membrane proteins that can be shared by diverse signalling pathways. Among them, the Arabidopsis thaliana FERONIA (FER) plays a role in the balance between distinct signals to control growth and defence. We have found that COK-4, a putative kinase encoded in the common bean anthracnose resistance locus Co-4, which is transcriptionally regulated during the immune response, is highly similar to the kinase domain of FER. To assess whether COK-4 is a functional orthologue of FER, we expressed COK-4 in the wild-type Col-0 and the fer-5 mutant of Arabidopsis and evaluated FER-associated traits. We observed that fer-5 plants show an enhanced apoplastic and stomatal defence against Pseudomonas syringae. In addition, the fer-5 mutant shows reduced biomass, smaller guard cell size, greater number of stomata per leaf area, fewer leaves, faster transition to reproductive stage and lower seed weight per plant than the wild-type Col-0. Except for the stomatal complex length and number of stomata, COK-4 expression in fer-5 lines partially or completely rescued both defence and developmental defects of fer-5 to the wild-type level. Notably, COK-4 may have an additive effect to FER, as the expression of COK-4 in Col-0 resulted in enhanced defence and growth phenotypes in comparison with wild-type Col-0 plants. Altogether, these findings indicate that the common bean COK-4 shares at least some of the multiple functions of the Arabidopsis FER kinase domain, acting in both the induction of plant growth and regulation of plant defence.
Collapse
Affiliation(s)
- Rafhael Felipin Azevedo
- Department of Plant SciencesUniversity of California, DavisDavisCA 95616USA
- Departamento de AgronomiaUniversidade Estadual de MaringáMaringáPR 87020‐900Brazil
| | | | | | - Maeli Melotto
- Department of Plant SciencesUniversity of California, DavisDavisCA 95616USA
| |
Collapse
|
93
|
Moussu S, Augustin S, Roman AO, Broyart C, Santiago J. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr D Struct Biol 2018; 74:671-680. [PMID: 29968676 PMCID: PMC6038381 DOI: 10.1107/s205979831800774x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
Complex cell-to-cell communication between the male pollen tube and the female reproductive organs is required for plant fertilization. A family of Catharanthus roseus receptor kinase 1-like (CrRLK1L) membrane receptors has been genetically implicated in this process. Here, crystal structures of the CrRLK1Ls ANXUR1 and ANXUR2 are reported at 1.48 and 1.1 Å resolution, respectively. The structures reveal a novel arrangement of two malectin-like domains connected by a short β-hairpin linker and stabilized by calcium ions. The canonical carbohydrate-interaction surfaces of related animal and bacterial carbohydrate-binding modules are not conserved in plant CrRLK1Ls. In line with this, the binding of chemically diverse oligosaccharides to ANXUR1 and HERCULES1 could not be detected. Instead, CrRLK1Ls have evolved a protein-protein interface between their malectin domains which forms a deep cleft lined by highly conserved aromatic and polar residues. Analysis of the glycosylation patterns of different CrRLK1Ls and their oligomeric states suggests that this cleft could resemble a binding site for a ligand required for receptor activation of CrRLK1Ls.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
94
|
Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor 2-Mediated Cross-Incompatibility in Maize. Int J Mol Sci 2018; 19:ijms19061757. [PMID: 29899298 PMCID: PMC6032218 DOI: 10.3390/ijms19061757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays L.), unilateral cross-incompatibility (UCI) is controlled by Gametophyte factors (Ga), including Ga1, Ga2, and Tcb1; however, the molecular mechanisms underpinning this process remain unexplored. Here, we report the pollination phenotype of an inbred line, 511L, which carries a near-dominant Ga2-S allele. We performed a high-throughput RNA sequencing (RNA-Seq) analysis of the compatible and incompatible crosses between 511L and B73, to identify the transcriptomic differences associated with Ga2-mediated UCI. An in vivo kinetics analysis revealed that the growth of non-self pollen tubes was blocked at the early stages after pollination in 511L, maintaining the UCI barrier in Ga2. In total, 25,759 genes were expressed, of which, 2063 differentially expressed genes (DEGs) were induced by pollination (G_GG, G_GB, B_BB, B_BG). A gene ontology (GO) enrichment analysis revealed that these genes were specifically enriched in functions involved in cell wall strength and pectic product modification. Moreover, 1839, 4382, and 5041 genes were detected to differentially express under same pollination treatments, including B_G, BG_GG, and BB_GB, respectively. A total of 1467 DEGs were constitutively expressed between the two inbred lines following pollination treatments, which were enriched in metabolic processes, flavonoid biosynthesis, cysteine biosynthesis, and vacuole functions. Furthermore, we confirmed 14 DEGs related to cell wall modification and stress by qRT-PCR, which might be involved in Ga2-S-mediated UCI. Our results provide a comprehensive foundation for the molecular mechanisms involved in silks of UCI mediated by Ga2-S.
Collapse
|
95
|
Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J, Liu S, Hu Q, Miao Y, Lindsey K, Tu L, Zhu L, Zhang X. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1172-1185. [PMID: 29149461 PMCID: PMC5978870 DOI: 10.1111/pbi.12861] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) have several known functions in plant development, but their possible roles in responding to plant disease remain largely unresolved. In this study, we described a comprehensive disease-responding lncRNA profiles in defence against a cotton fungal disease Verticillium dahliae. We further revealed the conserved and specific characters of disease-responding process between two cotton species. Conservatively for two cotton species, we found the expression dominance of induced lncRNAs in the Dt subgenome, indicating a biased induction pattern in the co-existing subgenomes of allotetraploid cotton. Comparative analysis of lncRNA expression and their proposed functions in resistant Gossypium barbadense cv. '7124' versus susceptible Gossypium hirsutum cv. 'YZ1' revealed their distinct disease response mechanisms. Species-specific (LS) lncRNAs containing more SNPs displayed a fiercer inducing level postinfection than the species-conserved (core) lncRNAs. Gene Ontology enrichment of LS lncRNAs and core lncRNAs indicates distinct roles in the process of biotic stimulus. Further functional analysis showed that two core lncRNAs, GhlncNAT-ANX2- and GhlncNAT-RLP7-silenced seedlings, displayed an enhanced resistance towards V. dahliae and Botrytis cinerea, possibly associated with the increased expression of LOX1 and LOX2. This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.
Collapse
Affiliation(s)
- Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Nannan Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Honglei Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zheng Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tianyi Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Erlin Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Junxia Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Keith Lindsey
- Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversityDurhamUK
| | - Lili Tu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
96
|
Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the Gaps to Solve the Extensin Puzzle. MOLECULAR PLANT 2018; 11:645-658. [PMID: 29530817 DOI: 10.1016/j.molp.2018.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 05/20/2023]
Abstract
Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Ana Sede
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Diana Rosa Rodríguez Garcia
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina.
| |
Collapse
|
97
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
98
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
99
|
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
100
|
Du S, Qu LJ, Xiao J. Crystal structures of the extracellular domains of the CrRLK1L receptor-like kinases ANXUR1 and ANXUR2. Protein Sci 2018; 27:886-892. [PMID: 29388293 DOI: 10.1002/pro.3381] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Catharanthus roseus Receptor-Like Kinase 1-like (CrRLK1L) proteins contain two tandem malectin-like modules in their extracellular domains (ECDs) and function in diverse signaling pathways in plants. Malectin is a carbohydrate-binding protein in animals and recognizes a number of diglucosides; however, it remains unclear how the two malectin-like domains in the CrRLK1L proteins sense the ligand molecule. In this study, we reveal the crystal structures of the ECDs of ANXUR1 and ANXUR2, two CrRLK1L members in Arabidopsis thaliana that have critical functions in controlling pollen tube rupture during the fertilization process. We show that the two malectin-like domains in these proteins pack together to form a rigid architecture. Unlike animal malectin, these malectin-like domains lack residues involved in binding to the diglucosides, suggesting that they have a distinct ligand-binding mechanism. A cleft is observed between the two malectin-like domains, which might function as a potential ligand-binding pocket.
Collapse
Affiliation(s)
- Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|